s&as:int: autonomous multi-robot visual monitoring for ... · b/c. autonomous navigation under...

6
S&AS:INT: Autonomous Multi-Robot Visual Monitoring for Urban, Agricultural, and Natural Resource Management PI: A. Roy-Chowdhury Co-PIs: K. Karydis, Q. Zhu, A. Mourikis, G. Jenerette Senior Personnel: N. Abu-Ghazaleh University of California, Riverside

Upload: others

Post on 14-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: S&AS:INT: Autonomous Multi-Robot Visual Monitoring for ... · B/C. Autonomous Navigation under Energy, Computation and Communication Constraints Goal: Develop and evaluate multi-robot

S&AS:INT:AutonomousMulti-RobotVisualMonitoringforUrban,Agricultural,andNaturalResourceManagement

PI:A.Roy-ChowdhuryCo-PIs:K.Karydis,Q.Zhu,A.Mourikis,G.Jenerette

SeniorPersonnel:N.Abu-GhazalehUniversityofCalifornia,Riverside

Page 2: S&AS:INT: Autonomous Multi-Robot Visual Monitoring for ... · B/C. Autonomous Navigation under Energy, Computation and Communication Constraints Goal: Develop and evaluate multi-robot

Research Objective

Framework for multi-agent aerial imaging systems that can adapt autonomously toenvironmental conditions, technical constraints, and ethical considerations for dataanalysis, trajectory planning, and computation/communication resource management,with applications in monitoring vegetation health.

Overview:Thisworksynthesizesideasfromvisualsensing,autonomousrobotnavigation,decisionmaking andsystemoptimization todevelopageneralframeworkforadaptivemulti-agentvisualmonitoringappliedtonaturalresourcemanagement.

Page 3: S&AS:INT: Autonomous Multi-Robot Visual Monitoring for ... · B/C. Autonomous Navigation under Energy, Computation and Communication Constraints Goal: Develop and evaluate multi-robot

A. AdaptiveVisualAnalysis1. Adaptivealgorithmdesignandselection2. Resource-constrainedoptimaldataprocessing

B. AutonomousAerialRobotNavigation1. ReliableGPS-deniedposeestimationwithmulti-modalvisualinput

a. Useofmulti-modalvisualinputb. Useofsatellitemapsforbounded-uncertaintyvisuallocalization

2. Trajectoryplanningandcontrolunderconflictingconstraintsa. Aerodynamicsandenergeticsofroboticflightinrealisticoperationalconditionsb. Sensory-basedadaptiveplanningunderconflictingconstraints

C. System-levelDecisionMakingandAdaptation1. Sensingandnavigationco-adaptation2. Computationandcommunicationconstraintsanalysisandmitigation

Major Research Tasks

Page 4: S&AS:INT: Autonomous Multi-Robot Visual Monitoring for ... · B/C. Autonomous Navigation under Energy, Computation and Communication Constraints Goal: Develop and evaluate multi-robot

A. Online Video Summarization: Video Fast-Forwarding via Reinforcement Learning (CVPR 18)

Goal: Develop a method for fast-forwarding through a video that is computationallyefficient, causal, online and results in informative video segments

Approach:

• Formulate fast-forwarding as Markov Decision Process (MDP)- Solve using Q-learning• Online framework to deal with incremental observations without requiring to store and

process the entire video• Experiments on 2 standard summarization datasets – about 6%-20% improvement in

coverage with 80% reduction in number of frames processed

ReinforcementLearningFrameworkforFast-ForwardingVideos

Page 5: S&AS:INT: Autonomous Multi-Robot Visual Monitoring for ... · B/C. Autonomous Navigation under Energy, Computation and Communication Constraints Goal: Develop and evaluate multi-robot

Approach:

• Introducefaithfulmodelstocaptureandmitigatetheimpactofvariousconstraints,e.g.,energyconsumptionatvariousspeedsorincloseproximitytootherrobots.

• Introduceaccurateandreliablevisual-inertialodometrymethodstoclosefastaction-perceptionloopsforautonomousnavigation.

• Developnewmulti-robotdeploymentalgorithmsthatareawareofenergyconsumptiontooptimizerobotformationsandtaskallocation.

• Developresourcemanagementpoliciestotradeoffaccuracyandperformancetomeetcomputationalconstraintsandoperateundervariableconnectivity.

B/C. Autonomous Navigation under Energy, Computation and Communication Constraints

Goal: Develop and evaluate multi-robot motion planning and navigationalgorithms under energy, computation and communication constraints

Quadrotorflightisfoundmoreenergyefficientwhenflyingforwardat5-8m/s.

Page 6: S&AS:INT: Autonomous Multi-Robot Visual Monitoring for ... · B/C. Autonomous Navigation under Energy, Computation and Communication Constraints Goal: Develop and evaluate multi-robot

Evaluation: Imaging and Modeling Vegetation

Goal:Identifyandcharacterizevegetationcanopyforrapidevaluationofhealthandproductivity.

Approach:

• CombinefieldsurveyswithUAV-basedimageryinvisibleandthermalwavelengths• Rapidlyidentifyspeciesofdominantplants,andtheirhealth• Usestructure-through-motionapproachtoreconstruct3-dimensionalgeometryofvegetation

Initialcollectionofhighresolutionimageryfromacommunitywithtwodominantplantspecies.

Exampleof3-Dreconstructionoffieldsiteusingthestructure-throughmotionapproach.