seamless hardware module swapping for partially reconfigurable stream processing systems

1
Virtual Architecture For Partially Reconfigurable Embedded Systems (VAPRES) Architecture for creating partially reconfigurable embedded systems Module communication • Processor – Fast Simplex Links (FSL) • Intermodule – MACS Network on Chip Highly parametric Number of PR regions PR region size Number of I/O modules Independent region clocking Module network parameters Independent development flows Applications (HW, SW) Base system API for run-time reconfiguration Module loading Seamless filter swapping Seamless Hardware Module Swapping for Partially Reconfigurable Stream Processing Systems Abelardo Jara-Berrocal, Joseph Antoon, and Ann Gordon-Ross PR Region 1 PR Region 2 PLB Bus PR Socket FSL Switch 1 Switch 2 IF IF IF IF IO Module I/O MACS PR Socket MicroBlaze™ CPU Control Seamless Filter Swapping CPU Kalma n Filte r A Empty Regio n PR Region 1 PR Region 2 Stage 1 – Preload Filter Kalman filter A in normal operation CPU tests Kalman filter A gain CPU begins loading Kilman filter B I/O Modul e Target data CPU Kalma n Filte r A Empty Regio n PR Region 1 PR Region 2 I/O Modul e Stage 2 –Simultaneous Operation Filter B is loaded into empty region End stream word is sent to filter A Filter A sends state to CPU PR Region 2 Loading… Kalma n Filte r A Empty Regio n PR Region 1 PR Region 2 Kalma n Filte r B PR Region 2 Stage 3 – Operation Transfer CPU initializes filter B CPU waits for end stream from A Filter B begins operation Empty Regio n PR Region 2 Filte r B PR Region 2 Loading… Kalma n Filte r B PR Region 2 State data State data Experimental Setup End of stream X Y MicroBlaze IO Module Camera Interf ace Image Decode r PRR 1 Consta nt Gain Kalman Filter PRR 2 Variab le Gain Kalman Filter Equipment • Target Ball on cloth backdrop • C3188A Camera Module Omnivision OV7620 sensor 640x480 color 16-bit raw YUV interface • Xilinx ML401 FPGA Board Virtex-4 LX25 FPGA 64MB DDR SDRAM MACS Interconnect VAPRES Setup • PR Regions: 2 Basic Kalman filter Constant gain filter • IO Modules: 1 Camera interface and image recognition • MACS Setup 3 switches 1 channel left and right Partial Reconfiguration and Adaptation Systems in harsh, remote regions rely on adaptive behavior Power management Fault tolerance Environmental changes Partial reconfiguration helps enable this behavior in reconfigurable systems Alters FPGA without interrupting service Allows seamless filter swapping, where an old filter functions during reconfiguration This prevent critical errors due to reconfiguration downtime Adaptive Target Tracking Kalman Filters Tracks target from noisy measurements Highly parallel calculation ideal for FPGAs Different Kalman filters match different targets Proposed algorithm for adaptive target tracker Tracker uses basic Kalman filter at start Switches to constant-gain EJSM Analysis Basic Constant-gain Max Clock 156.2 MHz 71.4 MHz Throughput 26 cy / sample 3 cy / sample Power 80.92 mW 61.18 mW I/O Modul e CPU MACS MACS MACS MACS End stream Target data MACS MACS Target data This experiment demonstrates adaptive target tracking of a ball using a camera and near-seamless filter

Upload: lynda

Post on 23-Feb-2016

50 views

Category:

Documents


0 download

DESCRIPTION

Seamless Hardware Module Swapping for Partially Reconfigurable Stream Processing Systems . EJSM. Abelardo Jara-Berrocal , Joseph Antoon , and Ann Gordon-Ross. IF. IF. IF. IF. Switch 1. Switch 2. Partial Reconfiguration and Adaptation - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Seamless Hardware Module Swapping for Partially Reconfigurable Stream Processing Systems

Virtual Architecture For Partially Reconfigurable

Embedded Systems (VAPRES)

• Architecture for creating partially reconfigurable embedded systems

• Module communication• Processor – Fast Simplex Links (FSL)• Intermodule – MACS Network on Chip

• Highly parametric• Number of PR regions• PR region size• Number of I/O modules• Independent region clocking• Module network parameters

• Independent development flows• Applications (HW, SW)• Base system

• API for run-time reconfiguration• Module loading• Seamless filter swapping• Bitstream relocation

Seamless Hardware Module Swapping for Partially Reconfigurable Stream Processing Systems

Abelardo Jara-Berrocal, Joseph Antoon, and Ann Gordon-Ross

PRRegion 1

PRRegion 2

PLB Bus

PR Socket

FSL

Switch 1 Switch 2IF IF IF IF

IOModule

I/O

MACS

PR Socket

MicroBlaze™ CPU

Control

Seamless Filter Swapping

CPU

KalmanFilter A

Empty Region

PR Region 1 PR Region 2

Stage 1 – Preload Filter• Kalman filter A in normal operation• CPU tests Kalman filter A gain• CPU begins loading Kilman filter B

I/OModule

Target data

CPU

KalmanFilter A

Empty Region

PR Region 1 PR Region 2

I/OModule

Stage 2 –Simultaneous Operation• Filter B is loaded into empty region• End stream word is sent to filter A• Filter A sends state to CPU

PR Region 2

Loading…KalmanFilter A

Empty Region

PR Region 1 PR Region 2

KalmanFilter B

PR Region 2

Stage 3 – Operation Transfer• CPU initializes filter B• CPU waits for end stream from A• Filter B begins operation

Empty Region

PR Region 2Filter B

PR Region 2

Loading…KalmanFilter B

PR Region 2

State data State data

Experimental Setup

End of stream

X

YMicroBlaze

IO Module

Camera Interface

ImageDecoder

PRR 1

ConstantGain

KalmanFilter

PRR 2

VariableGain

KalmanFilter

Equipment• Target

Ball on cloth backdrop

• C3188A Camera ModuleOmnivision OV7620 sensor640x480 color16-bit raw YUV interface

• Xilinx ML401 FPGA BoardVirtex-4 LX25 FPGA64MB DDR SDRAM

MACS Interconnect

VAPRES Setup• PR Regions: 2

Basic Kalman filterConstant gain filter

• IO Modules: 1Camera interface and image recognition

• MACS Setup3 switches1 channel left and right

Partial Reconfiguration and Adaptation

• Systems in harsh, remote regions rely on adaptive behavior

• Power management• Fault tolerance• Environmental changes

• Partial reconfiguration helps enable this behavior in reconfigurable systems

• Alters FPGA without interrupting service• Allows seamless filter swapping, where an

old filter functions during reconfiguration• This prevent critical errors due to

reconfiguration downtime

Adaptive Target Tracking• Kalman Filters

• Tracks target from noisy measurements• Highly parallel calculation ideal for FPGAs

• Different Kalman filters match different targets

• Proposed algorithm for adaptive target tracker• Tracker uses basic Kalman filter at start• Switches to constant-gain Kalman filter if

filter gain does not change over time• Adaptive clock keeps throughput constant

EJSM

Analysis Basic Constant-gain

Max Clock 156.2 MHz 71.4 MHz

Throughput 26 cy / sample 3 cy / sample

Power 80.92 mW 61.18 mW

I/OModule

CPU

MACSMACS

MACSMACS

End stream Target data

MACSMACS

Target data

This experiment demonstrates adaptive target tracking of a ball using a camera and near-seamless filter swapping