segmented mosfet technology for reduced variability

42
Segmented MOSFET Technology for Reduced Variability T J Ki Li Xi S Ch h Shi T suJae King Liu , Xin Sun, Changhwan Shin, Nattapol Damrongplasit, Byron Ho, Reinaldo Vega Electrical Engineering and Computer Sciences Department Electrical Engineering and Computer Sciences Department University of California at Berkeley September 30 2009 September 30, 2009 IMPACT Project Seminar

Upload: others

Post on 16-Nov-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Segmented MOSFET Technology for Reduced Variability

Segmented MOSFET Technology for Reduced Variability

T J Ki Li Xi S Ch h ShiTsu‐Jae King Liu, Xin Sun, Changhwan Shin, Nattapol Damrongplasit, Byron Ho, Reinaldo Vega Electrical Engineering and Computer Sciences DepartmentElectrical Engineering and Computer Sciences Department

University of California at Berkeley

September 30 2009September 30, 2009

IMPACT Project Seminar

Page 2: Segmented MOSFET Technology for Reduced Variability

Outline

• Introduction– Transistor scaling challenges– Advanced transistor structures

• Tri‐Gate Bulk/PD‐SOI FET Design

• Corrugated Substrate Technology

S• Summary

Page 3: Segmented MOSFET Technology for Reduced Variability

Modern MOSFET Structures(Intel Penryn© from www semiconductor com)(Intel Penryn©,  from www.semiconductor.com)

N-channel MOSFETs P-channel MOSFETs

• 45nm CMOS technology features:– high‐permittivity gate dielectric and metal gate electrodes– strained channel regions– aggressive silicidation of n+ source/drain regions

3

Page 4: Segmented MOSFET Technology for Reduced Variability

Historical Voltage Scaling• Since the threshold voltage VTH cannot be scaled down 

aggressively, the power‐supply voltage (VDD) has not beenaggressively, the power supply voltage (VDD) has not been scaled down in proportion to the MOSFET gate length:

V log IVDD

Low VTH

High VTH

log IDS

VDD – VTH

S

VGS0 VDDVTH

Source: P. Packan (Intel), 2007 IEDM Short Course

K. Bernstein et al., IBM J. Res. Dev. 50‐4/5, 2006: 4

Page 5: Segmented MOSFET Technology for Reduced Variability

The CMOS Power Crisis

Power Density vs. CMOS Scaling Power Density Prediction circa 2000

(W/c

m2 )

1E 00

1E+01

1E+02

1E+03Active Power Density

1000

10000

(W/c

m2)

Rocket NozzleSun’s Surface

er D

ensi

ty

1E-03

1E-02

1E-01

1E+00

40048008 8085

8086

Pentium® procP610

100

wer

Den

sity

Hot Plate

Nuclear Reactor

Core 2

Pow

e

1E-05

1E-04

1E-03

0.01 0.1 1G t L th ( )

Passive Power Density 80088080

8085286 386 486Pentium® proc

11970 1980 1990 2000 2010

YearPo

w

• Improved MOSFET design for lower leakage and reduced

Gate Length (μm)Source: B. Meyerson (IBM) Semico Conf., January 2004 Source: S. Borkar (Intel)

• Improved MOSFET design for lower leakage and reduced variability eventually will be needed to mitigate this crisis.

5

Page 6: Segmented MOSFET Technology for Reduced Variability

Sources of Variability• Sub‐wavelength lithography:

– Resolution enhancement Design

250nm250nm 180nm180nm

OPCOPC

90nm and Below90nm and Below

PSM

PSMPSM

0°0°

techniques are costly and increase process sensitivity

Mask

Wafer

180°

180°

180°

OPC0°

180°OPCOPCOPC

180°

• Layout‐dependent transistor performance:– Process‐induced stress is dependent on layout

• Random dopant fluctuations (RDF):– Atomistic effects become significant 

in nanoscale FETs

SiO2 GateA. Brown et al., IEEE Trans.Nanotechnology,p. 195, 2002

photoresist

in nanoscale FETs

p. 195, 2002

Source DrainA. Asenov, Symp. VLSI Tech. Dig., p. 86, 2007• Random Telegraph Noise (RTN) 6

Page 7: Segmented MOSFET Technology for Reduced Variability

Impact of Misalignment6-T SRAM Cell

Actual layout w/ lateral misalignment(gate length variations)

Desired layout(6‐T SRAM cell)

Lg reduced Lg increased

PD PGPU

Lg reduced Lg increased

PG PDPU

Actual layout(corner rounding)

Actual layout w/ vertical misalignment(channel width variations due to active jogs)

W reduced W increasedW reduced

7

Page 8: Segmented MOSFET Technology for Reduced Variability

Double Patterning of Gate6-T SRAM Cell

Actual layout after 1st gate patterningDesired layout(6‐T SRAM cell)

PD PGPU

PG PDPU

Actual layout after active patterning Actual layout after 2nd gate patterning(no gate length variation)

8

Page 9: Segmented MOSFET Technology for Reduced Variability

Impact of Variability on SRAM

• VTH mismatch results in reduced static noise margin.lowers cell yield and limits V scalinglowers cell yield, and limits VDD scaling

Circuit Schematic of 6‐T SRAM Cell Butterfly Curve

Y. Tsukamoto et al., Proc. IEEE/ACM ICCAD, p. 398, 2005

Immunity to short‐channel and narrow‐channel effects, aswell as RDF effects is needed to achieve high SRAM cell yieldwell as RDF effects, is needed to achieve high SRAM cell yield.

9

Page 10: Segmented MOSFET Technology for Reduced Variability

Why New Transistor Structures?

• Leakage must be suppressed as Lg is scaled down

• Leakage occurs in the region away from the channel surface

Let’s get rid of it! Lg

G t

Thin-BodyMOSFET:

Gate

DrainSource

Gate

Source Drain

Gate

“Silicon-on-Insulator”

Buried Oxide

Substrate

Insulator (SOI)Wafer

10

Page 11: Segmented MOSFET Technology for Reduced Variability

Thin‐Body MOSFETs

• Leakage can be suppressed by using a thin body (tSi < Lg)

Ch l d i i d d hi h i bili– Channel doping is not needed  higher carrier mobility– Aggressive gate‐oxide scaling is not needed

• The double‐gate structure is more scalable (to L <10nm)The double‐gate structure is more scalable (to Lg<10nm)

Ultra-Thin Body (UTB)L

Double-Gate (DG)

Gate

Lg

Gate

Buried Oxide

Source Drain

Gate

tSi

Gate

Source Drain tSi

Substrate

11

Page 12: Segmented MOSFET Technology for Reduced Variability

Vertical Double‐Gate “FinFET”

Planar DG-FET D. Hisamoto et al., IEEE Int’l Electron Devices Meeting, 1998

FinFET

Gate

Lg N. Lindert et al., IEEE Electron Device Letters, p.487, 2001Drain

GateLg

Source Drain

Gate

tSiSource

Gate

Fin Width WSi = tSi

Fin Height Hfin = W/2

GATEDRAIN

20 nm

10 nm Y.-K. Choi et al., IEEE Int’l Electron Devices Meeting 2001

15nm Lg FinFET:

SOURCE

12

Page 13: Segmented MOSFET Technology for Reduced Variability

Thin‐Body MOSFET Challenges• “There are various problems associated with a move to multi‐gate field‐effect 

transistors (MuGFETs)…challenges with parasitic resistance, parasitic capacitance and vertical topology will make MuGFETs difficult to implement ”

K. Kuhn (Intel Fellow, Director of Advanced Technology) in EE Times,12/15/08 capacitance and vertical topology will make MuGFETs difficult to implement.

F. Boeuf (ST Microelectronics), 2009 Symp. VLSI TechnologyShort Course

A better solution is needed…

13

Page 14: Segmented MOSFET Technology for Reduced Variability

The Tri‐Gate Bulk FETM Kito et al (Toshiba Corp ) 2005 Symp VLSI Technology

XTEM images

M. Kito et al. (Toshiba Corp.), 2005 Symp. VLSI Technology

• A tri‐gate structure is easily achievedpoly‐Sigate

poly‐Sigate

Si Si

A tri gate structure is easily achieved by slightly recessing the isolation oxide (or by selective epitaxial growth) just prior to gate‐stack formation

Measured I‐V Characteristics

prior to gate stack formation

• Superior electrostatic integrity is achieved with the tri‐gate structure

reduced impact of process‐reduced impact of processinduced variationsfacilitates voltage scaling 

14

Page 15: Segmented MOSFET Technology for Reduced Variability

Outline

• Introduction

• Tri‐Gate Bulk/PD‐SOI FET Design

• Corrugated Substrate Technology

• Summary

Page 16: Segmented MOSFET Technology for Reduced Variability

Bulk vs. SOI Tri‐Gate FET DesignX Sun et al IEEE Electron Device Letters Vol 29 pp 491 493 May 2008

tri-gate bulk tri-gate SOItri-gate bulk tri-gate SOIOFF 

Current Contour Plots

Required Si Channel Dimensions 

X. Sun et al., IEEE Electron Device Letters Vol. 29, pp. 491‐493, May 2008.

A/cm-2A/cm-2

(μm

)

(μm

)

A/cm-2A/cm-2

(μm

)

(μm

)State

Wider/taller stripes can be used with bulk ( ) ( )( ) ( )

used for 2D cuts

used with bulk design tri-gate bulk tri-gate SOI

(μm

)

(μm

)

tri-gate bulk tri-gate SOI

(μm

)

(μm

)

ON State

(μm) (μm)(μm) (μm)

[16] J.G. Fossum et al., IEDM Tech. Dig., pp. 613-616, 2004.

Bulk design achieves better layout efficiency

A/cm-2 A/cm-2A/cm-2 A/cm-2

efficiency

(μm) (μm)(μm) (μm)

16

Page 17: Segmented MOSFET Technology for Reduced Variability

Idealized MOSFET Designs Planar bulk Tri-gate bulkxy

0 Planar bulk Tri-gate bulkxy0

Gate GateSource DraintSi

tSiWz

toxW Gate Gate

Source DraintSi

tSiWz

toxW

Si Substrate Si Substrate

Ground-plane

Source DrainSi

Si Substrate Si Substrate

Ground-plane

Source DrainSi

tSi

Double-gate SOIxz

y

0

tSi

Double-gate SOIxz

y

0

ping

con

c.

Ground-plane Npeak≥1019cm-3

ping

con

c.

Ground-plane Npeak≥1019cm-3

GatetSi

W GatetSi

WC

hann

el d

optSi

NA

Cha

nnel

dop

tSiNA

BOXBOXDepth from top surface z

C

Depth from top surface z

C

17

Page 18: Segmented MOSFET Technology for Reduced Variability

Tri‐Gate Bulk FET: Scale Length DerivationX Sun et al to appear in IEEE Trans Electron Devices

Poisson’s equation:Si

AqNdzd

dyd

dxd

ε=

Φ+

Φ+

Φ2

2

2

2

2

2

X. Sun et al., to appear in IEEE Trans. Electron Devices

+ Sidzdydx ε

parabolic potential approximations+ )()(2 φφd+appropriate boundary conditions

where λ is the scale length:

0)()(22

2

=−λφφ x

dxxd

2

2

2

1Siox

leak

Si

ox

Si

leak

ox

leak

Si

ox

ttz

tz

tz

−−+=

εε

εε

λ

2

2

2

2

2228SiSioxSi

ox

Siox

leak

Si

ox

Si

leak

ox

leak

Si

ox

tttttz

tz

tz

W++⎟⎟

⎞⎜⎜⎝

⎛−−

=

εε

εε

εε

λ

SiSi

ox

ox

Sileak

tttz 221

2 +=

εεwhere is the location of the highest leakage current density

18

Page 19: Segmented MOSFET Technology for Reduced Variability

Scale Length ComparisonTri‐Gate Bulk FET vs Planar Bulk FET vs FinFETTri‐Gate Bulk FET vs. Planar Bulk FET vs. FinFET

50double-gate SOI

50double-gate SOI

Scale length contour plots

40

double-gate SOI ground-plane tri-gate bulk

m) λ = 10nm

40

double-gate SOI ground-plane tri-gate bulk

m) λ = 10nm

tox = 1nm

20

30

t Si (n

m λ = 10nm

λ = 7nm20

30

t Si (n

m λ = 10nm

λ = 7nm

10 20 30 40 50 6010

20 λ = 7nm

10 20 30 40 50 6010

20 λ = 7nm

• For given values of W and tSi, the scale length is smallest 

10 20 30 40 50 60W (nm)

10 20 30 40 50 60W (nm)

Sifor the  tri‐gate bulk FET design. 

X. Sun et al., to appear in IEEE Trans. Electron Devices 19

Page 20: Segmented MOSFET Technology for Reduced Variability

Sensitivity to tox VariationsX Sun et al to appear in IEEE Trans Electron Devices

3 double gate SOIth

λ = 7nm at tox = 1nm

X. Sun et al., to appear in IEEE Trans. Electron Devices

123 double-gate SOI

ground-plane tri-gate bulk, W=20nm

cale

leng

-10

nge

of s

c

0 9 1 0 1 1-3-2

% c

han

0.9 1.0 1.1 tox (nm)

• Tri‐gate and planar ground‐plane bulk FETs are lessTri gate and planar ground plane bulk FETs are less sensitive to tox variation as compared with the FinFET.

20

Page 21: Segmented MOSFET Technology for Reduced Variability

Tri‐Gate Bulk FET AdvantagesX Sun et al to be published

• 3‐D device simulations of transistors designed for minimum intrinsic delay for a given off‐state leakage specification:

X. Sun et al., to be published

y g g p– Lg=25nm (EOT=1nm): IOFF=8nA/µm;  Lg=20nm (EOT=0.9nm): IOFF=18nA/µm

The tri‐gate bulk FET is less sensitive The delay advantage of the tri‐gate 

1 5

2.0

Planar bulk Tri-Gate bulk FinFET SOI

s)

15

) 86% reduction

to WSTRIPE variation than the FinFET.

81% reduction

bulk FET increases with scaling.

34% reduction37% d ti

1.0

1.5

ic D

elay

(ps

10

WSi| (

mV/

nm)37% reduction

0 0

0.5

Intr

ins

0

5|d

V T/dW

0.028nm22nm18nm34nm27nm21nm

20nm 12nm20nm15nm25nm25nmWSiLeff LG=20nmLG=25nm

028nm22nm34nm27nm

20nm 12nm15nm25nmWSiLeff

LG=20nmLG=25nmVDD=0.8V VDD=0.7V VDD=0.8V VDD=0.7V

21

Page 22: Segmented MOSFET Technology for Reduced Variability

Impact of WSTRIPE VariationsX Sun et al to be published

Lg = 20nm, EOT = 0.9nm, HSTRIPE = tSi =  XJ = 14nm

X. Sun et al., to be published

0.36

0.32

0.34

V T_LI

N (V)

14 16 18 20 22 24 260.30

0.32

• Smaller WSTRIPE stronger gate control  smaller VTH

14 16 18 20 22 24 26WSTRIPE (nm)

– ΔVTH < 10mV for 10% variation in WSTRIPE

22

Page 23: Segmented MOSFET Technology for Reduced Variability

Impact of Gate‐Length VariationsX Sun et al to be published

0 39

EOT = 0.9nm, WSTRIPE = 20nm, HSTRIPE = 7nm, tSi = 14nm, XJ = 7nm

X. Sun et al., to be published

0.33

0.36

0.39

V)

0.27

0.30

0.33

Planar

V T_LI

N (V

14 16 18 20 22 24 260.24

Planar Tri-Gate Bulk

LG (nm)

• The tri‐gate bulk FET is less sensitive to gate‐length i ti d t i d t t l

(Channel‐ and source/drain‐doping profiles are identical for the planar and tri‐gate MOSFETs)

variations, due to improved gate control.• Benefit is equivalent to >6Å reduction in tox

23

Page 24: Segmented MOSFET Technology for Reduced Variability

Impact of Gate Line‐Edge Roughness3-D Device Simulation Study

Device Simulation3D StructureGeneration

Sample measured LER data using MATLAB code

(200 cases)Tri-gate bulk FET

Use MATLAB to process LER data to be inputted into Sentaurus Structure Editor

P f 3 D d i i l ti i

Tri gate bulk FET with gate LER:

Perform 3-D device simulation using Sentaurus Device

Assumption:Assumption: – LWR in Leff is the same as that for

the gate electrode. (worst case scenario relevant for

Doping contour plot:

(worst case scenario, relevant for ultra-shallow junction technology)

24

Page 25: Segmented MOSFET Technology for Reduced Variability

Simulated ID‐VG CharacteristicsX Sun et al to be published

• 200 gate-LER cases were simulated for each structure.• I V curves for a nominal structure (without gate LER)

X. Sun et al., to be published

• ID-VG curves for a nominal structure (without gate LER) are shown in black.

VDD = 0.7 VPlanar Bulk MOSFETs Tri-Gate Bulk MOSFETs

σVTH = 22.26 mVσVTH = 42.68 mV

Lg = 20 nmEOT = 0.9 nm

Lg = 20 nmEOT = 0.9 nm

WSTRIPE = Weff = 20 nmX 7 6

WSTRIPE= 20 nmHSTRIPE = 12 nmWeff = 44 nm

TSi = 12 nmXJ = 7.6 nm XJ = 15 nm

25

Page 26: Segmented MOSFET Technology for Reduced Variability

Impact of Random Dopant FluctuationsX Sun et al IEEE Electron Device Letters Vol 29 pp 491 493 May 2008

Monte Carlo simulations, 100 cases eachLg = 20nm, EOT = 0.9nm, WSTRIPE = 20nm, HSTRIPE = 14nm, tSi = 14nm, XJ = 14nm 

X. Sun et al., IEEE Electron Device Letters Vol. 29, pp. 491‐493, May 2008.

tri-gate bulk MOSFETstri-gate bulk MOSFETsplanar MOSFETsplanar MOSFETs

VDD = 0.8 V

N+ N+N+ N+N+ N+N+ N+

P-subP-subP-subP-sub

• The tri‐gate bulk MOSFET is less sensitive to RDF effects.26

Page 27: Segmented MOSFET Technology for Reduced Variability

Impact of HSTRIPE VariationsX Sun et al to be published

LG = 20nm, EOT = 0.9nm, WSTRIPE = 20nm

X. Sun et al., to be published

0.39

0.42 TSi = XJ,EXT = HSTRIPE TSi = XJ,EXT = 14nm

0.33

0.36

V T_LI

N (V)

12 13 14 15 160.27

0.30

• If tSi is fixed, VTH is not sensitive to HSTRIPE variation.

12 13 14 15 16HSTRIPE (nm)

If tSi is fixed, VTH is not sensitive to HSTRIPE variation.

27

Page 28: Segmented MOSFET Technology for Reduced Variability

VTH Adjustment ApproachesC Shin et al IEEE 2008 Silicon Nanoelectronics Workshop

• VTH of a tri‐gate bulk MOSFET can be adjusted by tuning either the dose (Npeak) or the depth (tSi) of the retrograde doping profile.

C. Shin et al., IEEE 2008 Silicon Nanoelectronics Workshop

( peak) p ( Si) g p g p

– 200 atomistic simulations were run for each nominal design.

• VTH adjustment via tSi tuning provides for less variation, and li i t th t d ff ith h t h l t leliminates the trade‐off with short‐channel control.

DIBL values for each design are indicated

28

Page 29: Segmented MOSFET Technology for Reduced Variability

Outline

• Introduction

• Tri‐Gate Bulk/PD‐SOI FET Design

• Corrugated Substrate Technology– SegFET fabrication process g p– SRAM performance benefits– Advanced channel materials 

• Summary

Page 30: Segmented MOSFET Technology for Reduced Variability

Segmented Bulk MOSFET (SegFET)

• The channel is digitized into stripes of equal width, isolated by very shallow trench isolation (VSTI) oxideisolated by very shallow trench isolation (VSTI) oxide– The effective channel width is adjusted by adjusting the number of stripes.p

– Each stripe is a tri‐gate bulk MOSFET.

• Note that the source/drain regions are contiguous./ g g

Cross‐Sectional ViewsA ‐ A’ C ‐ C’B ‐ B’gate

electrode

Plan Viewfield region (STI)

Lgactive device

regionC’ H

WSTRIPEvery shallow trench

isolationregions

pn+n+XJ

gate electrode

WSTRIPEXVSTI SiO2

A A’

B B’

C HSTRIPE

TSi

gp‐Si p‐Sip‐Si

A AC

T.‐J. King Liu and L. Chang, “Transistor Scaling to the Limit,” in Into the Nano Era, H. Huff ed. (Springer), 2008.

30

Page 31: Segmented MOSFET Technology for Reduced Variability

T J King and V Moroz U S Patent 7 265 008

SegFET Fabrication ProcessT.‐J. King and V. Moroz, U.S. Patent 7,265,008

1. Start with corrugated substrate

2. Define active areas

3. Fill trenches to formSTI; Implant wells

4. Slightly recess theisolation oxide (optional)

5. Implant channels;Form gate stack

6. Form S/D extensions, then sidewall spacers

7. Grow epitaxial materialin S/D regions (optional)

8. Dope S/D regions;Form silicide

• Precise control of channel width is achieved.LG

WSTRIPE

Precise control of channel width is achieved.(Layout dependencies and sensitivity to misalignment are reduced.)

reduced variation in MOSFET performance31

Page 32: Segmented MOSFET Technology for Reduced Variability

Layout Area Efficiency ComparisonHigh‐Performance Design

2100planar w/o STIk 3 9 ( l )

High Performance DesignLg = 30nm, EOT = 1nm, WSTRIPE = 30nm, tSi = XJ = 15nm, VDD = 1V 

1500

1700

1900

A/µ

m)

k=3.9 (planar)k=23 (planar)k=3.9 (tri-gate)k=23 (tri-gate)

Tri-gate

1100

1300

500

I ON/S

P (µ

Segmented planarContinuous planar

700

900

40 45 50 55 60

Segmented planar

Stripe Pitch (nm) @ Wstripe=30 nm

• A segmented planar FET can achieve layout efficiency comparable to that of a conventional planar FET, if WVSTI is very small (<10 nm)to that of a conventional planar FET, if WVSTI is very small ( 10 nm) or if a high‐k dielectric is used as the VSTI material.

• The tri‐gate FET achieves superior layout efficiency. 32

Page 33: Segmented MOSFET Technology for Reduced Variability

Impact of Channel Width on Strain ProfileCapping‐layer‐induced strain along the channel

Segmented FET

pp g y gContact etch stop liner is assumed to be a 30nm‐thick silicon nitride with

Narrow ChannelWide Channel

(bulk tri‐gate)

• SegFET parameters:

thick silicon nitride with 2GPa tensile stress

Planar

WSTRIPE = 20nmWSPACING = 20nmHSTRIPE = 10nm

Planar• LG = 20nm• EOT = 0.9nm• T = 40nm• TGATE = 40nm• LSPACER = 20nm

• More stress is induced in SegFET More mobility enhancement• Reduced variation with Weff for SegFET Reduced μ variation

X. Sun et al., to be published 33

Page 34: Segmented MOSFET Technology for Reduced Variability

6‐T SRAM Cell DesignC Shin et al presented at the 2009 SISPAD

• 6‐T SRAM cells with comparable α and β ratios were designed based on 22nm CMOS technology design rules

C. Shin et al., presented at the 2009 SISPAD

designed, based on 22nm CMOS technology design rules.–For the SegFET SRAM cell: WSTRIPE = 20nm, WSPACING = 15nm–WSPACER = 15nm (limited by gate‐to‐contact pitch), XJ ~ 10nm

Simulated Planar SRAM Cell(isolation oxide not shown for clarity)

Simulated Tri‐gate bulk SRAM Cell(isolation oxide not shown for clarity)

Simulated SegFET SRAM Cell(isolation oxide not shown for clarity)

PG PUPD

PGPD

PU

PGPG

PUPUPGPG

PUPUPDPD

PG

PDPU PG

PU

PD

PGPG

PUPUPGPG

PUPUPDPD

PG

PD

PU PG

PUPD

34

Page 35: Segmented MOSFET Technology for Reduced Variability

Simulated Read and Write MarginsC Shin et al presented at the 2009 SISPAD

• SNM is largest for the SegFET cell: 241 mV vs 221mV for the planar bulk MOSFET cell

C. Shin et al., presented at the 2009 SISPAD

vs. 221mV for the planar bulk MOSFET cell

• Iw for the SegFET cell is also superior to that for the planar b lk MOSFET cell

1.0

Seg

Butterfly curves

the planar bulk MOSFET cell.

120

Seg

Write‐N‐curves

0.6

0.8

2 [V

]

Seg Tri-gate Planar

60

80

100

[uA

]

Seg Tri-gate Planar

0.2

0.4

V n2

SNM|Seg= 241.2mV

SNM|TG= 226.4mV

SNM| = 221 2mV

20

40

60

I n1 [

Iw Seg= 14.8 μA

Iw TG= 12.7 μA

I 10 2 A

0.0 0.2 0.4 0.6 0.8 1.00.0

Vn1 [V]

SNM|PL= 221.2mV

0.0 0.2 0.4 0.6 0.8 1.00

Vn1 [V]

Iw PL= 10.2 μA

35

Page 36: Segmented MOSFET Technology for Reduced Variability

Single‐Event‐Upset ComparisonFull 3‐D transient simulations

• When a heavy‐ion beam impinges on the high (“1”) storage node at time t = timpact, the generated e‐/h+ can turn on a 

Full 3‐D transient simulations

impact, g /parasitic thyristor, shorting the drain node to the source node.

• The SegFET cell is more robust to a given ion‐beam strike.ibl l i ll d i li h l l i l– Possible explanations:  stronger pull‐up device, slightly larger internal 

capacitance, or smaller body effect.

0.9

SegFET SRAM Cell0 9

Planar MOSFET SRAM Cell

oltage [V

]

0.9

Vn1:Red dot‐line

Vn2:Blue solid‐line

oltage [V

]

0.9

Vn1:Red dot‐line

Vn2:Blue solid‐line

Vo

0

Critical LET:

Vo

0

Critical LET:

C. Shin et al., presented at the 2009 SISPAD

Time [ns]timpact

1 3 75

Critical LET:0.35pC/μm 

Time [ns]timpact

1 3 75

Critical LET:0.24pC/μm 

36

Page 37: Segmented MOSFET Technology for Reduced Variability

Advanced Channel Materials• High‐mobility semiconductor 

materials can potentially provide

Si Ge GaAs

Electron mobility (cm2/Vs)

1500 3900 8500materials can potentially provide for improved performance:– Ge for PMOS

(cm /Vs)

Hole mobility (cm2/Vs)

450 1900 400

Lattice constant (Å) 5.431 5.646 5.653

– (In)GaAs for NMOS Band gap (eV) 1.12 0.66 1.424

Dielectric constant 12 16 13

• Selective epitaxial growth directly on Si is facilitated by 

Ge on Si GaAs on Si

p g y ythe use of a corrugated substrate:

J.‐S. Park et al., Appl. Phys. Lett. 90 052113, 2007J. Z. Li et al., Appl. Phys. Lett. 91 021114, 2007

37

Page 38: Segmented MOSFET Technology for Reduced Variability

Ge Integration Options

• Homogeneous semiconductor stripes:R l d ( t i d) h l

GATESi• Relaxed (unstrained) channel

• High BTBT leakage due to small Eg• Significant DIBL due to large εr

GeSiO2 SiO2

Si

Significant DIBL due to large εr

• Heterogeneous semiconductor stripes:

Si

GATE• Heterogeneous semiconductor stripes:

• Thin, strained channel

• Reduced BTBT leakageGe Si

g

• Reduced DIBLSi

SiO2 SiO2

38

Page 39: Segmented MOSFET Technology for Reduced Variability

Outline

• Introduction

• Tri‐Gate Bulk/PD‐SOI FET Design

• Corrugated Substrate Technology

• Summary

Page 40: Segmented MOSFET Technology for Reduced Variability

Summary

• Power density and variability now limit transistor scalingK (ITRS) l ti l ti d th f tl– Known (ITRS) solutions are revolutionary and therefore costly

• Tri‐gate bulk MOSFET (corrugated substrate) technology offers an evolutionary (low‐cost) pathway to lower VDD, reduce VTH variability, and extend transistor scaling

tili ti l ( t bli h d) IC f b i ti t h i• utilizes conventional (established) IC fabrication techniques

• is compatible with technologies developed to date (e.g. metal‐gate/high‐k dielectric, strained‐Si) for bulk/PD‐SOI CMOSg / g , ) /

… that is almost transparent to end users• Established compact models; zero design cycle time impactEstablished compact models; zero design cycle time impact• Minimal (non‐disruptive) impact on design style

40

Page 41: Segmented MOSFET Technology for Reduced Variability

The Age of Ubiquitous ComputingR PCs (1 person/computer)

Mainframes (>1 persons per computer)Technology, Device & Circuit

Innovations,Heterogeneous Integration

Transistor Scaling

Acknowledgement: Mark Weiser

UbiComp (>1 computers per person)

LES

($)/Y

R ( p p )

Lower Power,Lower Cost

Heterogeneous Integration

Investment Higher Performance,Lower Cost

today

SA

TIME• Information technology will befor better quality‐of‐life

Market Growth

Environment– pervasive

– embedded

– human‐centered

$370 BillionTotal U.S. Annual Energy Costs

200%Increase in U.S. Electricity Consumption 

– solving societal‐scale problems

Healthcare Disaster response

EnergySensatex

human centeredsince 1990

40%Total U.S. Energy Consumptionfor Buildings

72%

Philips Transportation

Total U.S. Electricity Consumption for Buildings

55%Total U.S. Natural Gas Consumptionfor Buildings 41

Page 42: Segmented MOSFET Technology for Reduced Variability

Acknowledgements

• FLCC & IMPACT project corporate sponsorsFLCC & IMPACT project corporate sponsors

• UC Discovery Grants Program

• Semiconductor Research Corporation