seismic design of rc structures - saatcioglu

146
Seismic Design and Detailing Seismic Design and Detailing of Reinforced Concrete of Reinforced Concrete Structures Based on CSA Structures Based on CSA A23.3 - 2004 A23.3 - 2004 Murat Saatcioglu PhD,P.Eng. Professor and University Research Chair Department of Civil Engineering The University of Ottawa Ottawa, ON

Upload: al-mamun

Post on 18-Aug-2015

251 views

Category:

Documents


3 download

DESCRIPTION

hahaha

TRANSCRIPT

Seismic Design and Detailing of Seismic Design and Detailing of Reinforced Concrete Structures Reinforced Concrete Structures Based on CSA A23.3 - 2004Based on CSA A23.3 - 2004Murat Saatcioglu PhDP.!ng.Professor and "ni#ersit$ Research ChairDe%artment of Ci#il !ngineering&he "ni#ersit$ of 'tta(a'tta(a ') Reinforced concrete structures are designed to dissi%ate seismic induced energ$ through inelastic deformationsBasic Princi%les of DesignBasic Princi%les of Design*e + S,&a- M# .! / 0 ,Rd Ro-*e*e 0Rd Ro*e 0Rd Basic Princi%les of DesignBasic Princi%les of Design.nelasticit$ results softening in the structure elongating structural %eriodS,&-&&1&2S1S2 Basic Princi%les of DesignBasic Princi%les of DesignCa%acit$ Demand.t is a good %ractice to reduce seismic demands to the e2tent %ossi3le4.&his can 3e done at the conce%tual stage 3$ selecting a suita3le structural s$stem. &o reduce seismic demands4&o reduce seismic demands4Select a suita3le site (ith fa#ora3le soil conditionsA#oid using unnecessar$ mass"se a sim%le structural la$out (ith minimumtorsional effects A#oid strength and stiffness ta%er along the heightA#oid soft store$sPro#ide sufficient lateral 3racing and drift control 3$ using concrete structural (alls.solate non-structural elements Seismic Am%lification due to Soft SoilSeismic Am%lification due to Soft Soil 5i6uefaction5i6uefaction 5i6uefaction5i6uefaction 5i6uefaction5i6uefaction &o reduce seismic demands4&o reduce seismic demands4Select a suita3le site (ith fa#ora3le soil conditionsA#oid using unnecessar$ mass"se a sim%le structural la$out (ith minimumtorsional effects A#oid strength and stiffness ta%er along the heightA#oid soft store$sPro#ide sufficient lateral 3racing and drift control 3$ using concrete structural (alls.solate non-structural elements "se of "nnecessar$ Mass"se of "nnecessar$ Mass "se of "nnecessar$ Mass"se of "nnecessar$ Mass "se of "nnecessar$ Mass"se of "nnecessar$ Mass "se of "nnecessar$ Mass"se of "nnecessar$ Mass &o reduce seismic demands4&o reduce seismic demands4Select a suita3le site (ith fa#ora3le soil conditionsA#oid using unnecessar$ mass"se a sim%le structural la$out (ith minimumtorsional effects A#oid strength and stiffness ta%er along the heightA#oid soft store$sPro#ide sufficient lateral 3racing and drift control 3$ using concrete structural (alls.solate non-structural elements !ffect of &orsion!ffect of &orsion !ffect of &orsion!ffect of &orsion !ffect of &orsion!ffect of &orsion !ffect of &orsion!ffect of &orsion !ffect of &orsion!ffect of &orsion !ffect of &orsion!ffect of &orsion !ffect of &orsion!ffect of &orsion !ffect of &orsion!ffect of &orsion &o reduce seismic demands4&o reduce seismic demands4Select a suita3le site (ith fa#ora3le soil conditionsA#oid using unnecessar$ mass"se a sim%le structural la$out (ith minimumtorsional effects A#oid strength and stiffness ta%er along the heightA#oid soft store$sPro#ide sufficient lateral 3racing and drift control 3$ using concrete structural (alls.solate non-structural elements !ffect of *ertical Discontinuit$!ffect of *ertical Discontinuit$ !ffect of *ertical Discontinuit$!ffect of *ertical Discontinuit$ &o reduce seismic demands4&o reduce seismic demands4Select a suita3le site (ith fa#ora3le soil conditionsA#oid using unnecessar$ mass"se a sim%le structural la$out (ith minimumtorsional effects A#oid strength and stiffness ta%er along the heightA#oid soft store$sPro#ide sufficient lateral 3racing and drift control 3$ using concrete structural (alls.solate non-structural elements !ffect of Soft Store$!ffect of Soft Store$ !ffect of Soft Store$!ffect of Soft Store$ !ffect of Soft Store$!ffect of Soft Store$ !ffect of Soft Store$!ffect of Soft Store$ &o reduce seismic demands4&o reduce seismic demands4Select a suita3le site (ith fa#ora3le soil conditionsA#oid using unnecessar$ mass"se a sim%le structural la$out (ith minimumtorsional effects A#oid strength and stiffness ta%er along the heightA#oid soft store$sPro#ide sufficient lateral 3racing and drift control 3$ using concrete structural (alls.solate non-structural elements R0C 7rame Buildings (ithout Drift ControlR0C 7rame Buildings (ithout Drift Control Buildings Stiffened 3$ Structural /allsBuildings Stiffened 3$ Structural /alls &o reduce seismic demands4&o reduce seismic demands4Select a suita3le site (ith fa#ora3le soil conditionsA#oid using unnecessar$ mass"se a sim%le structural la$out (ith minimumtorsional effects A#oid strength and stiffness ta%er along the heightA#oid soft store$sPro#ide sufficient lateral 3racing and drift control 3$ using concrete structural (alls.solate non-structural elements Short Column !ffectShort Column !ffect Short Column !ffectShort Column !ffect Seismic Design Re6uirements ofSeismic Design Re6uirements ofCSA A23.3 - 2004CSA A23.3 - 2004Ca%acit$ design is em%lo$ed4..Selected elements are designed to $ield (hile critical elements remain elasticDesign forStrength and Deformability Principal loads: 1.0D + 1.0EAnd either of the following:1)Forstorageoccupancies,equipment areas and service rooms:1.0D + 1.0E + 1.0L + 0.!S) For other occupancies:1.0D + 1.0E + 0.!L + 0.!S5oad Com3inations5oad Com3inations Stiffness Pro%erties for Anal$sisStiffness Pro%erties for Anal$sisConcrete crac8s under o(n (eight of structure.f concrete is not crac8ed then the structure is not reinforced concrete ,%lain concrete-9ence it is im%ortant to account for the softening of structures due to crac8ingCorrect assessment of effecti#e mem3er stiffness is essential for im%ro#ed accurac$ in esta3lishing the distri3ution of design forces among mem3ers as (ell as in com%uting the %eriod of the structure. 7le2ural Beha#iour of R0C7le2ural Beha#iour of R0C 7le2ural Beha#iour of R0C7le2ural Beha#iour of R0C Section Pro%erties for Anal$sis as Section Pro%erties for Anal$sis as %er CSA A23.3-04%er CSA A23.3-04Beams .e+ 0.40 .gColumns.e+ c.g Cou%ling Beams(ithout diagonal reinforcementA#e+ 0.1:Ag .e+ 0.40 .g(ith diagonal reinforcementA#e+ 0.4:Ag .e+ 0.2: .gSla3-7rame !lement.e+ 0.20 .g/alls A2e+ (Ag.e+ ( .g

1.0A fP0.6 0.5 g'csc + =1.0A fP0.6 g'csw + = Seismic Design Re6uirements ofSeismic Design Re6uirements ofCSA A23.3 - 2004CSA A23.3 - 2004Chapter 21 covers: Ductile Moment Resisting 7rames ,MR7- Moderatel$ Ductile MR7 Ductile Shear /alls Ductile Cou%led Shear /alls Ductile Partiall$ Cou%led Shear /alls Moderatel$ Ductile Shear /alls Ductile Moment Resisting 7rame Ductile Moment Resisting 7rame Mem3ers Su3;ected to 7le2ureMem3ers Su3;ected to 7le2ureRd + 4.0 Pf < Agf=c 010 Beam 5ongitudinal ReinforcementBeam 5ongitudinal Reinforcement Beam &rans#erse ReinforcementBeam &rans#erse ReinforcementNo lap splicing within this region 7ormation of Plastic 9inges7ormation of Plastic 9inges Beam Shear StrengthBeam Shear Strength Beam Shear StrengthBeam Shear Strength&he factored shear need not e2ceed that o3tained from structural anal$sis under factored load com3inations (ith RdRo + 1.0&he #alues of + 4:o and + 0 shall 3e used in shear design (ithin %lastic hinge regions&he trans#erse reinforcement shall 3e seismic hoo%s Ductile Moment Resisting 7rame Ductile Moment Resisting 7rame Mem3ers Su3;ected to 7le2ure and Mem3ers Su3;ected to 7le2ure and Significant A2ial 5oadSignificant A2ial 5oadRd + 4.0Pf > Agf=c 010hshort ? 300 mmD ? 300 mmhshort 0 hlong ? 0.4 5ongitudinal Reinforcement5ongitudinal Reinforcement min = 1% max = 6%Design for factored a2ial forces and moments using Interaction Diagrams Strong Beam-/ea8 Column DesignStrong Beam-/ea8 Column Design Strong Beam-/ea8 Column DesignStrong Beam-/ea8 Column Design Strong Column-/ea8 Beam DesignStrong Column-/ea8 Beam Designpb ncM M)ominal moment resistance of columns under factored a2ial loadsPro3a3le moment resistance of 3eams Column Confinement Column Confinement ReinforcementReinforcement lo 1.:h lo 10@ of clear col. height.f Pf < 0.: c f=c Ag A lo 2.0h.f Pf > 0.: c f=c Ag AColumns (ill 3e confined for im%ro#ed inelastic deforma3ilit$ lo lo Columns connected to rigid mem3ers such as foundations and discontinuous (alls or columns at the 3ase (ill 3e confined along the entire height Poorl$ Confined ColumnsPoorl$ Confined Columns Poorl$ Confined ColumnsPoorl$ Confined Columns /ell-Confined /ell-Confined ColumnColumn Column Confinement ReinforcementColumn Confinement Reinforcement$hc% sffB0.48 Cof%PP8 =$hccgsffB1-AA0.4:, CCircular S%iralsMPa !! $hf Column Confinement ReinforcementColumn Confinement Reinforcementcchgsh""$hc% n shffB8 0.28 Aof%PP8 =csh$hcshffB0.0D ARectilinear &iesMPa !! $hf# $ n %& n = n8nE )o. of laterall$ su%%orted 3ars S%acing of Confinement S%acing of Confinement ReinforcementReinforcement F of minimum mem3er dimension @ 2 smallest long. 3ar diameter s2 + 100 G ,3:0 H h2- 0 3S%acing of laterall$ su%%orted longitudinal 3ars h2 < 200 mm or 103 hc Column Shear Column Shear StrengthStrength Column Shear StrengthColumn Shear Strength&he factored shear need not e2ceed that o3tained from structural anal$sis under factored load com3inations (ith RdRo + 1.0&he #alues of ? 4:o and < 0.10 shall 3e used in shear design in regions (here the confinement reinforcement is needed&he trans#erse reinforcement shall 3e seismic hoo%s Shear Deficient ColumnsShear Deficient Columns Shear Deficient ColumnsShear Deficient Columns Beam-Column IointsBeam-Column Ioints Poor Ioint PerformancePoor Ioint Performance Com%utation of Ioint ShearCom%utation of Ioint Shear'x(x ) that obtained from frame analysis *sing +d+o = 1,! - c c -" . f $ , $ '- c c -" . f 6 , 1 '- c c -" . f / , 1 'Shear Resistance of Ioints Shear Resistance of Ioints 0ontin*e col*mn confinement reinforcement into the -oint1f the -oint is f*lly confined byfo*r beams framing from all fo*r sides2 then eliminate e3ery other hoop, "t these locations sx = 1! mm&rans#erse Reinforcement in Ioints&rans#erse Reinforcement in Ioints Design !2am%leDesign !2am%leSi2-Store$ Ductile Moment Resisting 7rame in *ancou#erCha%ter 11B$ D. Mitchell and P. Paultre "+d = 4,! and +o = 1,5"Site 0lassification 0&6a 7 63 = 1,!#1nterior col*mns8 !! x !! mm9xterior col*mns8 4! x 4! mmSlab8 11! mm thic:;eams &1(/rd floors#8 4!! x 6!! mm;eams &4(6th floors#8 4!! x ! mmSix(Storey D*ctile Moment +esisting 6rame in 'anco*3er Material Pro%ertiesConcreteEnormal densit$ concrete (ith 30 MPaReinforcementE400 MPa5i#e loads7loor li#e loadsE2.4 8)0m2 on t$%ical office floors4.J 8)0m2 on @ m (ide corridor 3a$Roof load2.2 8)0m2 sno( load accounting for %ara%ets and e6ui%ment %ro;ections1.@ 8)0m2 mechanical ser#ices loading in @ m (ide stri% o#er corridor 3a$Dead loadsself-(eight of reinforced concrete mem3ers calculated as 24 8)0m31.0 8)0m2 %artition loading on all floors0.: 8)0m2 mechanical ser#ices loading on all floors0.: 8)0m2 roofing/ind loading1.J4 8)0m2 net lateral %ressure for to% 4 store$s1.K: 8)0m2 net lateral %ressure for 3ottom 2 store$s&he fire-resistance rating of the 3uilding is assumed to 3e 1 hour.