scientific proceedings full papers ewea

Upload: rohan-nandkishor-soman

Post on 17-Oct-2015

165 views

Category:

Documents


0 download

DESCRIPTION

Conference proceedings of Wind Energy Conference

TRANSCRIPT

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    1/186

    Scientific ProceedingsEWEA Annual Conference & Exhibition

    10-13 March 2014

    Fira de Barcelona Gran Via

    Barcelona, SpainORGANISED BY:

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    2/186

    ORGANISED BY:

    Generate bottom-line results for your marketing investment

    and get exposure to international and domestic markets at

    Europes premier wind energy event and annual gathering.

    A must for business and networking!

    Book a stand today

    www.ewea.org/annual2015

    The wind industry will meet in Paris in 2015

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    3/186EWEA 2014 Scientific Proceedings

    1Scientific Proceedings

    Publisher:

    European Wind Energy Association (EWEA)

    Responsible:

    Tim Robinson,

    Rue dArlon 80, B-1040 Brussels, Belgium

    Tel: +32 2 213 1811 Email: [email protected]

    Printed by:

    Open print 9 782930 670072

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    4/186EWEA 2014 Scientific Proceedings

    2

    Scientific committee

    Mnica Arags,CITCEA-UPC, Spain

    Sandrine Aubrun,Universit dOrlans, PRISME Laboratory, FranceGunther Auer,Acciona Energa, Spain

    Marta Barreras,Gamesa, Spain

    Kim Branner, Technical University of Denmark, Denmark

    Feargal Brennan, Cranfield University, United Kingdom

    Panagiotis Chaviaropoulos,CRES, Greece

    Christopher J. Crabtree, University of Durham, United Kingdom

    Alvaro Cuerva, Universidad Politcnica de Madrid, Spain

    Geoff Dutton, STFC Rutherford Appleton Laboratory, United Kingdom

    Agusti Egea-Alvarez, CITCEA-UPC, Spain

    Sugoi Gomez-Iradi, CENER, Spain

    Emilio Gomez-Lazaro, Universidad de Castilla-La Mancha. Renewable Energy Research Institute, Spain

    Oriol Gomis-Bellmunt, CITCEA-UPC, Spain

    Francesco Grasso,Energy Research Centre of The Netherlands, The NetherlandsSven-Erik Gryning,Technical University of Denmark, Denmark

    Gerrit Haake,AREVA Wind GmbH, Germany

    Martin Hansen, DTU Wind Energy, Denmark

    Detlev Heinemann, University of Oldenburg, Germany

    Jessica Holierhoek,Energy Research Centre of The Netherlands, The Netherlands

    Andrs Honrubia-Escribano, Renewable Energy Research Institute, Spain

    Melero Julio Javier, Fundacin CIRCE, Spain

    Athanasios Kolios,Cranfield University, United Kingdom

    William Leithead, University of Strathclyde, United Kingdom

    Denja Lekou,CRES, Greece

    Hristo Lilov,Fraunhofer IWES, Germany

    Cornelis Lindenburg, Energy Research Centre of The Netherlands, The Netherlands

    Helge Aagaard Madsen, DTU Wind Energy, Denmark

    Jakob Mann, DTU Wind Energy, Denmark

    Marcia Martins, Alstom Renwables, Spain

    Denis Matha, University of Stuttgart, Germany

    Caas Miguel, Universidad de Castilla-La Mancha, Spain

    Angel Molina-Garcia,Universidad Politcnica de Cartagena, Spain

    Stavros Papathanassiou,National Technical University of Athens, Greece

    Antoine Peiffer, Marine Innovation and Technology, United States

    Joachim Peinke, University Oldenburg, Germany

    Wojciech Popko, Fraunhofer IWES, Germany

    Vasilis Riziotis, NATIONAL TECHNICAL UNIVERSITY OF ATHENS, Greece

    Alan Ruddell, STFC Rutherford Appleton Laboratory, United Kingdom

    Javier Sanz Rodrigo, CENER, Spain

    Peter Schaumann, ForWind - Leibniz University Hannover, Germany

    David Schlipf, Universitt Stuttgart, Germany

    Martin-Martinez Sergio,Renewable Energy Research Institute, Spain

    Carlos Simao Ferreira,Delft University of Technology, The Netherlands

    John Dalsgaard Srensen,Aalborg University, Denmark

    Niels N. Srensen, DTU Wind Energy, Denmark

    John Olav Tande, SINTEF, Norway

    Garcia Tania,E.I.I., Castilla la Mancha University, Spain

    Peter Tavner, Durham University, United Kingdom

    Sokratis Tentzerakis, CRES, Greece

    Gijs van Kuik, Delft University of Technology, The Netherlands

    Zsolt Viharos, Hungarian Academy of Sciences, Hungary

    Axelle Vire,Delft University of Technology, The Netherlands

    Spyros Voutsinas, National Technical University of Athens, Greece

    Simon Watson, Loughborough University, United Kingdom

    Christof Wehmeyer, Ramboll, Denmark

    Marcel Wiggert, Fraunhofer IWES, Germany

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    5/186EWEA 2014 Scientific Proceedings

    3

    On behalf of the European Academy of Wind Energy

    (EAWE) and the European Wind Energy Association

    (EWEA), we are pleased to present the Proceedings

    of the Science & Research Track of the EWEA 2014

    Conference in Barcelona.

    EWEAs annual conference has included a Science

    & Research Track since 2007. This track provides a

    platform for scientists and engineers to present their

    latest results and methods, and to engage in in-depth

    technical discussions and the exchange of ideas

    with their peers and industry. It demonstrates that

    European wind energy research is far from academic,

    but instead a lively discipline that supports the

    industry in developing novel competences and relevantsolutions, while adhering to strict scholarly standards.

    Novelty, care for detail, and scientific excellence

    characterise these sessions.

    As in previous years, the track showcases highlights of

    current academic thinking about wind energy, both from

    leading international experts as well as from a new

    generation of upcoming young researchers. In reaction

    to feedback from the EWEA 2013 Science & Research

    Track, the call for abstracts was broader this year, and

    sessions were then structured around the received

    contributions. A novelty this year is the inclusion oftwo sessions dedicated to fixed and floating support

    structures, respectively, reflecting the growing

    importance and interest in these subjects.

    The sessions this year are:

    Aspects for offshore and complex terrain

    How does the wind blow behind wind turbines and

    in wind farms?

    Aerodynamics and rotor design

    Advanced control concepts

    Whole-life foundation and structure integrity

    Floating wind turbines

    Electrical aspects and grid integration

    Innovative concepts for drive train components

    Advanced operation & maintenance

    These proceedings include the full papers of all oral

    presentations given during the conference sessions;

    these were selected due to their novelty, relevance

    and interest to a general audience. In addition, a

    scientific poster session has been organized for works

    of a more technical nature. The full papers of both

    the oral presentations and of all posters from the

    Science & Research Track are also available in theonline proceedings at: www.ewea.org/annual2014/

    conference/conference-proceedings/

    EAWE is responsible for the scientific content, the

    review process, and the chairing of sessions in the

    Science & Research Track. All papers were peer-

    reviewed by a Scientific Committee, consisting of

    scientists from EAWE member institutes and their

    associates. The peer-review process had two steps:

    a review of the extended abstract by at least two

    experts, and a review of the full paper by at least one

    of these experts. This procedure required skill, effortand discipline from both authors and reviewers. We

    thank all authors for their willingness to take part in

    the procedure, and the reviewers for their hard work

    alongside their daily business.

    EWEA is responsible for the organisation and

    logistics of the conference, and we thank their highly

    professional staff and their associates for the excellent

    collaboration.

    Prof. Dr. Michael Muskulus,Norwegian University of Science and Technology (NTNU)EWEA 2014 Track Chair: Science & Research and Editor of the EWEA 2014 Scientific Proceedings

    President of the European Academy of Wind Energy (EAWE)

    Prof. Dr. Jakob Mann,Technical University of Denmark (DTU)Editor of the EWEA 2014 Scientific Proceedings

    Vice-President of the European Academy of Wind Energy (EAWE)

    Foreword

    Organised by: Review and selection of papers:

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    6/186EWEA 2014 Scientific Proceedings

    4

    Table of contents

    Aspects for offshore and complex terrain

    S1.1 COMPLEX TERRAIN WIND RESOURCE ESTIMATION WITH THE WIND-ATLAS METHOD:

    PREDICTION ERRORS USING LINEARIZED AND NONLINEAR CFD MICRO-SCALE MODELS .................. 8

    Ib Troen, DTU, Denmark

    S1.2 MESOSCALE MODELLING OF THE UK OFFSHORE WIND RESOURCE ............................................................... ............... 13

    Simon Watson, Loughborough University, United Kingdom

    S1.3 ON THE DETERMINATION OF STABILITY CONDITIONS OVER FORESTED AREAS

    FROM VELOCITY MEASUREMENTS .......................................................... ................................................................... ........................................................... 18

    Davide Medici, DNV GL - Energy, Italy

    How does the wind blow behind wind turbines

    and in wind farms?S2.1 QUANTIFYING THE IMPACT OF WIND SPEED ON WIND TURBINE COMPONENT FAILURE RATES ...... 23

    Graeme Wilson, University of Strathclyde, United Kingdom

    S2.2 WIND FARM LAYOUT OPTIMIZATION WITH WAKES FROM FLUID DYNAMICS SIMULATIONS .......... 28

    Jonas Schmidt, Fraunhofer IWES, Germany

    S2.3 LIDAR OBSERVATIONS OF INTERACTING WIND TURBINE WAKES

    IN AN ONSHORE WIND FARM ................................................................. .................................................................. .................................................................. ..... 33

    Matthieu Boquet, University of Colorado at Boulder, United States

    S2.4 INSTRUMENTED DRONE MEASUREMENTS OF 3D FLOW STRUCTURE

    OF MULTI-MW WIND TURBINES ........................................................... .................................................................. .................................................................. ..... 37

    Ndaona Chokani, ETH Zrich, Switzerland

    Aerodynamics and rotor design

    S3.1 PRESSURE-VELOCITY ANALYSIS OF DYNAMIC STALL ON A VERTICAL AXIS WIND TURBINE ....... 41

    Laurent Beaudet, Institut Pprime, UPR 3346 CNRS Universit de Poitiers ENSMA, France

    S3.2 ESTIMATION OF WIND TURBINE MODEL PROPERTIES - TOWARDS

    THE VALIDATION OF COMPREHENSIVE HIGH-FIDELITY MULTIBODY MODELS .................................................... 46

    Carlo Bottasso, Technische Universitt Mnchen, Germany

    S3.3 DESIGN OF LOW INDUCTION ROTORS FOR USE IN LARGE OFFSHORE WIND FARMS ........................... 51

    Panagiotis Chaviaropoulos, CRES, Greece

    S3.4 MEXNEXT-II: THE LATEST RESULTS ON EXPERIMENTAL WIND TURBINE AERODYNAMICS ............. 56

    Koen Boorsma, ECN, The Netherlands

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    7/186EWEA 2014 Scientific Proceedings

    5

    Table of contents

    Advanced control concepts

    S4.1 MECHANICAL LOAD ANALYSIS OF PMSG WIND TURBINES

    IN PRIMARY FREQUENCY REGULATION .................................................................. ................................................................... ........................................ 61

    Asier Daz de Corcuera, IK4-IKERLAN, Spain

    S4.2 PROVIDING FREQUENCY DROOP CONTROL USING

    VARIABLE SPEED WIND TURBINES WITH AUGMENTED CONTROL ............................................................ ............................. 68

    Adam Stock, Strathclyde University, United Kingdom

    S4.3 SENSORLESS CONTROL OF A POWER CONVERTER F

    OR A CLUSTER OF SMALL WIND TURBINES .............................................................. ................................................................... ............................. 73

    Agusti Egea-Alvarez, CITCEA-UPC, Spain

    S4.4 SYSTEMATIC NUMERICAL DESIGN OF OPTIMAL BLADE PITCH CONTROL

    FOR VERTICAL AXIS WIND TURBINES ............................................................. ................................................................... ................................................... 76

    Markus Marnett, RWTH Aachen, Germany

    Whole-life foundation and structure integrity

    S5.1 DESIGN TOOLS AVAILABLE FOR MONOPILE ENGINEERING ............................................................ ................................................... 79

    Paul Doherty, University College Dublin, Ireland

    S5.2 CLASSIFYING RESONANT FREQUENCIES AND DAMPING VALUES OF AN OFFSHORE WIND

    TURBINE ON A MONOPILE FOUNDATION FOR DIFFERENT OPERATIONAL CONDITIONS ........................ 83

    Wout Weijtjens, Vrije Universiteit Brussel (VUB), Belgium

    S5.3 KEY PERFORMANCE INDICATORS AND TARGET VALUES

    FOR MULTI-MEGAWATT OFFSHORE TURBINES ......................................................... .................................................................. ............................. 88

    Panagiotis Chaviaropoulos, CRES, Greece

    S5.4 FATIGUE VERIFICATION IN WIND TURBINE FOUNDATIONS

    APPLYING MARKOV MATRICES TO A FEM MODEL ......................................................... .................................................................. .................. 92

    Angel Diez, MS-ENERTECH, Spain

    Floating wind turbines

    S6.1 WIND TUNNEL TESTS ON FLOATING OFFSHORE WIND TURBINES:

    DESIGN OF A 6-DOF ROBOTIC PLATFORM FOR FLOATING MOTION SIMULATION ............................................ 97

    Ilmas Bayati, Politecnico di Milano, Italy

    S6.2 THE 5 MW DEEPWIND FLOATING OFFSHORE VERTICAL WIND TURBINECONCEPT DESIGN - STATUS AND PERSPECTIVE ............................................................................................................................................. 101

    Uwe Schmidt Paulsen, Technical University of Denmark, Denmark

    S6.3 MONOLITHIC CONCRETE OFF-SHORE FLOATING STRUCTURE FOR WIND TURBINES ........................... 107

    Climent Molins, Universitat Politcnica de Catalunya, Spain

    S6.4 STRUCTURAL INTEGRITY CONSIDERATIONS FOR THE H2OCEAN

    MULTI MODAL WIND-WAVE PLATFORM ............................................................................................................................................................................ 112

    Feargal Brennan, Cranfield University, United Kingdom

    S6.5 LONG TERM MOORING LOADS ASSESSMENT ON A SEMISUBMERSIBLE WIND PLATFORM .............. 116

    Raul Guanche, IH Cantabria, Spain

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    8/186EWEA 2014 Scientific Proceedings

    6

    Table of contents

    Electrical aspects and grid integration

    S7.1 PLANS FOR SIGNIFICANT AMOUNT OF WIND POWER AND

    VOLTAGE STABILITY OF THE DANISH ISLAND OF BORNHOLM ................................................................................................... 121

    Vladislav Akhmatov, Energinet.dk Transmission System Operator of Denmark

    S7.2 A COMPARISON OF DESIGN OPTIONS FOR OFFSHORE HVDC NETWORKS

    THROUGH A SEQUENTIAL MONTE-CARLO RELIABILITY ANALYSIS ...................................................................................... 126

    Callum MacIver, University of Strathclyde, United Kingdom

    S7.3 EVALUATION OF A COMMUNICATION-BASED FAULT RIDE-THROUGH SCHEME FOR

    OFFSHORE WIND FARMS CONNECTED THROUGH VSC-HVDC LINKS............................................................................... 131

    Sotirios Nanou, National Technical University of Athens, Greece

    S7.4 DEVELOPMENTS AND OPPORTUNITIES IN HVDC OFFSHORE GRIDS RESEARCH ....................................... 134

    Olimpo Anaya-Lara, University of Strathclyde, United Kingdom

    S7.5 ECONOMIC BENEFIT CALCULATIONS OF AN OFFSHORE WIND

    AND ITS HVDC GRID DELIVERY SYSTEM IN NORTH AMERICA ................................................................................................. 138

    Reynaldo Nuqui, ABB, United States

    Innovative concepts for drive train components

    S8.1 IMPROVED COST OF ENERGY COMPARISON OF PERMANENT MAGNET GENERATORS

    FOR LARGE OFFSHORE WIND TURBINES ...................................................................................................................................................................... 141

    Kerri Hart, University of Strathclyde, United Kingdom

    S8.2 PROPOSED STRUCTURE FOR A HTS GENERATOR

    FOR DIRECT DRIVE OFFSHORE WIND TURBINES...........................................................................................................................................

    145Joseph Burchell, University of Edinburgh, United Kingdom

    S8.3 DESIGN ASPECTS OF CORELESS AXIAL FLUX PERMANENT MAGNET GENERATORS

    FOR LOW COST SMALL WIND TURBINE APPLICATIONS ....................................................................................................................... 149

    Georgios Messinis, National Technical University of Athens (NTUA), Greece

    S8.4 NEW BEARINGLESS GENERATOR WITH BUOYANT ROTOR

    FOR LARGE DIRECT-DRIVE WIND TURBINES ............................................................................................................................................................ 154

    Deok-je Bang, Korea Electrotechnology Research Institute, Republic of Korea

    Advanced operation & maintenance

    S9.1 ELECTRICAL FAULT DETECTION USING MECHANICAL SIGNALS ............................................................................................... 159Christopher Crabtree, Durham University, United Kingdom

    S9.2 WIND TURBINE RELIABILITY ESTIMATION FOR DIFFERENT ASSEMBLIES, FAILURE

    SEVERITY CATEGORIES AND ENVIRONMENTAL CONDITIONS USING SCADA DATA .................................. 162

    Christos Kaidis, Uppsala University - MECAL B.V., The Netherlands

    S9.3 TRAILING EDGE MONITORING WITH ACOUSTIC EMISSION DURING

    A STATIC FULL SCALE BLADE TEST ...................................................................................................................................................................................... 168

    Alexandros Antoniou, Fraunhofer Institute for Wind Energy Systems, Germany

    S9.4 COMPARISON OF DATA-DRIVEN AND MODEL-BASED METHODOLOGIES OF

    WIND TURBINE FAULT DETECTION WITH SCADA DATA ............................................................................................................................. 172

    Zhenyou Zhang, Kongsberg Maritime AS, Norway

    S9.5 PREDICTION OF WIND TURBINE GEARBOX CONDITION BASED ONHYBRID PROGNOSTIC TECHNIQUES WITH ROBUST MULTIVARIATE STATISTICS

    AND ARTIFICIAL NEURAL NETWORKS ............................................................................................................................................................................... 177

    Jamie Godwin, University of Durham, United Kingdom

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    9/186EWEA 2014 Scientific Proceedings

    7

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    10/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    11/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    12/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    13/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    14/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    15/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    16/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    17/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    18/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    19/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    20/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    21/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    22/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    23/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    24/186

    EWEA 2014 Scientific Proceedings

    22

    ficationanditsimpactonwindflowovertopog-

    raphy,

    WindEnergy,DOI:10.1

    002/we.1

    692

    [6]Bergstrom,

    H.

    et

    al.

    2013

    Wind

    power

    in

    forests:

    Winds

    and

    effects

    on

    loads.

    Available

    for

    download

    at:

    http://www.e

    lforsk.se/Global/Vindforsk/Rapporterts.p

    df

    [7]Kaimal,J.C.

    &

    Finnigan,

    J.J.

    1994

    Atmo-

    sphericboun

    darylayerflows,OxfordUniver-

    sityPress

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    25/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    26/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    27/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    28/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    29/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    30/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    31/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    32/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    33/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    34/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    35/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    36/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    37/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    38/186

    EWEA 2014 Scientific Proceedings

    36

    http://dx.doi.org/10.1175/MWR-D-11-

    00352.1

    [12]Fitch,A

    .,J.K.Lundquist,andJ.B.

    Olson.2013

    .MesoscaleInfluencesof

    WindFarmsthroughoutadiurnalcycle.

    MonthlyWe

    atherReview,141,2173-

    2198.doi:

    http://dx.doi.org/10.1175/MWR-D-12-

    00185.1

    [13]Church

    field,M.J.,S.Lee,J.

    Michalakes,P.J.Moriarty.2012.A

    numericals

    tudyoftheeffectsof

    atmosphericandwaketurbulenceon

    windturbine

    dynamics.

    JTurbulence

    13:1-32

    [14]Mirocha,J.,B.Kosovic,M.Aitken,

    andJ.K.Lu

    ndquist.2014.

    Implementa

    tionofageneralized

    actuatordis

    kwindturbinemodelinto

    WRFforlar

    ge-eddysimulation

    applications

    .J.RenewableSustainable

    Energy6,0

    13104(2014);

    http://dx.doi.org/10.1063/1.4861061

    [15]Lu,H.andF.Porte-Agel.2011.

    Large-eddy

    simulationofaverylarge

    windfarmin

    astableatmospheric

    boundaryla

    yer.Phys.Fluids,23,065

    101,doi:10.1063/1.3589857.

    [16

    ]Barthelmie,R.J.,Pryor,S.C.,

    Fra

    ndsen,S.T.,Hansen,K.S.,

    Schepers,J.G.,Rados,K.,Schlez,W.,

    Neubert,A.,Jensen,L.E.and

    Neckelmann,S.2009.Quantifyingthe

    imp

    actofwindturbinewakesonpower

    outputatoffshorewindfarms.Journalof

    Atm

    osphericandOceanicTechnology,

    27,13021317.doi:

    10.1175/2010JTECHA1398.1

    [17

    ]Hansen,K.S.,R.J.Barthelmie,L.

    E.Jensen,andA.Sommer.2012.The

    imp

    actofturbulenceintensityand

    atm

    osphericstabilityonpowerdeficits

    duetowindturbinewakesatHornsRev

    win

    dfarm.WindEnergy,15,183-196.

    [18

    ]Vanderwende,B.andJ.K.

    Lundquist.2012.Themodificationof

    win

    dturbineperformancebystatistically

    distinctatmosphericregimes.

    EnvironmentalResearchLetters7

    (20

    12)034035doi:10.1088/1748-

    9326/7/3/034035

    [19

    ]Wharton,S.andJ.K.Lundquist.

    2012.AtmosphericStabilityAffects

    WindTurbinePowerCollection.

    Environ.

    Res.Lett.7014005doi:10.1088/1748-

    9326/7/1/014005

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    39/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    40/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    41/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    42/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    43/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    44/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    45/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    46/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    47/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    48/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    49/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    50/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    51/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    52/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    53/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    54/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    55/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    56/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    57/186EWEA 2014 Scientific Proceedings

    55

    [4]

    V.A.

    Riziotis,

    P.K

    Chaviaropoulos

    and

    S.G.

    Voutsinas,

    "De

    velopmentofaState-of-the-art

    AeroelasticSim

    ulatorforHorizontalAxisWind

    Turbines.

    Part

    2:Aerodynamic

    Aspects

    and

    Applications",

    JournalWind

    Engineering,

    Vol

    20,

    No.

    6,pp.4

    23-439,

    (1996)

    [5]

    DTUPitch/VSschedule,

    InnWind.E

    UInternal

    site

    [6]

    Chaviaropoulos

    ,P.K.,

    Chortis,

    D.,

    Lekou,

    D.

    Definition

    ofthe

    Reference

    Wind

    Turbine

    AnalysisofRo

    torDesignParameters(D1.2.1,

    May2013,

    InnW

    ind.E

    UInternalsite)

    [7]

    PeterJamieso

    n,

    Innovation

    in

    Wind

    Turbine

    Design,

    AJohn

    Wiley&Sons,

    Ltd.,

    Publication,

    ISBN978-0-470-69981-2,

    2011.

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    58/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    59/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    60/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    61/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    62/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    63/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    64/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    65/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    66/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    67/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    68/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    69/186EWEA 2014 Scientific Proceedings

    67

    7

    Ackn

    owledgements

    Themateria

    lusedinthispaperwaspartly

    supported

    by

    the

    Spanish

    Ministry

    of

    Economya

    nd

    Competitiveness(research

    projects

    DPI2012-37363-C02-02

    and

    ENE2012-33043).

    8

    References

    [1].

    ENTS

    O-E.

    2013.

    ENTRO-E

    network

    codeforrequirementsforgridconnection

    applicable

    to

    allgenerators.

    Access

    www.entsoe.eu.

    [2].

    EirGrid.2013.Eirgridgridcodeversion

    4.0.Accesswww.eirgrid.com.

    [3].

    Bucks

    pan,A.,J.Aho,L.Pao,P.Fleming,

    andY

    .Jeong.2012.CombiningDroop

    Curve

    ConceptswithControlSystemsfor

    WindTurbineActivePowerControl.IEEE

    Symposium

    onPowerElectronicsand

    MachinesinWindApplications,Denver,

    Colorado,July16-18.

    [4].

    Aho,J

    .,Buckspan,A.L.Pao,J.Laks,and

    Y.Jeo

    ng.2012.TutorialofWindTurbine

    ControlforSupportingGridFrequency

    throug

    hActivePowerControl.American

    ControlConference,Montreal,Canada,

    June27-29.

    [5].

    Singh,M.,V.Gevorgian,E.Muljadi,and

    E.E

    la.

    2013.

    Variable-Speed

    Wind

    PowerPlantOperating

    with

    Reserve

    Power

    Capability.

    ECCE2013,

    IEEE

    Energ

    y

    Conversion

    Congress,

    September

    15-19,

    Denver,

    Colorado,

    USA.

    [6].

    Erlich,I.and

    M.Wilch.2010.Primary

    Frequency

    ControlbyWindTurbines.

    IEEEPowerandEnergySocietyGeneral

    Meeting,July.

    [7].

    Chen,

    H.Liand

    H.

    Polinder.

    2010.

    RESE

    ARCH

    REPORTonNUMERICAL

    EVALUATION

    ofVARIOUS

    VARIABLE

    SPEE

    DWINDGENERATORSYSTEMS.

    Upwin

    d

    project,

    Deliverable

    no.

    D

    1B2.b.3.

    [8].

    DiazdeCorcuera,A.,A.Pujana-Arrese,

    J.M.

    Ezquerra,

    E.

    Segurola

    and

    J.

    Landa

    luze.2012.H

    BasedControlfor

    Load

    Mitigation

    in

    Wind

    Turbines.

    Energ

    ies

    2012,5(4),938-967,ISSN

    1996-1073.

    [9].

    Diaz-G

    onzalez,F.2013.Contributionsof

    FlywheelSystemsinWindPowerPlants.

    PhDT

    hesispresentedinUPC,July2013.

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    70/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    71/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    72/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    73/186EWEA 2014 Scientific Proceedings

    71

    Figure12:Demandedan

    dDeliveredChangeinPowerOutputFive5MW

    Turbine(s)withaMeanWind

    Speedof9.5m/sFollowingStrategy3

    Table1:PercentageReductioninEnergyCaptu

    re

    WindSpeedDistributio

    n

    I(Mean10m/s)

    II(Mean8.5m/s)

    III(Mean7.5m/s)

    Strategy

    1

    2

    3

    1

    2

    3

    1

    2

    3

    %ReductioninEnergy

    Capture(2MW)

    5.92

    4.87

    3.18

    7.10

    5.69

    3.58

    8.03

    6.25

    3.80

    %ReductioninEnergy

    Capture(5MW)

    7.30

    6.04

    3.48

    9.20

    7.40

    4.28

    10.91

    8.49

    4.90

    %ReductioninEnergy

    Capture(Ave)

    6.61

    5.46

    3.33

    8.15

    6.56

    3.96

    9.47

    7.37

    4.35

    Table2:P

    ercentageReductioninTowerDamageEquivalentLoads(DELs)

    Wind

    Speed

    Distribution

    I(Mean10

    m/s)

    II(Mean8.5m/s)

    III(Mean7.5m/s)

    Strategy

    1

    2

    3

    1

    2

    3

    1

    2

    3

    Turbulence

    Profile

    High

    Low

    HighL

    ow

    High

    Low

    High

    Low

    High

    Low

    High

    Low

    High

    Low

    High

    Low

    High

    Low

    %

    Change

    inDELs

    (2MW)

    -0.0

    25

    0.2

    5

    -0.4

    7-0

    .25

    -0.4

    5

    -0.4

    7

    -0.0

    26

    0.3

    3

    -0.5

    2

    -0.2

    5

    -0.5

    -0.5

    2

    -0.0

    29

    0.3

    8

    -0.5

    5

    -0.2

    4

    -0.5

    2

    -0.5

    3

    %

    Change

    inDELs

    (5MW)

    -0.3

    8

    -0.2

    1

    -0.6

    5-0

    .39

    -0.5

    4

    -0.5

    4

    -0.4

    5

    -0.1

    6

    -0.6

    9

    -0.3

    6

    -0.5

    9

    -0.5

    5

    -0.4

    6

    -0.1

    0

    -0.7

    0

    -0.3

    1

    -0.6

    0

    -0.5

    2

    %

    Change

    inDELs

    (Average)

    -0.2

    0

    -0.0

    2

    -0.5

    6-0

    .32

    -0.5

    0

    -0.5

    0

    -0.2

    4

    0.0

    9

    -0.6

    1

    -0.3

    1

    -0.5

    5

    -0.5

    4

    -0.2

    4

    0.1

    4

    -0.6

    3

    -0.2

    8

    -0.5

    6

    -0.5

    3

    Figure10:C

    hangeinPowerOutputforFive5MWW

    indTurbinesataMeanWindSpeedof13.75m/s

    Figure11:Cha

    ngeinPowerAcrossFive2MWW

    indTurbinesataMeanWindSpeedof9.5m/sFollowing

    Strategy2

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    74/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    75/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    76/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    77/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    78/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    79/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    80/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    81/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    82/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    83/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    84/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    85/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    86/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    87/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    88/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    89/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    90/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    91/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    92/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    93/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    94/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    95/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    96/186

  • 5/27/2018 Scientific Proceedings Full Papers EWEA

    97/186EWEA 2014 Scientific Proceedings

    95

    Figure11:LowerradialSteel

    Maximumf

    atiguedamage=1.3

    475e-04