seeing the small with electron crystallography · tim grüne electron crystallography in biology...

39
WIR SCHAFFEN WISSEN —H EUTE FÜR MORGEN Dr. Tim Grüne :: Paul Scherrer Institut :: [email protected] Seeing the Small with Electron Crystallography Center for Chemistry and Biomedicine Innsbruck 31 st May 2017

Upload: others

Post on 26-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

WIR SCHAFFEN WISSEN — HEUTE FÜR MORGEN

Dr. Tim Grüne :: Paul Scherrer Institut :: [email protected]

Seeing the Small with Electron Crystallography

Center for Chemistry and Biomedicine Innsbruck31st May 2017

Page 2: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

1 - Seeing the small

CCB Innsbruck 31st May 2017 1/38

Page 3: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Microscopy

Light Object Lense Image Plane (Detector)

Enlarged image from object

CCB Innsbruck 31st May 2017 2/38

Page 4: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Microscopes

800nm 400nm

Radio Micro Infrared X−raysVisible UV −raysγ

30cm10km 1mm 1nm 10pm

wavelength

123keV1.23keV3.09eV1.54eV0.00123eV4.12µV energy

• Light has a wavelength: 800nm = red . . . 400nm = blue

• Resolution (possibility to distinguish between two neighbouring points) ≈ λ

• Size of interest for molecules: ≈ 1Å = 0.1nm

• No lenses = no microscopes available for such short wavelengths!

CCB Innsbruck 31st May 2017 3/38

Page 5: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Workaround I: Electron Microscopy

• Light / Electromagnetic waves: no microscopes

• Use electrons as wave and use magnetic lenses: even at very short wavelength

• Since quantum mechanics: electrons are waves, de Broglie wavelength

mev√1− (v/c)2

= hλ

• Commonly used: Electron energies 200–300keV, wavelength λ = 0.025−0.017Å.

CCB Innsbruck 31st May 2017 4/38

Page 6: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Electron Microscope: Imaging Mode

Electron Wave Object Lense Image Plane (Detector)

Detector noise and radi-ation senstivity requirelow contrast images

Martinez-Rucobo et al. Mo-lecular Cell (2015) 58, 1079–1089

CCB Innsbruck 31st May 2017 5/38

Page 7: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Workaround II: Crystallography

Wave Crystal No lens!• Crystal requires no lens.• Crystal concentrates its signal on indi-

vidual spots aka reflections

CCB Innsbruck 31st May 2017 6/38

Page 8: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Crystallography in Brief

• Crystals amplify the signals from atoms so that the sig-nal can be detected.

• Data are spot positions and spot intensities• Data are not atoms, some calculations are required• Crystal structures provide high level of detail insight

Photoactive Yellow Protein (2ZOI): Turns lightinto molecular movement. PDB Molecule of theMonth March 2017

CCB Innsbruck 31st May 2017 7/38

Page 9: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Electron Crystallography

CCB Innsbruck 31st May 2017 8/38

Page 10: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Combining Electron Radiation (and Microscopes) with Crystallography

typical protein crystal size for X-rays(0.2mm = 200µm)

typical protein crystal size for elec-trons, 0.1×0.14×1.7µm3

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

1m

1m

1m

volumes compare like 6 bath tubs ofwater vs. a 10µl drop from a pipette

The combination of electron radiation (as inEM) with crystallography permits crystallo-graphic data collection from tiny crystals.

CCB Innsbruck 31st May 2017 9/38

Page 11: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Typical Protein Crystallisation Trials

Luft, Wolfley, Snell, Crystal Growth& Design (2011), 11, 651–663

CCB Innsbruck 31st May 2017 10/38

Page 12: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Drops viewed through TEM

Stevenson,. . . , Calero, PNAS (2014) 111, 8470–8475 / Calero, . . . , Snell, Acta Cryst (2014) F70, 993–1008

CCB Innsbruck 31st May 2017 11/38

Page 13: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Drug Research: The Novartis Library

• 2,000,000 compounds of potential drug targets

• 30-40% suitable for X–ray powder analysis

• 10% suitable for single crystal X–ray analysis

Dr. Trixie Wagner (2012)

CCB Innsbruck 31st May 2017 12/38

Page 14: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Powders contains Single Crystals

Novartis IRELOH:Ø= 1,700nm = 1.7µm

Novartis EPICZA:Ø= 500nm = 0.5µm

Zeolite (Prof. Bokhoven):Ø= 300nm = 0.3µm

CCB Innsbruck 31st May 2017 13/38

Page 15: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

2 - Structures

CCB Innsbruck 31st May 2017 14/38

Page 16: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Macromolecular Structures

• Protein Data Bank (PDB, www.pdb.org) contains about 13 protein structures from 3D electron diffraction

• Started 2013 (PDB ID 2013)

• (Mostly) commonly known protein — not a new structure to date.

CCB Innsbruck 31st May 2017 15/38

Page 17: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Structures from Test Proteins

Cruz et al., “Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED”, NatureMethods(2017), 14, 399–405

CCB Innsbruck 31st May 2017 16/38

Page 18: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Thermolysin (sample courtesy Ilme Schlichting)

• Spacegroup P6122• Unit Cell 94.3 94.3 130.4 90◦ 90◦ 120◦

• dmin = 3.5Å• 72.4% completeness• MR with 3DNZ poly Alanine: TFZ=26.4, LLG=433• Buccaneer: side chain extension 315/316• Refmac5: R1/“Rfree” = 28.0% / 29.9% (4N5P w/o

water)

CCB Innsbruck 31st May 2017 17/38

Page 19: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Lysozyme

1. MR (Phaser) from poly Ala monomer determines spacegroup P21212 (TFZ=19.8, LLG=335.3)

2. Side chain completion with Buccaneer all except 27 atoms

3. Refinement with refmac5

After MR: difference density for bulky sidechains

Refined map guides model completion

CCB Innsbruck 31st May 2017 18/38

Page 20: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Organic Structures

• Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s)

• D Dorset (1995: Textbook Electron Crystallography)

• U Kolb (recording of 3D diffraction patterns, ADT, 1997+)

• X Zou, S Hovmóller (recording of 3D diffraction patterns with beam precession, RED, 2008+)

CCB Innsbruck 31st May 2017 19/38

Page 21: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Pharmaceutical I: Visualisation of Hydrogen Atoms

H–atom positions can be refined against electron diffraction dataCCDC: IRELOH, Dai et al., Eur. J. Org. Chem (2010), 6928-6937

Sample courtesy Novartis

• Field of view: 3µm• Crystal: 1.6µm×400nm

• dmin < 0.8Å• P212121: 85% completeness

with 3 crystals• a=8.06Å b=10.00Å c=17.73Å

• Hydrogen atoms in difference map evenwith poor model

• 1334 reflections, 195 parameters, 156 re-straints (RIGU)

• R1 = 15.5%,Rcomplete = 18.5%

CCB Innsbruck 31st May 2017 20/38

Page 22: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Pharmaceutical II: Differentiation of Atom Types

Data quality: recognition of atom types, C vs. O vs. N etc. (CCDC: EPICZA)

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 2 3 4 5 6 7 8 9 10 11 12

5 2.5 1.25 1.0

Com

plet

enes

s [%

]

I/σI

d* [1/Å]

d [Å]

CompletenessI/σI

• Field of view: 3µm• Crystal: 400nm diameter

• dmin = 0.87Å• a=11.35Å, b=12.7Å, c=13.0Å• P212121: completeness with 4

crystals: 86%

• 2545 refl., 258 param., 267 restraints(RIGU)

• all data: R1 = 15.9%,Rcomplete = 19.1%• R1 = 14.7%,Rcomplete = 18.0%

CCB Innsbruck 31st May 2017 21/38

Page 23: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Pharmaceutical II (EPICZA): Structure Solution Process

Direct methods reveal H atoms HFIX: all except 1 H Final Structure=data quality =model quality

CCB Innsbruck 31st May 2017 22/38

Page 24: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Summary: Electron Diffraction of Organic Compounds

• Structures can be solved with X–ray knowledge and methods.

• Radiation damage present, but not (always) limiting

• Kinematic approximation sufficient for high quality structures

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

Bond

leng

ths

X m

odel

[Å]

Bond lengths e- model [Å]

IRELOH

xline fit f(x) = 0.92 * x + 1.06e-01

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

Bond

leng

ths

X-ra

y m

odel

[Å]

Bond lengths e- model [Å]

EPICZA

xline fit f(x) = 0.96 * x + 3.52e-02

CCB Innsbruck 31st May 2017 23/38

Page 25: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

3 - Technical Aspects

CCB Innsbruck 31st May 2017 24/38

Page 26: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Dynamic Scattering

Data from SAPO–34: I(−2,−1,1)> Idirect beam (Eiger chip, 256x256 px)

CCB Innsbruck 31st May 2017 25/38

Page 27: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Kinemtic (X–ray) and Dynamic (e−) Scattering

• Kinematic Theory of Diffraction: Every photon / electron / neutron scatters once in the crystal

• |Fideal(hkl)| ∝√

Iexp(hkl)

• Dynamic Scattering: Multiple Scattering events occur

• Electron Diffraction: Multiple Scattering occurs even with nanocrystals

• For data from proteins: Currently no satisfactory treatment

CCB Innsbruck 31st May 2017 26/38

Page 28: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Multiple (Dual) Scattering

~Si

~S1o

~S2o

• Outgoing ray ~S1o acts as incoming ray for re-

flection ~S2o.

• Probability of re–reflection thickness de-pendent

CCB Innsbruck 31st May 2017 27/38

Page 29: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Multiple (Dual) Scattering

~Si

~S1o

~S2o ~S2

o

Laue Conditions (accordingly~b and~c):

(~S1o−~Si) ·~a = h1

(~S2o−~S1

o) ·~a = h′

(~S2o−~Si) ·~a = h1+h′ = h2

Requirement for detrimental effect on I(h2,k2, l2)• I(h1k1l1) must be strong• I(h′,k′, l′) must be strong• I(h2k2l2) must be weak• I(h1k1l1) and I(h2k2l2) on same frame

CCB Innsbruck 31st May 2017 28/38

Page 30: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Multiple (Dual) Scattering

I(h 1k1l1) I(h 2k2l2)

I(hkl)

1

3

5

10

2

���������

���������

������

• Re-reflection more likely for thicker crystal(path)• Percentage similar for all reflections on frame (2θ ≈ 0)• 10% of strong reflection affects weak reflection⇒ Measured intensities “shifted” from strong to weak⇒ Low resolution reflection under–, high resolution reflec-

tions overestimated

CCB Innsbruck 31st May 2017 29/38

Page 31: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Electron Detectors for Diffraction

TVIPS CMOS 1024x1024 Timepix 256x256 Eiger (PSI)20≤ I ≤ 21 cts 0≤ I ≤ 1 ct Lysozyme (invd) 0≤ I ≤ 1 ct SAPO–34 crystal

≈ 1kHz,50µm×50µm ≤ 23kHz,75µm×75µmcut–off: 11809 cut–off: 16, 64, or 4096 (4, 8, 12 bit)dead time ≈ 0.01s dead time 3µs

CCB Innsbruck 31st May 2017 30/38

Page 32: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

The Lens System

���������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������

C3

C2

C1

Gun / Source

Objective lens

Sample

Diffraction Plane

Imaging Plane

• Lenses C1–C3 shape beam• Crystallography: Parallel beam• Objective lens: sets effective detector distance to back-

focal plane = diffraction mode• C3 not present in all microscopes

Lenses cause distortions.

CCB Innsbruck 31st May 2017 31/38

Page 33: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Garnet Andradite

• The garnet Andradite, Ca3Fe23+(SiO4)3, radiation hard

• 2 grids courtesy Xiaodong Zou (Stockholm)• Space group Ia3̄d, a = 12.06314(1)Å (ICSD No. 187908)

(Wikipedia)

• Summed images from Garnet (200keV)• 66.8◦ rotation• good coverage of detector surface

CCB Innsbruck 31st May 2017 32/38

Page 34: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Spatial Correction for the Detector Surface

• Spot positions calculated from Laue Conditions

~S.~a = h~S.~b = k~S.~c = l

• Data Processing: Deviations between calculated and observed positions

• e.g. XDS: per–pixel look-up tables for X– and Y–coordinates

• Independent of Source of Error

CCB Innsbruck 31st May 2017 33/38

Page 35: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Spatial Correction for the Detector Surface

XDS Correction Table X–coordinate and Y–coordinate

CCB Innsbruck 31st May 2017 34/38

Page 36: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Directly Visible Improvements

Garnet Data set processed before spatial correction:

BEAM DIVERGENCE: 0.16◦

REFLECTING RANGE: 0.47◦

Garnet Data set processed after spatial correction:

BEAM DIVERGENCE: 0.15◦

REFLECTING RANGE: 0.28◦

CCB Innsbruck 31st May 2017 35/38

Page 37: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

Improved Cell Accuracy with Look–up Tables

1. Collect data from garnet2. Change as little as possible3. Collect data from target sample4. Process using garnet correction tables

Sample Courtesy Roche C31H29Cl2F2N3O4, SG P21

Data Collection and Processing: Max Clabbers

a b c α β γ

XRPD 6.405 18.206 25.829 90.000 92.180 90.000XDS uncorrected 6.556 18.728 26.276 90.500 92.243 90.540XDS corrected 6.564 18.721 26.254 90.064 92.171 90.137

CCB Innsbruck 31st May 2017 36/38

Page 38: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

4 - Conclusions

• Electron Diffraction = Structures from very small crystals < 1µm

• Applications: Single Crystal Structures, where X–rays only see powder

• High quality data + structures for organic compounds

• Proteins: Radiaton damage currently limits competing data resolution: new ways of data collection required

CCB Innsbruck 31st May 2017 37/38

Page 39: Seeing the Small with Electron Crystallography · Tim Grüne Electron Crystallography in Biology Organic Structures Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s) D Dorset (1995:

Tim Grüne Electron Crystallography in Biology

5 - Acknowledgements

• Prof. J. P. Abrahams, Dr. E. van Genderen, M. Clabbers, Dr. T. Blum, C. Borsa, J. Heidler, Dr. R. Pantelic

• Novartis (Compounds)

• Roche (Compounds)

• Dr. I. Nederlof, ASI (Medipix / Timepix)

• Dr. B. Schmitt, PSI Detector group

• Prof. K. Diederichs (XDS)

• Dr. W. Kabsch (XDS)

• Dr. D. Waterman (DIALS)

• Prof. J. van Bokhoven, ETH Zürich

• Prof. X. Zou and S. Hovmöller, University Stockholm (garnet grids)

CCB Innsbruck 31st May 2017 38/38