sect2-2

Upload: gian-carlos-perea-diaz

Post on 04-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Sect2-2

    1/11

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis7

    2.2. Inductor volt-second balance, capacitor charge balance, and the small ripple approximation

    Buck converter containing practical low-pass filter

    Actual output voltage waveform

    v(t ) = V + vripple (t )

    Actual output voltage waveform, buck converter

    +

    L

    C R

    +

    v(t )

    1

    2

    i L(t )

    + v L(t ) iC (t )

    V g

    v(t )

    t 0

    V

    Actual waveformv(t ) = V + vripple (t )

    dc component V

  • 8/13/2019 Sect2-2

    2/11

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis8

    The small ripple approximation

    In a well-designed converter, the output voltage ripple is small. Hence,the waveforms can be easily determined by ignoring the ripple:

    v(t ) V

    v(t ) = V + vripple (t )

    v(t )

    t

    0

    V

    Actual waveformv(t ) = V + v

    ripple(t )

    dc component V

    vripple < V

  • 8/13/2019 Sect2-2

    3/11

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis9

    Buck converter analysis:inductor current waveform

    original converter

    switch in position 2 switch in position 1

    +

    L

    C R

    +

    v(t )

    1

    2

    i L(t )

    + v L

    (t ) iC (t )

    V g

    L

    C R

    +

    v(t )

    i L(t )

    + v L(t ) iC (t )

    + V g

    L

    C R

    +

    v(t )

    i L(t )

    + v L(t ) iC (t )

    + V g

  • 8/13/2019 Sect2-2

    4/11

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis10

    Inductor voltage and currentSubinterval 1: switch in position 1

    v L = V g v(t )

    Inductor voltage

    Small ripple approximation:

    v L V g V

    Knowing the inductor voltage, we can now find the inductor current via

    v L(t ) = L di L(t )

    dt

    Solve for the slope: di L(t )

    dt =

    v L(t ) L

    g L

    The inductor current changes with an essentially constant slope

    L

    C R

    +

    v(t )

    i L(t )

    + v L(t ) iC (t )

    + V g

  • 8/13/2019 Sect2-2

    5/11

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis11

    Inductor voltage and currentSubinterval 2: switch in position 2

    Inductor voltage

    Small ripple approximation:

    Knowing the inductor voltage, we can again find the inductor current via

    v L(t ) = L di L(t )

    dt

    Solve for the slope:

    The inductor current changes with an essentially constant slope

    v L(t ) = v(t )

    v L(t ) V

    di L(t )dt

    V L

    L

    C R

    +

    v(t )

    i L(t )

    + v L(t ) iC (t )

    + V g

  • 8/13/2019 Sect2-2

    6/11

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis12

    Inductor voltage and current waveforms

    v L(t ) = L di L(t )

    dt

    v L(t )V g V

    t V

    D 'T s DT s

    Switch position: 1 2 1

    V L

    V g V L

    i L(t )

    t 0 DT s T s

    I i L(0)

    i L( DT s) i

    L

  • 8/13/2019 Sect2-2

    7/11

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis13

    Determination of inductor current ripple magnitude

    (change in i L) = ( slope )( length of subinterval )

    2 i L =V g V

    L DT s

    i L =V g V

    2 L DT s L =

    V g V 2 i L

    DT s

    V L

    V g V L

    i L(t )

    t 0 DT s T s

    I i L(0)

    i L( DT s) i L

  • 8/13/2019 Sect2-2

    8/11

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis14

    Inductor current waveformduring turn-on transient

    When the converter operates in equilibrium:

    i L(( n + 1) T s) = i L(nT s)

    i L(t )

    t 0 DT s T si L(0) = 0

    i L(nT s)

    i L(T s)

    2T s nT s ( n + 1) T s

    i L(( n + 1) T s)

    V g v(t ) L

    v(t ) L

  • 8/13/2019 Sect2-2

    9/11

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis15

    The principle of inductor volt-second balance:Derivation

    Inductor defining relation:

    Integrate over one complete switching period:

    In periodic steady state, the net change in inductor current is zero:

    Hence, the total area (or volt-seconds) under the inductor voltage waveform is zero whenever the converter operates in steady state.An equivalent form:

    The average inductor voltage is zero in steady state.

    v L(t ) = L di L(t )dt

    i L(T s) i L(0) = 1 L v L

    (t ) dt 0

    T s

    0 = v L(t ) dt 0

    T s

    0 = 1T sv L(t ) dt

    0

    T s

    = v L

  • 8/13/2019 Sect2-2

    10/11

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis16

    Inductor volt-second balance:Buck converter example

    Inductor voltage waveform,previously derived:

    Integral of voltage waveform is area of rectangles:

    = v L(t ) dt 0

    T s

    = ( V g V )( DT s) + ( V )( D 'T s)

    Average voltage is

    v L = T s= D (V g V ) + D '( V )

    Equate to zero and solve for V:

    0 = DV g ( D + D ')V = DV g V V = DV g

    v L(t ) V g V

    t

    V

    DT s

    Total area

  • 8/13/2019 Sect2-2

    11/11

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis17

    The principle of capacitor charge balance:Derivation

    Capacitor defining relation:

    Integrate over one complete switching period:

    In periodic steady state, the net change in capacitor voltage is zero:

    Hence, the total area (or charge) under the capacitor current waveform is zero whenever the converter operates in steady state.The average capacitor current is then zero.

    iC (t ) = C dv C (t )dt

    vC (T s) vC (0) = 1C i C

    (t ) dt 0

    T s

    0 = 1T siC (t ) dt

    0

    T s

    = i C