section 5: power flow - college of engineering

128
ESE 470 โ€“ Energy Distribution Systems SECTION 5: POWER FLOW

Upload: others

Post on 30-Jul-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SECTION 5: POWER FLOW - College of Engineering

ESE 470 โ€“ Energy Distribution Systems

SECTION 5: POWER FLOW

Page 2: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Introduction2

Page 3: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Nodal Analysis

Consider the following circuit

Three voltage sources ๐‘‰๐‘‰๐‘ ๐‘ ๐‘ , ๐‘‰๐‘‰๐‘ ๐‘ ๐‘ , ๐‘‰๐‘‰๐‘ ๐‘ ๐‘ 

Generic branch impedances Could be any combination of R, L, and C

Three unknown node voltages ๐‘‰๐‘‰๐‘ , ๐‘‰๐‘‰๐‘ , and ๐‘‰๐‘‰๐‘ 

Would like to analyze the circuit Determine unknown node voltages

One possible analysis technique is nodal analysis

3

Page 4: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Nodal Analysis

Nodal analysis Systematic application of KCL at each unknown node Apply Ohmโ€™s law to express branch currents in terms of node

voltages Sum currents at each unknown node

Weโ€™ll sum currents leaving each node and set equal to zero

At node ๐‘‰๐‘‰๐‘ , we have๐‘‰๐‘‰๐‘  โˆ’ ๐‘‰๐‘‰๐‘ ๐‘ ๐‘ ๐‘๐‘๐‘ ๐‘ ๐‘ 

+๐‘‰๐‘‰๐‘  โˆ’ ๐‘‰๐‘‰๐‘ ๐‘๐‘๐‘ 

= 0

Every current term includes division by an impedance Easier to work with admittances instead

4

Page 5: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Nodal Analysis

Now our first nodal equation becomes๐‘‰๐‘‰๐‘  โˆ’ ๐‘‰๐‘‰๐‘ ๐‘ ๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘  + ๐‘‰๐‘‰๐‘  โˆ’ ๐‘‰๐‘‰๐‘  ๐‘Œ๐‘Œ๐‘  = 0

where๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘  = 1/๐‘๐‘๐‘ ๐‘ ๐‘  and ๐‘Œ๐‘Œ๐‘  = 1/๐‘๐‘๐‘ 

Rearranging to place all unknown node voltages on the left and all source terms on the right

๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘  + ๐‘Œ๐‘Œ๐‘  ๐‘‰๐‘‰๐‘  โˆ’ ๐‘Œ๐‘Œ๐‘ ๐‘‰๐‘‰๐‘  = ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘ ๐‘‰๐‘‰๐‘ ๐‘ ๐‘  Applying KCL at node ๐‘‰๐‘‰๐‘ 

๐‘‰๐‘‰๐‘  โˆ’ ๐‘‰๐‘‰๐‘  ๐‘Œ๐‘Œ๐‘  + ๐‘‰๐‘‰๐‘ ๐‘Œ๐‘Œ๐‘  + ๐‘‰๐‘‰๐‘  โˆ’ ๐‘‰๐‘‰๐‘ ๐‘ ๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘  + ๐‘‰๐‘‰๐‘  โˆ’ ๐‘‰๐‘‰๐‘  ๐‘Œ๐‘Œ๐‘  = 0

5

Page 6: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Nodal Analysis

Rearrangingโˆ’๐‘Œ๐‘Œ๐‘ ๐‘‰๐‘‰๐‘  + ๐‘Œ๐‘Œ๐‘  + ๐‘Œ๐‘Œ๐‘  + ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘  + ๐‘Œ๐‘Œ๐‘  ๐‘‰๐‘‰๐‘  โˆ’ ๐‘Œ๐‘Œ๐‘ ๐‘‰๐‘‰๐‘  = ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘ ๐‘‰๐‘‰๐‘ ๐‘ ๐‘ 

Finally, applying KCL at node ๐‘‰๐‘‰๐‘ , gives๐‘‰๐‘‰๐‘  โˆ’ ๐‘‰๐‘‰๐‘  ๐‘Œ๐‘Œ๐‘  + ๐‘‰๐‘‰๐‘  โˆ’ ๐‘‰๐‘‰๐‘ ๐‘ ๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘  = 0

โˆ’๐‘Œ๐‘Œ๐‘ ๐‘‰๐‘‰๐‘  + ๐‘Œ๐‘Œ๐‘  + ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘  ๐‘‰๐‘‰๐‘  = ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘ ๐‘‰๐‘‰๐‘ ๐‘ ๐‘ 

Note that the source terms are the Norton equivalent current sources (short-circuit currents) associated with each voltage source

6

Page 7: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Nodal Analysis

Putting the nodal equations into matrix form

๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘  + ๐‘Œ๐‘Œ๐‘Œ โˆ’๐‘Œ๐‘Œ๐‘  0โˆ’๐‘Œ๐‘Œ๐‘  ๐‘Œ๐‘Œ๐‘  + ๐‘Œ๐‘Œ๐‘  + ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘  + ๐‘Œ๐‘Œ๐‘  โˆ’๐‘Œ๐‘Œ๐‘ 

0 โˆ’๐‘Œ๐‘Œ๐‘  ๐‘Œ๐‘Œ๐‘  + ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘ 

๐‘‰๐‘‰๐‘ ๐‘‰๐‘‰๐‘ ๐‘‰๐‘‰๐‘ 

=๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘ ๐‘‰๐‘‰๐‘ ๐‘ ๐‘ ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘ ๐‘‰๐‘‰๐‘ ๐‘ ๐‘ ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘ ๐‘‰๐‘‰๐‘ ๐‘ ๐‘ 

or๐’€๐’€๐’€๐’€ = ๐‘ฐ๐‘ฐ

where ๐’€๐’€ is the ๐‘๐‘ ร— ๐‘๐‘ admittance matrix ๐‘ฐ๐‘ฐ is an ๐‘๐‘ ร— 1 vector of known source currents ๐’€๐’€ is an ๐‘๐‘ ร— 1 vector of unknown node voltages

This is a system of ๐‘๐‘ (here, three) linear equations with ๐‘๐‘unknowns

We can solve for the vector of unknown voltages as๐’€๐’€ = ๐’€๐’€โˆ’๐‘ ๐‘ฐ๐‘ฐ

7

Page 8: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

The Admittance Matrix, ๐’€๐’€

Take a closer look at the form of the admittance matrix, ๐’€๐’€๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘  + ๐‘Œ๐‘Œ๐‘Œ โˆ’๐‘Œ๐‘Œ๐‘  0โˆ’๐‘Œ๐‘Œ๐‘  ๐‘Œ๐‘Œ๐‘  + ๐‘Œ๐‘Œ๐‘  + ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘  + ๐‘Œ๐‘Œ๐‘  โˆ’๐‘Œ๐‘Œ๐‘ 

0 โˆ’๐‘Œ๐‘Œ๐‘  ๐‘Œ๐‘Œ๐‘  + ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘ =

๐‘Œ๐‘Œ๐‘ ๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘Œ๐‘Œ๐‘ ๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘  ๐‘ฆ๐‘ฆ๐‘ ๐‘ ๐‘Œ๐‘Œ๐‘ ๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘ 

The elements of ๐’€๐’€ are Diagonal elements, ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜: ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ = sum of all admittances connected to node ๐‘˜๐‘˜ Self admittance or driving-point admittance

Off-diagonal elements, ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ (๐‘˜๐‘˜ โ‰  ๐‘›๐‘›): ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ = โˆ’(total admittance between nodes ๐‘˜๐‘˜ and ๐‘›๐‘›) Mutual admittance or transfer admittance

Note that, because the network is reciprocal, ๐’€๐’€ is symmetric

8

Page 9: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Nodal Analysis

Nodal analysis allows us to solve for unknown voltages given circuit admittances and current (Norton equivalent) inputs An application of Ohmโ€™s law

๐’€๐’€๐’€๐’€ = ๐‘ฐ๐‘ฐ

A linear equation Simple, algebraic solution

For power-flow analysis, things get a bit more complicated

9

Page 10: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Analysis10

Page 11: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

The Power-Flow Problem

A typical power system is not entirely unlike the simple circuit we just looked at Sources are generators Nodes are the system buses Buses are interconnected by impedances of transmission

lines and transformers Inputs and outputs now include power (P and Q)

System equations are now nonlinear Canโ€™t simply solve ๐’€๐’€๐’€๐’€ = ๐‘ฐ๐‘ฐ Must employ numerical, iterative solution methods

Power system analysis to determine bus voltages and power flows is called power-flow analysis or load-flow analysis

11

Page 12: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

System One-Line Diagram

Consider the one-line diagram for a simple power system

System includes: Generators Buses Transformers Treated as equivalent circuit impedances in per-unit

Transmission lines Equivalent circuit impedances

Loads

12

Page 13: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Bus Variables

The buses are the system nodes Four variables associated with each bus, ๐‘˜๐‘˜

Voltage magnitude, ๐‘‰๐‘‰๐‘˜๐‘˜ Voltage phase angle, ๐›ฟ๐›ฟ๐‘˜๐‘˜ Real power delivered to the bus, ๐‘ƒ๐‘ƒ๐‘˜๐‘˜ Reactive power delivered to the bus, ๐‘„๐‘„๐‘˜๐‘˜

13

Page 14: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Bus Power

Net power delivered to bus ๐‘˜๐‘˜ is the difference between power flowing from generators to bus ๐‘˜๐‘˜ and power flowing from bus ๐‘˜๐‘˜ to loads

๐‘ƒ๐‘ƒ๐‘˜๐‘˜ = ๐‘ƒ๐‘ƒ๐บ๐บ๐‘˜๐‘˜ โˆ’ ๐‘ƒ๐‘ƒ๐ฟ๐ฟ๐‘˜๐‘˜๐‘„๐‘„๐‘˜๐‘˜ = ๐‘„๐‘„๐บ๐บ๐‘˜๐‘˜ โˆ’ ๐‘„๐‘„๐ฟ๐ฟ๐‘˜๐‘˜

Even though weโ€™ve introduced power flow into the analysis, we can still write nodal equations for the system

Voltage and current related by the bus admittance matrix, ๐’€๐’€๐‘๐‘๐‘๐‘๐‘ ๐‘ ๐ˆ๐ˆ = ๐˜๐˜๐‘๐‘๐‘๐‘๐‘ ๐‘ ๐•๐•

๐˜๐˜๐‘๐‘๐‘๐‘๐‘ ๐‘  contains the bus mutual and self admittances associated with transmission lines and transformers

For an ๐‘๐‘ bus system, ๐•๐• is an ๐‘๐‘ ร— 1 vector of bus voltages ๐ˆ๐ˆ is an ๐‘๐‘ ร— 1 vector of source currents flowing into each bus

From generators and loads

14

Page 15: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Types of Buses

There are four variables associated with each bus ๐‘‰๐‘‰๐‘˜๐‘˜ = ๐’€๐’€๐‘˜๐‘˜ ๐›ฟ๐›ฟ๐‘˜๐‘˜ = โˆ ๐’€๐’€๐‘˜๐‘˜ ๐‘ƒ๐‘ƒ๐‘˜๐‘˜ ๐‘„๐‘„๐‘˜๐‘˜

Two variables are inputs to the power-flow problem Known

Two are outputs To be calculated

Buses are categorized into three types depending on which quantities are inputs and which are outputs Slack bus (swing bus) Load bus (PQ bus) Voltage-controlled bus (PV bus)

15

Page 16: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Bus Types

Slack bus (swing bus): Reference bus Typically bus 1 Inputs are voltage magnitude, ๐‘‰๐‘‰๐‘ , and phase angle, ๐›ฟ๐›ฟ๐‘  Typically 1.0โˆ 0ยฐ

Power, ๐‘ƒ๐‘ƒ๐‘  and ๐‘„๐‘„๐‘ , is computed

Load bus (๐‘ท๐‘ท๐‘ท๐‘ท bus): Buses to which only loads are connected Real power, ๐‘ƒ๐‘ƒ๐‘˜๐‘˜, and reactive power, ๐‘„๐‘„๐‘˜๐‘˜, are the knowns ๐‘‰๐‘‰๐‘˜๐‘˜ and ๐›ฟ๐›ฟ๐‘˜๐‘˜ are calculated Majority of power system buses are load buses

16

Page 17: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Bus Types

Voltage-controlled bus (๐‘ท๐‘ท๐’€๐’€ bus): Buses connected to generators Buses with shunt reactive compensation Real power, ๐‘ƒ๐‘ƒ๐‘˜๐‘˜, and voltage magnitude, ๐‘‰๐‘‰๐‘˜๐‘˜, are known

inputs Reactive power, ๐‘„๐‘„๐‘˜๐‘˜, and voltage phase angle, ๐›ฟ๐›ฟ๐‘˜๐‘˜, are

calculated

17

Page 18: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem

The power-flow solution involves determining: ๐‘‰๐‘‰๐‘˜๐‘˜, ๐›ฟ๐›ฟ๐‘˜๐‘˜, ๐‘ƒ๐‘ƒ๐‘˜๐‘˜, and ๐‘„๐‘„๐‘˜๐‘˜

There are ๐‘๐‘ buses Each with two unknown quantities

There are 2๐‘๐‘ unknown quantities in total Need 2๐‘๐‘ equations

๐‘๐‘ of these equations are the nodal equations๐‘ฐ๐‘ฐ = ๐’€๐’€๐’€๐’€ (1)

The other ๐‘๐‘ equations are the power-balance equations๐‘บ๐‘บ๐‘˜๐‘˜ = ๐‘ƒ๐‘ƒ๐‘˜๐‘˜ + ๐‘—๐‘—๐‘„๐‘„๐‘˜๐‘˜ = ๐’€๐’€๐‘˜๐‘˜๐‘ฐ๐‘ฐ๐‘˜๐‘˜โˆ— (2)

From (1), the nodal equation for the ๐‘˜๐‘˜๐‘ก๐‘ก๐‘ก bus is๐‘ฐ๐‘ฐ๐‘˜๐‘˜ = โˆ‘๐‘˜๐‘˜=๐‘ ๐‘๐‘ ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜๐’€๐’€๐‘˜๐‘˜ (3)

18

Page 19: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem

Substituting (3) into (2) gives

๐‘ƒ๐‘ƒ๐‘˜๐‘˜ + ๐‘—๐‘—๐‘„๐‘„๐‘˜๐‘˜ = ๐’€๐’€๐‘˜๐‘˜ โˆ‘๐‘˜๐‘˜=๐‘ ๐‘๐‘ ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜๐’€๐’€๐‘˜๐‘˜ โˆ— (4)

The bus voltages in (3) and (4) are phasors, which we can represent as

๐’€๐’€๐‘˜๐‘˜ = ๐‘‰๐‘‰๐‘˜๐‘˜๐‘’๐‘’๐‘—๐‘—๐›ฟ๐›ฟ๐‘›๐‘› and ๐’€๐’€๐‘˜๐‘˜ = ๐‘‰๐‘‰๐‘˜๐‘˜๐‘’๐‘’๐‘—๐‘—๐›ฟ๐›ฟ๐‘˜๐‘˜ (5)

The admittances can also be written in polar form

๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ = ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ๐‘˜๐‘˜๐‘›๐‘› (6)

Using (5) and (6) in (4) gives

๐‘ƒ๐‘ƒ๐‘˜๐‘˜ + ๐‘—๐‘—๐‘„๐‘„๐‘˜๐‘˜ = ๐‘‰๐‘‰๐‘˜๐‘˜๐‘’๐‘’๐‘—๐‘—๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ‘๐‘˜๐‘˜=๐‘ ๐‘๐‘ ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ๐‘˜๐‘˜๐‘›๐‘›๐‘‰๐‘‰๐‘˜๐‘˜๐‘’๐‘’๐‘—๐‘—๐›ฟ๐›ฟ๐‘›๐‘›โˆ—

๐‘ƒ๐‘ƒ๐‘˜๐‘˜ + ๐‘—๐‘—๐‘„๐‘„๐‘˜๐‘˜ = ๐‘‰๐‘‰๐‘˜๐‘˜ โˆ‘๐‘˜๐‘˜=๐‘ ๐‘๐‘ ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘‰๐‘‰๐‘˜๐‘˜๐‘’๐‘’๐‘—๐‘— ๐›ฟ๐›ฟ๐‘˜๐‘˜โˆ’๐›ฟ๐›ฟ๐‘›๐‘›โˆ’๐œƒ๐œƒ๐‘˜๐‘˜๐‘›๐‘› (7)

19

Page 20: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem

In Cartesian form, (7) becomes

๐‘ƒ๐‘ƒ๐‘˜๐‘˜ + ๐‘—๐‘—๐‘„๐‘„๐‘˜๐‘˜ =๐‘‰๐‘‰๐‘˜๐‘˜ โˆ‘๐‘˜๐‘˜=๐‘ ๐‘๐‘ ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘‰๐‘‰๐‘˜๐‘˜ [cos ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜

+๐‘—๐‘— sin ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜ ] (8)

From (8), active power is

๐‘ƒ๐‘ƒ๐‘˜๐‘˜ = ๐‘‰๐‘‰๐‘˜๐‘˜ โˆ‘๐‘˜๐‘˜=๐‘ ๐‘๐‘ ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘‰๐‘‰๐‘˜๐‘˜ cos ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜ (9)

And, reactive power is

๐‘„๐‘„๐‘˜๐‘˜ = ๐‘‰๐‘‰๐‘˜๐‘˜ โˆ‘๐‘˜๐‘˜=๐‘ ๐‘๐‘ ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘‰๐‘‰๐‘˜๐‘˜ sin ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜ (10)

20

Page 21: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem

๐‘ƒ๐‘ƒ๐‘˜๐‘˜ = ๐‘‰๐‘‰๐‘˜๐‘˜ โˆ‘๐‘˜๐‘˜=๐‘ ๐‘๐‘ ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘‰๐‘‰๐‘˜๐‘˜ cos ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜ (9)

๐‘„๐‘„๐‘˜๐‘˜ = ๐‘‰๐‘‰๐‘˜๐‘˜ โˆ‘๐‘˜๐‘˜=๐‘ ๐‘๐‘ ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘‰๐‘‰๐‘˜๐‘˜ sin ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜ (10)

Solving the power-flow problem amounts to finding a solution to a system of nonlinear equations, (9) and (10)

Must be solved using numerical, iterative algorithms Typically Newton-Raphson

In practice, commercial software packages are available for power-flow analysis E.g. PowerWorld, CYME, ETAP

Weโ€™ll now learn to solve the power-flow problem Numerical, iterative algorithm Newton-Raphson

21

Page 22: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem

First, weโ€™ll introduce a variety of numerical algorithms for solving equations and systems of equations Linear system of equations Direct solution

Gaussian elimination Iterative solution

Jacobi Gauss-Seidel

Nonlinear equations Iterative solution

Newton-Raphson

Nonlinear system of equations Iterative solution

Newton-Raphson

22

Page 23: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Linear Systems of Equations โ€“Direct Solution

23

Page 24: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving Linear Systems of Equations

Gaussian elimination Direct (i.e. non-iterative) solution Two parts to the algorithm: Forward elimination Back substitution

24

Page 25: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Gaussian Elimination

Consider a system of equations

โˆ’4๐‘ฅ๐‘ฅ๐‘  + 7๐‘ฅ๐‘ฅ๐‘  = โˆ’52๐‘ฅ๐‘ฅ๐‘  โˆ’ 3๐‘ฅ๐‘ฅ๐‘  + 5๐‘ฅ๐‘ฅ๐‘  = โˆ’12๐‘ฅ๐‘ฅ๐‘  โˆ’ 3๐‘ฅ๐‘ฅ๐‘  = 3

This can be expressed in matrix form:

โˆ’4 0 72 โˆ’3 50 1 โˆ’3

๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘ 

=โˆ’5โˆ’12

3 In general

๐€๐€ โ‹… ๐ฑ๐ฑ = ๐ฒ๐ฒ

For a system of three equations with three unknowns:

๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘ ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘ ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘ 

๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘ 

=๐‘ฆ๐‘ฆ๐‘ ๐‘ฆ๐‘ฆ๐‘ ๐‘ฆ๐‘ฆ๐‘ 

25

Page 26: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Gaussian Elimination

Weโ€™ll use a 3ร—3 system as an example to develop the Gaussian elimination algorithm

๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘ ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘ ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘ 

๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘ 

=๐‘ฆ๐‘ฆ๐‘ ๐‘ฆ๐‘ฆ๐‘ ๐‘ฆ๐‘ฆ๐‘ 

First, create the augmented system matrix

๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  โ‹ฎ ๐‘ฆ๐‘ฆ๐‘ ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  โ‹ฎ ๐‘ฆ๐‘ฆ๐‘ ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  โ‹ฎ ๐‘ฆ๐‘ฆ๐‘ 

Each row represents and equation ๐‘๐‘ rows for ๐‘๐‘ equations

Row operations do not affect the system Multiply a row by a constant Add or subtract rows from one another and replace row with the result

26

Page 27: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Gaussian Elimination โ€“ Forward Elimination

Perform row operations to reduce the augmented matrix to upper triangular Only zeros below the main diagonal Eliminate ๐‘ฅ๐‘ฅ๐‘–๐‘– from the ๐‘–๐‘– + 1 st through the ๐‘๐‘th equations for ๐‘–๐‘– = 1 โ€ฆ๐‘๐‘

Forward elimination

After forward elimination, we have๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  โ‹ฎ ๐‘ฆ๐‘ฆ๐‘ 

0 ๐ด๐ด๐‘ ๐‘ โ€ฒ ๐ด๐ด๐‘ ๐‘ โ€ฒ โ‹ฎ ๐‘ฆ๐‘ฆ๐‘ โ€ฒ

0 0 ๐ด๐ด๐‘ ๐‘ โ€ฒ โ‹ฎ ๐‘ฆ๐‘ฆ๐‘ โ€ฒ

Where the prime notation (e.g. ๐ด๐ด๐‘ ๐‘ โ€ฒ ) indicates that the value has been changed from its original value

27

Page 28: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Gaussian Elimination โ€“ Back Substitution

๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  ๐ด๐ด๐‘ ๐‘  โ‹ฎ ๐‘ฆ๐‘ฆ๐‘ 0 ๐ด๐ด๐‘ ๐‘ โ€ฒ ๐ด๐ด๐‘ ๐‘ โ€ฒ โ‹ฎ ๐‘ฆ๐‘ฆ๐‘ โ€ฒ

0 0 ๐ด๐ด๐‘ ๐‘ โ€ฒ โ‹ฎ ๐‘ฆ๐‘ฆ๐‘ โ€ฒ

The last row represents an equation with only a single unknown๐ด๐ด๐‘ ๐‘ โ€ฒ โ‹… ๐‘ฅ๐‘ฅ๐‘  = ๐‘ฆ๐‘ฆ๐‘ โ€ฒ

Solve for ๐‘ฅ๐‘ฅ๐‘ 

๐‘ฅ๐‘ฅ๐‘  =๐‘ฆ๐‘ฆ๐‘ โ€ฒ

๐ด๐ด๐‘ ๐‘ โ€ฒ

The second-to-last row represents an equation with two unknowns๐ด๐ด๐‘ ๐‘ โ€ฒ โ‹… ๐‘ฅ๐‘ฅ๐‘  + ๐ด๐ด๐‘ ๐‘ โ€ฒ โ‹… ๐‘ฅ๐‘ฅ๐‘  = ๐‘ฆ๐‘ฆ๐‘ โ€ฒ

Substitute in newly-found value of ๐‘ฅ๐‘ฅ๐‘  Solve for ๐‘ฅ๐‘ฅ๐‘ 

Substitute values for ๐‘ฅ๐‘ฅ๐‘  and ๐‘ฅ๐‘ฅ๐‘  into the first-row equation Solve for ๐‘ฅ๐‘ฅ๐‘ 

This process is back substitution

28

Page 29: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Gaussian elimination

Gaussian elimination summary Create the augmented system matrix Forward elimination Reduce to an upper-triangular matrix

Back substitution Starting with ๐‘ฅ๐‘ฅ๐‘๐‘, solve for ๐‘ฅ๐‘ฅ๐‘–๐‘– for ๐‘–๐‘– = ๐‘๐‘โ€ฆ 1

A direct solution algorithm Exact value for each ๐‘ฅ๐‘ฅ๐‘–๐‘– arrived at with a single execution of

the algorithm Alternatively, we can use an iterative algorithm

The Jacobi method

29

Page 30: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Linear Systems of Equations โ€“Iterative Solution โ€“ Jacobi Method

30

Page 31: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Jacobi Method

Consider a system of ๐‘๐‘ linear equations๐€๐€ โ‹… ๐ฑ๐ฑ = ๐ฒ๐ฒ

๐ด๐ด๐‘ ,๐‘  โ‹ฏ ๐ด๐ด๐‘ ,๐‘๐‘โ‹ฎ โ‹ฑ โ‹ฎ

๐ด๐ด๐‘๐‘,๐‘  โ‹ฏ ๐ด๐ด๐‘๐‘,๐‘๐‘

๐‘ฅ๐‘ฅ๐‘ โ‹ฎ๐‘ฅ๐‘ฅ๐‘๐‘

=๐‘ฆ๐‘ฆ๐‘ โ‹ฎ๐‘ฆ๐‘ฆ๐‘๐‘

The ๐‘˜๐‘˜th equation (๐‘˜๐‘˜th row) is๐ด๐ด๐‘˜๐‘˜,๐‘ ๐‘ฅ๐‘ฅ๐‘  + ๐ด๐ด๐‘˜๐‘˜,๐‘ ๐‘ฅ๐‘ฅ๐‘  + โ‹ฏ+ ๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜ + โ‹ฏ+ ๐ด๐ด๐‘˜๐‘˜,๐‘๐‘๐‘ฅ๐‘ฅ๐‘๐‘ = ๐‘ฆ๐‘ฆ๐‘˜๐‘˜ (11)

Solve (11) for ๐‘ฅ๐‘ฅ๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜ = ๐‘ 

๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜[๐‘ฆ๐‘ฆ๐‘˜๐‘˜ โˆ’ (๐ด๐ด๐‘˜๐‘˜,๐‘ ๐‘ฅ๐‘ฅ๐‘  + ๐ด๐ด๐‘˜๐‘˜,๐‘ ๐‘ฅ๐‘ฅ๐‘  + โ‹ฏ+ ๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜โˆ’๐‘ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜โˆ’๐‘  + (12)

+๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜+๐‘ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜+๐‘  + โ‹ฏ+ ๐ด๐ด๐‘˜๐‘˜,๐‘๐‘๐‘ฅ๐‘ฅ๐‘๐‘)]

31

Page 32: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Jacobi Method

Simplify (12) using summing notation

๐‘ฅ๐‘ฅ๐‘˜๐‘˜ =1๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜

๐‘ฆ๐‘ฆ๐‘˜๐‘˜ โˆ’๏ฟฝ๐‘˜๐‘˜=๐‘ 

๐‘˜๐‘˜โˆ’๐‘ 

๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜ โˆ’ ๏ฟฝ๐‘˜๐‘˜=๐‘˜๐‘˜+๐‘ 

๐‘๐‘

๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜ , ๐‘˜๐‘˜ = 1 โ€ฆ๐‘๐‘

An equation for ๐‘ฅ๐‘ฅ๐‘˜๐‘˜ But, of course, we donโ€™t yet know all other ๐‘ฅ๐‘ฅ๐‘˜๐‘˜ values

Use (13) as an iterative expression

๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–+๐‘  =1๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜

๐‘ฆ๐‘ฆ๐‘˜๐‘˜ โˆ’๏ฟฝ๐‘˜๐‘˜=๐‘ 

๐‘˜๐‘˜โˆ’๐‘ 

๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘– โˆ’ ๏ฟฝ๐‘˜๐‘˜=๐‘˜๐‘˜+๐‘ 

๐‘๐‘

๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘– , ๐‘˜๐‘˜ = 1 โ€ฆ๐‘๐‘

The ๐‘–๐‘– subscript indicates iteration number ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–+๐‘  is the updated value from the current iteration ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘– is a value from the previous iteration

(13)

(14)

32

Page 33: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Jacobi Method

๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–+๐‘  =1๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜

๐‘ฆ๐‘ฆ๐‘˜๐‘˜ โˆ’๏ฟฝ๐‘˜๐‘˜=๐‘ 

๐‘˜๐‘˜โˆ’๐‘ 

๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘– โˆ’ ๏ฟฝ๐‘˜๐‘˜=๐‘˜๐‘˜+๐‘ 

๐‘๐‘

๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘– , ๐‘˜๐‘˜ = 1 โ€ฆ๐‘๐‘

Old values of ๐‘ฅ๐‘ฅ๐‘˜๐‘˜, on the right-hand side, are used to update ๐‘ฅ๐‘ฅ๐‘˜๐‘˜ on the left-hand side

Start with an initial guess for all unknowns, ๐ฑ๐ฑ0 Iterate until adequate convergence is achieved

Until a specified stopping criterion is satisfied Convergence is not guaranteed

(14)

33

Page 34: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Convergence

An approximation of ๐ฑ๐ฑ is refined on each iteration Continue to iterate until weโ€™re close to the right answer

for the vector of unknowns, ๐ฑ๐ฑ Assume weโ€™ve converged to the right answer when ๐ฑ๐ฑ

changes very little from iteration to iteration On each iteration, calculate a relative error quantity

๐œ€๐œ€๐‘–๐‘– = max๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–+๐‘  โˆ’ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–

๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–, ๐‘˜๐‘˜ = 1 โ€ฆ๐‘๐‘

Iterate until ๐œ€๐œ€๐‘–๐‘– โ‰ค ๐œ€๐œ€๐‘ ๐‘ 

where ๐œ€๐œ€๐‘ ๐‘  is a chosen stopping criterion

34

Page 35: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Jacobi Method โ€“ Matrix Form

The Jacobi method iterative formula, (14), can be rewritten in matrix form:๐ฑ๐ฑ๐‘–๐‘–+๐‘  = ๐Œ๐Œ๐ฑ๐ฑ๐‘–๐‘– + ๐ƒ๐ƒโˆ’๐‘ ๐ฒ๐ฒ

where ๐ƒ๐ƒ is the diagonal elements of A

๐ƒ๐ƒ =

๐ด๐ด๐‘ ,๐‘  0 โ‹ฏ 00 ๐ด๐ด๐‘ ,๐‘  0 โ‹ฎโ‹ฎ 0 โ‹ฑ 00 โ‹ฏ 0 ๐ด๐ด๐‘๐‘,๐‘๐‘

and ๐Œ๐Œ = ๐ƒ๐ƒโˆ’๐‘  ๐ƒ๐ƒ โˆ’ ๐€๐€

Recall that the inverse of a diagonal matrix is given by inverting each diagonal element

๐ƒ๐ƒโˆ’๐Ÿ๐Ÿ =

1/๐ด๐ด๐‘ ,๐‘  0 โ‹ฏ 00 1/๐ด๐ด๐‘ ,๐‘  0 โ‹ฎโ‹ฎ 0 โ‹ฑ 00 โ‹ฏ 0 1/๐ด๐ด๐‘๐‘,๐‘๐‘

(15)

(16)

35

Page 36: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Jacobi Method โ€“ Example

Consider the following system of equationsโˆ’4๐‘ฅ๐‘ฅ๐‘  + 7๐‘ฅ๐‘ฅ๐‘  = โˆ’52๐‘ฅ๐‘ฅ๐‘  โˆ’ 3๐‘ฅ๐‘ฅ๐‘  + 5๐‘ฅ๐‘ฅ๐‘  = โˆ’12๐‘ฅ๐‘ฅ๐‘  โˆ’ 3๐‘ฅ๐‘ฅ๐‘  = 3

In matrix form:โˆ’4 0 72 โˆ’3 50 1 โˆ’3

๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘ 

=โˆ’5โˆ’12

3

Solve using the Jacobi method

36

Page 37: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Jacobi Method โ€“ Example

The iteration formula is

๐ฑ๐ฑ๐‘–๐‘–+๐‘  = ๐Œ๐Œ๐ฑ๐ฑ๐‘–๐‘– + ๐ƒ๐ƒโˆ’๐‘ ๐ฒ๐ฒwhere

๐ƒ๐ƒ =โˆ’4 0 00 โˆ’3 00 0 โˆ’3

๐ƒ๐ƒโˆ’๐‘  =โˆ’0.25 0 0

0 โˆ’0.333 00 0 โˆ’0.333

๐Œ๐Œ = ๐ƒ๐ƒโˆ’๐‘  ๐ƒ๐ƒ โˆ’ ๐€๐€ =0 0 1.75

0.667 0 1.6670 0.333 0

To begin iteration, we need a starting point Initial guess for unknown values, ๐ฑ๐ฑ Often, we have some idea of the answer Here, arbitrarily choose

๐ฑ๐ฑ0 = 10 25 10 ๐‘‡๐‘‡

37

Page 38: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Jacobi Method โ€“ Example

At each iteration, calculate

๐ฑ๐ฑ๐‘–๐‘–+๐‘  = ๐Œ๐Œ๐ฑ๐ฑ๐‘–๐‘– + ๐ƒ๐ƒโˆ’๐‘ ๐ฒ๐ฒ๐‘ฅ๐‘ฅ๐‘ ,๐‘–๐‘–+๐‘ ๐‘ฅ๐‘ฅ๐‘ ,๐‘–๐‘–+๐‘ ๐‘ฅ๐‘ฅ๐‘ ,๐‘–๐‘–+๐‘ 

=0 0 1.75

0.667 0 1.6670 0.333 0

๐‘ฅ๐‘ฅ๐‘ ,๐‘–๐‘–๐‘ฅ๐‘ฅ๐‘ ,๐‘–๐‘–๐‘ฅ๐‘ฅ๐‘ ,๐‘–๐‘–

+1.25

4โˆ’1

For ๐‘–๐‘– = 1:

๐ฑ๐ฑ๐‘  =๐‘ฅ๐‘ฅ๐‘ ,๐‘ ๐‘ฅ๐‘ฅ๐‘ ,๐‘ ๐‘ฅ๐‘ฅ๐‘ ,๐‘ 

=0 0 1.75

0.667 0 1.6670 0.333 0

102510

+1.25

4โˆ’1

๐ฑ๐ฑ๐‘  = 18.75 27.33 7.33 ๐‘‡๐‘‡

The relative error is

๐œ€๐œ€๐‘  = max๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘  โˆ’ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,0

๐‘ฅ๐‘ฅ๐‘˜๐‘˜,0= 0.875

38

Page 39: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Jacobi Method โ€“ Example

For ๐‘–๐‘– = 2:

๐ฑ๐ฑ๐‘  =๐‘ฅ๐‘ฅ๐‘ ,๐‘ ๐‘ฅ๐‘ฅ๐‘ ,๐‘ ๐‘ฅ๐‘ฅ๐‘ ,๐‘ 

=0 0 1.75

0.667 0 1.6670 0.333 0

18.7527.337.33

+1.25

4โˆ’1

๐ฑ๐ฑ๐‘  = 14.08 28.72 8.11 ๐‘‡๐‘‡

The relative error is

๐œ€๐œ€๐‘  = max๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘  โˆ’ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘ 

๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘ = 0.249

Continue to iterate until relative error falls below a specified stopping condition

39

Page 40: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Jacobi Method โ€“ Example

Automate with computer code, e.g. MATLAB Setup the system of equations

Initialize matrices and parameters for iteration

40

Page 41: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Jacobi Method โ€“ Example

Loop to continue iteration as long as: Stopping criterion is not satisfied Maximum number of iterations is not exceeded

On each iteration Use previous ๐ฑ๐ฑ values to update ๐ฑ๐ฑ Calculate relative error Increment the number of iterations

41

Page 42: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Jacobi Method โ€“ Example

Set ๐œ€๐œ€๐‘ ๐‘  = 1 ร— 10โˆ’6 and iterate:๐’Š๐’Š ๐ฑ๐ฑ๐’Š๐’Š ๐œบ๐œบ๐’Š๐’Š0 10 25 10 ๐‘‡๐‘‡ -

1 18.75 27.33 7.33 ๐‘‡๐‘‡ 0.875

2 14.08 28.72 8.11 ๐‘‡๐‘‡ 0.249

3 15.44 26.91 8.57 ๐‘‡๐‘‡ 0.097

4 16.25 28.59 7.97 ๐‘‡๐‘‡ 0.071

5 15.20 28.12 8.53 ๐‘‡๐‘‡ 0.070

6 16.18 28.35 8.37 ๐‘‡๐‘‡ 0.065

โ‹ฎ โ‹ฎ โ‹ฎ371 20.50 36.00 11.00 ๐‘‡๐‘‡ 0.995ร—10-6

Convergence achieved in 371 iterations

42

Page 43: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Linear Systems of Equations โ€“Iterative Solution โ€“ Gauss-Seidel

43

Page 44: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Gauss-Seidel Method

The iterative formula for the Jacobi method is

๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–+๐‘  =1๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜

๐‘ฆ๐‘ฆ๐‘˜๐‘˜ โˆ’๏ฟฝ๐‘˜๐‘˜=๐‘ 

๐‘˜๐‘˜โˆ’๐‘ 

๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘– โˆ’ ๏ฟฝ๐‘˜๐‘˜=๐‘˜๐‘˜+๐‘ 

๐‘๐‘

๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘– , ๐‘˜๐‘˜ = 1 โ€ฆ๐‘๐‘

Note that only old values of ๐‘ฅ๐‘ฅ๐‘˜๐‘˜ (i.e. ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–) are used to update the value of ๐‘ฅ๐‘ฅ๐‘˜๐‘˜

Assume the ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–+๐‘  values are determined in order of increasing ๐‘˜๐‘˜ When updating ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–+๐‘ , all ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–+๐‘  values are already known

for ๐‘›๐‘› < ๐‘˜๐‘˜ We can use those updated values to calculate ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–+๐‘  The Gauss-Seidel method

(14)

44

Page 45: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Gauss-Seidel Method

Now use the ๐‘ฅ๐‘ฅ๐‘˜๐‘˜ values already updated on the current iteration to update ๐‘ฅ๐‘ฅ๐‘˜๐‘˜ That is, ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–+๐‘  for ๐‘›๐‘› < ๐‘˜๐‘˜

Gauss-Seidel iterative formula

๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–+๐‘  =1๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜

๐‘ฆ๐‘ฆ๐‘˜๐‘˜ โˆ’๏ฟฝ๐‘˜๐‘˜=๐‘ 

๐‘˜๐‘˜โˆ’๐‘ 

๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘–+๐‘  โˆ’ ๏ฟฝ๐‘˜๐‘˜=๐‘˜๐‘˜+๐‘ 

๐‘๐‘

๐ด๐ด๐‘˜๐‘˜,๐‘˜๐‘˜๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘–๐‘– , ๐‘˜๐‘˜ = 1 โ€ฆ๐‘๐‘

Note that only the first summation has changed For already updated ๐‘ฅ๐‘ฅ values ๐‘ฅ๐‘ฅ๐‘˜๐‘˜ for ๐‘›๐‘› < ๐‘˜๐‘˜ Number of already-updated values used depends on ๐‘˜๐‘˜

(17)

45

Page 46: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Gauss-Seidel โ€“ Matrix Form

In matrix form the iterative formula is the same as for the Jacobi method

๐ฑ๐ฑ๐‘–๐‘–+๐‘  = ๐Œ๐Œ๐ฑ๐ฑ๐‘–๐‘– + ๐ƒ๐ƒโˆ’๐‘ ๐ฒ๐ฒ

where, again

๐Œ๐Œ = ๐ƒ๐ƒโˆ’๐‘  ๐ƒ๐ƒ โˆ’ ๐€๐€

but now ๐ƒ๐ƒ is the lower triangular part of ๐€๐€

๐ƒ๐ƒ =

๐ด๐ด๐‘ ,๐‘  0 โ‹ฏ 0๐ด๐ด๐‘ ,๐‘  ๐ด๐ด๐‘ ,๐‘  0 โ‹ฎโ‹ฎ โ‹ฎ โ‹ฑ 0

๐ด๐ด๐‘๐‘,๐‘  ๐ด๐ด๐‘๐‘,๐‘  โ‹ฏ ๐ด๐ด๐‘๐‘,๐‘๐‘

Otherwise, the algorithm and computer code is identical to that of the Jacobi method

(15)

(16)

46

Page 47: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Gauss-Seidel โ€“ Example

Apply Gauss-Seidel to our previous example ๐‘ฅ๐‘ฅ0 = 10 25 10 ๐‘‡๐‘‡

๐œ€๐œ€๐‘ ๐‘  = 1 ร— 10โˆ’6

๐’Š๐’Š ๐ฑ๐ฑ๐’Š๐’Š ๐œบ๐œบ๐’Š๐’Š0 10 25 10 ๐‘‡๐‘‡ -

1 18.75 33.17 10.06 ๐‘‡๐‘‡ 0.875

2 18.85 33.32 10.11 ๐‘‡๐‘‡ 0.005

3 18.94 33.47 10.16 ๐‘‡๐‘‡ 0.005

4 19.03 33.61 10.20 ๐‘‡๐‘‡ 0.005

โ‹ฎ โ‹ฎ โ‹ฎ151 20.50 36.00 11.00 ๐‘‡๐‘‡ 0.995ร—10-6

Convergence achieved in 151 iterations Compared to 371 for the Jacobi method

47

Page 48: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Nonlinear Equations48

Page 49: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Nonlinear Equations

Solution methods weโ€™ve seen so far work only for linear equations

Now, we introduce an iterative method for solving a single nonlinear equation Newton-Raphson method

Next, weโ€™ll apply the Newton-Raphson method to a system of nonlinear equations

Finally, weโ€™ll use Newton-Raphson to solve the power-flow problem

49

Page 50: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson Method

Want to solve๐‘ฆ๐‘ฆ = ๐‘“๐‘“(๐‘ฅ๐‘ฅ)

where ๐‘“๐‘“ ๐‘ฅ๐‘ฅ is a nonlinear function That is, we want to find ๐‘ฅ๐‘ฅ, given a known nonlinear

function, ๐‘“๐‘“, and a known output, ๐‘ฆ๐‘ฆ

Newton-Raphson method Based on a first-order Taylor series approximation to ๐‘“๐‘“ ๐‘ฅ๐‘ฅ

The nonlinear ๐‘“๐‘“ ๐‘ฅ๐‘ฅ is approximated as linear to update our approximation to the solution, ๐‘ฅ๐‘ฅ, on each iteration

50

Page 51: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Taylor Series Approximation

Taylor series approximation Given: A function, ๐‘“๐‘“ ๐‘ฅ๐‘ฅ Value of the function at some value of ๐‘ฅ๐‘ฅ, ๐‘“๐‘“ ๐‘ฅ๐‘ฅ0

Approximate: Value of the function at some other value of ๐‘ฅ๐‘ฅ

First-order Taylor series approximation Approximate ๐‘“๐‘“ ๐‘ฅ๐‘ฅ using only its first derivative ๐‘“๐‘“ ๐‘ฅ๐‘ฅ approximated as linear โ€“ constant slope

๐‘ฆ๐‘ฆ = ๐‘“๐‘“ ๐‘ฅ๐‘ฅ โ‰ˆ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ0 +๐‘‘๐‘‘๐‘“๐‘“๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๏ฟฝ๐‘ฅ๐‘ฅ=๐‘ฅ๐‘ฅ0

๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ0 = ๏ฟฝ๐‘ฆ๐‘ฆ

51

Page 52: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

First-Order Taylor Series Approximation

Approximate value of the function at ๐‘ฅ๐‘ฅ

๐‘“๐‘“ ๐‘ฅ๐‘ฅ โ‰ˆ ๏ฟฝ๐‘ฆ๐‘ฆ = ๐‘“๐‘“ ๐‘ฅ๐‘ฅ0 + ๐‘“๐‘“โ€ฒ ๐‘ฅ๐‘ฅ0 ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ0

52

Page 53: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson Method

First order Taylor series approximation is

๐‘ฆ๐‘ฆ โ‰ˆ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ0 + ๐‘“๐‘“โ€ฒ ๐‘ฅ๐‘ฅ0 ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ0

Letting this be an equality and rearranging gives an iterative formula for updating an approximation to ๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ = ๐‘“๐‘“ ๐‘ฅ๐‘ฅ๐‘–๐‘– + ๐‘“๐‘“โ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– ๐‘ฅ๐‘ฅ๐‘–๐‘–+๐‘  โˆ’ ๐‘ฅ๐‘ฅ๐‘–๐‘–

๐‘“๐‘“โ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– ๐‘ฅ๐‘ฅ๐‘–๐‘–+๐‘  โˆ’ ๐‘ฅ๐‘ฅ๐‘–๐‘– = ๐‘ฆ๐‘ฆ โˆ’ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ๐‘–๐‘–

๐‘ฅ๐‘ฅ๐‘–๐‘–+๐‘  = ๐‘ฅ๐‘ฅ๐‘–๐‘– +1

๐‘“๐‘“โ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘–๐‘ฆ๐‘ฆ โˆ’ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ๐‘–๐‘–

Initialize with a best guess at ๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ0 Iterate (18) until

A stopping criterion is satisfied, or The maximum number of iterations is reached

(18)

53

Page 54: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

First-Order Taylor Series Approximation

Now using the Taylor series approximation in a different way Not approximating

the value of y = f(x) at x, but, instead

Approximating the value of x where f(x) = y

๐‘ฅ๐‘ฅ๐‘–๐‘–+๐‘  = ๐‘ฅ๐‘ฅ๐‘–๐‘– +1

๐‘“๐‘“โ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘–๐‘ฆ๐‘ฆ โˆ’ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ๐‘–๐‘–

54

Page 55: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ Example

Consider the following nonlinear equation๐‘ฆ๐‘ฆ = ๐‘“๐‘“ ๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ๐‘  + 10 = 20

Apply Newton-Raphson to solve Find ๐‘ฅ๐‘ฅ, such that ๐‘ฆ๐‘ฆ = ๐‘“๐‘“ ๐‘ฅ๐‘ฅ = 20

The derivative function is๐‘“๐‘“โ€ฒ ๐‘ฅ๐‘ฅ = 3๐‘ฅ๐‘ฅ๐‘ 

Initial guess for ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ0 = 1

Iterate using the formula given by (18)

55

Page 56: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ Example

๐‘–๐‘– = 1:

๐‘ฅ๐‘ฅ๐‘  = ๐‘ฅ๐‘ฅ0 + ๐‘“๐‘“โ€ฒ ๐‘ฅ๐‘ฅ0 โˆ’๐‘  ๐‘ฆ๐‘ฆ โˆ’ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ0

๐‘ฅ๐‘ฅ๐‘  = 1 + 3 โ‹… 1๐‘  โˆ’๐‘  20 โˆ’ 1๐‘  + 10

๐‘ฅ๐‘ฅ๐‘  = 4

๐œ€๐œ€๐‘  =๐‘ฅ๐‘ฅ๐‘  โˆ’ ๐‘ฅ๐‘ฅ0๐‘ฅ๐‘ฅ0

๐œ€๐œ€๐‘  =4 โˆ’ 1

1= 3

๐‘ฅ๐‘ฅ๐‘  = 4, ๐œ€๐œ€๐‘  = 3

56

Page 57: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ Example

๐‘–๐‘– = 2:

๐‘ฅ๐‘ฅ๐‘  = ๐‘ฅ๐‘ฅ๐‘  + ๐‘“๐‘“โ€ฒ ๐‘ฅ๐‘ฅ๐‘  โˆ’๐‘  ๐‘ฆ๐‘ฆ โˆ’ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘  = 4 + 3 โ‹… 4๐‘  โˆ’๐‘  20 โˆ’ 4๐‘  + 10

๐‘ฅ๐‘ฅ๐‘  = 2.875

๐œ€๐œ€๐‘  =๐‘ฅ๐‘ฅ๐‘  โˆ’ ๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘ 

๐œ€๐œ€๐‘  =2.875 โˆ’ 4

4

๐œ€๐œ€๐‘  = 0.281

๐‘ฅ๐‘ฅ๐‘  = 2.875, ๐œ€๐œ€๐‘  = 0.281

57

Page 58: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ Example

๐‘–๐‘– = 3:

๐‘ฅ๐‘ฅ๐‘  = ๐‘ฅ๐‘ฅ๐‘  + ๐‘“๐‘“โ€ฒ ๐‘ฅ๐‘ฅ๐‘  โˆ’๐‘  ๐‘ฆ๐‘ฆ โˆ’ ๐‘“๐‘“ ๐‘ฅ๐‘ฅ๐‘ 

๐‘ฅ๐‘ฅ๐‘  = 2.875 + 3 โ‹… 2.875๐‘  โˆ’๐‘  20 โˆ’ 2.875๐‘  + 10

๐‘ฅ๐‘ฅ๐‘  = 2.32

๐œ€๐œ€๐‘  =๐‘ฅ๐‘ฅ๐‘  โˆ’ ๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘ 

๐œ€๐œ€๐‘  =2.32 โˆ’ 2.875

2.875

๐œ€๐œ€๐‘  = 0.193

๐‘ฅ๐‘ฅ๐‘  = 2.32, ๐œ€๐œ€๐‘  = 0.193

58

Page 59: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ Example

๐‘–๐‘– = 4:๐‘ฅ๐‘ฅ4 = 2.166, ๐œ€๐œ€4 = 0.066

๐‘–๐‘– = 5:๐‘ฅ๐‘ฅ5 = 2.155, ๐œ€๐œ€5 = 0.005

๐‘–๐‘– = 6:๐‘ฅ๐‘ฅ6 = 2.154, ๐œ€๐œ€6 = 28.4 ร— 10โˆ’6

๐‘–๐‘– = 7:๐‘ฅ๐‘ฅ7 = 2.154, ๐œ€๐œ€7 = 0.808 ร— 10โˆ’9

Convergence achieved very quickly Next, weโ€™ll see how to apply Newton-Raphson to a system

of nonlinear equations

59

Page 60: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Example Problems60

Page 61: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Perform three iterations toward the solution of the following system of equations using the Jacobi method. Let ๐ฑ๐ฑ0 = 0, 0 ๐‘‡๐‘‡.

2๐‘ฅ๐‘ฅ๐‘  + ๐‘ฅ๐‘ฅ๐‘  = 122๐‘ฅ๐‘ฅ๐‘  + 3๐‘ฅ๐‘ฅ๐‘  = 5

61

Page 62: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 47062

Page 63: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 47063

Page 64: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 47064

Page 65: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Perform three iterations toward the solution of the following system of equations using the Gauss-Seidel method. Let ๐ฑ๐ฑ0 = 0, 0 ๐‘‡๐‘‡.

2๐‘ฅ๐‘ฅ๐‘  + ๐‘ฅ๐‘ฅ๐‘  = 122๐‘ฅ๐‘ฅ๐‘  + 3๐‘ฅ๐‘ฅ๐‘  = 5

65

Page 66: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 47066

Page 67: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 47067

Page 68: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 47068

Page 69: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Perform three iterations toward the solution of the following equation using the Newton-Raphson method. Let ๐ฑ๐ฑ0 = 0.

๐‘“๐‘“ ๐‘ฅ๐‘ฅ = cos ๐‘ฅ๐‘ฅ + 3๐‘ฅ๐‘ฅ = 10

69

Page 70: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 47070

Page 71: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Nonlinear Systems of Equations71

Page 72: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Nonlinear Systems of Equations

Now, consider a system of nonlinear equations Can be represented as a vector of ๐‘๐‘ functions Each is a function of an ๐‘๐‘-vector of unknown variables

๐ฒ๐ฒ =

๐‘ฆ๐‘ฆ๐‘ ๐‘ฆ๐‘ฆ๐‘ โ‹ฎ๐‘ฆ๐‘ฆ๐‘๐‘

= ๐Ÿ๐Ÿ ๐ฑ๐ฑ =

๐‘“๐‘“๐‘  ๐‘ฅ๐‘ฅ๐‘ , ๐‘ฅ๐‘ฅ๐‘ ,โ‹ฏ , ๐‘ฅ๐‘ฅ๐‘๐‘๐‘“๐‘“๐‘  ๐‘ฅ๐‘ฅ๐‘ , ๐‘ฅ๐‘ฅ๐‘ ,โ‹ฏ , ๐‘ฅ๐‘ฅ๐‘๐‘

โ‹ฎ๐‘“๐‘“๐‘๐‘ ๐‘ฅ๐‘ฅ๐‘ , ๐‘ฅ๐‘ฅ๐‘ ,โ‹ฏ , ๐‘ฅ๐‘ฅ๐‘๐‘

We can again approximate this function using a first-order Taylor series

๐ฒ๐ฒ = ๐Ÿ๐Ÿ ๐ฑ๐ฑ โ‰ˆ ๐Ÿ๐Ÿ ๐ฑ๐ฑ0 + ๐Ÿ๐Ÿโ€ฒ ๐ฑ๐ฑ0 ๐ฑ๐ฑ โˆ’ ๐ฑ๐ฑ0

Note that all variables are ๐‘๐‘-vectors ๐Ÿ๐Ÿ is an ๐‘๐‘-vector of known, nonlinear functions ๐ฑ๐ฑ is an ๐‘๐‘-vector of unknown values โ€“ this is what we want to solve for ๐ฒ๐ฒ is an ๐‘๐‘-vector of known values ๐ฑ๐ฑ๐ŸŽ๐ŸŽ is an ๐‘๐‘-vector of ๐ฑ๐ฑ values for which ๐Ÿ๐Ÿ ๐ฑ๐ฑ0 is known

(19)

72

Page 73: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson Method

Equation (19) is the basis for our Newton-Raphson iterative formula Again, let it be an equality and solve for ๐ฑ๐ฑ

๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ0 = ๐Ÿ๐Ÿโ€ฒ ๐ฑ๐ฑ0 ๐ฑ๐ฑ โˆ’ ๐ฑ๐ฑ0๐Ÿ๐Ÿโ€ฒ ๐ฑ๐ฑ0 โˆ’๐Ÿ๐Ÿ ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ0 = ๐ฑ๐ฑ โˆ’ ๐ฑ๐ฑ0๐ฑ๐ฑ = ๐ฑ๐ฑ0 + ๐Ÿ๐Ÿโ€ฒ ๐ฑ๐ฑ0 โˆ’๐Ÿ๐Ÿ ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ0

This last expression can be used as an iterative formula

๐ฑ๐ฑ๐‘–๐‘–+๐‘  = ๐ฑ๐ฑ๐‘–๐‘– + ๐Ÿ๐Ÿโ€ฒ ๐ฑ๐ฑ๐‘–๐‘– โˆ’๐Ÿ๐Ÿ ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ๐‘–๐‘–

The derivative term on the right-hand side of (20) is an ๐‘๐‘ ร— ๐‘๐‘ matrix The Jacobian matrix, ๐‰๐‰

๐ฑ๐ฑ๐‘–๐‘–+๐‘  = ๐ฑ๐ฑ๐‘–๐‘– + ๐‰๐‰๐‘–๐‘–โˆ’๐Ÿ๐Ÿ ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ๐‘–๐‘– (20)

73

Page 74: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

The Jacobian Matrix

๐ฑ๐ฑ๐‘–๐‘–+๐‘  = ๐ฑ๐ฑ๐‘–๐‘– + ๐‰๐‰๐‘–๐‘–โˆ’๐Ÿ๐Ÿ ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ๐‘–๐‘–

Jacobian matrix ๐‘๐‘ ร— ๐‘๐‘ matrix of partial derivatives for ๐Ÿ๐Ÿ ๐ฑ๐ฑ Evaluated at the current value of ๐ฑ๐ฑ, ๐ฑ๐ฑ๐‘–๐‘–

๐‰๐‰๐‘–๐‘– =

๐œ•๐œ•๐‘“๐‘“๐‘ ๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘ 

๐œ•๐œ•๐‘“๐‘“๐‘ ๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘ 

โ‹ฏ๐œ•๐œ•๐‘“๐‘“๐‘ ๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘๐‘

๐œ•๐œ•๐‘“๐‘“๐‘ ๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘ 

๐œ•๐œ•๐‘“๐‘“๐‘ ๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘ 

โ‹ฏ๐œ•๐œ•๐‘“๐‘“๐‘ ๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘๐‘

โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ๐œ•๐œ•๐‘“๐‘“๐‘๐‘๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘ 

๐œ•๐œ•๐‘“๐‘“๐‘๐‘๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘ 

โ‹ฏ๐œ•๐œ•๐‘“๐‘“๐‘๐‘๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘๐‘ ๐ฑ๐ฑ=๐ฑ๐ฑ๐‘–๐‘–

(20)

74

Page 75: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson Method

๐ฑ๐ฑ๐‘–๐‘–+๐‘  = ๐ฑ๐ฑ๐‘–๐‘– + ๐‰๐‰๐‘–๐‘–โˆ’๐Ÿ๐Ÿ ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ๐‘–๐‘–

We could iterate (20) until convergence or a maximum number of iterations is reached Requires inversion of the Jacobian matrix Computationally expensive and error prone

Instead, go back to the Taylor series approximation๐ฒ๐ฒ = ๐Ÿ๐Ÿ ๐ฑ๐ฑ๐‘–๐‘– + ๐‰๐‰๐‘–๐‘– ๐ฑ๐ฑ๐‘–๐‘–+๐‘  โˆ’ ๐ฑ๐ฑ๐‘–๐‘–๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ๐‘–๐‘– = ๐‰๐‰๐‘–๐‘– ๐ฑ๐ฑ๐‘–๐‘–+๐‘  โˆ’ ๐ฑ๐ฑ๐‘–๐‘–

Left side of (21) represents a difference between the known and approximated outputs

Right side represents an increment of the approximation for ๐ฑ๐ฑ

ฮ”๐ฒ๐ฒ๐‘–๐‘– = ๐‰๐‰๐‘–๐‘–ฮ”๐ฑ๐ฑ๐‘–๐‘–

(20)

(21)

(22)

75

Page 76: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson Method

ฮ”๐ฒ๐ฒ๐‘–๐‘– = ๐‰๐‰๐‘–๐‘–ฮ”๐ฑ๐ฑ๐‘–๐‘–

On each iteration: Compute ฮ”๐ฒ๐ฒ๐‘–๐‘– and ๐‰๐‰๐‘–๐‘– Solve for ฮ”๐ฑ๐ฑ๐‘–๐‘– using Gaussian eliminationMatrix inversion not required Computationally robust

Update ๐ฑ๐ฑ๐ฑ๐ฑ๐‘–๐‘–+๐‘  = ๐ฑ๐ฑ๐‘–๐‘– + ฮ”๐ฑ๐ฑ๐‘–๐‘–

(22)

(23)

76

Page 77: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ Example

Apply Newton-Raphson to solve the following system of nonlinear equations

๐Ÿ๐Ÿ ๐ฑ๐ฑ = ๐ฒ๐ฒ

๐‘ฅ๐‘ฅ๐‘ ๐‘  + 3๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘ ๐‘ฅ๐‘ฅ๐‘ 

= 2112

Initial condition: ๐ฑ๐ฑ0 = 1 2 ๐‘‡๐‘‡

Stopping criterion: ๐œ€๐œ€๐‘ ๐‘  = 1 ร— 10โˆ’6

Jacobian matrix

๐‰๐‰๐‘–๐‘– =

๐œ•๐œ•๐‘“๐‘“๐‘ ๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘ 

๐œ•๐œ•๐‘“๐‘“๐‘ ๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘ 

๐œ•๐œ•๐‘“๐‘“๐‘ ๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘ 

๐œ•๐œ•๐‘“๐‘“๐‘ ๐œ•๐œ•๐‘ฅ๐‘ฅ๐‘  ๐ฑ๐ฑ=๐ฑ๐ฑ๐‘–๐‘–

=2๐‘ฅ๐‘ฅ๐‘ ,๐‘–๐‘– 3๐‘ฅ๐‘ฅ๐‘ ,๐‘–๐‘– ๐‘ฅ๐‘ฅ๐‘ ,๐‘–๐‘–

77

Page 78: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ Example

ฮ”๐ฒ๐ฒ๐‘–๐‘– = ๐‰๐‰๐‘–๐‘–ฮ”๐ฑ๐ฑ๐‘–๐‘–๐ฑ๐ฑ๐‘–๐‘–+๐‘  = ๐ฑ๐ฑ๐‘–๐‘– + ฮ”๐ฑ๐ฑ๐‘–๐‘–

Adjusting the indexing, we can equivalently write (22) and (23) as:

ฮ”๐ฒ๐ฒ๐‘–๐‘–โˆ’๐‘  = ๐‰๐‰๐‘–๐‘–โˆ’๐‘ ฮ”๐ฑ๐ฑ๐‘–๐‘–โˆ’๐‘ ๐ฑ๐ฑ๐‘–๐‘– = ๐ฑ๐ฑ๐‘–๐‘–โˆ’๐‘  + ฮ”๐ฑ๐ฑ๐‘–๐‘–โˆ’๐‘ 

For iteration ๐‘–๐‘–: Compute ฮ”๐ฒ๐ฒ๐‘–๐‘–โˆ’๐‘  and ๐‰๐‰๐‘–๐‘–โˆ’๐‘  Solve (22) for ฮ”๐ฑ๐ฑ๐‘–๐‘–โˆ’๐‘  Update ๐ฑ๐ฑ using (23)

(22)(23)

(22)(23)

78

Page 79: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ Example

๐‘–๐‘– = 1:ฮ”๐‘ฆ๐‘ฆ0 = ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ0 = 21

12 โˆ’ 72 = 14

10

๐‰๐‰0 =2๐‘ฅ๐‘ฅ๐‘ ,0 3๐‘ฅ๐‘ฅ๐‘ ,0 ๐‘ฅ๐‘ฅ๐‘ ,0

= 2 32 1

ฮ”๐ฑ๐ฑ0 = 42

๐ฑ๐ฑ๐‘  = ๐ฑ๐ฑ0 + ฮ”๐ฑ๐ฑ0 = 12 + 4

2 = 54

๐œ€๐œ€๐‘  = max๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘  โˆ’ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,0

๐‘ฅ๐‘ฅ๐‘˜๐‘˜,0, ๐‘˜๐‘˜ = 1 โ€ฆ๐‘๐‘

๐‘ฅ๐‘ฅ๐‘  = 54 , ๐œ€๐œ€๐‘  = 4

79

Page 80: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ Example

๐‘–๐‘– = 2:ฮ”๐‘ฆ๐‘ฆ๐‘  = ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ๐‘  = 21

12 โˆ’ 3720 = โˆ’16

โˆ’8

๐‰๐‰๐‘  =2๐‘ฅ๐‘ฅ๐‘ ,๐‘  3๐‘ฅ๐‘ฅ๐‘ ,๐‘  ๐‘ฅ๐‘ฅ๐‘ ,๐‘ 

= 10 34 5

ฮ”๐ฑ๐ฑ๐‘  = โˆ’1.474โˆ’0.421

๐ฑ๐ฑ๐‘  = ๐ฑ๐ฑ๐‘  + ฮ”๐ฑ๐ฑ๐‘  = 54 + โˆ’1.474

โˆ’0.421 = 3.5263.579

๐œ€๐œ€๐‘  = max๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘  โˆ’ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘ 

๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘ , ๐‘˜๐‘˜ = 1 โ€ฆ๐‘๐‘

๐‘ฅ๐‘ฅ๐‘  = 3.5263.579 , ๐œ€๐œ€๐‘  = 0.295

80

Page 81: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ Example

๐‘–๐‘– = 3:ฮ”๐‘ฆ๐‘ฆ๐‘  = ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ๐‘  = 21

12 โˆ’ 23.17212.621 = โˆ’2.172

โˆ’0.621

๐‰๐‰๐‘  =2๐‘ฅ๐‘ฅ๐‘ ,๐‘  3๐‘ฅ๐‘ฅ๐‘ ,๐‘  ๐‘ฅ๐‘ฅ๐‘ ,๐‘ 

= 7.053 33.579 3.526

ฮ”๐ฑ๐ฑ๐‘  = โˆ’0.4100.240

๐ฑ๐ฑ๐‘  = ๐ฑ๐ฑ๐‘  + ฮ”๐ฑ๐ฑ๐‘  = 3.5263.579 + โˆ’0.410

0.240 = 3.1163.819

๐œ€๐œ€๐‘  = max๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘  โˆ’ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘ 

๐‘ฅ๐‘ฅ๐‘˜๐‘˜,๐‘ , ๐‘˜๐‘˜ = 1 โ€ฆ๐‘๐‘

๐‘ฅ๐‘ฅ๐‘  = 3.1163.819 , ๐œ€๐œ€๐‘  = 0.116

81

Page 82: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ Example

๐‘–๐‘– = 7:ฮ”๐‘ฆ๐‘ฆ6 = ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ6 = 21

12 โˆ’ 21.00012.000 = โˆ’0.527 ร— 10โˆ’7

0.926 ร— 10โˆ’7

๐‰๐‰6 =2๐‘ฅ๐‘ฅ๐‘ ,6 3๐‘ฅ๐‘ฅ๐‘ ,6 ๐‘ฅ๐‘ฅ๐‘ ,6

= 6.000 34.000 3.000

ฮ”๐ฑ๐ฑ6 = โˆ’0.073 ร— 10โˆ’60.128 ร— 10โˆ’6

๐ฑ๐ฑ7 = ๐ฑ๐ฑ6 + ฮ”๐ฑ๐ฑ6 = 3.0004.000 + โˆ’0.073 ร— 10โˆ’6

0.128 ร— 10โˆ’6= 3.000

4.000

๐œ€๐œ€7 = max๐‘ฅ๐‘ฅ๐‘˜๐‘˜,7 โˆ’ ๐‘ฅ๐‘ฅ๐‘˜๐‘˜,6

๐‘ฅ๐‘ฅ๐‘˜๐‘˜,6, ๐‘˜๐‘˜ = 1 โ€ฆ๐‘๐‘

๐‘ฅ๐‘ฅ7 = 3.0004.000 , ๐œ€๐œ€7 = 31.9 ร— 10โˆ’9

82

Page 83: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ MATLAB Code

Define the system of equations

Initialize ๐ฑ๐ฑ

Set up solution parameters

83

Page 84: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Newton-Raphson โ€“ MATLAB Code

Iterate: Compute ฮ”๐ฒ๐ฒ๐‘–๐‘–โˆ’๐‘  and ๐‰๐‰๐‘–๐‘–โˆ’๐‘  Solve for ฮ”๐ฑ๐ฑ๐‘–๐‘–โˆ’๐‘  Update ๐ฑ๐ฑ

84

Page 85: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Example Problems85

Page 86: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Perform three iterations toward the solution of the following system of equations using the Newton-Raphson method. Let ๐ฑ๐ฑ0 = 1, 1 ๐‘‡๐‘‡.

10๐‘ฅ๐‘ฅ๐‘ ๐‘  + ๐‘ฅ๐‘ฅ๐‘  = 20๐‘’๐‘’๐‘ฅ๐‘ฅ1 โˆ’ ๐‘ฅ๐‘ฅ๐‘  = 10

86

Page 87: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 47087

Page 88: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 47088

Page 89: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 47089

Page 90: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Overview90

Page 91: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem - Overview

Consider an ๐‘๐‘-bus power-flow problem 1 slack bus ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ PV buses ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ PQ buses

๐‘๐‘ = ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + 1

Each bus has two unknown quantities Two of ๐‘‰๐‘‰๐‘˜๐‘˜, ๐›ฟ๐›ฟ๐‘˜๐‘˜, ๐‘ƒ๐‘ƒ๐‘˜๐‘˜, and ๐‘„๐‘„๐‘˜๐‘˜

For the N-R power-flow problem, ๐‘‰๐‘‰๐‘˜๐‘˜ and ๐›ฟ๐›ฟ๐‘˜๐‘˜ are the unknown quantities These are the inputs to the nonlinear system of equations โ€“ the ๐‘ƒ๐‘ƒ๐‘˜๐‘˜ and ๐‘„๐‘„๐‘˜๐‘˜ equations โ€“ of (9) and (10)

Finding unknown ๐‘‰๐‘‰๐‘˜๐‘˜ and ๐›ฟ๐›ฟ๐‘˜๐‘˜ values allows us to determine unknown ๐‘ƒ๐‘ƒ๐‘˜๐‘˜ and ๐‘„๐‘„๐‘˜๐‘˜ values

91

Page 92: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem - Overview

The nonlinear system of equations is๐ฒ๐ฒ = ๐Ÿ๐Ÿ(๐ฑ๐ฑ)

The unknowns , ๐ฑ๐ฑ, are bus voltages Unknown phase angles from PV and PQ buses Unknown magnitudes from PQ bus

๐ฑ๐ฑ = ๐›…๐›…๐•๐• =

๐›ฟ๐›ฟ๐‘ โ‹ฎ

๐›ฟ๐›ฟ๐‘˜๐‘˜๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ+๐‘˜๐‘˜๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ+๐‘ 

๐‘‰๐‘‰๐‘˜๐‘˜๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ+๐‘ โ‹ฎ

๐‘‰๐‘‰๐‘˜๐‘˜๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ+๐‘˜๐‘˜๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ+๐‘ 

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

(24)

92

Page 93: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem - Overview

๐ฒ๐ฒ = ๐Ÿ๐Ÿ(๐ฑ๐ฑ)

The knowns , ๐ฒ๐ฒ, are bus powers Known real power from PV and PQ buses Known reactive power from PQ bus

๐ฒ๐ฒ = ๐๐๐๐ =

๐‘ƒ๐‘ƒ๐‘ โ‹ฎ

๐‘ƒ๐‘ƒ๐‘˜๐‘˜๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ+๐‘˜๐‘˜๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ+๐‘ 

๐‘„๐‘„๐‘˜๐‘˜๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ+๐‘ โ‹ฎ

๐‘„๐‘„๐‘˜๐‘˜๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ+๐‘˜๐‘˜๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ+๐‘ 

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

(25)

93

Page 94: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem - Overview

๐ฒ๐ฒ = ๐Ÿ๐Ÿ(๐ฑ๐ฑ)

The system of equations , ๐Ÿ๐Ÿ, consists of the nonlinear functions for ๐๐ and ๐๐ Nonlinear functions of ๐•๐• and ๐›…๐›…

๐Ÿ๐Ÿ(๐ฑ๐ฑ) = ๐๐(๐ฑ๐ฑ)๐๐(๐ฑ๐ฑ) =

๐‘ƒ๐‘ƒ๐‘  ๐ฑ๐ฑโ‹ฎโ‹ฎ

๐‘„๐‘„๐‘˜๐‘˜๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ+๐‘  ๐ฑ๐ฑโ‹ฎโ‹ฎ

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

(26)

94

Page 95: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem - Overview

๐‘ƒ๐‘ƒ๐‘˜๐‘˜ ๐ฑ๐ฑ and ๐‘„๐‘„๐‘˜๐‘˜ ๐ฑ๐ฑ are given by

๐‘ƒ๐‘ƒ๐‘˜๐‘˜ = ๐‘‰๐‘‰๐‘˜๐‘˜ ๏ฟฝ๐‘˜๐‘˜=๐‘ 

๐‘๐‘

๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘‰๐‘‰๐‘˜๐‘˜ cos ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜

๐‘„๐‘„๐‘˜๐‘˜ = ๐‘‰๐‘‰๐‘˜๐‘˜ ๏ฟฝ๐‘˜๐‘˜=๐‘ 

๐‘๐‘

๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘‰๐‘‰๐‘˜๐‘˜ sin ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜

Admittance matrix terms are

๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ = ๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ โˆ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜

(9)

(10)

95

Page 96: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem - Overview

The iterative N-R formula is๐ฑ๐ฑ๐‘–๐‘–+๐‘  = ๐ฑ๐ฑ๐‘–๐‘– + ฮ”๐ฑ๐ฑ๐‘–๐‘–

The increment term, ฮ”๐ฑ๐ฑ๐‘–๐‘–, is computed through Gaussian elimination of

ฮ”๐ฒ๐ฒ๐‘–๐‘– = ๐‰๐‰๐‘–๐‘–ฮ”๐ฑ๐ฑ๐‘–๐‘– The Jacobian, ๐ฝ๐ฝ๐‘–๐‘–, is computed on each iteration The power mismatch vector is

ฮ”๐ฒ๐ฒ๐‘–๐‘– = ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ๐‘–๐‘– ๐ฒ๐ฒ is the vector of known powers, as given in (25) ๐Ÿ๐Ÿ ๐ฑ๐ฑ๐‘–๐‘– are the ๐‘ƒ๐‘ƒ and ๐‘„๐‘„ equations given by (9) and (10)

96

Page 97: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Procedure 97

Page 98: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem - Procedure

The following procedure shows how to set up and solve the power-flow problem using the N-R algorithm

1. Order and number buses Slack bus is #1 Group all PV buses together next Group all PQ buses together last

2. Generate the bus admittance matrix, ๐˜๐˜ And magnitude, Y = ๐˜๐˜ , and angle, ฮธ = โˆ ๐˜๐˜, matrices

98

Page 99: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem - Procedure

3. Initialize known quantities Slack bus: ๐‘‰๐‘‰๐‘  and ๐›ฟ๐›ฟ๐‘  PV buses: ๐‘‰๐‘‰๐‘˜๐‘˜ and ๐‘ƒ๐‘ƒ๐‘˜๐‘˜ PQ buses: ๐‘ƒ๐‘ƒ๐‘˜๐‘˜ and ๐‘„๐‘„๐‘˜๐‘˜ Output vector:

๐ฒ๐ฒ = ๐๐๐๐

4. Initialize unknown quantities

๐ฑ๐ฑ๐’๐’ = ๐›…๐›…๐ŸŽ๐ŸŽ๐•๐•๐ŸŽ๐ŸŽ

=

0โ‹ฎ0

1.0โ‹ฎ

1.0

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

(24)

99

Page 100: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem - Procedure

5. Set up Newton-Raphson parameters Tolerance for convergence, reltol Maximum # of iterations, max_iter Initialize relative error: ๐œ€๐œ€0 > reltol, e.g. ๐œ€๐œ€0 = 10 Initialize iteration counter: ๐‘–๐‘– = 0

6. while (๐œ€๐œ€ > reltol) && (๐‘–๐‘– < max_iter) Update bus voltage phasor vector, ๐•๐•๐‘–๐‘–, using magnitude

and phase values from ๐ฑ๐ฑ๐‘–๐‘– and from knowns Calculate the current injected into each bus, a vector of

phasors๐ˆ๐ˆ๐‘–๐‘– = ๐˜๐˜ โ‹… ๐•๐•๐‘–๐‘–

100

Page 101: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem - Procedure

6. while (๐œ€๐œ€ > reltol) && (๐‘–๐‘– < max_iter) โ€“ contโ€™d Calculate complex, real, and reactive power injected into each bus This can be done using ๐•๐•๐‘–๐‘– and ๐ˆ๐ˆ๐‘–๐‘– vectors and element-by-element

multiplication (the .* operator in MATLAB)

๐’๐’๐‘˜๐‘˜,๐‘–๐‘– = ๐•๐•๐‘˜๐‘˜,๐‘–๐‘– โ‹… ๐ˆ๐ˆ๐‘˜๐‘˜,๐‘–๐‘–โˆ—

๐‘ƒ๐‘ƒ๐‘˜๐‘˜,๐‘–๐‘– = ๐‘…๐‘…๐‘’๐‘’ ๐’๐’๐‘˜๐‘˜,๐‘–๐‘–

๐‘„๐‘„๐‘˜๐‘˜,๐‘–๐‘– = ๐ผ๐ผ๐ผ๐ผ ๐’๐’๐‘˜๐‘˜,๐‘–๐‘–

Create ๐‘“๐‘“ ๐‘ฅ๐‘ฅ๐‘–๐‘– from ๐๐๐‘–๐‘– and ๐๐๐‘–๐‘– vectors Calculate power mismatch, ฮ”๐ฒ๐ฒ๐‘–๐‘–

ฮ”๐ฒ๐ฒ๐‘–๐‘– = ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ๐‘–๐‘– Compute the Jacobian, ๐‰๐‰๐‘–๐‘–, using voltage magnitudes and phase

angles from ๐•๐•๐‘–๐‘–

101

Page 102: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Solving the Power-Flow Problem - Procedure

6. while (๐œ€๐œ€ > reltol) && (๐‘–๐‘– < max_iter) โ€“ contโ€™d Solve for ฮ”๐ฑ๐ฑ๐‘–๐‘– using Gaussian elimination

ฮ”๐ฒ๐ฒ๐‘–๐‘– = ๐‰๐‰๐‘–๐‘–ฮ”๐ฑ๐ฑ๐‘–๐‘– Use the mldivide (\, backslash) operator in MATLAB: ฮ”๐ฑ๐ฑ๐‘–๐‘– = ๐‰๐‰๐‘–๐‘–\ฮ”๐ฒ๐ฒ๐‘–๐‘–

Update ๐ฑ๐ฑ

๐ฑ๐ฑ๐‘–๐‘–+๐‘  = ๐ฑ๐ฑ๐‘–๐‘– + ฮ”๐ฑ๐ฑ๐‘–๐‘– Check for convergence using power mismatch

๐œ€๐œ€๐‘–๐‘–+๐‘  = max๐‘ฆ๐‘ฆ๐‘˜๐‘˜ โˆ’ ๐‘“๐‘“๐‘˜๐‘˜ ๐ฑ๐ฑ

๐‘ฆ๐‘ฆ๐‘˜๐‘˜ Update the number of iterations

๐‘–๐‘– = ๐‘–๐‘– + 1

102

Page 103: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

The Jacobian Matrix

The Jacobian matrix has four quadrants of varying dimension depending on the number of different types of buses:

๐‰๐‰ =

๐œ•๐œ•๐๐๐œ•๐œ•๐›…๐›…

๐œ•๐œ•๐๐๐œ•๐œ•๐•๐•

๐œ•๐œ•๐๐๐œ•๐œ•๐›…๐›…

๐œ•๐œ•๐๐๐œ•๐œ•๐•๐•

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ + ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ

๐‰๐‰1 ๐‰๐‰2

๐‰๐‰3 ๐‰๐‰4

103

Page 104: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

The Jacobian Matrix

Jacobian elements are partial derivatives of (9) and (10) with respect to ๐›ฟ๐›ฟ or ๐‘‰๐‘‰

Formulas for the Jacobian elements: ๐‘›๐‘› โ‰  ๐‘˜๐‘˜

๐‰๐‰1๐‘˜๐‘˜๐‘˜๐‘˜ =๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘˜๐‘˜๐œ•๐œ•๐›ฟ๐›ฟ๐‘˜๐‘˜

= ๐‘‰๐‘‰๐‘˜๐‘˜๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜๐‘‰๐‘‰๐‘˜๐‘˜ sin ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜

๐‰๐‰2๐‘˜๐‘˜๐‘˜๐‘˜ =๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘˜๐‘˜๐œ•๐œ•๐‘‰๐‘‰๐‘˜๐‘˜

= ๐‘‰๐‘‰๐‘˜๐‘˜๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ cos ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜

๐‰๐‰3๐‘˜๐‘˜๐‘˜๐‘˜ =๐œ•๐œ•๐‘„๐‘„๐‘˜๐‘˜๐œ•๐œ•๐›ฟ๐›ฟ๐‘˜๐‘˜

= โˆ’๐‘‰๐‘‰๐‘˜๐‘˜๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜๐‘‰๐‘‰๐‘˜๐‘˜ cos ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜

๐‰๐‰4๐‘˜๐‘˜๐‘˜๐‘˜ =๐œ•๐œ•๐‘„๐‘„๐‘˜๐‘˜๐œ•๐œ•๐‘‰๐‘‰๐‘˜๐‘˜

= ๐‘‰๐‘‰๐‘˜๐‘˜๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ sin ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜

(29)

(27)

(28)

(30)

104

Page 105: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

The Jacobian Matrix

Formulas for the Jacobian elements, contโ€™d: ๐‘›๐‘› = ๐‘˜๐‘˜

๐‰๐‰1๐‘˜๐‘˜๐‘˜๐‘˜ =๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘˜๐‘˜๐œ•๐œ•๐›ฟ๐›ฟ๐‘˜๐‘˜

= โˆ’๐‘‰๐‘‰๐‘˜๐‘˜ ๏ฟฝ๐‘˜๐‘˜=๐‘ ๐‘˜๐‘˜โ‰ ๐‘˜๐‘˜

๐‘๐‘

๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜๐‘‰๐‘‰๐‘˜๐‘˜ sin ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜

๐‰๐‰2๐‘˜๐‘˜๐‘˜๐‘˜ =๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘˜๐‘˜๐œ•๐œ•๐‘‰๐‘‰๐‘˜๐‘˜

= ๐‘‰๐‘‰๐‘˜๐‘˜๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ cos ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜ + ๏ฟฝ๐‘˜๐‘˜=๐‘ 

๐‘๐‘

๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜๐‘‰๐‘‰๐‘˜๐‘˜ cos ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜

๐‰๐‰3๐‘˜๐‘˜๐‘˜๐‘˜ =๐œ•๐œ•๐‘„๐‘„๐‘˜๐‘˜๐œ•๐œ•๐›ฟ๐›ฟ๐‘˜๐‘˜

= ๐‘‰๐‘‰๐‘˜๐‘˜ ๏ฟฝ๐‘˜๐‘˜=๐‘ ๐‘˜๐‘˜โ‰ ๐‘˜๐‘˜

๐‘๐‘

๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜๐‘‰๐‘‰๐‘˜๐‘˜ cos ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜

๐‰๐‰4๐‘˜๐‘˜๐‘˜๐‘˜ =๐œ•๐œ•๐‘„๐‘„๐‘˜๐‘˜๐œ•๐œ•๐‘‰๐‘‰๐‘˜๐‘˜

= โˆ’๐‘‰๐‘‰๐‘˜๐‘˜๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜ sin ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜ + ๏ฟฝ๐‘˜๐‘˜=๐‘ 

๐‘๐‘

๐‘Œ๐‘Œ๐‘˜๐‘˜๐‘˜๐‘˜๐‘‰๐‘‰๐‘˜๐‘˜ sin ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐›ฟ๐›ฟ๐‘˜๐‘˜ โˆ’ ๐œƒ๐œƒ๐‘˜๐‘˜๐‘˜๐‘˜

(33)

(31)

(32)

(34)

105

Page 106: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Example 106

Page 107: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Buses

Determine all bus voltages and power flows for the following three-bus power system

Three buses, ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ = 1, ๐‘›๐‘›๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ = 1, ordered PV first, then PQ: Bus 1: slack bus

๐‘‰๐‘‰๐‘  and ๐›ฟ๐›ฟ๐‘  are known, find ๐‘ƒ๐‘ƒ๐‘  and ๐‘„๐‘„๐‘ 

Bus 2: PV bus ๐‘ƒ๐‘ƒ๐‘  and ๐‘‰๐‘‰๐‘  are known, find ๐›ฟ๐›ฟ๐‘  and ๐‘„๐‘„๐‘ 

Bus 3: PQ bus ๐‘ƒ๐‘ƒ๐‘  and ๐‘„๐‘„๐‘  are known, find ๐‘‰๐‘‰๐‘  and ๐›ฟ๐›ฟ๐‘ 

107

Page 108: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Per-unit, per-length impedance of all transmission lines:

๐‘ง๐‘ง = 31.1 + ๐‘—๐‘—3๐‘Œ๐‘— ร— 10โˆ’6 ๐‘๐‘๐‘๐‘/๐‘˜๐‘˜๐ผ๐ผ

Admittance of each line:

๐‘Œ๐‘Œ๐‘ ๐‘  = ๐‘Œ๐‘Œ๐‘ ๐‘  =1

๐‘ง๐‘ง โ‹… 150 ๐‘˜๐‘˜๐ผ๐ผ= 2.06 โˆ’ ๐‘—๐‘—20.9 ๐‘๐‘๐‘๐‘

๐‘Œ๐‘Œ๐‘ ๐‘  =1

๐‘ง๐‘ง โ‹… 200 ๐‘˜๐‘˜๐ผ๐ผ= 1.54 โˆ’ ๐‘—๐‘—15.7 ๐‘๐‘๐‘๐‘

Power-Flow Solution โ€“ Admittance Matrix108

Page 109: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

The admittance matrix (see p. 8):

๐˜๐˜ =๐‘Œ๐‘Œ๐‘ ๐‘  โˆ’๐‘Œ๐‘Œ๐‘ ๐‘  โˆ’๐‘Œ๐‘Œ๐‘ ๐‘ โˆ’๐‘Œ๐‘Œ๐‘ ๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘  โˆ’๐‘Œ๐‘Œ๐‘ ๐‘ โˆ’๐‘Œ๐‘Œ๐‘ ๐‘  โˆ’๐‘Œ๐‘Œ๐‘ ๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘ 

=3.6 โˆ’ ๐‘—๐‘—3๐‘—.6 โˆ’2.06 + ๐‘—๐‘—20.9 โˆ’1.5 + ๐‘—๐‘—๐‘Œ๐‘—.7

โˆ’2.06 + ๐‘—๐‘—20.9 4.1 โˆ’ ๐‘—๐‘—๐‘—๐‘Œ.8 โˆ’2.06 + ๐‘—๐‘—20.9โˆ’1.5 + ๐‘—๐‘—๐‘Œ๐‘—.7 โˆ’2.06 + ๐‘—๐‘—20.9 3.6 โˆ’ ๐‘—๐‘—3๐‘—.6

Admittance magnitude and angle matrices:

Y = ๐˜๐˜ =36.8 21.0 15.821.0 42.0 21.015.8 21.0 36.8

, ๐›‰๐›‰ =โˆ’84.๐‘—ยฐ 95.๐‘—ยฐ 95.๐‘—ยฐ95.๐‘—ยฐ โˆ’84.๐‘—ยฐ 95.๐‘—ยฐ95.๐‘—ยฐ 95.๐‘—ยฐ โˆ’84.๐‘—ยฐ

Power-Flow Solution โ€“ Admittance Matrix109

Page 110: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Initialize Knowns

Known quantities Slack bus: ๐‘‰๐‘‰๐‘  = 1.0 ๐‘๐‘๐‘๐‘, ๐›ฟ๐›ฟ๐‘  = 0ยฐ PV bus: ๐‘‰๐‘‰๐‘  = 1.05 ๐‘๐‘๐‘๐‘, ๐‘ƒ๐‘ƒ๐‘  = 2.0 ๐‘๐‘๐‘๐‘ PQ bus: ๐‘ƒ๐‘ƒ๐‘  = โˆ’5.0 ๐‘๐‘๐‘๐‘, ๐‘„๐‘„๐‘  = โˆ’1.0 ๐‘๐‘๐‘๐‘ Output vector

๐ฒ๐ฒ = ๐๐๐๐ =

๐‘ƒ๐‘ƒ๐‘ ๐‘ƒ๐‘ƒ๐‘ ๐‘„๐‘„๐‘ 

=2.0โˆ’5.0โˆ’1.0

110

Page 111: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Initialize Unknowns

The vector of unknown quantities to be solved for is

๐ฑ๐ฑ = ๐›…๐›…๐•๐• =

๐›ฟ๐›ฟ๐‘ ๐›ฟ๐›ฟ๐‘ ๐‘‰๐‘‰๐‘ 

Initialize all unknown bus voltage phasors to ๐•๐•๐‘˜๐‘˜ = 1.0โˆ 0ยฐ ๐‘๐‘๐‘๐‘

๐ฑ๐ฑ0 = ๐›…๐›…0๐•๐•0

=๐›ฟ๐›ฟ๐‘ ,0๐›ฟ๐›ฟ๐‘ ,0๐‘‰๐‘‰๐‘ ,0

=00

1.0

The complete vector of bus voltage phasors โ€“ partly known, partly unknown โ€“ is

๐•๐• =๐‘‰๐‘‰๐‘ โˆ ๐›ฟ๐›ฟ๐‘ ๐‘‰๐‘‰๐‘ โˆ ๐›ฟ๐›ฟ๐‘ ๐‘‰๐‘‰๐‘ โˆ ๐›ฟ๐›ฟ๐‘ 

=1.0โˆ 0ยฐ

1.0๐‘—โˆ ๐›ฟ๐›ฟ๐‘ ,0๐‘‰๐‘‰๐‘ ,0โˆ ๐›ฟ๐›ฟ๐‘ ,0

=1.0โˆ 0ยฐ

1.0๐‘—โˆ 0ยฐ1.0โˆ 0ยฐ

111

Page 112: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Jacobian Matrix

The Jacobian matrix for this system is

๐‰๐‰ =

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐‘‰๐‘‰๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐‘‰๐‘‰๐‘ 

๐œ•๐œ•๐‘„๐‘„๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

๐œ•๐œ•๐‘„๐‘„๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

๐œ•๐œ•๐‘„๐‘„๐‘ ๐œ•๐œ•๐‘‰๐‘‰๐‘ 

This matrix will be computed on each iteration using the current approximation to the vector of unknowns, ๐ฑ๐ฑ๐‘–๐‘–

112

Page 113: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Set Up and Iterate

Set up N-R iteration parameters reltol = 1e-6 max_iter = 1e3 ๐œ€๐œ€0 = 10 ๐‘–๐‘– = 0

Iteratively update the approximation to the vector of unknowns as long as Stopping criterion is not satisfied

๐œ€๐œ€๐‘–๐‘– > ๐œ€๐œ€๐‘ ๐‘ 

Maximum number of iterations is not exceeded

๐‘–๐‘– โ‰ค ๐ผ๐ผ๐‘š๐‘š๐‘ฅ๐‘ฅ _๐‘–๐‘–๐‘–๐‘–๐‘’๐‘’๐‘–๐‘–

113

Page 114: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Iterate ๐‘–๐‘– = 0:

Vector of bus voltage phasors

๐•๐•0 =๐‘‰๐‘‰๐‘ โˆ ๐›ฟ๐›ฟ๐‘ ๐‘‰๐‘‰๐‘ โˆ ๐›ฟ๐›ฟ๐‘ ,0๐‘‰๐‘‰๐‘ ,0โˆ ๐›ฟ๐›ฟ๐‘ ,0

=1.0โˆ 0ยฐ

1.0๐‘—โˆ 0ยฐ1.0โˆ 0ยฐ

Current injected into each bus

๐ˆ๐ˆ0 = ๐˜๐˜ โ‹… ๐•๐•0

๐ˆ๐ˆ0 =3.6 โˆ’ ๐‘—๐‘—3๐‘—.6 โˆ’2.1 + ๐‘—๐‘—20.9 โˆ’1.5 + ๐‘—๐‘—๐‘Œ๐‘—.7โˆ’2.1 + ๐‘—๐‘—20.9 4.1 โˆ’ ๐‘—๐‘—๐‘—๐‘Œ.8 โˆ’2.1 + ๐‘—๐‘—20.9โˆ’1.5 + ๐‘—๐‘—๐‘Œ๐‘—.7 โˆ’2.1 + ๐‘—๐‘—20.9 3.6 โˆ’ ๐‘—๐‘—3๐‘—.6

1.0โˆ 0ยฐ1.0๐‘—โˆ 0ยฐ1.0โˆ 0ยฐ

๐ˆ๐ˆ0 =1.0๐‘—โˆ 9๐‘—.๐‘—ยฐ

2.๐‘Œ0โˆ  โˆ’ 84.๐‘—ยฐ1.0๐‘—โˆ 9๐‘—.๐‘—ยฐ

114

Page 115: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Iterate

๐‘–๐‘– = 0: Complex power injected into each bus

๐’๐’0 = ๐•๐•0 .โˆ— ๐ˆ๐ˆ0โˆ—

๐’๐’0 =1.0โˆ 0ยฐ

1.0๐‘—โˆ 0ยฐ1.0โˆ 0ยฐ

.โˆ—1.0๐‘—โˆ 9๐‘—.๐‘—ยฐ

2.๐‘Œ0โˆ  โˆ’ 84.๐‘—ยฐ1.0๐‘—โˆ 9๐‘—.๐‘—ยฐ

โˆ—

๐’๐’0 =โˆ’0.103 โˆ’ ๐‘—๐‘—๐‘Œ.0450.216 + ๐‘—๐‘—2.195โˆ’0.103 โˆ’ ๐‘—๐‘—๐‘Œ.045

Real and reactive power

๐๐0 =โˆ’0.1030.216โˆ’0.103

, ๐๐0 =โˆ’1.0452.195โˆ’1.045

115

Page 116: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Iterate

๐‘–๐‘– = 0: Power mismatch

ฮ”๐ฒ๐ฒ0 = ๐ฒ๐ฒ โˆ’ ๐Ÿ๐Ÿ ๐ฑ๐ฑ0

ฮ”๐ฒ๐ฒ0 =2.0โˆ’5.0โˆ’1.0

โˆ’0.216โˆ’0.103โˆ’1.045

=1.784โˆ’4.8970.045

Next, compute the Jacobian matrix

๐‰๐‰0 =

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐‘‰๐‘‰๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐‘‰๐‘‰๐‘ 

๐œ•๐œ•๐‘„๐‘„๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

๐œ•๐œ•๐‘„๐‘„๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

๐œ•๐œ•๐‘„๐‘„๐‘ ๐œ•๐œ•๐‘‰๐‘‰๐‘  ๐ฑ๐ฑ=๐ฑ๐ฑ0

116

Page 117: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Iterate

๐‘–๐‘– = 0: Elements of the Jacobian matrix are computed using ๐‘‰๐‘‰

and ๐›ฟ๐›ฟ values from ๐•๐•0 and ๐‘Œ๐‘Œ and ๐œƒ๐œƒ values from ๐˜๐˜:

๐‘‰๐‘‰0 =1.0

1.051.0

๐›ฟ๐›ฟ0 =0ยฐ0ยฐ0ยฐ

๐‘Œ๐‘Œ =36.8 21.0 15.821.0 42.0 21.015.8 21.0 36.8

๐œƒ๐œƒ =โˆ’84.๐‘—ยฐ 95.๐‘—ยฐ 95.๐‘—ยฐ95.๐‘—ยฐ โˆ’84.๐‘—ยฐ 95.๐‘—ยฐ95.๐‘—ยฐ 95.๐‘—ยฐ โˆ’84.๐‘—ยฐ

117

Page 118: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Iterate

๐‘–๐‘– = 0: Jacobian, ๐‰๐‰1

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

= โˆ’๐‘‰๐‘‰๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  sin ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘  + ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  sin ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

= โˆ’๐‘‰๐‘‰๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  sin ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘  + ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  sin ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

= ๐‘‰๐‘‰๐‘ ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  sin ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

= ๐‘‰๐‘‰๐‘ ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  sin ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘ 

118

Page 119: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Iterate

๐‘–๐‘– = 0: Jacobian, ๐‰๐‰2

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐‘‰๐‘‰๐‘ 

= ๐‘‰๐‘‰๐‘ ๐‘Œ๐‘Œ๐‘ ๐‘  cos ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘ 

๐œ•๐œ•๐‘ƒ๐‘ƒ๐‘ ๐œ•๐œ•๐‘‰๐‘‰๐‘ 

= 2 โ‹… ๐‘‰๐‘‰๐‘ ๐‘Œ๐‘Œ๐‘ ๐‘  cos ๐œƒ๐œƒ๐‘ ๐‘  +

๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  cos ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘  + ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  cos ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘ 

Jacobian, ๐‰๐‰3๐œ•๐œ•๐‘„๐‘„๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

= โˆ’๐‘‰๐‘‰๐‘ ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  cos ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘ 

๐œ•๐œ•๐‘„๐‘„๐‘ ๐œ•๐œ•๐›ฟ๐›ฟ๐‘ 

= ๐‘‰๐‘‰๐‘  ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  cos ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘  + ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  cos ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘ 

119

Page 120: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Iterate

๐‘–๐‘– = 0: Jacobian, ๐‰๐‰4

๐œ•๐œ•๐‘„๐‘„๐‘ ๐œ•๐œ•๐‘‰๐‘‰๐‘ 

= ๐‘‰๐‘‰๐‘ ๐‘Œ๐‘Œ๐‘ ๐‘  cos ๐œƒ๐œƒ๐‘ ๐‘  +

๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  cos ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘  + ๐‘Œ๐‘Œ๐‘ ๐‘ ๐‘‰๐‘‰๐‘  cos ๐›ฟ๐›ฟ๐‘  โˆ’ ๐›ฟ๐›ฟ๐‘  โˆ’ ๐œƒ๐œƒ๐‘ ๐‘ 

Evaluating the Jacobian expressions using ๐‘‰๐‘‰ and ๐›ฟ๐›ฟvalues from ๐•๐•0 and ๐‘Œ๐‘Œ and ๐œƒ๐œƒ values from ๐˜๐˜, gives

๐‰๐‰0 =43.89 โˆ’21.95 โˆ’2.160โˆ’21.95 37.62 3.4972.160 โˆ’3.702 35.53

120

Page 121: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Iterate

๐‘–๐‘– = 0:Use Gaussian elimination to solve for ฮ”๐ฑ๐ฑ0

ฮ”๐ฒ๐ฒ0 = ๐‰๐‰0ฮ”๐ฑ๐ฑ0 =43.89 โˆ’21.95 โˆ’2.160โˆ’21.95 37.62 3.4972.160 โˆ’3.702 35.53

ฮ”๐‘ฅ๐‘ฅ๐‘ ,0ฮ”๐‘ฅ๐‘ฅ๐‘ ,0ฮ”๐‘ฅ๐‘ฅ๐‘ ,0

=1.784โˆ’4.8970.045

ฮ”๐ฑ๐ฑ0 =โˆ’0.0345โˆ’0.1492โˆ’0.0122

Update the vector of unknowns, ๐ฑ๐ฑ

๐ฑ๐ฑ๐‘  = ๐ฑ๐ฑ0 + ฮ”๐ฑ๐ฑ0 =00

1.0+

โˆ’0.0345โˆ’0.1492โˆ’0.0122

=โˆ’0.0345โˆ’0.14920.9878

121

Page 122: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution โ€“ Iterate

๐‘–๐‘– = 0: Use power mismatch to check for convergence

๐œ€๐œ€0 = max๐‘ฆ๐‘ฆ๐‘˜๐‘˜ โˆ’ ๐‘“๐‘“๐‘˜๐‘˜ ๐‘ฅ๐‘ฅ

๐‘ฆ๐‘ฆ๐‘˜๐‘˜= 0.9794

Move on to the next iteration, ๐‘–๐‘– = 1 Create ๐•๐•๐‘  using ๐ฑ๐ฑ๐‘  values Calculate ๐ˆ๐ˆ๐‘  Calculate ๐’๐’๐‘ , ๐๐๐‘ , ๐๐๐‘  Create ๐Ÿ๐Ÿ ๐ฑ๐ฑ๐‘  from ๐๐๐‘  and ๐๐๐‘  Calculate ฮ”๐ฒ๐ฒ๐‘ , ๐‰๐‰๐‘ , ฮ”๐ฑ๐ฑ๐‘  Update ๐ฑ๐ฑ to ๐ฑ๐ฑ๐‘  Check for convergence โ€ฆ

122

Page 123: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Power-Flow Solution

Convergence is achieved after four iterations

๐•๐•4 =1.0โˆ 0ยฐ

1.1โˆ  โˆ’ 2.๐‘Œยฐ0.97โˆ  โˆ’ 8.8ยฐ

, ๐’๐’4 =3.08 โˆ’ ๐‘—๐‘—0.822.0 + ๐‘—๐‘—2.67โˆ’5.0 โˆ’ ๐‘—๐‘—๐‘Œ.0

๐œ€๐œ€4 = 0.41 ร— 10โˆ’6

123

Page 124: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

Example Problems124

Page 125: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470

For the power system shown, determine

a) The type of each busb) The first row of the admittance matrix, ๐˜๐˜c) The vector of unknowns, ๐ฑ๐ฑd) The vector of knowns, ๐ฒ๐ฒe) The Jacobian matrix, ๐‰๐‰, in symbolic form

125

Page 126: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470126

Page 127: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470127

Page 128: SECTION 5: POWER FLOW - College of Engineering

K. Webb ESE 470128