san feliu org cth.fhi-berlin.mpg.de/th/meetings/mariecuriepsik2008/talks/woell-60min... · 7 13 two...

31
1 Christof Wöll Lehrstuhl Physikalische Chemie I Ruhr-Universität Bochum The Physics and Chemistry of Organic Surfaces: Fabrication of Model Systems using the Selfassembly of Organothiols on Gold Gold-Substrat Bochum University 2 Molecules and Surfaces LCD Display Sensor Devices Cell Membranes Friction and Lubrication P < 10mBar -9 P (P < 10mBar) -9 Heterogenous Catalysis Molecular Beam Epitaxy Chemical Vapour Deposition

Upload: others

Post on 21-Mar-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

1

1

Christof WöllLehrstuhl Physikalische Chemie I

Ruhr-Universität Bochum

The Physics and Chemistry of Organic Surfaces: Fabrication of Model Systems

using the Selfassembly of Organothiols on Gold

Gold-Substrat

Bochum University

2

Molecules and Surfaces

LCD Display

Sensor DevicesCell Membranes

Friction and LubricationP < 10mBar-9 P

(P < 10mBar)-9

HeterogenousCatalysis

Molecular Beam Epitaxy

Chemical Vapour Deposition

Page 2: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

2

3

Why Organic surfaces ?• Inorganic Surfaces

– Metals (Heterogeneous Catalysis, Electronics, Corrosion, Friction, Adhesion)

– Semiconductors (Electronics, Interfaces)– Insulators (Heterogeneous Catalysis, Corrosion inhibitions, Friction,

Adhesion)

• Organic Surfaces– Large Variety of Molecules– Relevance for Biology and Biochemistry– Friction, Corrosion, Adhesion, Sensor devices……– But…. application of standard Surface Science

techniques not straightforward (insulating, soft, sensitive to radiation,…)

4

Organic molecule with liquid crystalline phase

Polymer substrate (Polyimide)

Liquid crystal displays

LCD

Page 3: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

3

5

Fabrication of organic surfaces

• Surfaces of polymers (plastics) prepared by cutting or casting– Disadvantage: Very difficult to obtain surfaces

exposing predefined chemical functionality– Quality of surfaces (cleanliness, structural

order) often not satisfying– Standard methods in Surface Science not

applicable

6

• Adsorption of a simple (monofunctional) molecule not very efficient

• Either bonding is so strong that molecule is modified• Or bonding is so weak that system is unstable at

room-temperature

Grafting of interesting molecules to a metal substrate

~30°~30°

Better: Anchor – Chain - Function

Substrate

Example: benzene

Page 4: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

4

7

Required: Strong binding to substrate

Unspecific ionic coupling (LB films) not enough

Ideal: Formation of a covalent chemical bond

8

Different anchor groups for different substrates

• Si, SiO2, Al2O3,…. (-OH groups available)– Trichlorsilane, Trimethoxysilane

e.g. (Cl3)-Si-(CH2) n-CH3 Anchoring by covalent bonds, formation of HCl(Trichlorsilane) or methanol CH3OH (Trimethoxysilane)

• Au, Cu, Ag– Organothiols

e.g. Alkanthiols HS-(CH2)n-CH3Anchoring by (weak) covalent bonds, Au-thiolates,

dihydrogen formation

Page 5: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

5

9

Most important system today:SAMs made from organothiols

Anchor

chain,backbone

Head group

Octanethiol, alkanethiols

H Gold substrate

Anchoring through Au-thiolate bond

10

Most organic molecules are suited for incorporation into organothiols ….

Page 6: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

6

11

Characterisation of alkanethiolate adlayers

Pfennig (copper)coated uncoated

coated uncoated

Contact angleH2O

hydrophilichydrophobic

12

Quantitative characterization of SAMsusing photoelectron spectroscopy

hν e--

X-ray photoelectronspectroscopy (XPS)

• Laboratory technique, no single crystals required, fast

binding energy of core electrons

EB=hν -Ekin

Clean Au (111) substrate

ca. 1 nm HeptanethiolateMonolayer

1000 800 600 400 200 00

500

1000

1500

2000

2500

3000

3500

Zähl

rate

Bindungsenergie [eV]

Au 4fAu 4f

Au 4dAu 4d

1000 800 600 400 200 00

500

1000

1500

2000

2500

3000

3500

Zähl

rate

Bindungsenergie [eV]

300 290 280 270400

600

800

1000

Zählr

a te

Bindungsenergie[eV]

C 1s

Page 7: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

7

13

Two principal ways to make SAMs …

Deposition in Ultrahigh Vacuum (UHV) Deposition from solution

10-10 mBar 1 Bar

Very difficult to determine preparation method for SAM after

formation!

All UHV-methods are applicable !

14

Determination of molecular orientation using IR -spectroscopy

1000 950 900 850 800 750

0,00

0,05

0,10

0,15

0,20

Terphenylthiol Pellet

Wavenumbers [cm-1]

-0,0002

0,0000

0,0002

0,0004

0,0006

0,0008

prepared in EtOH solution

1000 950 900 850 800 750

Terphenylthiol/Au(111)

Θ

Thiolat-Adlayer on Au

E

Surface selection rule

Metal

Terphenylthiol

KBr pellet

IRRAS

IR bulk

Page 8: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

8

15

Near Edge X-ray absorption fine structure NEXAFS

Spectroscopy of unoccupied valence states using synchrotron radiation

IP

Unoccupiedmolecular orbitals

Synchrotron Synchrotron requiredrequired

16

NEXAFS: Hexadecanethiol/Au(111)

280 290 300 310 3200

1

2

3

4 90° 55° 20°

HS(CH2)15CH3/Au

Photonenenergie [eV]

Inte

nsitä

t [Ei

nhei

ten

des

Kant

ensp

rung

s]

Goldkristall

35°

Determination of orientationby varying angle of incidence andanalyzing linear dichroism

• requires synchrotron

• fast (< 5 min/spectrum)

• straightforward analysis

Page 9: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

9

17

SAMs as model system for a systematicinvestigation of organic surfaces

• High degree of molecular orientation

• What about lateral order? What is the structural quality?

Goldkristall

35°

18

Formation of highly orderedmolecular adlayers

LEEDDiffraction of low energy electrons(27 eV)

Decane thiolate

Page 10: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

10

19

Formation of highly orderedmolecular adlayers

LEEDDiffraction of low energy electrons(27 eV)

Decane thiolate

Substrate spots

20

Formation of highly orderedmolecular adlayers

LEEDDiffraction of low energy electrons(27 eV)

Decane thiolate

Substrate spots

Superstructure spots

(2√3*√3)R30°

Page 11: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

11

21

Adsorption of Decanethiols on Au(111)Adsorption of Decanethiols on Au(111)1mM 24h@60 C°

depression

Domain boundary

5 nm Domain boundary

A

A

B

A-A translatuional domain boundaryA-B orientational domain boundary

0 10 20 30 40-0,20-0,15-0,10-0,050,000,050,100,150,20

Hei

ght(

nm)

Length (nm)

Au(111) Depression

22

(2√3×3)

C10 adsorp on different sites such as : top, bridge, and hcphollow sites.

Au(111) Depression

NN brighter spot= 8.68A°

NN

bri

ghte

rsp

ot=

10A

°

(2√3

×3)

c(4×2)

Page 12: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

12

23

Self-assembled monolayers fabricated by immersion of Au-substrates into solutions of organothiols

• SAMs are ultrathin organic films with extremely high structural quality (2D single crystal)

• exhibits organic surfaces mainly defined by ω-function of thiol

• Basically all traditional techniques form traditional surface science can be applied (including XPS,UPS and STM)

• Ideal model system (?)

Goldkristall

35°

24

Modification of SAM-surfacesubstrate

solutionof

thiols

adsorption fromsolution

termination-CH3

Page 13: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

13

25

Modification of SAM-surfacesubstrate

solutionof

thiols

adsorption fromsolution

termination-OH

26

Modification of SAM-surfacesubstrate

solutionof

thiols

adsorption fromsolution

termination-COOH

Page 14: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

14

27

Characterization of organic surfaces using IR-Spectroscopy

3000 2900 2800 1600 1400 1200

0

2

4

6

8

10

12

14

16

RO

O

IRRAS: MHDA/Au

Wavenumbers [cm-1]

Ester-bands

Sample 5: 0.02 mM MHDA/EtOH, 1% HCl

Sample 3: 0.5 mM MHDA/EtOH

Sample 4: 0.5 mM MHDA/EtOH, 5% AA

Sample 2: 0.02 mM MHDA/EtOH, 0.5 % TFA

Sample 1: 0.02 mM MHDA/EtOH

Abs

orba

nce

[10-3

AU

]

RO

O1800 1700 1600 15000

1

MDHAPellets

Wavenumbers [cm-1]

D H20

C=Omono-mer

C=O azyclic dimerC=O zyclic dimer

Abso

rban

ce [n

orm

.] R. Arnold, W. Azzam, A. Terfort, Ch. WöllLangmuir 18, 3980, (2002)

Mercapto-hexadecanoicAcid

A B

concentratedconcentrated

diluteddiluted

28

Importance of organothiol backbone

High High degreedegree of order of order observedobserved forfor moremore rigidrigid backbonebackbone

Flexible backbone Rigid backbone

Page 15: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

15

29

SH

SH

BP3

BP4

SAMs from Organothiols with oligopheny-backbone

Systematic studies by

varying alkyl chain length

Circular depressions arenot defects in film, corrosion of Au-substrate

30

2.5nm

A

BP3

BP4

STM LEED

(2√3×√3)-StructureMolecular area 21.6 Å2

Left: LEED patterns recorded for a BP3 monolayer at 345 K. Right: Schematic diffraction pattern for the (2√3×√3)- structure.

No ordered diffraction pattern could be observed for BP4 monolayers

(5√3×3)-StructureMolecular area 27.05 Å2

Pronounced differencebetween odd and evennumber of methylene units !

Page 16: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

16

31

Structural Models

BP3

BP4

Au(111)

S S S S S S

(2√3×√3)-Structure

(5√3×3)-Structure

Au(111)

S S S S S

W. Azzam, P. Cyganik, G. Witte, M. Buck, Ch. WöllLangmuir 19, 8262, (2003)

32

Organic (or molecular) electronics: Conductivity of single molecules

SiO2

Au

Au

SSH H

S

S

S

S

S

S

S

S

Biphenyldithiol

H

Evaporation of metal onto SAM

HHH Goal: fabrication of a SH-terminated surface

Binding to metal-electrode

Page 17: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

17

33

Orientierungsbestimmung mittels IR-Spektroskopie

S

S

S

S

S

S

S

SSSH H

SSHH

W.Azzam, B.I.Wehner, R.A.Fischer, A.Terfort, Ch. WöllLangmuir 18, 7766, (2002)

34

Orientierungsbestimmung mittels IR-Spektroskopie

S

S

S

S

S

S

S

SSSH H

SSHH

W.Azzam, B.I.Wehner, R.A.Fischer, A.Terfort, Ch. WöllLangmuir 18, 7766, (2002)

Page 18: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

18

35

Orientierungsbestimmung mittels IR-Spektroskopie

S

S

S

S

S

S

S

S

S

S

SS

S

S

S

S

SSH H

SSHH

W.Azzam, B.I.Wehner, R.A.Fischer, A.Terfort, Ch. WöllLangmuir 18, 7766, (2002)

36

C=O

CH3C=O

CH3

C=O

CH3 C=O

CH3

C=O

CH3 C=O

CH3

C=O

CH3 C=O

CH3

C=O

CH3

=

S

S

R CS R’

O

R’SRC O

O -

O HR CO H

O SR-

+

R CS R’

O

R’SRC O

O -

O HR CO H

O SR-

+

RC

S S

H

S

R’ R’ R’

OR C

O

O

-OH -

R C OH

O -

Using protection group chemistry to fabricatedithiol SAMs of high structural quality

ThioesterThioester, , deprotectiondeprotection usingusingbasicbasic agentsagents

Post-synthesis modification

Page 19: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

19

37

b) The SAM spectrum of BPDMAc-1+EtOH+H2O+NaOH (2days).

c) BPDMAc-1 SAM (afterone day of immersion into dichloromethanesolution of BPDMAc-1 [100 µM] at RT )

Theory

Monitoring the de-protection of BPDMAC by IR spectroscopy

Bulk pellet

BPDMAC SAM

C=O

CH3C=O

CH3

C=O

CH3 C=O

CH3

C=O

CH3 C=O

CH3

C=O

CH3 C=O

CH3

C=O

CH3

0

2x10-3

0

2x10-30

2x10-3

1800 1600 1400 1200 1000 8000

1x102

2x1020

5x100

b)

e)

d)

c)

a)

Ab

sorb

ance

[AU

]

Wavenumber (cm-1)

=

S

S

Deprotected film

38

XPSNEXAFS

292 290 288 286 284 282 280

284.4

287.6*

BPDMAc-1Deprotected BPDMAc-1

Inte

nsity

(Cps

)

Binding Energy (eV)

285,

2

287,

428

9,1

293,

8

285 290 295 300 305

Dep. BPDMAc-1 30° Dep. BPDMAc-1 90°

*

Norm

aliz

ed P

artia

l Ele

ctro

n Yi

eld

Photon Energy (eV)

BPDMAc-1 30° BPDMAc-1 90°

1800 1650 1500 1350 1200 1050 900

Dep. BPDMAc-1

Wavenumber (cm-1)

Abso

rban

ce

* BPDMAc-1

IR

Disappearance of C=O stretching vibration of the acetate group of BPDMAc-1 at 1695 cm-1 in IR, π* resonance of C=O of BPDMAc-1 at 287.4 eV in NEXAFS and the peak at 287.6 eV corresponding to the C=O of BPDMAc-1 in XPS indicates the deacylation

process.

The NEXAFS spectra of both BPDMAc1 and the deprotected BPDMAc1 show a pronounced dichroism, which suggests good orientational order in these SAMs.

Page 20: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

20

39

Deprotection: Problems with reproducibility

• Some samples: Deprotection done in a few hours, complete conversion after a day

• Other samples are not converted even after 2 days

R CS R’

O

R’S HR C

O

O

-

OH -

R C

OH

O

SR’

-

+

RC

S S

H

S

R’ R’ R’

OR C

O

O

-OH -

R C OH

O -

40

How fast is the deprotection ?

1800 1700 1600 1500 1400 1300 1200 1100 1000

1604

.7

958.

610

05.0

1142

.8

1357

.0

1496

.7

1695

.4

-45x

10-3

10

DeprotectedBPDMAc-1

Wavenumber /cm−1

0 12 24 36 48 60 72 84

Sample -1Sample -2Sample -3

BPDMAc-1

Abs

orba

nce

900

Page 21: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

21

41

Deprotection speeds depends on sample conditions

• Reaction very fast in solution (minutes at most)

• At organic surfaces significantly delayed

• Influence of defects ?

42

OH-

Thioacetate Thiol

Base

S

S

Au (111) Au (111)

S

S

HS

S

Au (111)

COO

+ R

OHR

-ORO

OH-

DeprotectedBPDMAc-1

BPDMAc-1

S

S SS S S S S

S S S S S SS S

S S

S S

S S S SS S

S S S SS S S S

In solution the deprotection reaction is fairly fast (<10 minutes).The attack of the basic agent requires nucleation centers

This makes the process very slow (3.5 days) for samples withlow defect density

Page 22: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

22

43

Before deprotection 3 h 5 h 25 h

SEM micrographs of deprotection process (0.01 M NaOH)

OH-

DeprotectedBPDMAc-1

BPDMAc-1

S

S SS S S S S

S S S S S SS S

S S

S S

S S S SS S

S S S SS S S S

44

Self-assembled organic layers (monolayers) on metal substrates

• Why organic surfaces?• Fabricaton of organic surfaces• Why self-assembly?• Particular advantages of organothioles

• Characterisation of ultrathin organic adlayers

• Adressing topics in biology and biochemistry usingSAMs as model biomolecular surfacesAppying in-situ methods

• Generate lateral structures using μ-contact printing

Page 23: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

23

45

SPR - Surface Plasmon Resonance

Total reflection of light at the base plane of a prism

Excitation of surface plasmonson top of Au surface

Totalreflexion

Prisma

θ

θ

Gold-Schicht

Totalreflexion

Prisma

θ

ReflectedIntensity

θ

46

SPR: Monitoring adsorption of octadecanethiol

15 20 25 30 35 40 45 50 55 60 65 70 750,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

42°

44.5°

SPR : Octadecanthiol-Layer on 50 nm gold film

clean gold film octadecanthiol adsorption (0.5 h)

46.1°

43.3°

Inte

nsity

[AU

]

θprism [deg]

Gold-Substrat

Gold-Substrat

Strong shift of surface plasmon frequency

Change in optical densityclose to Au-surface

Page 24: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

24

47

Adhesion of proteins to surfaces

Ophiopteris papillosa (Seestern)Zucht von Jakobsmuscheln Patella (Seeschnecken) auf Fels

Scallops Brittlestar

48

Adsorption of RNaseon a CH3-terminated organic surface

M. Mrksich, G.B. Sigal, G. M. Whitesides

Langmuir 11, 4383, (1995)

Surface Plasmon Resonance (SPR)

Unspecific adsorptionof proteins

Reference

Page 25: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

25

49

Making surfaces protein resistantusing polyethyleneglycol

M. Mrksich, G.B. Sigal, G. M. Whitesides

Langmuir 11, 4383, (1995)

Au

HS-(CH2)11 (OCH2CH2) 6OH)

Organic surfaceexhibiting protein resistance

SPR

50

Specific binding: Biotin/Streptavidin

StreptavidinBiotin

Au

Thiol with biotin attached

Protein-resistant thiol

Page 26: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

26

51

Biotin/Streptavidin: SPR-Measurements

No specificAdsorption

SpecificAdsorption

J.Spinke, M. Liley, F.-J. Schmitt, H.-J. Guder, L. Angermaier and W.Knoll,J. Chem. Phys. 99, 7012, (1993)

52

Self-assembled organic layers (monolayers) on metal substrates

• Why organic surfaces?• Fabricaton of organic surfaces• Why self-assembly?• Particular advantages of organothioles

• Characterisation of ultrathin organic adlayers

• Adressing topics in biology and biochemistry usingSAMs as model biomolecular surfaces

• Generate lateral structures using μ-contact printing

Page 27: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

27

53

μ-contact printing

Poly-Dimethylsiloxane(PDMS) stamp Ink with Organothiol 1

Stamp, imprint

Immersion in Thiol 2

Thiol 2

54

RememberRuhr University Bochum Department of Physical Chemistry I

adsorption of streptavidin on biotynilated surfaces

Page 28: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

28

55

Crystal structure data for streptavidin

results:

height of protein

40-43 Å

56

OEG(6)-Thiol

OH-Thiol/Biotinthiol+

Streptavidin

result:

height of streptavidin

(19,8±2)Å

height-measurement of streptavidin by AFM (air)

Not consistent !

Page 29: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

29

57

height-determination of streptavidin by AFM (liquid)

result:

height of streptavidin

(42,2±3)Å

Measurements in liquid

58

Conclusions on specific binding of streptavidin

- high specific adsorption of

the streptavidin on the

patterned surface

- no unspecific adsorption on

the proteinresistant parts

of the surface

- good consistence in height of literature and experiments only when imaged in liquid

no proteinprotein

Page 30: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

30

5959

BiomolecularBiomolecular MultilayersMultilayers

10%-Biotinthiol 200nM Streptavdin 150nM bHRP

6060

AFM in Wasser:

Höhe des Proteinlayers

(76,5±4)Å

folglich für die Höhe der bHRP:

(34,3±3,5)Å

gute Übereinstimmung mit Literatur

Ruhr Universität Bochum Lehrstuhl für Physikalische Chemie I Proteinchemie an OberflächenR. Chelmowski

AFM in Wasser:

Höhe der SA-Lage:

(42,2±3)Å

„Phasen“-bild der strukturierten Thiolbereiche

Biomolekulare MehrfachschichtenBiomolekulare Mehrfachschichten

3 µm 3 µm 3 µm

Page 31: San Feliu Org Cth.fhi-berlin.mpg.de/th/Meetings/MarieCuriePsik2008/talks/Woell-60min... · 7 13 Two principal ways to make SAMs … Deposition in Ultrahigh Vacuum (UHV) Deposition

31

Fabrication of highly ordered molecular adlayers using organothiols

Some applicationsSPR

Topics

Characterization of organic surfacs

Tailoring properties of Organic Surfaces

Gold-Substrat

The Physics and Chemistry of Organic Surfaces: Fabrication of Model Systems

using the Selfassembly of Organothiols on Gold

Au80 µm 80 µm

62