scanning electron microscope (sem)/5bd7b04a.pdf · scanning electron microscopy (sem): in the...

22
Scanning Electron Microscope (SEM) High Temperature Materials KGP003 Div. of Process Metallurgy Spring 2006

Upload: others

Post on 07-Jul-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

Scanning Electron Microscope (SEM)

High Temperature Materials KGP003

Div. of Process Metallurgy Spring 2006

Page 2: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up to

40 keV is focused at the surface of the specimen in the microscope and scanned across it in a

'raster' or pattern of parallel lines. A number of phenomena occur at the surface under electron

impact: most important for scanning microscopy are the emission of secondary electrons with

energies of a few tens eV and re-emission or reflection of the high-energy backscattered

electrons from the primary beam. The intensity of emission of both secondary and

backscattered electrons is very sensitive to the angle at which the electron beam strikes the

surface, i.e. to topographical features on the specimen. The emitted electron current is

collected and amplified; variations in the resulting signal strength as electron probe is scanned

across the specimen are used to vary the brightness of the trace of a cathode ray tube being

scanned in synchronism with the probe. There is thus a direct positional correspondence

between the electron beam scanning across the specimen and the fluorescent image on the

cathode ray tube.

The magnification produced by scanning microscope is the ratio between the dimensions of

the final image display and the field scanned on the specimen. Usually magnification range of

SEM is between 10 to 200 000 X. and the resolution (resolving power) is between 4 to 10 nm

(40 - 100 Angstroms) .

There are many different types of SEM designed for specific purposes ranging from routine

morphological studies, to high-speed compositional analyses or to the study of environment -

sensitive materials. Our laboratory has a combination SEM and EDS, which in combination,

provide a powerful analytical approach for many research or quality control applications.

Here is example of using SEM in the material research.

The left image shows a Nimonic 115 heat and corrosion resistant wrought nickel alloy that

has not been exposed to excessive overheating. There is no evidence of significant growth of

- 2 -

Page 3: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

gamma prime precipitates. By using the backscattered electrons, two phases differing only

slightly in composition, can be distinguished.

The right image shows the effect of overheating. The material was exposed to a temperature

of 1200 C. The grain boundary has been effected, two phases have disappeared and the

structure of the edges has changed. The dark lobes correspond to an aluminum rich phase. A

typical triangular precipitate at the end of the "crack" can also be seen. It is composed of

titanium with a few percent of nitrogen.

ENERGY DISPERSIVE SPECTROSCOPY (EDS): Chemical analysis (microanalysis) in the scanning electron microscope (SEM) is performed

by measuring the energy or wavelength and intensity distribution of X-ray signal generated by

a focused electron beam on the specimen. With the attachment of the energy dispersive

spectrometer (EDS) or wavelength dispersive spectrometers (WDS), the precise elemental

composition of materials can be obtained with high spatial resolution. When we work with

bulk specimens in the SEM very precise accurate chemical analyses (relative error 1-2%) can

be obtained from larger areas of the solid (0.5-3 micrometer diameter) using an EDS or WDS.

Bellow is an example of EDS spectrum collected in the SEM with EDS. The spectrum shows

presence of Al, Si, Ca, Mn and Fe in the steel slag phase.

- 3 -

Page 4: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

THE PRINCIPLES BEHIND SEM:

Electron gun

Condenser lenses

Aperture

Detector

SEM sampleVacuum pump

Vacuum pump

Scan coils

Objective lens

Electron Beam In a SEM the electron beam energy and current are variables. The voltage is variable from

about 1 - 60keV and the current from 1e-7 to 1e-12 A. These are rough guidelines - the exact

ranges available depend on the instrument type and manufacturer.

Condenser lenses These magnetic lenses focus an image of the electron gun onto the aperture, in order to

spatially filter the electron beam.

Aperture Controls the spread of electrons in the column by de-selecting off-axis electrons. Vacuum pumps The specimen chamber and the column must both be evacuated, in order to prevent scattering

of the beam electrons by air molecules.

Electron gun Several different types of electron gun are used in SEMs, the most primitive being a simple

tungsten "hairpin" filament. The filament is heated by passing a current through it, and

electrons are then emitted via the process of thermionic emission. The effective size of this

- 4 -

Page 5: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

electron source (and hence the final electron spot size) can be reduced by instead using a

single crystal of lanthanum hexaboride (LaB6). Still finer resolution can be achieved using an

almost atomically sharp single crystal tungsten tip, which allows electrons to be emitted by a

field emission process. Scan coils These coils deflect the beam in order to scan the electron spot in a raster pattern across the

sample. Objective lens This magnetic lens focuses the electron beam onto the sample.

Detector At each beam position, some quantity or characteristic of the sample must be measured, so

that an image can be built up. The most commonly measured quantity is the rate of secondary

electrons emitted from the sample, and this is detected by using a scintillator in conjunction

with a photomultiplier.

SEM sample Conducting samples provide a path to earth for the beam electrons, and therefore require no

special preparation. Insulating materials, however, require a thin coating of a conductor (often

carbon or gold) in order to prevent charging.

DIFFERENT SEM MODES: Primary electron imaging When an electron from the beam encounters a nucleus in the sample, the resultant Coulombic

attraction results in the deflection of the electron's path, known as Rutherford elastic

scattering. A few of these electrons will be completely backscattered, re-emerging from the

incident surface of the sample. Since the scattering angle is strongly dependent on the atomic

number of the nucleus involved, the primary electrons arriving at a given detector position

can be used to yield images containing both topological and compositional information. Secondary electron imaging The high-energy incident electrons can also interact with the loosely bound conduction band

electrons in the sample. The amount of energy given to these secondary electrons as a result

of the interactions is small, and so they have a very limited range in the sample (a few nm).

Because of this, only those secondary electrons that are produced within a very short distance

of the surface are able to escape from the sample. This means that this detection mode boasts

high-resolution topographical images, making this, the most widely used of the SEM modes.

- 5 -

Page 6: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

Energy-Dispersive analysis of X-rays (EDX) Another possible way in which a beam electron can interact with an atom is by the ionization

of an inner shell electron. The resultant vacancy is filled by an outer electron, which can

release it's energy either via an Auger electron or (more importantly here) by emitting an X-

ray. This produces characteristic lines in the X-ray spectrum corresponding to the electronic

transitions involved. Since these lines are specific to a given element, the composition of the

material can be deduced. This can be used to provide quantitative information about the

elements present at a given point on the sample, or alternatively it is possible to map the

abundance of a particular element as a function of position.

Linescan (qualitative) The electron probe traverses along the line on the surface of stationary sample. Line scanning

produces graphs of elemental distributions across boundaries and through phases in sample.

This method is very illustrative for showing concentration gradients e.g. at grain or phase

boundaries.

Linescan (quantitative) The specimen is traversed along a predetermined line at steady rate with the help of the stage

stepping motors. After every step the specimen stops and quantitative element analysis is

performed. The number and the length of steps on the line are controllable.

Element map Along with a video image the distribution of predetermined elements is obtained for the

observed image area. The video and element images can easily be superimposed into a

composite image. This is excellent eg. for observing adjoining phases of different

composition, microchemical composition of inclusions in steel, and distribution of impurities

on the sample surface.

- 6 -

Page 7: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

EXAMPLES:

SEM-X-ray mapping

This Micrograph shows a secondary electron image of the cadmium telluride surface of

a polycrystalline CdS/CdTe cell.

Iron oxide Cancer Cells

- 7 -

Page 8: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

X-RAY DIFFRACTION (XRD)

High Temperature Materials

KGP003 Div. of Process Metallurgy

Spring 2006

- 8 -

Page 9: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

Background: X-rays are electromagnetic radiation of wavelength about 1 Å (1x10-9 m), which is about the

same size as an atom. They occur in that portion of the electromagnetic spectrum between

gamma rays and the ultraviolet. The discovery of X-rays in 1895 enabled scientists to probe

crystalline structure at the atomic level. X-ray diffraction has been in use in two main areas,

for the fingerprint characterization of crystalline materials and the determination of their

structure. Each crystalline solid has its unique characteristic X-ray pattern that may be used as

a "fingerprint" for its identification. Once the material has been identified, X-ray

crystallography may be used to determine its structure, i.e. how the atoms pack together in the

crystalline state and what the interatomic distance and angle are etc. X-ray diffraction is one

of the most important characterization tools used in solid-state chemistry and materials

science. The XRD technique requires only a small amount of material and is non-destructive

so that further analysis can be completed on the same material afterwards.

The workings of a modern x-ray diffractometer are quite complex but the general layout and

geometry is given in Figure 1. The basic components of an XRD diffractometer are the x-ray

source, the sample specimen and an x-ray detector.

Fig. 1 Arrangement and geometry of an x-ray diffractometer The X-ray radiation most commonly used is that emitted by copper, whose characteristic

wavelength for K radiation is =1.5418Å. When the incident beam strikes a powder sample,

diffraction occurs in every possible orientation of 2θ. The diffracted beam may be detected by

using a moveable detector such as a Geiger counter, which is connected to a chart recorder. In

normal use, the counter is set to scan over a range of 2θ values at a constant angular velocity.

- 9 -

Page 10: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

Routinely, a 2θ range of 5 to 70 degrees is sufficient to cover the most useful part of the

powder pattern. The scanning speed of the counter is usually 1-2 degrees/min and therefore,

about 30 minutes to 1 hour is needed to obtain a trace.

Theory: A crystal system can be thought of as a structure built from unit cells that, when stacked, fill

three-dimensional space. There are seven discrete unit cell shapes in three-dimensional space.

These seven unit cell shapes are known as the seven crystal systems: triclinic, monoclinic,

orthorhombic, tetragonal, hexagonal, rhombohedral, cubic. Each point in a unit cell is an

atom within the crystal structure. Hence, the physical aspects of crystal structure on an

atomic level are possible to investigate using XRD.

The concept of XRD is based on Bragg’s law, λ=2dsinθ. Where λ is wavelength, d is the

interplanar distance between atoms in the crystal and θ is the incident and reflection angle of

x-rays.

Fig. 2 Reflection of x-rays from two planes of atoms in a solid Figure 2 illustrates the path difference between two x-rays reflecting from two planes of

atoms in a crystal:

2λ = 2dsinθ

For constructive interference (destructive interference cancels the reflection) between these x-

rays, the path difference must be an integral number of wavelengths:

This leads to the Bragg equation:

nλ= 2dsinθ

- 10 -

Page 11: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

Figure 3 shows the x-ray diffraction pattern from a single crystal of layered clay. Strong

intensities can be seen for a number of values of n, i.e. different atomic planes; from each of

these lines we can calculate the value of d, the interplanar spacing between the atoms in the

crystal.

Fig. 3 X-ray diffraction pattern from layered structure vermiculite clay EXAMPLE: Unit Cell Size from Diffraction Data

The diffraction pattern of copper metal was measured with x-ray radiation of wavelength of

1.54 Å. The first order Bragg diffraction peak was found at an angle 2θ of 69.32 degrees.

Calculate the spacing between the diffracting planes in the copper metal.

The Bragg equation is:

nλ = 2dsinθ

We can rearrange this equation for the unknown spacing d:

d = nλ/2sinθ

θ is 34.66 degrees, n =1, and wavelength = 1.54 Å, and therefore

d= 1 x 1.54/(2 x 0.5687) = 1.354 ÅPractical Application: What criteria should a powder sample have to be suitable for XRD?

• Suitable grain size

The size should be between 70 μm (high symmetry) of 50 μm (lower symmetry) to

about 0.5 μm. Overly small grain sizes give peak broadening. Overly large grain

sizes give preferred orientation and “spotty” peaks. Use a mill, but not for too long or

you will create amorphous material! (noncrystalline).

• Randomly oriented crystals

- 11 -

Page 12: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

The sample loading into the specimen holder is important. Do not work with the sample

more than necessary, otherwise preferred orientation may occur and alter the relative

intensity of the resulting peaks.

• Flat, smooth and aligned

Theoretically a curved sample would be optimal (better focusing) but most specimen

holders have a flat design for ease of loading. The sample must be aligned at the correct

height, otherwise a height error will shift the 2θ scale.

• Suitable sample area

The length of the x-ray beam is about 12 mm on the sample and the width is controlled by

slits. We often use variable slits so that the width is 20 mm independent of θ. If the

sample size is too small, the intensity will be lowered.

• Suitable sample thickness

The x-rays penetrate a few micrometers into the sample surface, therefore, the sample

should be thicker than this.

• Homogenous

If a standard powder is added to the sample, mix them thoroughly in order to maintain a

relative homogenous sample.

• Avoid using amorphous sample holders

If you still want to use for instance a glass slide as sample holder, take in to account that

the glass can add amorphous pattern to your sample original highly crystalline pattern.

How to identify an unknown sample with XRD?

• Identify the three most intense reflections and determine their d-spacing

• Search for corresponding d-values in a reference (Hanawalt Search Manual, computer

software such as EVA), start with the most intense peak and work in descending order

of peak intensity

• After finding the d-values which correspond the best with d-values from the sample

compare the intensities of the sample reflections with the reference reflections

• Compare d and intensity values for the entire diffractogram, only when full agreement

with reference values has been reached is the identification of unknown sample

complete.

- 12 -

Page 13: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

THERMAL ANALYSIS

-4

-2

0

2

4

DSC /(mW/mg)

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

TG /%

50 100 150 200 250 300Temperature /°C

-0.5

0

0.5

1.0

1.5

Ion Current *10-8 /A

Sample: NaHCO3

(theor. 36.90%)

0.25 ml CO2 pulse

1 ml CO2 pulse

amu 44 (CO2)

0.436 mg 1.745 mg-> 1.34 mg evolved(theor. 1.30 mg)

2 NaHCO3 -> Na2CO3 + H2O + CO2 157.7 °C

452.04 J/g

-36.80 %

↓ exo

High Temperature Materials KGP003

Div. of Process Metallurgy Spring 2006

- 13 -

Page 14: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

Background:

Thermal analysis includes a group of methods by which the physical and chemical properties

of a substance, a mixture and/or reaction mixtures are determined as a function of

temperature or time, while the sample is subjected to a controlled temperature program. The

program may involve heating or cooling (dynamic), or holding the temperature constant

(isothermal), or any combination of these.

TGA stands for Thermo-Gravimetric Analysis. TGA can be used for the determination of

decomposition weight loss, combustion analysis, temperature stability, and moisture content

and reaction mechanism.

TGA monitors weight versus temperature. It can detect changes in weight of 1 ug. This is

accomplished with an extremely sensitive balance hanging inside a furnace. A thermocouple

mounted just a few millimeters from the sample pan ensures accurate temperature of the

sample. There are several events that can be calculated for any run.

Thermal Analysis methods: Differential Thermal Analysis (DTA) Differential Scanning Calorimetry (DSC) Thermogravimetry (TG) Simultaneous Thermal Analysis (STA) Thermomechanical Analysis (TMA) Dilatometry (DIL) Dynamic Mechanical Analysis (DMA) Combined (Hyphenated) Techniques (TA - MS, TA - FT-IR, PTA) Thermal Conductivity Testing (TCT) Thermal Diffusivity Measurement (LFA) Refractories Testing (RUL, CIC, MOR)

THERMOGRAVIMETRY (TG):

This is a technique by which the mass of the sample is monitored as a function of

temperature or time, while the sample is subjected to a controlled temperature program.

Dm = mass change dm/dt = rate of mass change/decomposition DTG = derivative thermogravimetry DTG Peak = characteristic decomposition temperatures ® identification Tonset = thermal stability Composition = moisture content, solvent content, additives, polymer content,

filler content , dehydration , decarboxylation, oxidation, decomposition.

The curve of thermogravimetry analysis is build around a furnace where the sample is

mechanically connected to an analytical balance. The first thermobalance was developed by

- 14 -

Page 15: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

K. Honda in 1915. I t be came widespread from 1950s when the derivated thermogravimetric

(DTG) was solved.

Balance, furnace and control/data handling system are the three essential parts of a modern

TG instrument. There are three main possibilities to place the sample relative to the balance:

a- suspended, b- horizontal, c- top-loading see figure 2.

Figure1 – Schematic of Thermogravimetry system

A B C

Figure 2 – Position of the sample in thermobalance

- 15 -

Page 16: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

DIFFERENTIAL THERMAL ANALYSIS (DTA):

DTA is a technique measuring the difference in temperature between a sample and a

reference (a thermally inert material) as a function of time or the temperature, when they

undergo a temperature scanning in a controlled atmosphere. The DTA method enables any

transformation to be detected for all the categories of materials.

Applications: Melting and crystallisation behavior, Heat of melting and crystallisation, Heat

of reaction, Reaction kinetics, Glass transitions, Oxidative stability, Thermal stability.

DIFFERENTIAL SCANNING CALORIMETRY (DSC):

DSC is a technique which determines the variation in heat flow released or captured by a

sample when it undergoes temperature scanning in a controlled atmosphere. When heating or

cooling, any transformation taking place in a material is accompanied by an exchange of

heat; DSC enables the temperature of this transformation to be determined and the heat from

it to be quantified. Calibration is necessary.

1. Power compensated DSC

2. Heat flux DSC

3. Applications, see DTA

SIMULTANEOUS THERMAL ANALYSIS (STA):

This technique combines thermogravimetry with differential thermal analysis or differential

scanning calorimetry in one run.

- Possible to consider the real sample mass at a given temperature in Cp determination.

- No temperature differences between signals of TG and DTA/DSC measurement.

Simultaneous Thermal Analysis (STA) is used for the following applications:

Characteristic temperatures

Identification

Glass transitions

Melting and crystallization behavior

Heat of melting and crystallization

Polymorphism

Solid-liquid ratio

Specific heat capacity

Reaction behavior

Heat of reaction

Reaction kinetics

Oxidative stability

- 16 -

Page 17: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

COMBINED (HYPHENATED) TECHNIQUES:

With these thermoanalytical methods, for example TG-DTA-MS (Thermogravimetric-

Differential Thermal-Mass Spectrometric analysis), the gases evolved from the sample

during a thermal analysis experiment are detected/analyzed.

APPARATUS (STA 409C)

The STA 409C instrument consists of the following main parts (see figure 3):

Registration control cabinet, Measuring part, Computer system with printer, Thermostat,

Evacuating system (vacuum pump)

20 °

10

control cabinet

TA-controller measuring part Computer sustem

printer

thermostatvacuum pump

Figure 3 – Assembly diagram of STA 409 C/7/E measuring equipment

The schematics of STA 409C and STA with QMS are shown in figures 4 and 5 respectively.

The balance and furnace are sequentially evacuated and purged with inert gas. Two programs

are used with this instrument. One for setting operating conditions, running the STA and data

acquisition, another for evaluating the data obtained. In order to avoid buoyancy effect, a

TG/DTA correction must be run with empty crucibles and the data obtained will be used as

reference when running with a crucible containing sample.

- 17 -

Page 18: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

Gas outlet

Furnace

Sample carrier

radiation shield

protective tube

vacuum

reactive gasprotective gas

inductive displacement transducerelectromagnetic compensation system

vacuum tight casing

DSC and TG carrier

thermostatic control

evacuation system

Figure 4 - Scheme of STA-409 C (B).

Figure 5 – Schematic of Skimmer

THE QUADRAPOLE MASS SPECTROMETER: The quadrapole mass filter was originally proposed by W. Paul Its basic design is illustrated

in figure 6. In a high-frequency, quadrupole electric field, which in the ideal case is generated

by four hyperbolic rod electrodes a distance of 2ro apart at the tips, it is possible to separate

ions according to their mass/charge ratio (m/e). The hyperbolic surfaces are approximated

with sufficient accuracy by cylindrical rods of circular cross-section. The voltage between

- 18 -

Page 19: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

these electrodes is composed of high-frequency alternating component Vcoswt and a

superposed direct voltage U.

Figure 6 – Structure of quadrapole analyser

Classification of TG curve

Figure 7 shows different types of TG curves can be obtained from TA 409C equipment. Their

classification is as following:

Type A. It shows no mass change over temperature range selected. DSC can be used to investigate if non - mass changing processes have occurred.

Type B. Large initial mass loss followed by mass plateau evaporation of volatile compounds during polymerization drying and deposition give rise to such a curve.

Type C. Single stage decomposition. Type D. Multi-stage decomposition, where the reaction steps are easily resolved. Type E. The individual reaction steps are not well resolved, DTG curve is preferred to

characterize this type of curve. Type F. Presence of an interacting atmosphere, a mass increase is observed, surface

oxidation reactions. Type G. Mass increase followed by decomposition, such as surface oxidation followed by

decomposition of the reaction products.

- 19 -

Page 20: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

A

B

C

D

E

F

G

MA

SS IN

CR

EA

SE

TEMPERATURE 1°C

Figure 7 – Behavior of different TG curves.

Behavior of TG/DTA curves

TG DTA/DSC Glass Transition

Melting

Crystalisation

Evaporation

Sublimation

Decomposition

Reduction

Oxidation MA

SS IN

CR

EA

SE

dH/d

t, E

ND

O

Figure 8 – Comparison of TG and DTA curves

EXAMPLE: Decomposition of Calcium oxalate ( CaC2O4.H2O)

- 20 -

Page 21: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

The behavior of calcium oxalate (CaC2O4.H2O) in inert atmosphere is shown in figures 9 and

10. Figure 9 illustrates a thermogram obtained from TG + QMS analysis. It shows the weight

loss % and the coinciding evolution of gas with different composition during heat treatment of

CaC2O4.H2O. The following mass units can be seen: 18 (H2O), 28 (CO), 44 (CO2). Figure 10

is a recorded thermogram obtained from TG analysis by increasing the temperature of pure

calcium oxalate at a rate 5°C/min. The clearly defined horizontal regions correspond to

temperature ranges in which the indicated calcium compounds are stable. The decomposition

of calcium oxalate in inert atmosphere is as follows:

Temperature °C Compounds Residue Volatiles

100 - 226 CaC2O4.H2O CaC2O4 H2O

346 - 420 CaC2O4 CaCO3 CO

660 - 840 CaCO3 CaO CO2

Figure 9 – TG+QMS of the Calcium oxalate treated in helium atmosphere.

- 21 -

Page 22: Scanning Electron Microscope (SEM)/5bd7b04a.pdf · SCANNING ELECTRON MICROSCOPY (SEM): In the scanning electron microscope (SEM) a very fine 'probe' of electrons with energies up

CaC2O4.H2O

CaC2O4

CaCO3

CaO

CO

H2O

CO2

100 °

226 °

420 ° 660 °

840 ° 980 °

346 °

Wei

ght,

g

Temperature, °C

Figure 10 – Decomposition of CaC2O4.H2O in an inert atmosphere

Figure 11 shows the derivative of the thermogram shown in figure 10. This derivative curve

may reveal information that is not identified in ordinary thermogram. For example, the three

peaks at 140 °C, 180 °C and 205 °C, are related to three hydrates which lose moisture at

different temperatures. At 450 °C, CO results during weight loss and at 780 °C, CO2 results

during weight loss.

140 °

dm/d

t

Temperature, °C

180 ° 205 °

450 °

780 ° 1030 °

Figure 11 – DTG of CaC2O4.H2O in an inert atmosphere (4).

- 22 -