seismic analysis fj

Upload: bina-aji-nugraha

Post on 02-Jun-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Seismic Analysis FJ

    1/16

    SEISMIC ANALYSIS ON SACS

    Monday, 17th February 2014

    By: FJ

  • 8/10/2019 Seismic Analysis FJ

    2/16

    INTRODUCTIONS

    The method of this analysis using Engineering Dynamic Inc. SACS Program has been used to

    determine the structuresNatural Period. The resultingMode ShapesandMass Matrixare used in

    theResponse Analysis. The Response Analysis generates all the loads for the Seismic Analysis.

    Earthquake load consist of two analysis, e.g.:

    Strength Level Earthquake(SLE) 100 years event

    Ductility/Rare Level Earthquake(DLE/RLE) 800 years event

    The differences are the value of Peak Ground Acceleration (PGA) and Pseudo Spectrum Velocity

    (PSV).

    INTRODUCTION

  • 8/10/2019 Seismic Analysis FJ

    3/16

  • 8/10/2019 Seismic Analysis FJ

    4/16

    SACINP.S1

    Basic model using sacinp.opr

    No AMOD

    Basic CDM using inplace

    Line up the similar load

    LCOMB consist of basic load with additional

    GX and GY (for superelement)

    LCSEL according to LCOMB

    No environmental load

    Only one WOR# Dead Load

    Water depth using MSL

    PSIINP.S1

    Basic soil data using psiinp.opr

    PutPILSUP AVG(combined ESEX and ESEY)

    FOUNDATION LINEARIZATION

    Initial Load

    INPUT

    INPUT

  • 8/10/2019 Seismic Analysis FJ

    5/16

    OUTPUT

    Superelement file dynsef.s1

    psilist.s1 (check structure base shear)

    FOUNDATION LINEARIZATION

    For initial load

    factor use 1.0

    Soil stiffness generated based on 2 directions of lateral SACS

    generated self weight are used to average out the soil

    stiffness for use in dynamic analysis

    INPUT SACS (SACINP.S1)

    SOIL DATA

  • 8/10/2019 Seismic Analysis FJ

    6/16

    SACINP.S2

    Basic model using sacinp.s1

    Fix LCOMB for mass of the structure

    No Selfweight

    No WOR# Dead Load

    Fixity 222000 (Leg/edge of Deck)

    DYNSEF.S1

    Use for superlement of the structure

    DYNINP.S2

    Put DYNOPT for mass calculation and mode shape

    Water depth using MSL

    Put DYNOPT2 for structural density = 110 % x 490.0 pcf

    DYNAMIC ANALYSIS

    INPUT

  • 8/10/2019 Seismic Analysis FJ

    7/16

    DYNAMIC ANALYSIS

    Increase structural

    density 110 %

    DYNINP.S2

    INPUT SACS (SACINP.S2)

  • 8/10/2019 Seismic Analysis FJ

    8/16

    OUTPUT

    dynmod.s2

    dynmass.s2

    dynlist.s2 (check natural period/frequency and mass participation >90%)

    DYNAMIC ANALYSIS

    > 90 %

  • 8/10/2019 Seismic Analysis FJ

    9/16

    DYRINP.S3

    Water depth using MSL

    Damping Value 5%

    Directionally factor X = Y = 100% (1.00), Z = 50 % (0.5)

    Include PGA and PSV based on return event (SLE 100 years or DLE 800 years).

    DYNMOD.S2

    Use for structure modes shape

    DYNMASS.S2

    Use for structure mass

    PSICSF.S1

    Use for common solution file

    EARTHQUAKE

    INPUT

  • 8/10/2019 Seismic Analysis FJ

    10/16

    Earthquake load components, i.e.:

    1. Peak Ground Acceleration (PGA)

    2. Period and Pseudo Spectrum Velocity (PSV)

    3. Damping Ratio

    4. Mudline Elevation

    5. Directional Factor

    OUTPUT

    dyrcsf.s3

    dyrlist.s3

    EARTHQUAKE

    PGA 0.216 G

    Dumping Ratio 5 %

    Mudline 49.0 ft

    T (second)Region A

    PSV (in/sec/g)

    0.030 1.845

    0.050 3.075

    0.125 15.238

    0.500 60.952

    5.000 60.952

    10.000 30.476

    5

    2

    14

    3

    INPUT DYRINP.S3

  • 8/10/2019 Seismic Analysis FJ

    11/16

    Iteration of base shear betweenStep 1with base shear atStep 3.

    ITERATION

    DYRLIST.S3

    PSILIST.S1

    OUTPUT

  • 8/10/2019 Seismic Analysis FJ

    12/16

    PSTINP.S4

    Put AMOD for load case 1 and 2

    Increase AMOD 1.700

    DYRCSF.S3

    Common solution file for earthquake loads

    OUTPUT

    pstlst.s4

    Consider UC member greater than 1.00 (UC < 1.0)

    A. ELEMENT STRESS / CODE CHECK

    POST PROCESSING

    Basic Allowable Stress

    Modification

    INPUT

  • 8/10/2019 Seismic Analysis FJ

    13/16

    B. JOINT PUNCHING SHEAR

    POST PROCESSING

    JCINP.S4

    Put AMOD for load case 3 and 4

    Increase AMOD 1.700

    DYRCSF.S3

    Common solution file for earthquake loads

    OUTPUT

    jcnlst.s5

    Consider Punching Shear greater than 1.00 (Load UC < 1.0)

    Basic Allowable Stress

    Modification

    INPUT

  • 8/10/2019 Seismic Analysis FJ

    14/16

    MISCELLANEOUS

    PILINP.S6

    Basic model using sacinp.s1

    LCOMB consist of response from each pile/leg

    (taken from element stress member detail)

    LCSEL only for pile response (PILE)

    Increase AMOD 1.700

    PSIINP.OPR

    Original soil data using psiinp.opr

    PILE ANALYSIS

    INPUT

  • 8/10/2019 Seismic Analysis FJ

    15/16

    MISCELLANEOUS

    OUTPUT

    psilist.s6

    Consider Safety Factor Pile greater than 1.0 (SF > 1.0)

    Consider Pile Below Mudline Stress Ratio greater than 1.0 (UC < 1.0)

    PILE ANALYSIS

    Taken from member stress analysis for each pile head

    PILE INPUT (SACINP.PIL)

  • 8/10/2019 Seismic Analysis FJ

    16/16

    MISCELLANEOUS

    CONCLUSION

    Member Unity Checks Ratio (UC < 1.0)

    Joint Punching Shear Ratio (Load UC < 1.0)

    Safety Factor of Pile (SF > 1.0)

    Pile Below Mudline Stress Ratio (UC < 1.0)

    F I N