sars mission:iiss o p panelael designes gi andadd ... · seosar/pazsos // sars mission:iiss o p aa....

1
/ i i / i i SEOSAR/PAZ SAR Mission: P SEOSAR/PAZ SAR Mission: P A Zurita A Solana and th A. Zurita , A. Solana and th (1) all authors are with EADS CASA E all authors are with EADS CASA E 1It d ti 1. Introduction SEOSAR/PAZ is the first Spanish high resolution X Band Synthetic Aperture SEOSAR/PAZ is the first Spanish high resolution XBand Synthetic Aperture Radar . The entire system is being developed under control and supervision of Radar . The entire system is being developed under control and supervision of Hisdesat, who is also responsible for satellite operation and data exploitation. EADS CASA Espacio is the Satellite prime contractor company leading a wide id til ti hil INTA i ibl f th G d S t industrial consortium, while INTA is responsible for the Ground Segment. System Parameters Lifetime 5.5 years Orbit 514 km, polar dawndusk sunsynchronous Revisit time 1 day Imaging 420 s (max.), 3 min (avgerage) per orbit Modes Stripmap, Scansar , Spotlight (single, dual, quad) SAR antenna 12 active panels (0.7 x 4.8 m each) Weight 1350 kg Frequency 9.65 GHz (300 MHz bandwidth) Downlink 300 Mbps XBand (encrypted) Table 11 System Parameters 2 Panel Design 2. Panel Design Instrument panel consists of: Instrument panel consists of: 32 Antenna Subarrays (H&V) 32 TransmitReceive Modules (TRM) l b k( ) 1 Panel Distribution Network (1:32) 1 Panel Calibration Network (1:32) 1 Panel Calibration Network (1:32) 1 Panel Supply Unit 1 Panel Supply Unit 1 Panel Control Unit Antenna Subarray Figure 2 1 Panel functional architecture Each subarray contains 16 circular patches Figure 21 Panel functional architecture Each subarray contains 16 circular patches spaced 0.7 λ x 0.8 λ and fed via a multilayer stripline Beam Forming Network (H&V pol.). Measured losses achieved are < 1dB. TR Modules Figure 22 Subarray in anechoic chamber TRM performs the following functions: P lifi i d h Power amplification and phase adjustment the TX signal adjustment the TX signal Amplification and phase adjustment of RX echo signals TX Power>37dBm Switching between H and V C li RX d TX i l f RX Gain>28dB Ni Fi <4 3 dB Coupling RX and TX signals for calibration purposes Noise Fig.<4.3 dB Figure 2 3 TR Module Panel Distribution/Calibration Networks calibration purposes Figure 23 TR Module Panel Distribution/Calibration Networks Stripline Wilkinson dual power dividers 1:16 and 1:2 (double stacked) Stripline Wilkinson dual power dividers 1:16 and 1:2 (doublestacked) Parallel feeding to minimize amplitude/phase errors Parallel feeding to minimize amplitude/phase errors Figure 2 4 1:16 dual power divider Panel Control Unit Figure 24 1:16 dual power divider Figure 25 PAZ panel model Panel Control Unit Control of panel 32 TRM (phase & amplitude) datatake beam configurations Control of panel 32 TRM (phase & amplitude) datatake beam configurations TRM compensation: temperature, path offsets, biasing and parasitic effects Panel Supply Unit Generation of 32 TRM secondary voltages 3 Panel Qualification 3. Panel Qualification Figure 31 Qualification test campaign Physical measurements: mass centre of gravity (z axis) Figure 3 1 Qualification test campaign Physical measurements: mass, centre of gravity (zaxis) RF preenvironmental test: subarrays amplitude/phase offsets, antenna model first validation Vibration: sine and random vibration (3 axis) Th l Bl /Th l V Q lifi ti f th l t l t Thermal Balance/Thermal Vacuum: Qualification of thermal control system and evaluation of electrical and functional performances and evaluation of electrical and functional performances RF postenvironmental: Embedded subarray beam patterns verification ESA E h Ob i S Sh l 2010 ESRIN A 2010 ESA Earth Observation Summer School 2010, ESRIN, August 2010 l i d f l i d f Panel Design and Performance Panel Design and Performance he PAZ Team (1) he PAZ Team (1) SPACIO Madrid Spain SPACIO, Madrid, Spain 4 Instrument Performance 4. Instrument Performance Antenna Model Antenna Model An accurate knowledge of SAR radiation patterns is needed for precise onAn accurate knowledge of SAR radiation patterns is needed for precise on ground image processing and data products calibration. Endtoend calibration shall take minimum operation time minimizing performance degradations and long recalibration periods. Figure 41 Panel functional architecture Validation & Verification Each performance parameter is verified by review of design, analysis or test of a set of contributions. These contributions are addressed in a first i i P l lifi i l l approximation at Panel qualification level. StripmapSingle Performance Requirements StripmapSingle Performance Requirements Parameter Value First results Polarization HH, VV ll f l ° ° Full performance angle range 20° 45° Data collection angle range 15° 45° Data collection angle range 15 45 Azimuth resolution 3m Range resolution 3m Swath 30 km Swath 3 Swath 14 NESZ (worst case) ≤‐19 dB Swath3 Swath14 19.5 dB 21.2 dB RASR (worst case) ≤‐17 dB 37.1 dB 28.5 dB AASR 17 dB 26 0 dB 25 9 dB AASR 17 dB 26.0 dB 25.9 dB Radiometric stability 0.5 dB 0.20 dB 0.10 dB Relative radiometric accuracy 0.5 dB 0.31 dB 0.22 dB Absolute radiometric accuracy 1 dB 0.57 dB 0.34 dB Phase stability (50 sec window) 5 degrees 4 37 ± 0 48 degrees Table 41 SMS performance requirements Phase stability (50 sec. window) 5 degrees 4.37 ± 0.48 degrees 5. Conclusions 5. Conclusions Consolidated panel design to allow for full performance compliance of customer requirements S t lib ti d t h t i ti t f t System calibration and accurate characterization measurements of antenna patterns and subsystems to validate onground instrument performances patterns and subsystems to validate on ground instrument performances 6. References [1] F . Cerezo, M. Fernández, A. Borges, J. SánchezPalma, J. Lomba, R. Trigo, J. Ureña, E. Vez, M López ‘The Spanish Earth Observation Programme’ Advanced RF Sensors and Remote M. López, The Spanish Earth Observation Programme , Advanced RF Sensors and Remote Sensing Instruments 2009 [2] F . Monjas Sanz, M. I. MartínHervás, ‘Dual polarized subarray for Spaceborne SAR at Xband’, EUCAP 2009 band , EUCAP 2009 [3] M. Labriola, J.M. Gonzalez Arbesu, J. Romeu, I. Calafell, J. Closa, P. Saameno, J. Sanchez, A. f ( )’ Solana, ‘AMOR: an Antenna MOdeleR for the Spanish SAR Satellite (PAZ)’, Advanced RF Sensors and Remote Sensing Instruments 2009, Noordwijk, November 2009 Sensors and Remote Sensing Instruments 2009, Noordwijk, November 2009 [4] P. Saameño, J. Closa, M. Labriola, J. Sánchez Palma, A. Solana, F. López Dekker, A.García d d d h f d Mondejar, A. Broquetas, ‘Radiometric Budget Characterization of XBand SAR Instrument OnBoard PAZ’, Advanced RF Sensors and Remote Sensing Instruments, 2009 Board PAZ , Advanced RF Sensors and Remote Sensing Instruments, 2009 Alb Z i @ i d [email protected]

Upload: tranminh

Post on 28-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

/ i i/ i iSEOSAR/PAZ SAR Mission: PSEOSAR/PAZ SAR Mission: PS OS / S ss oS OS / S ss oA Zurita A Solana and thA. Zurita, A. Solana and th

(1) all authors are with EADS CASA E( ) all authors are with EADS CASA E

1 I t d ti1. Introduction

SEOSAR/PAZ is the first Spanish high resolution X Band Synthetic ApertureSEOSAR/PAZ is the first Spanish high resolution X‐Band Synthetic ApertureRadar. The entire system is being developed under control and supervision ofRadar. The entire system is being developed under control and supervision ofHisdesat, who is also responsible for satellite operation and data exploitation.EADS CASA Espacio is the Satellite prime contractor company leading a widei d t i l ti hil INTA i ibl f th G d S tindustrial consortium, while INTA is responsible for the Ground Segment.

System Parameters

Lifetime 5.5 years

Orbit 514 km, polar dawn‐dusk sunsynchronous

Revisit time 1 day

Imaging 420 s (max.), 3 min (avgerage) per orbit

Modes Stripmap, Scansar, Spotlight (single, dual, quad)

SAR antenna 12 active panels (0.7 x 4.8 m each)

Weight 1350 kg

Frequency 9.65 GHz (300 MHz bandwidth)

Downlink 300 Mbps X‐Band (encrypted)

Table 1‐1 System Parameters

2 Panel Design2. Panel Design

Instrument panel consists of:Instrument panel consists of: 32 Antenna Subarrays (H&V) 32 Transmit‐Receive Modules (TRM) l b k ( ) 1 Panel Distribution Network (1:32) 1 Panel Calibration Network (1:32) 1 Panel Calibration Network (1:32) 1 Panel Supply Unit 1 Panel Supply Unit 1 Panel Control Unit

Antenna SubarrayFigure 2 1 Panel functional architecture

Each subarray contains 16 circular patches

Figure  2‐1 Panel functional architecture

Each subarray contains 16 circular patchesspaced 0.7 λ x 0.8 λ and fed via a multilayerp ystripline Beam Forming Network (H&V pol.).Measured losses achieved are < 1dB.

TR Modules

Figure  2‐2 Subarray in anechoic chamber

TRM performs the following functions: P lifi i d h Power amplification and phaseadjustment the TX signaladjustment the TX signal Amplification and phase adjustmentp p jof RX echo signals TX Power>37dBm Switching between H and V C li RX d TX i l f

RX Gain>28dBN i Fi <4 3 dB Coupling RX and TX signals for

calibration purposes

Noise Fig.<4.3 dB

Figure 2 3 TR Module

Panel Distribution/Calibration Networks

calibration purposes Figure  2‐3 TR Module

Panel Distribution/Calibration Networks Stripline Wilkinson dual power dividers 1:16 and 1:2 (double stacked) Stripline Wilkinson dual power dividers 1:16 and 1:2 (double‐stacked) Parallel feeding to minimize amplitude/phase errors Parallel feeding to minimize amplitude/phase errors

Figure 2 4 1:16 dual power divider

Panel Control Unit

Figure  2‐4 1:16 dual power dividerFigure  2‐5 PAZ panel model

Panel Control Unit Control of panel 32 TRM (phase & amplitude) datatake beam configurations Control of panel 32 TRM (phase & amplitude) datatake beam configurations TRM compensation: temperature, path offsets, biasing and parasitic effectsp p , p , g p

Panel Supply Unit Generation of 32 TRM secondary voltages

3 Panel Qualification3. Panel Qualification

Figure 3‐1 Qualification test campaign

Physical measurements: mass centre of gravity (z axis)

Figure  3 1 Qualification test campaign

Physical measurements: mass, centre of gravity (z‐axis) RF pre‐environmental test: subarrays amplitude/phase offsets, antennap y p /p ,model first validation Vibration: sine and random vibration (3 axis) Th l B l /Th l V Q lifi ti f th l t l t Thermal Balance/Thermal Vacuum: Qualification of thermal control systemand evaluation of electrical and functional performancesand evaluation of electrical and functional performances RF post‐environmental: Embedded subarray beam patterns verificationp y p

ESA E h Ob i S S h l 2010 ESRIN A 2010ESA Earth Observation Summer School 2010, ESRIN, August 2010                                                                             

l i d fl i d fPanel Design and PerformancePanel Design and Performancea e es g a d e o a cea e es g a d e o a cehe PAZ Team (1)he PAZ Team (1)

SPACIO Madrid SpainSPACIO, Madrid, Spain

4 Instrument Performance4. Instrument Performance

Antenna ModelAntenna ModelAn accurate knowledge of SAR radiation patterns is needed for precise on‐An accurate knowledge of SAR radiation patterns is needed for precise onground image processing and data products calibration. End‐to‐endg g p g pcalibration shall take minimum operation time minimizing performancedegradations and long re‐calibration periods.

Figure  4‐1 Panel functional architecture

Validation & Verificationg

Each performance parameter is verified by review of design, analysis or test ofa set of contributions. These contributions are addressed in a first

i i P l lifi i l lapproximation at Panel qualification level.Stripmap‐Single Performance RequirementsStripmap‐Single Performance Requirements

Parameter Value First results

Polarization HH, VV

ll f l ° ° Full performance angle range 20° ‐ 45°

Data collection angle range 15° ‐ 45° Data collection angle range 15 45

Azimuth resolution ≤ 3m

Range  resolution ≤ 3m

Swath ≥ 30 km

Swath 3 Swath 14

NESZ (worst case) ≤ ‐19 dB

Swath‐3 Swath‐14

‐19.5 dB ‐21.2 dB

RASR (worst case) ≤ ‐17 dB ‐37.1 dB ‐28.5 dB

AASR ≤ 17 dB 26 0 dB 25 9 dBAASR ≤ ‐17 dB ‐26.0 dB ‐25.9 dB

Radiometric stability ≤ 0.5 dB 0.20 dB 0.10 dBy

Relative radiometric accuracy ≤ 0.5 dB 0.31 dB 0.22 dB

Absolute radiometric accuracy ≤ 1 dB 0.57 dB 0.34 dB

Phase stability (50 sec window) ≤ 5 degrees 4 37 ± 0 48 degrees

Table  4‐1 SM‐S performance requirements

Phase stability (50 sec. window) ≤ 5 degrees 4.37 ± 0.48 degrees

p q

5. Conclusions5. Conclusions

Consolidated panel design to allow for full performance compliance ofcustomer requirements S t lib ti d t h t i ti t f t System calibration and accurate characterization measurements of antennapatterns and subsystems to validate on‐ground instrument performancespatterns and subsystems to validate on ground instrument performances

6. References

[1] F. Cerezo, M. Fernández, A. Borges, J. Sánchez‐Palma, J. Lomba, R. Trigo, J. Ureña, E. Vez,M López ‘The Spanish Earth Observation Programme’ Advanced RF Sensors and RemoteM. López, The Spanish Earth Observation Programme , Advanced RF Sensors and RemoteSensing Instruments 2009[2] F. Monjas Sanz, M. I. Martín‐Hervás, ‘Dual polarized subarray for Spaceborne SAR at X‐band’, EUCAP 2009band , EUCAP 2009[3] M. Labriola, J.M. Gonzalez Arbesu, J. Romeu, I. Calafell, J. Closa, P. Saameno, J. Sanchez, A.

‘ f ( )’Solana, ‘AMOR: an Antenna MOdeleR for the Spanish SAR Satellite (PAZ)’, Advanced RFSensors and Remote Sensing Instruments 2009, Noordwijk, November 2009Sensors and Remote Sensing Instruments 2009, Noordwijk, November 2009[4] P. Saameño, J. Closa, M. Labriola, J. Sánchez Palma, A. Solana, F. López Dekker, A.García

d ‘ d d h f dMondejar, A. Broquetas, ‘Radiometric Budget Characterization of X‐Band SAR Instrument On‐Board PAZ’, Advanced RF Sensors and Remote Sensing Instruments, 2009Board PAZ , Advanced RF Sensors and Remote Sensing Instruments, 2009

Alb Z i @ i d                                             [email protected]