science and technology - aalborg universitetpeople.plan.aau.dk/~andy/newoxfordpiece.doc  · web...

49
A draft chapter for the Oxford Handbook in Postwar European History November 2010 Science and Technology in Postwar Europe By Andrew Jamison Abstract The chapter traces the relations between science, technology and postwar European society through three main phases: an era of rebuilding and reconstruction in the 1940s and 1950s, when science and technology increased substantially in size and scale, a period of debate and reform in the 1960s and 1970s, with the emergence of alternative ideas and approaches relating science and technology to the broader society, and an age of commercialization from the 1980s onward, as both scientific research and technological development, as well as higher education, have been increasingly linked to the business world. Special attention is given to the contexts and consequences of science and technology, both in relation to the natural environment, the economy, government and civil society, and the changing nature of scientific and technological development themselves, due to the emergence of new “technoscientific” fields, such as biotechnology and nanotechnology, in which 1

Upload: others

Post on 14-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

A draft chapter for the Oxford Handbook in Postwar European HistoryNovember 2010

Science and Technology in Postwar EuropeBy Andrew Jamison

Abstract

The chapter traces the relations between science, technology and postwar European

society through three main phases: an era of rebuilding and reconstruction in the 1940s

and 1950s, when science and technology increased substantially in size and scale, a

period of debate and reform in the 1960s and 1970s, with the emergence of alternative

ideas and approaches relating science and technology to the broader society, and an age

of commercialization from the 1980s onward, as both scientific research and

technological development, as well as higher education, have been increasingly linked to

the business world. Special attention is given to the contexts and consequences of science

and technology, both in relation to the natural environment, the economy, government

and civil society, and the changing nature of scientific and technological development

themselves, due to the emergence of new “technoscientific” fields, such as biotechnology

and nanotechnology, in which scientific knowledge and technological skills are remixed

in new combinations.

Keywords: science, technology, environment, globalization, Internet, technoscience

Introduction

In the decades that have followed the Second World War, science and technology have

come to play ever more central roles in the lives and life-worlds of Europeans. Indeed, in

the 21st century there is very little that goes on in Europe without there being at least

some influence from science and technology1.

1

Page 2: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

From the never ending stream of research-based technological apparatus that has become

so essential for getting us through the day and for keeping us healthy to the political

disputes over climate change, genetically modified foods and environmental pollution,

Europe has become a place where scientific “facts” and technical “artifacts” permeate our

existence. They have infiltrated our languages, altered our behavior, changed our habits,

and, perhaps most fundamentally, imposed their instrumental logic -- what philosophers

call technological rationality -- on our social interaction and the ways in which we

communicate with one another2.

During the past seventy years science and technology have considerably expanded both

in size and scale, and as they have grown into much larger activities, they have also had a

much wider range of societal impacts and implications than they had before the war.

They have had serious effects on environmental conditions, both in terms of the

sustainability of the European natural landscape, as well as the life-sustaining capabilities

of the planet itself, as has been brought to public light in recent years in the debates about

climate change. As with environmental problems in general, science and technology are

not the cause of climate change, but the particular way in which they have developed

during the past three centuries has certainly played a part3.

In addition, they have had consequences for all kinds of social, economic and cultural

activities, primarily because of the widespread diffusion and use of information and

communication technologies (ICTs), such as personal computers, mobile telephones and

the Internet. The cultural appropriation of these technologies has required the

development of new kinds of “socio-technical” competence on the part of engineers,

designers and all sorts of users, and in order to reap the benefits there have been costs, as

well – both in terms of training and education as well as broader processes of social and

cultural learning. Developments in postwar science and technology have also had a major

impact on knowledge production itself, that is, on the ways in which scientists and

engineers actually work to create scientific facts and technological artifacts. With the

opening of new realms of reality for researchers to investigate – virtual, molecular, sub-

2

Page 3: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

atomic, and nanoscale – the traditional boundaries between nature and society, between

humans and non-humans have been significantly blurred. In such fields as cognitive

science, informatics, synthetic biology, design engineering and nanotechnology, science

and technology have blended together into an amorphous amalgam of “technosciences”

raising a number of challenges for the theory and practice of knowledge-making, as well

as for science and engineering education4.

The changes in the relations between science, technology and society since the Second

World War have been shaped by longer-term historical processes that have been going on

at least since the mid 19th century. The coming of industrialization led to the formation of

a number of new scientific and engineering fields – thermodynamics, biochemistry,

public health, electrical engineering, city planning, among others - and new forms of

higher education and communication, from the technological and scientific universities

that came to supplement the traditional ones, to the scientific journals and academic

publishing houses that rapidly proliferated in the late 19th and 20th centuries. In the

famous words of Max Weber, in a lecture for students at the University of Berlin on the

eve of the First World War, science had become a “vocation” in the course of the 19th

century. It was no longer the domain of gentlemen working in their “free time” to follow

their own personal curiosity wherever it might lead. It had become, together with its

“mirror image” twin, technology, an integral part of modernizing, industrial societies5.

After the science-based destruction of the First World War, with the use of military

aircraft and chemical weapons, the rise of “scientific socialism” in the Soviet Union

directly thereafter, and the Nazi ascension to power in Germany in 1933, it became

increasingly apparent that the growing social and not least economic importance of

science and technology called for new institutional arrangements. In both the Soviet

Union and Nazi Germany science was brought actively under the purview of the state,

raising fundamental questions about the “autonomy” of science and the overall relations

between science, technology and society.

3

Page 4: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

While the rest of Europe and the rest of the world would benefit from the migration of

scientists and engineers fleeing from Nazi oppression, the Soviet Union provided a very

different sort of challenge, offering a full-fledged alternative to the traditional relations

between science, technology and the state. In the words of Loren Graham, “No previous

government in history was so openly and energetically in favor of science. The

revolutionary leaders of the Soviet government saw the natural sciences as the answer to

both the spiritual and physical problems of Russia”6.

In the 1930s, under the inspiration of the Soviet Union, there emerged a loosely-

organized movement concerned with the “social relations of science” in Britain and in

other European countries, as well, scientists and engineers began to contrast the positive

support given to science in the Soviet Union with the situation in their own countries. In

the midst of economic depression with many scientists out of work and many of their

achievements not effectively appreciated or utilized in the broader society, it seemed to

many that the “contract” separating the academic culture from politics and from the

broader society that had been institutionalized in the 17th century was in need of radical

reform. Particularly influential was the Cambridge X-ray crystallographer, John

Desmond Bernal, who published a number of pamphlets and articles in the popular press

and in 1939 a book-length manifesto, The Social Function of Science, which was an

ambitious attempt to discuss the broader societal aspects of science and technology, and

argue for improvements in their organization as well as increases in their funding and

social status7. The following year, the coming of war would set in motion many of the

changes that Bernal had called for in his book.

In quantitative terms, the resources devoted to science and technology – both human and

financial – have increased enormously over the past seventy years, beginning with the

large-scale mobilization of scientists and engineers for the war effort itself and in the

massive scaling up from “little science to big science” that took place throughout the

world in the 1940s and 1950s8. On the other hand, in qualitative terms, as the ubiquity of

personal computers and other science-based consumer products makes ever more

apparent, science and technology have tended to become the very stuff by which the

4

Page 5: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

“quality” of European lives are made. The use of buzzwords about the “age of

information”, “knowledge societies” and perhaps especially the “innovation economy”

among scholars, pundits and policy-makers alike, make clear the crucial importance of

science and technology in the broader public discourses of contemporary Europeans, as

well as in our everyday lives.

During the past seventy years, the unquestioned European superiority in science and

technology that had been more or less taken for granted since the “scientific revolution”

of the 17th century has largely disappeared and the so-called academic communities that

were once considered so vitally important for human enlightenment have faded into the

realm of imagination. In the postwar decades, the world has witnessed the emergence of

new leaders, as first the United States and the Soviet Union and, more recently, Japan and

China have overtaken Europe as the leading force in many fields of science and

technology. “Europe” is no longer the unquestioned source of scientific and technological

achievements but ever more the follower, imitator, and consumer of developments

emanating elsewhere. At the same time, scientists and technologists have been forced out

of their academic cocoons and inbred professional identities to become fully integrated

into the contemporary commercial way of life, as entrepreneurs, expert consultants and

citizens. What was thus once a much smaller and more circumscribed set of activities

dominated by Europeans has become much larger in size and more diverse in scope, but

also ever more “global” in its range and impact9.

The historiography of these processes is partial and highly fragmented, with historians for

the most part divided between those who specialize in one or the other, that is, in science

or technology. A further division within both sub-disciplines is between those who attend

primarily to “internal” or technical matters in circumscribed fields of science or

technology as opposed to those who concern themselves with “external” relations and

contextual issues. There are no general surveys or overviews of postwar history of

science and technology in Europe as a whole, and most historical writings tend to be

highly delimited in regard to both time and focus10.

5

Page 6: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

In most areas of science and technology, “Europe” is not widely used for demarcation

purposes, since most scientific and technological activity in the postwar era -- despite the

ambitions of EU policy-makers -- has continued to be conditioned by national and local

factors and has increasingly taken place in international or global contexts. It is therefore

perhaps more difficult than in the other chapters in the handbook to present a meaningful

account which covers both science and technology in all their ramifications. I have thus

chosen to focus primarily on those areas in which I am most knowledgeable, namely at

the “interface” of science, technology and society with only passing reference to the more

internal aspects of scientific and technological history, and only as they relate to broader

societal concerns.

From the 1940s to the 1960s: An Era of Rebuilding and Reconstruction

The wartime mobilization of science and technology among both the allied and Axis

countries changed fundamentally the relations between science, technology and society.

Throughout Europe, as in the United States and the Soviet Union, scientists and engineers

were asked to play an active part in the war effort, by developing new weapons, as well

as in providing strategic advice and “intelligence”. Natural and physical scientists, as well

as social and human scientists, and engineers of all sorts were recruited by the belligerent

governments (as well as in the handful of countries, such as Sweden, which remained

neutral). As a result, science and technology were transformed in ways that have marked

them ever since.

In large-scale, multidisciplinary and government-funded projects, ranging from

operations research, radar, electronics, chemical warfare to atomic energy, many

scientists and engineers learned to work according to other sets of rules and

organizational procedures than they were accustomed to. At the same time, the wartime

experience opened a range of new opportunities for scientists and engineers after the war

as attempts were made throughout Europe to make use of science and technology for

purposes of postwar reconstruction.

6

Page 7: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

In Europe as elsewhere, governments sought to transform the scientific and technological

knowledge embodied in the weapons that had been so important in waging the war into

“peaceful” harbingers of postwar prosperity. They invested heavily in scientific research,

especially in relation to atomic energy in the belief that instruments of death could rather

easily become techniques for the enhancement of life. In Europe this era of big science

took place within the context of the Cold War, as both the Soviet Union and the United

States used the support they offered for science and technology as central components in

their hegemonic attempts to rebuild their respective spheres of influence11.

The immediate postwar period marked the acceptance throughout the world of an active

state involvement in scientific research and technological development: “R&D” for short.

Research councils, scientific advisory boards, expert commissions and specialized

agencies in particular ministries were created in most countries, and new state-supported

research and development institutes in such areas as health, agriculture and especially

atomic energy were added to those that had previously been established in some of the

larger industrial corporations and in the military. Because of the major role they had

played in the war effort, science and technology were widely seen as key ingredients in

the reconstruction of both sides of what would become the “iron curtain” separating

eastern and western Europe.

With the Marshall Plan and the efforts to create atomic energy institutes in specific

countries – and eventually at the European level, as well, at CERN in Switzerland -

American support for science and technology in Europe became a way of conducting

politics and diplomacy by other means. The creation of NATO and the development of

research and academic exchanges under NATO auspices helped give science and

technology in many European countries in the immediate postwar period a military

orientation. Even in countries such as Sweden that stood outside of NATO, a large

proportion of the resources devoted to science and technology went into the military,

even though a great deal of the military research, in Sweden as well as elsewhere, would

7

Page 8: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

later lead to civilian “spin-offs” ranging from computers and synthetic chemicals to jet

aircraft and the Internet.

Atomic energy was the major area of scientific and technological development.

Developing atomic energy provided a way to turn a weapon of mass destruction into

something that could not only serve as the fuel for a new wave of economic growth but

also symbolize a new kind of science-based technological progress and provide sources

1Notes

? For an intriguing collection of articles and illustrative material on science and

technology in contemporary Europe, see Bruno Latour and Peter Weibel, eds, Making

Things Public (Cambridge, Ma: The MIT Press, 2005)2

? Technological rationality is a term that came into use with the so-called Frankfurt

School of critical social theorists in the 1930s (Max Horkheimer, Teodor Adorno, Walter

Benjamin, Herbert Marcuse and others). The term has since been widely used to

characterize the domination that science and technology exert on the mental disposition

of modern societies. A readable history of the early Frankfurt School is The Dialectical

Imagination by Martin Jay (Boston: Little Brown, 1973). The classic statement of the

Frankfurt School is Teodor Adorno and Max Horkheimer, The Dialectic of

Enlightenment, first published in 1944 (English edition, New York: Herder and Herder,

1972)

3 For a discussion of the contribution of science and technology – and perceptions of

science and technology – to climate change, see Mike Hulme, Why We Disagree About

Climate Change: Understanding Controversy, Inaction and Opportunity (Cambridge

University Press, 2009)

4 There is a substantial literature about the relations between science, technology and

society in both sociology, philosophy, history, as well as science and technology studies,

communication studies and cultural studies. For a recent overview, see Edward J.

8

Page 9: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

of national pride; as President Vincent Auriol put it when he visited the first French

experimental nuclear reactor after scientists had isolated the fist milligrams of plutonium,

“This achievement will add to the radiance of France”12.

The era of rebuilding and reconstruction was a time of Cold War and in the late 1950s it

seemed to many that the Soviets were winning, especially after the launching of Sputnik,

the first space satellite in 1957. One immediate effect was to begin a process that has

Hackett, Olga Amsterdamska, Michael Lynch and Judy Wajcman, eds, The Handbook of

Science and Technology Studies (Third edition, Cambridge, Ma: The MIT Press, 2008).

5 Max Weber, “Science as a Vocation,” reprinted in H.H. Gerth and C. Wright Mills, eds,

From Max Weber: Essays in Sociology (New York: Oxford University Press, 1946). For

historical background on these matters, see Mikael Hård and Andrew Jamison, Hubris

and Hybrids: A Cultural History of Technology and Science (New York: Routledge,

2005).

6 Loren Graham, The Soviet Academy of Sciences and the Communist Party 1927-1932

(Princeton: Princeton University Press, 1967). See also Loren Graham, What Have We

Learned About Science and Technology from the Russian Experience? (Stanford:

Stanford University Press, 1998)

7 John Desmond Bernal, The Social Function of Science (London: Routledge and Kegan

Paul, 1939). On the social relations of science movement in Britain, see Gary Werskey,

The Visible College: The collective biography of British scientific socialists in the 1930s

(London: Allen Lane, 1978)

8 The terms “little science” and “big science” were contrasted by the American historian,

Derek de Solla Price in his book, Little Science, Big Science (Columbia University Press,

1965) to indicate that there had been an exponential rise in the money and manpower

devoted to science and technology in the 1940s and 1950s. The word had first been used

by Alvin Weinberg to refer to the kind of science that was carried out at atomic energy

9

Page 10: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

continued ever since, namely to try to bring “basic” scientific research into closer contact

with technological development. This was done both within the academic world, where

new approaches to studying, analyzing and fostering economic innovations started to

develop in business schools and management departments, but also in the wider worlds of

business and government. The ambition was to systematize and coordinate the whole

process of scientific and technological development -- or economic innovation, as it

started to be called – so that scientific ideas and technical inventions could become

commercially profitable and thus contribute to the competitiveness of European

companies in international trade.

As European economies revived, it became apparent that pumping money into atomic

energy and other big, prestigious projects was not the most effective way to foster

research institutes, such as the one at Oak Ridge, Tennessee, where Weinberg served as

director. See Alvin Weinberg, Reflections on Big Science (The MIT Press, 1967) and

Peter Galison and Bruce Hevly, eds, Big Science: The Growth of Large-Scale Research

(Stanford University Press, 1992).

9 For a provocative “global” history of technology, see David Edgerton, The Shock of the

Old. Technology and Global History since 1900 (Oxford University Press, 2007)

10 A good short survey of internal developments in science and technology in the 20th

century is John Maddox, “The Expansion of Knowledge,” in Michael Howard and Wm.

Roger Louis, eds, The Oxford History of the Twentieth Century (Oxford University Press,

1998).

11See John Krige, American Hegemony and the Postwar Reconstruction of Science in

Europe (The MIT Press, 2006)

12 Gabrielle Hecht, The Radiance of France: Nuclear Power and National Identity after

World War II (The MIT Press, 1998), page 2.

10

Page 11: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

economic growth and more generally provide for the good life. “Big science” was simply

too big and too costly – and, in many respects, too American – to justify the benefits it

produced13. Especially after Sputnik, it was obvious that science and technology needed

to be managed and organized much differently than they had been in the immediate

postwar era. And there would be significant differences within western Europe as to how

science and technology was governed. What Tony Judt in his book, Postwar, calls a “tale

of two economies” with the Federal Republic of Germany developing a much more

innovation-oriented economy while Britain increasing fell behind in one industrial branch

after another, is also, to a large extent the “story-line” of postwar scientific and

technological development14.

In the late 1950s, efforts began to strengthen European cooperation in technological

development with the establishment of the European Economic Community and the

European Atomic Energy Association in 1958, and the subsequent establishment of the

Organization for Economic Cooperation and Development, or OECD, which included the

United States, Canada and Japan as well as most of the countries of western Europe. All

would be key sites for developing policies for science and technology, with the science

policy division at OECD playing a particularly important role in articulating policy

doctrines and making proposals for institutional reforms.

13 In Europe the continuous concern with the “American challenge” throughout the

postwar period has focused to a large extent on American dominance in science and

technology, from atomic weapons and basic scientific research to the management and

organization of innovation more generally. See, for example, Jean-Jacques Servan-

Schreiber, The American Challenge (English edition, New York: Atheneum, 1968).

14 Tony Judt, Postwar. A History of Europe since 1945 (New York: Penguin, 2005), 354-

359. Judt refers specifically to the automobile industry, but the difference between

Germany and Britain is relevant in relation to many other fields of science and

engineering, and has deep historical roots. See, for example, Thorstein Veblen, Imperial

Germany and the Industrial Revolution (New York: Macmillan, 1915)

11

Page 12: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

From the 1960s to the 1980s: A Period of Debate and Reform

The 1960s would be marked in both eastern and western Europe by a widespread

questioning of the policies and priorities that had predominated in the era of rebuilding

and reconstruction. The questioning had started early, particularly in regard to the

continuing expansion of the nuclear arms race that took on a frightening new dimension

with the detonation of the first hydrogen bomb in 1954. Public demonstrations to “ban

the bomb” arranged by organizations for nuclear disarmament began to be held in the late

1950s, especially in Britain with the philosopher Bertrand Russell and several active

atomic scientists among the leading figures.

In the course of the 1960s, the questioning would come to encompass much more than

nuclear weapons as the broader challenges that had come with what the French

philosopher Jacques Ellul termed “the technological society” in an influential book that

characterized technology as the “bet of the century”15. It would be especially students,

but also a good many scientists and engineers themselves, in both eastern and western

Europe during the second half of the 1960s who would take part in a wide-ranging public

education activity about the ways in which science and technology had been

developing16.

In eastern Europe, the Hungarian revolt in 1956 had already made it clear that the

imposition of Soviet rule had not been to everyone’s liking, and in Hungary, Poland,

15 Jacques Ellul, The Technological Society (La technique ou l'enjeu du siècle) (English

edition, New York: Knopf, 1964). Originally published in 1954

16 Examples of this public education activity are John Ziman, Public Knowledge: The

Social Dimension of Science (Cambridge University Press, 1968) and Hilary Rose and

Steven Rose, Science and Society (Harmondsworth: Penguin, 1969)

12

Page 13: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

Yugoslavia, and Czechoslovakia, in the 1960s there was a good deal of discussion about

the pros and cons of communist society, which included the relations between science,

technology and (socialist) society. In Czechoslovakia, the Academy of Sciences

conducted a large, multidisciplinary study on the social implications of the “scientific and

technological revolution.” In the eastern European countries this was a term that was

commonly used to refer to the changes that had taken place in science and technology in

the 20th century, and in particular the increasing use of automation technologies in

economic production. When the report of the study was published in 1968, with a range

of proposals for the reform of science, technology and higher education, it entered into

the more general spirit of reform that came to be known as Prague Spring. As elsewhere

in eastern Europe, Civilization at the Crossroads, as the report was called, was an attempt

to foster “socialism with a human face” but, as the Soviet tanks rolled into Prague in the

summer, it was clear that the Soviet leaders were not interested in debate. Many of the

participants in the study left Czechoslovakia afterwards, as was the case with dissident

scientists from other eastern European countries17.

In the west, the increasingly visible and horrific uses of science and technology in the war

in Vietnam as well as a general dissatisfaction with the ways that students were being

educated brought on a wave of student revolts in the second half of the 1960s. As science

and technology had become ever more integrated into the economy and the state – and

come to serve as a kind of overarching political “ideology” as Jürgen Habermas

characterized it in an influential essay in 196818 -- a gap had opened up, not least in

17 Radovan Richta, in collaboartioon with an interdisciplinary research team, Civilization

at the Crossroads: Social and human implications of the scientific and technologica

revolution (Prague: Academy of Sciences, 1967). One such participant, Mikulas Teich

presented the study at a seminar at Harvard in 1968 (which is where I found out about it),

and later was professor of history at Cambridge.

18 Jürgen Habermas, “Science and Technology as Ideology”, in Toward a Rational

Society (English edition, London: Heinemann, 1971)

13

Page 14: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

education, between what the British chemist-turned-novelist C.P. Snow termed the “two

cultures” in a famous speech in 1959. Snow’s argument, which was echoed by many

others throughout the world in the course of the 1960s was that both in education as well

in the broader culture, scientists and engineers, on the one side, and humanists and

writers, on the other, had come to form separate cultural identities in the postwar era.

Education and communication both in the professional and popular media had become

polarized and overly specialized and there was a need for both sides to know more about

what the other was doing19.

As a “new left” emerged in Europe as part of the student revolts, alternative ideas about

science, technology and society were promulgated both among scientists and engineers,

as well as among concerned citizens and even policy-makers. In several countries,

societies for social responsibility in science were established, and in many national

governments, as well as the EEC and OECD, new kinds of socially-oriented science and

technology policies began to be formulated20.

As the 1960s developed, a central focus of the questioning concerned the impact that

scientific and technological development was having on nature or what came to be

referred to as the natural environment. As in the United States, the environmental debate

began in 1962 with the publication of the book, Silent Spring, written by the biologist-

turned-science writer, Rachel Carson21. But it would not be until the end of the 1960s,

under the influence of the student and anti-war protests that an environmental

19 C.P. Snow, The Two Cultures and the Scientific Revolution (Cambridge University

Press, 1959).

20 The longtime director of the science policy division at OECD was Jean-Jacques

Salomon who also helped establish an International Society for Science Policy Studies.

See Jean-Jacques Salomon, Science and Politics (English edition, Cambridge, Ma: The

MIT Press, 1973)

14

Page 15: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

“movement” would develop, particularly in the countries of northwestern Europe;

Germany, Scandinavia, Britain and the Netherlands.

While conservationists and other “nature-lovers” had been discussing the consequences

that science-based economic development was having on plants and animals throughout

the postwar era, it would be Carson’s book, with its detailed exposé of the health and

environmental costs of one particular, widely-used chemical in agriculture, the insecticide

DDT that would bring the environmental cause to the attention of the European public.

As in the United States, it would also stimulate a more activist or radical approach to

environmental politics than had been characteristic of the older conservation societies

which had been established in the late 19th and early 20th centuries and tended to be

located on the conservative side of the political spectrum.

What Carson and other more home-grown European environmentalists argued as the

1960s progressed was that a full-fledged crisis was in the offing if science and technology

were not changed into more environmentally-friendly, or ecological directions. Many of

the new kinds of science-based products that had been produced in the postwar era,

especially the chemical fertilizers, insecticides and additives that were used in agriculture

and food production, could not be broken down and reused by other species as could the

products they replaced, and thus served to destroy the natural environment. Particularly in

northwestern Europe, new environmental organizations sprang up in the late 1960s and

early 1970s to call for and begin to practice “greener” approaches to science and

technology, and environmental science and engineering soon became important new

fields of research and higher education22.

21 Rachel Carson, Silent Spring (Boston: Little, Brown and Co, 1962). For an early

European contribution to the environmental debate, see Max Nicholson, The

Environmental Revolution: a guide for the new masters of the world (Harmondsworth:

Penguin, 1970). See also E.S. Mishan, The Costs of Economic Growth (Harmondsworth:

Penguin, 1969).

15

Page 16: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

In 1971 an OECD committee, headed by Harvard engineering professor Harvey Brooks

produced the report, Science, Growth and Society, which was one of the most explicit

attempts to respond to the questioning and debate of the 1960s. Rather than defining the

task of the government primarily in terms of national security and military defense, the

report contended that the state should take on a much broader role if society were to

benefit from science and technology. In the following years, many European countries

would create new agencies to support research in socially-relevant fields of science and

technology, and there would be a widening of focus in governmental activity so that more

policy sectors were given the capability to support and use scientific research and

technological development23.

One of the most immediate results was the emergence of teaching and research programs

in science, technology and society (STS) at universities throughout Europe, to try to

bridge the “two cultures” gap. The idea was to offer instruction about the social and

cultural contexts of science and technology, but also to provide places where natural

scientists, engineers, social scientists and humanists could meet for discussion seminars

and workshops and eventually carry out research projects together. The field of STS, at

least at the beginning, was part of a more general interest within universities to foster

interdisciplinary studies in a number of new fields24.

22 See Andrew Jamison, Ron Eyerman, Jacqueline Cramer and Jeppe Læssøe, The Making

of the New Environmental Consciousness (Edinburgh University Press, 1990)

23 Organisation for Economic Cooperation and Development, Science, Growth and

Society: A new perspective (Paris: OECD, 1971)

24 An early collection of STS articles is Ina Spiegel-Rösing and Derek de Solla Price, eds,

Science, technology and society: A cross-disciplinary perspective (London: Sage, 1977).

See also Leslie Sklair, Organized Knowledge: A Sociological View of Science and

Technology (St Albans: Paladin, 1973) and Jerome Ravetz, Scientific Knowledge and Its

Social Problems (London: Open University Press, 1971)

16

Page 17: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

In the course of the 1970s, courses and entire departments in gender studies, peace

studies, development studies and environmental studies, as well as STS, would be

established throughout Europe, significantly altering the landscape at many universities.

A number of new universities were also created, often based on “student-centered”

approaches to education that tried to transform the critical energy of the social

movements of the times into more constructive directions. When applied to natural

science and engineering, problem-based learning proved to be particularly effective as a

way to connect academic scientists, engineers and their students more closely to the

broader society and to help identify the sorts of communicative, managerial and design

skills that scientists and engineers would increasingly need in the emerging “innovation

economy” or “knowledge society”, as they would be called in ensuing decades25.

There were also a number of centers set up outside the universities for appropriate,

alternative, small-scale and/or intermediate technologies, putting into practice the ideas

that were propagated in such books as Small is Beautiful, by E.F. Schumacher, an

economist who had worked on development projects in India as well as for the British

Coal Board26. A kind of “grass-roots” engineering emerged in several European

countries, most significantly perhaps in Denmark, where an organization for renewable

energy helped people throughout the country to learn how to build their own wind energy

plants and solar panels. By the late 1970s, the movement had spawned a number of

25 See Erik de Graaff and Anette Kolmos, eds, Management of Change: Implementation

of Problem-based and Project-based Learning in Engineering (Rotterdam: Sense

Publishers, 2007). It is something of a paradox that many of the universities that were

created in the 1970s (my own, in particular) have become among the leading

“entrepreneurial universities” in Europe. 26 E.F. Schumacher, Small is Beautiful: Economics as if people Mattered (London: Blond

and Briggs, 1973). See also David Dickson, Alternative Technology and the Politics of

Technical Change (Glasgow: Fontana, 1974)

17

Page 18: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

companies, one of which, VESTAS, is now the leading wind turbine producer in the

world and one of Denmark’s largest companies.

In the second half of the 1970s environmental movements and movements for women’s

liberation – what came to be called “new social movements” by social scientists –

provided sites for experimentation with alternative approaches to science and

engineering. In collecting and distributing information about air and water pollution and

the risks involved with atomic energy, and in developing knowledge about women’s

health care and gender issues in general, participants in these movements could become

“citizen scientists”, challenging the ways in which science and technology were practiced

and organized, in addition to providing substantive critiques of specific types of science

and technology. In the Netherlands, students in Amsterdam set up a “science shop” at the

university for facilitating collaboration with the surrounding society, and their idea spread

to other universities in the country, as well as to other European countries27.

Around the same time, internal developments in science and technology, especially in

molecular biology and genetics, were bringing the worlds of scientific theory into more

intimate contact with engineering and the more commercial sites of technological

development. Genetic engineering and the other so-called biotechnologies that came into

Europe in the 1970s from the United States, as did so much science and technology after

World War II, were among the first “technosciences” that would raise a more internal set

of challenges that would become increasingly significant in the ensuing decades. These

are fields in which the traditional boundaries are blurred between theoretical, or basic

scientific knowledge and technological, or more instrumental knowledge. By mixing

previously separated fields of knowledge into new combinations, these fields challenged

both the traditional identities of scientists and engineers, but also the traditional ways in

which they were educated.

27 Alan Irwin, Citizen Science (London: Routledge, 1995). See also Alan Irwin and Brian

Wynne, eds, Misunderstanding Science? The Public Reconstruction of Science and

Technology (Cambridge University Press, 1996)

18

Page 19: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

From the 1980s to the new millennium: The Age of Commercialization

Genetic engineering and information technology, and, more recently, nanotechnology and

synthetic biology require expertise and skills from a number of scientific fields, as well as

an engineering competence, put together in what might be termed a commercializable

cocktail. While certainly not all science and technology has come to be integrated into

processes of commercial innovation, there can be no denying that the rise of information

technology and biotechnology industries -- and with them a new “mode” of knowledge

production -- has exerted a major influence on scientific research and technological

development as a whole, for these are fields that differ from the traditional fields of

science and technology in a number of ways28.

On the one hand, they are instrument-driven fields, which means that they require major

expenditures on expensive scientific instruments for their eventual development and

commercialization. And unlike the science-based industries of the early 20th century,

which were, for the most part, applications of a scientific understanding of a particular

aspect of nature (microbes, molecules, organisms, etc), the technosciences are based on

what Herbert Simon once called the sciences of the artificial. Information technology is

based on scientific understanding of man-made computing machines, and biotechnology

is based on scientific understanding of humanly modified organisms. Nanotechnology is

the most recent example of a field that is based on the development of scientific

instruments to make a previously unreachable realm of reality available for commercial

product development29.

28 See Michael Gibbons, Camille Limoges, Helga Nowotny, Simon Schwartzman, Peter

Scott, and Martin Trow, The New Production of Knowledge. The Dynamics of Science

and Research in Contemporary Societies (London: Sage, 1994) 29 Herbert Simon, Sciences of the Artificial (Cambridge, Ma: The MIT Press, 1969)

19

Page 20: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

Secondly, these are fields that are generic in scope, which means that they have a wide

range of potential applications in a number of different economic areas, social sectors and

cultural life-worlds. As opposed to earlier generic technologies, or radical innovations –

the steam engine, electricity and atomic energy, for example, which were primarily

attempts to find solutions to identified problems - these new fields tend to be solutions in

search of problems. In this respect, information technologies, biotechnologies, and

nanotechnologies are idea-based, rather than need-based, which means that, in relation to

their societal uses, they are supply-driven, rather then demand-driven. That is one of the

reasons why they require such large amounts of marketing and market research for their

effective commercialization, and indeed for their development.

Finally, these advanced, or “high” technology fields are transdisciplinary in what might

be called their underlying knowledge base; that is, their successful transformation into

marketable commodities requires knowledge and skills from a variety of different

specialist fields of science and engineering. In earlier periods of scientific and

technological development, there were clearer lines of demarcation between the specific

types of competence and knowledge that were relevant; indeed the classical categories of

science and engineering are based on the particular types of scientific and technological

theories that were utilized (physical, biological, chemical, mechanical, combustion,

aerodynamic, etc). The genetic engineer and the nanotechnologist certainly must know

physics and chemistry and biology, but they do not know and learn these subjects in the

same way as physicists, chemists and biologists. Rather they are taught to know what

they need to know, in order to provide the society with new sorts of products. As such,

the new fields represent a qualitatively new “mode” of knowledge production.

From the 1980s onward as the Soviet empire decomposed and other “new industrial

countries” in Asia -- Korea, Singapore, Taiwan, in particular -- joined Japan in the

competition for global market shares especially in information and communications

technologies, it became ever more apparent that the individual European countries could

not meet the challenges by themselves. This realization has led to a much more selective

20

Page 21: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

approach to governing and funding science and technology during the past three decades,

with an ever closer eye to the machinations of the commercial marketplace. It has also led

to a continual expansion of European-wide programs and policies in science, technology

and higher education within the European Union and other intergovernmental bodies.

In the late 1970s, the political climate turned to the right in several European countries, as

was the case also in the United States. At the same time, the debates about nuclear energy

that had been the main focus of public debate in the period of questioning were resolved

in parliamentary decisions and negotiated settlements of one kind or another. In response

to both processes, many of those who had been active in the critical discussions and

movements of the 1970s became more business-minded in their activities, as a kind of

institutionalization and professionalization set in within the environmental and renewable

energy movements. Green parties and environmental research institutes, as well as a

range of new environmental and energy companies came to replace the more activist

groups, and there was also a professionalization of activism itself with the coming to

many European countries of Greenpeace, with its media savvy and well-organized

protests, and the environmental “think tanks”, such as the Wuppertal Institute in Germany

that were closely associated with the green parties.

A significant outcome of the professionalization of the environmental debate was the

articulation of a new policy doctrine -- and eventually of an overarching political

discourse -- of sustainable development. It was first coined in the “World Conservation

Strategy” of 1980, which was written by three conservation organizations, and was later

more widely promulgated in an influential report, Our Common Future, published in

1987 by the World Commission for Environment and Development headed by the former

Norwegian prime minister Gro Harlem Brundtland30.

30 World Conservation Strategy. Living Resource Conservation for Sustainable

Development. Prepared by the International Union for Conservation of Nature and

Nstural Resources (Gland, Switzerland: IUCN, 1980). The World Commission on

Environment and Development, Our Common Future (Oxford University Press, 1987)

21

Page 22: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

Sustainable development was an attempt to redefine the aims of scientific, technological

and socio-economic development to take the needs of future generations into account,

specifically in regard to the availability of natural resources and environmental quality.

By bringing together representatives of business, government and civil society, including

environmental organizations, the Brundtland Commission tried to formulate an ambitious

new global agenda, and in 1992, at the so-called Earth Summit in Brazil, many of the

world’s nations, and all of the European countries, agreed on a document that specified

how sustainable development could be implemented: the so-called Agenda 21.

In the 1990s, many European cities and governments developed local and national

agenda 21 activities, as well as scientific research and technological development

programs in sustainable development. Many of these activities sought to foster

partnerships between business and government, by emphasizing environmental

management systems and ecoefficient, or “clean” technologies in addition to renewable

energy and ecological, or organic agriculture31.

There were some significant differences between the different European countries in

regard to the quest for sustainable development, with the eastern European countries

generally much less active than the western European countries. Within western Europe,

the level of activity has depended a good deal on the political situation; in those countries

where social-democratic governments have been in power, often with the support of

green parties, research and development programs in sustainable development have been

31 There is by now a huge literature on the politics of sustainable development. For a

comparative history of policy trajectories in Britain and the Netherlands, see Maarten

Hajer, The Politics of Environmental Discourse (Oxford University Press, 1995). On

Agenda 21, see William Lafferty, ed, Implementing LA21 in Europe: New Initiatives for

Sustainable Development (Oslo, ProSus, 1999). See also Andrew Jamison, The Making of

Green Knowledge: Environmental Politics and Cultural Transformation (Cambridge

University Press, 2001)

22

Page 23: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

much more prevalent. And when social-democratic parties have lost power, as has been

the case in Germany, Denmark, Sweden, the Netherlands, and Great Britain during the

past ten years, the interest in sustainable development has tended to diminish.

In many areas of environmental, or green science and technology, particularly in regard

to renewable energy, organic agriculture, and eco-design, European companies have been

among the world leaders. Many European cities have also been in the forefront in regard

to sustainable urban development, and European green business is rapidly finding

markets in China and the other emerging economies of Asia. In becoming mainstream,

however, and in following the general trend toward commercialization, the question can

be raised as to whether certain kinds of environmental challenges – and especially the

climate challenge -- are amenable to this kind of response strategy, with its overarching

belief in technical fixing: that all problems can be solved with more technology. There

are those who say that the only way to deal with climate change is to cut down on

consumption and develop more sustainable communities, but up till now, these more

social or cultural approaches to sustainability have been much weaker than the technical

and commercial32.

A similar kind of historical trajectory can be seen in relation to the social aspects of

science and technology that had been subject to debate in the 1960s and 1970s, both

gender issues, as well as issues of access, accountability and assessment. In many

European countries, as well as the European Commission, new units and programs in

technology assessment were brought into the science and technology policy landscape.

The idea had emerged in the United States, and an Office for Technology Assessment

had been set up in the American Congress in 1974 to study the social implications of

particular areas of scientific and technological development. As the energy debates and

32 For a brief history of the contending positions in the climate change debate, see Andrew

Jamison, Climate Change Knowledge and Social Movement Theory, in Wiley

Interdisciplinary Reviews: Climate Change, November 2010. See also Anthony Giddens,

The Politics of Climate Change (Cambridge: Polity, 2009)

23

Page 24: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

movements intensified in the 1970s in Europe, several governments made funding

available for similar kinds of studies in relation to energy technologies, and in the 1980s

agencies and research programs were created to provide opportunities for studying the

social aspects of other technologies, especially information technologies and

biotechnologies.

In Europe, some of these activities took on a more “participatory” form than in the United

States, with the involvement of citizens and municipal authorities in what came to be

known as interactive technology assessment33. In Denmark, the government board for

technology developed what came to be known as consensus conferences, arranging

dialogues between lay people and experts that were then written up in reports that then

entered into the policy making process. After one such consensus conference in the

1980s, for example, the Danish parliament passed a law banning field experiments with

genetically-modified food34.

In addition to technology assessment, which was primarily a governmental activity, in the

course of the 1980s, a more academic approach to the social challenges developed in the

field of science and technology studies. Centers and institutes were established at many

universities where scientists, engineers and social scientists could work together on

research projects about the social and ethical aspects of science and technology,

especially in relation to the newer fields of technoscience, as they started to be called in

the 1980s. Science and technology studies represented a kind of institutionalization of the

33 Simon Joss and Sergio Belucci, eds, Participatory Technology Assessment: European

Perspectives (London: Centre for the Study of Democracy, 2002)

34 Jesper Lassen, Changing Modes of Biotechnology Assessment in Denmark, in Reijo

Miettinen, ed, Biotechnology and Public Understanding of Science (Helsinki: Academy

of Finland, 1998). See also Simon Joss and John Durant, eds, Public Participation in

Science: The Role of Consensus Conferences in Europe (London: Science Museum,

1995)

24

Page 25: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

programs in science, technology and society that had grown up in the 1970s, and as the

new, more academic and professional style of STS grew in status and significance in the

1990s, both at universities as well as within the government research funding systems,

the older programs that had sought to bridge the “two cultures” gap tended to diminish.

As a result, while new kinds of experts in the social aspects of science and technology

were trained and educated, their expertise tends not to be effectively integrated into the

education of scientists and engineers35.

In relation to the more internal developments in science and technology, the 1980s can be

seen as the beginning of a new “long wave” of growth and expansion based on the cluster

of innovations that had come in the 1970s in information technology and biotechnology.

In the 1930s, the Austrian Joseph Schumpeter had developed an influential theory of

economic history, based on the notion of “creative destruction” by which he

characterized the process of industrialization since the late 18th century36. He had

identified three waves of industrial development that had been instigated by clusters of

what he termed radical innovations, both technical and institutional, which had led to far-

reaching repercussions throughout the industrial economies: textile machines and the

factory system in the first wave, steam-powered transport, machine tools and joint stock

companies in the second, and steel, electrification and professional management systems

in the third. From this perspective, neo-Schumpeterian students of innovation come to

35 It is symptomatic that the acronym, STS has come to stand for “science and technology

studies” during the past 20 years, and in the process has become more of an academic

field of its own than a space, or interface for the interaction between “science, technology

and society”. For a presentation of the field in the 1990s in the midst of this transition,

see Sheila Jasanoff, Gerald Markle, James Petersen and Trevor Pinch, eds, Handbook of

Science and Technology Studies (London: Sage, 1995)

36 Joseph Schumpeter, Business Cycles: A Theoretical, Historical and Statistical Analysis

of the Capitalist Process (New York, McGraw-Hill, 1939). See also Joseph Schumpeter,

Capitalism, Socialism and Democracy (New York: Harper and Brothers, 1942)

25

Page 26: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

identify a fourth wave in the mid-20th century, based on petrochemical products,

automobiles and mass production that had begun its decline in the 1970s and was now on

the verge of being “creatively destroyed” by a new wave based on innovations in

information technologies, such as personal computers, video recorders, and software

systems and biotechnologies, especially genetic modification37.

As departments or centers for innovation studies were established at business schools and

technological universities, the institutions of science and technology started to be

reconfigured, so that the new technologies could be more effectively commercialized.

The institutional innovations that were called for involved the establishment of networks

or systems of innovation, as they started to be called38. In Japan, university scientists and

engineers had been brought by the governmental authorities to identify those areas of

science and technology that were especially promising from a commercial point of view.

The government also sponsored programs of cooperative, “pre-commercial” research in

some of the areas that had been identified39. Japan, with its top-down approach to

innovation policy, could be seen as a contrast to the experience in the United States,

where university scientists, particularly in information technology and biotechnology,

had established companies based on their research near the universities where they

worked (the so-called Silicon Valley near Stanford in California was the prime example).

37 See Chris Freeman and Francisco Louçã, As Time Goes By. From the Industrial

Revolution to the Information Revolution (Oxford University Press, 2001)

38 See Bengt-Åke Lundvall, ed, National Systems of Innovation: Towards a Theory of

Innovation and Interactive Learning (London: Pinter, 1992), Charles Edquist, ed, Systems

of Innovation: Technologies, Institutions and Organizations (London: Pinter, 1997), and

Franco Malerba, Sectoral Systems of Innovation: Concepts, Issues and Analyses of Six

Major Sectors in Europe (Cambridge Universith Press, 2004)

39 Christopher Freeman, Technology Policy and Economic Performance: Lessons from

Japan (London: Pinter, 1987)

26

Page 27: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

Both the Japanese and the Americans had developed approaches to science and

technology that were directly commercial. And in the 1980s as European countries felt an

ever more intense competition from both the Japanese and the Americans in relation to

developing the new technologies, many governments both individually and together at

the EU level established programs and policies that adopted many of the approaches that

had emerged in the US and Japan.

In the course of the 1990s, the European Commission took on ever more responsibility

for science and technology funding and coordination. Increasingly, the Commission has

tried to create opportunities for all kinds of scientists and engineers to be involved in

European cooperative ventures, both in research, development and education. There are

continual efforts to establish student and teacher exchanges, networks of excellence in

particular fields, workshops and conferences to initiate new research projects, and a wide

range of opportunities for European research projects, both funded by the Commission

itself as well as by the European Science Foundation. The Commission has also tried to

coordinate national policies in such areas as higher education and environmental

protection. Over the past thirty years, Europe has taken some rather large strides forward

in creating new forms of scientific and technological practice that transcend national

boundaries40.

Perhaps nowhere has the new wave of scientific and technological development had a

stronger impact on the national economy than in Finland, where one company creatively

destroyed and then reconstructed itself to become, in the course of the 1990s, the largest

company in the country and the world’s largest producer of mobile telephones. Nokia’s

story -- of how a traditional industrial rubber company, which had unsuccessfully tried to

diversify into other areas to keep itself afloat transformed itself into a global powerhouse

by focusing on innovation, design and marketing of a typical technoscientific product --

encapsulates both the good and the bad news of postwar European scientific and 40 See Susanna Borrás, The innovation policy of the European Union: From government

to governance (Cheltenham: Edward Elgar, 2004) and for the broader picture, Desmond

Dinan, Europe Recast. A History of European Union (Houndmills: Palgrave Macmillan,

2004)

27

Page 28: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

technological development. the crucial. On the one hand, it is a classic case of

Schumpeterian creative destruction, but on the other hand, by going global, the incredible

and rapid growth of the company did not bring about an expansion in employment

opportunities in Europe to the same extent that had occurred in previous waves. Instead,

Nokia like all of the other successful, high-tech companies of the past three decades

provides jobs where the labor force is cheaper and where the corporate taxes are lower.

The tragic paradox of science and technology in postwar Europe is that while innovation

runs rampant with the generous support of the EU and national governments, the

economic, social and, for that matter, cultural benefits of this innovative activity are not

really felt by the large proportion of the European population. The global support systems

and logistical infrastructures, not least in relation to financing and transport that have

been so important for Nokia and other high-tech companies are also problematic, both in

terms of regulatory control and political accountability, as well as in relation to the

natural environment.

Conclusions

At the close of the first decade of a new millennium science and technology in Europe

find themselves at a critical juncture. In a time of economic recession with many

European governments heavily in debt and levels of unemployment the highest in many

years, there is once again, as in the 1960s, a need for questioning the assumptions that

have guided policy making, as well as scientific and technological knowledge making

over the past few decades. In particular, it seems important to question the dominant

discourse of commercialization, with its overarching emphasis on linking scientists and

engineers ever more intimately with the business world. This has involved both an

institutional restructuring of universities, as well as a reshaping of many scientific and

engineering fields so that they are more amenable to the needs and values of the

commercial marketplace. The widespread fostering of entrepreneurship among scientists

and engineers has certainly led to an effusion of new gadgets and high-tech wizardry, but

it can be questioned whether this orientation has gone too far.

28

Page 29: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

The typical reaction to commercialization on the part of many scientists and engineers

has been to try to return to how it was, or is imagined to have been, in prewar days, when

science was “autonomous” and the role of science-based technology in society and in the

economy was much more limited. The appeal of traditional ways of practicing science

and technology has become quite strong in certain circles in Europe, as elsewhere, but as

in previous periods of change, it seems counterproductive to think that the future can be

met by returning to the past.

Instead, as in the 1960s, there is a need for fundamentally rethinking the relations

between science, technology and society, in Europe as well as internationally. In

particular, there needs to be much more coordination between policies for science and

technology and all the other policies that national governments, as well as local

authorities and intergovernmental bodies pursue. In order to meet the challenge of

climate change and sustainable development, science and technology will need to be

reconfigured so that the “solutions” they provide can be relevant for the problems that

humanity faces. And in order to provide appropriate solutions, scientists and engineers

will need to be better educated about the problems that need to be solved.

29

Page 30: Science and Technology - Aalborg Universitetpeople.plan.aau.dk/~andy/newOxfordpiece.doc  · Web viewNovember 2010. Science and Technology in Postwar Europe. By Andrew Jamison. Abstract

30