same words, different structures: an fmri investigation of...

32
ARGUMENT RELATIONS 1 Same words, different structures: an fMRI investigation of argument relations and the 1 angular gyrus 2 3 Abstract 4 5 In fMRI, increased activation for combinatorial syntactic and semantic processing is typically 6 observed in a set of left hemisphere brain areas: the angular gyrus (AG), the anterior temporal 7 lobe (ATL), the posterior superior temporal sulcus (pSTS), and the inferior frontal gyrus (IFG). 8 Recent work has suggested that semantic combination is supported by the ATL and the AG, 9 with a division of labor in which AG is involved in thematic/event representations and ATL is 10 involved in encoding conceptual features of entities and/or more general forms of semantic 11 combination. The current fMRI study was designed to refine hypotheses about the angular 12 gyrus processes in question. In particular, we ask whether the AG supports the computation of 13 argument structure (a linguistic notion that depends on a verb taking other phrases as 14 arguments) or the computation of event concepts more broadly. To distinguish these 15 possibilities we used a novel, lexically-matched contrast: noun phrases (the frightened boy) and 16 verb phrases (VP) (frightened the boy), where VPs contained argument structure, denoting an 17 event and assigning a thematic role to its argument, and NPs did not, denoting only a 18 semantically enriched entity. Results showed that while many regions showed increased 19 activity for NPs and VPs relative to unstructured word lists (AG, ATL, pSTS, anterior IFG), 20 replicating evidence of their involvement in combinatorial processing, neither AG or ATL 21 showed differences in activation between the VP and NP conditions. These results suggest that 22 increased AG activity does not reflect the computation of argument structure per se, but are 23 compatible with a view in which the AG represents event information denoted by words such 24 as frightened independent of their grammatical context. By contrast, pSTS and posterior IFG did 25 show increased activation for the VPs relative to NPs. We suggest that these effects may reflect 26 differences in syntactic processing and working memory engaged by different structural 27 relations. 28 29 1. Introduction 30 31 Accurately computing the relations between verbs and their arguments, often referred to as 32 'argument structure', is a fundamental component of language comprehension. For example, in 33 the sentence “the fleet destroyed the planet”, the meaning of the sentence centers around the 34 verb, a predicate which denotes a destroying event. Knowledge of the properties of that verb 35 and the grammar of English allows a listener to determine that the two arguments 'the fleet' 36 and 'the planet' bear different relations to the event: the fleet carrying out the destroying, and 37 the planet being destroyed. These verb-argument relations are critical for listeners to be able to 38 draw appropriate inferences about the speaker's intended message. 39 40 Are verb-argument relations different in kind from other linguistic relations, such as the 41 modification relation between an adjective and a noun in a phrase like 'the destroyed planet'? 42 While both argument structure and modification relations contribute to the meaning of a 43 sentence, many linguistic theories have suggested that they rely on distinct mechanisms. 44

Upload: others

Post on 04-Nov-2019

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS1

Samewords,differentstructures:anfMRIinvestigationofargumentrelationsandthe1angulargyrus23Abstract45InfMRI,increasedactivationforcombinatorialsyntacticandsemanticprocessingistypically6observedinasetoflefthemispherebrainareas:theangulargyrus(AG),theanteriortemporal7lobe(ATL),theposteriorsuperiortemporalsulcus(pSTS),andtheinferiorfrontalgyrus(IFG).8RecentworkhassuggestedthatsemanticcombinationissupportedbytheATLandtheAG,9withadivisionoflaborinwhichAGisinvolvedinthematic/eventrepresentationsandATLis10involvedinencodingconceptualfeaturesofentitiesand/ormoregeneralformsofsemantic11combination.ThecurrentfMRIstudywasdesignedtorefinehypothesesabouttheangular12gyrusprocessesinquestion.Inparticular,weaskwhethertheAGsupportsthecomputationof13argumentstructure(alinguisticnotionthatdependsonaverbtakingotherphrasesas14arguments)orthecomputationofeventconceptsmorebroadly.Todistinguishthese15possibilitiesweusedanovel,lexically-matchedcontrast:nounphrases(thefrightenedboy)and16verbphrases(VP)(frightenedtheboy),whereVPscontainedargumentstructure,denotingan17eventandassigningathematicroletoitsargument,andNPsdidnot,denotingonlya18semanticallyenrichedentity.Resultsshowedthatwhilemanyregionsshowedincreased19activityforNPsandVPsrelativetounstructuredwordlists(AG,ATL,pSTS,anteriorIFG),20replicatingevidenceoftheirinvolvementincombinatorialprocessing,neitherAGorATL21showeddifferencesinactivationbetweentheVPandNPconditions.Theseresultssuggestthat22increasedAGactivitydoesnotreflectthecomputationofargumentstructureperse,butare23compatiblewithaviewinwhichtheAGrepresentseventinformationdenotedbywordssuch24asfrightenedindependentoftheirgrammaticalcontext.Bycontrast,pSTSandposteriorIFGdid25showincreasedactivationfortheVPsrelativetoNPs.Wesuggestthattheseeffectsmayreflect26differencesinsyntacticprocessingandworkingmemoryengagedbydifferentstructural27relations.28291.Introduction3031Accuratelycomputingtherelationsbetweenverbsandtheirarguments,oftenreferredtoas32'argumentstructure',isafundamentalcomponentoflanguagecomprehension.Forexample,in33thesentence“thefleetdestroyedtheplanet”,themeaningofthesentencecentersaroundthe34verb,apredicatewhichdenotesadestroyingevent.Knowledgeofthepropertiesofthatverb35andthegrammarofEnglishallowsalistenertodeterminethatthetwoarguments'thefleet'36and'theplanet'beardifferentrelationstotheevent:thefleetcarryingoutthedestroying,and37theplanetbeingdestroyed.Theseverb-argumentrelationsarecriticalforlistenerstobeableto38drawappropriateinferencesaboutthespeaker'sintendedmessage.3940Areverb-argumentrelationsdifferentinkindfromotherlinguisticrelations,suchasthe41modificationrelationbetweenanadjectiveandanouninaphraselike'thedestroyedplanet'?42Whilebothargumentstructureandmodificationrelationscontributetothemeaningofa43sentence,manylinguistictheorieshavesuggestedthattheyrelyondistinctmechanisms.44

Page 2: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS2

Furthermore,thereisevidencefromcognitiveneurosciencethattheprocessingofverb-1argumentrelationsmayrelyonspecializedneuralmachinery.Thegoalofthepresentstudywas2tofurtherinvestigatethepossibilityofneuralspecializationfordistinctlinguisticmechanisms3throughafunctionalmagneticresonanceimaging(fMRI)experimentthatdirectlycomparesthe4neuralresponsetolexicallymatchedverbphrases('destroyedtheplanet'),denotingverb-5argumentrelations,andnounphrases('thedestroyedplanet'),denotingmodificationrelations.671.1.Verb-argumentrelations:linguisticandconceptualdistinctions89Almostalltheoriesofnaturallanguagesemanticsassumethatverbsarepredicatesthatrequire10nominalargumentstoappearinawell-formedsentence(Frege,1892).Manytheories11additionallypositthatthecompositionoperationthatcombinesthemeaningofaverbandits12argumentisdistinctfromthecompositionoperationthatcombinesthemeaningofan13adjectivalmodifierwithanoun(e.g.Heim&Kratzer's1998contrastbetween'argument14saturation'and'predicatemodification').Anotherlinguisticdifferencebetweenverb-argument15relationsandadjective-nounrelationsistheirobligatoriness;incommonusage,'syntactic16arguments'ofaverbmustbepresentinthesentenceforittobewell-formed1,butadjectives17arealwaysoptional.Manytheoriesalsoassumethatverbsareencodedinthelexiconwitha18particularsetofargumentsthatarerequired:boththenumberofarguments(e.g.,intransitive19verbslike‘arrive’requireoneargument,transitiveverbslike‘buy’requiretwoarguments),as20wellasthespecific'thematicroles',ofthosearguments(suchas'agent','patient','instrument',21etc.(e.g.Bresnan,1981,Joshi&Schabes,1997,Sag&Wasow,1999).Critically,however,such22lexically-specifiedargumentstructuresarespecifictotheverbrepresentationsofthesewords;23inthepresentstudy,wewillcapitalizeonwordsthatcansometimesbeusedasadjectives24withoutthesecorrespondingargumentstructures.2526Independentofthelinguisticassumptions,however,verbphrasesalsotendtodenotedifferent27conceptsfromnounphrases.Forexample,GentnerandKurtz(2005)drawakeydistinction28betweenentityconcepts,whichrefertoobjectsandarecharacterizedbytheirproperties,and29relationalconcepts,whichrefertorelationsbetweenthings(suchasevents)andare30characterizedbytheirrelationalstructure.Mostverbphrasesdenoteeventsorstates,i.e.31

1Wenotethattheterm'argument'itselfissomewhatambiguousbetweenaconceptualandalinguisticsense.Intheabsenceoflanguage,humanscanconceptualizeevents—suchaswhenwatchingasilentvideooftheplanetbeingdestroyedbythefleet.Ifweconsiderconceptssuchas'eat'or'kill',wecandefine'conceptualarguments'asthoseparticipantswhichareinsomeintuitivebutunspecifiedsense'core'totheevent--forexample,acommonintuitionisthattheconceptdenotedbytheverb'eat'hastwocoreparticipants,somethingthatiseatingandsomethingbeingeaten.Somewhatcorrelatedbutinprincipledistinctfromconceptual'coreness'issyntacticobligatoriness—particularverbsinparticularlanguagesrequirecertainparticipantstobecontainedinthesentence,andthesearedefinedas'syntacticarguments'.Forexample,inEnglishtheverb'put'requiresthegoaloftheeventtobecontainedinthesentenceasaprepositionalphrase('Iputthekeysonthetable'vs.'*Iputthekeys')buttheverb'throw'doesnot('Ithrewtheballonthefloor'vs.'Ithrewtheball').Aclassicillustrationofhowconceptualandsyntacticargumentsmaybedistinctistheexampleof'stealing';arguablytheconceptofastealingeventhasthree'core'participants(thepersonstealing,thepersonbeingstolenfrom,andthethingbeingstolen),buttheEnglishverb'steal'onlyrequirestwoofthosetobecontainedinthesentence'Istoleacar'.Williams(2015)providesanextremelycleardiscussionoftheseissues.

Page 3: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS3

relationalconcepts,whilemostnounphrasesdenoteobjects/entities,i.e.entityconcepts.With1respecttothebrain,Chatterjeeandcolleagueshavesuggestedthatrelationalconceptsmight2besupportedbyregionsoriginallydevelopedforrelationalprocessingofvisualmotionand3actions(Kableetal.,2006;Wuetal.,2007),whileentityconceptsmightbepartially4representedwithsensory-functionalattributesencodedinotherregions.Recent5neurophysiologicalworkusingsinglewordshastentativelyindicateddifferentlocalizationof6activitybasedontheevent/entitydistinction,evenwhenthiscross-cutsthenoun/verb7distinction(Bednyetal.,2014;Lapinskayaetal.,2016).Therefore,computingverb-argument8relationscouldrequiredifferentneuralresourcesthanotherkindsoflinguisticrelationssuchas9adjective-nounrelationseitherbecauseofneuralspecializationforverb-argumentstructure10itselforbecauseofthistendencytodenotedifferentconceptualrepresentationsthatare11computedandrepresentedindifferentbrainregions.Thepresentexperimentwasdesignedto12deconflatethelinguistic/conceptualdistinctioninordertohelpresolvethisissue,particularly13withrespecttothebrainareathatiscommonlyimplicatedinverb-argumentstructure14processing:theangulargyrus.15161.2.Argumentstructureandthematicprocessingintheangulargyrus1718Neuroimagingandneuropsychologicalresearchacrossthelastseveraldecadeshasidentified19severallefthemispherebrainregionsthatarecriticalforlanguage,includingtheanterior20temporallobe(ATL),theposteriorsuperiortemporalsulcus(pSTS),theinferiorfrontalgyrus21(IFG),andtheangulargyrus(AG).Alloftheseregionshavebeenshowntodemonstrate22increasedactivityforsentencesvs.unstructuredlists,makingthemgoodcandidatesfor23involvementincombinatorialcomputations.Amongthese,itistheangulargyrusthathasmost24frequentlybeensuggestedtospecificallysupportcomputationsrelatedtoargumentstructure.2526Manyneuropsychologicalstudiesusingthevoxel-wiselesion-symptommappingtechnique27(VLSM)havefoundageneralassociationbetweendamagetoAG,ordegenerationofAG,with28sentencecomprehensiondeficits(Dronkersetal.,2004;Mesulametal.,2015;Pillayetal.,292017;Magnusdottiretal.,2013;Rogalskyetal.,2018).Morespecifictoargumentstructure,30Thothathirietal.(2012)conductedaVLSManalysislookingforregionsthatcorrelatedwith31errorsininterpretingsemanticallyreversiblesentenceslikeThemanwasservedbythewoman32(reversiblemeaningthatbothmenandwomenplausiblyserveandareservedbyeachother).33Reversiblesentencesrequiresubjectstocorrectlyassignthethematicrolesdenotedbythe34verb,assubjectscannotcorrectlyguessthemeaningofthesentencebasedsolelyonindividual35argumentsandtheeventsthattheseargumentstypicallyengagein.Theyfoundastrong36correlationbetweendamagetothelefttemporoparietaljunction(TPJ),includingAG,and37deficitsincorrectargumentassignment.Thothathirietal.suggestthatTPJmayplayageneral38roleinbindingrelationalinformation,andinsentenceprocessingmayspecificallysupportthe39bindingofentitiestotheirrolesinanevent.4041ComplementaryevidencethatAGisinvolvedinrepresentingthematicrelationsbetween42predicatesandargumentsforcomesfromaVLSMstudyofpicturenaming(Schwartzetal.,432011),whichfoundthatdamagetotheAGwasassociatedwiththematicsubstitutionerrors44

Page 4: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS4

(e.g.,substitutingwormforapple)whiledamagetotheATLwasassociatedwithtaxonomic1substitutionerrors(e.g.,substitutingpearforapple)(Schwartzetal.,2011).Similarly,another2lesionstudyusingeye-trackingfoundthatpatientswithdamagetoposteriortemporal-parietal3cortexincludingtheAGhadreducedanddelayedactivationtothematiccompetitorpictures4(e.g.lookingatapigwhenthetargetisbarn)comparedtobothhealthycontrolsandpatients5withamoreanteriorlesiondistribution(Mirman&Graziano,2012).67Additionalsuggestiveevidencecomesfromneuroimagingstudies.Severalstudiesthat8examinedprocessingofdifferentlevelsofsentencestructure(wordlists,phrases,andfull9sentences)foundthatAGappearedtoselectivelyactivateforfullsentences,incontrasttoATL10whichshowedagradedpatterninwhichactivityincreasedsteadilywithphrasesize(Pallieret11al.,2011;Matchinetal.2017).ThisisconsistentwiththeviewthatactivityinAGisprimarily12drivenbythethematicrelationsdenotedinasentencewhiletheATLplaysamoregeneralrole13insemanticrelationshipsthatholdinphrasesofallsizes.Someneuroimagingstudieshave14foundamorespecificrelationbetweenthematicprocessingandactivationintheAG.For15instance,Boylanetal.(2017)foundevidencethatbothleftandrightAGshowedlarger16differencesfrombaselineforrelationalcompounds(e.g.,woodstove,thematicrelationship17betweenwords)thanattributivecompounds(e.g.bullettrain,featurerelationshipbetweenthe18words).Bycontrast,theATLshowedsimilaractivationforthetwotypesofcompoundsbutwith19alaterpeakforthethematictype.Finally,anexperimentbyKalenineetal.(2009)required20participantstomakepicture-matchingjudgmentsaboutthematicortaxonomicrelations;the21AGshowedincreasedactivityforjudgmentsaboutthematicrelationsrelativetotaxonomic22relations.2324Asdiscussedabove,itcouldbethecasethattheapparentneuralspecializationforverb-25argumentrelationsintheAGisbecauseofspecializedlinguisticprocessingroutinesor26specializedconceptualprocessingroutines.Whileitisnotclearfromthepriorliteraturewhich27aredrivingtheeffectsreviewedabove,anumberofstudieshavereportedAGeffectswith28morefine-grainedmanipulationsoflinguisticstructure,whichmightbetakentoimplicate29linguisticprocessing.First,severalneuroimagingstudieshavefoundanassociationbetweenthe30presenceorcomplexityofaverb’sargumentstructureandactivationintheleftAG.Thompson31etal.(2007;2010)andMeltzer-Asscheretal.(2015)conductedsingle-wordlexicaldecision32experimentsinfMRIandshowedthatactivityintheAGandneighboringtemporalcortex33increasedwiththenumberofargumentsrequiredbyaverb:verbswiththreearguments(e.g.,34put)activatedtheseregionsmorethanverbswithtwoarguments(e.g.,chase),whichactivated35theseregionsmorethanverbswithoneargument(e.g.,sleep).Basedonthisandotherimaging36andpatientwork,theyproposethatinferiorfrontalregionsareinvolvedinselectingthe37appropriatesyntacticframeforaverb,andthatposteriorregions(includingAGandposterior38MTG)areinvolvedinintegratinglexicalmaterialthatsatisfiestheargumentstructure39requirements.AsimilarexperimentbyMeltzer-Asscheretal.(2012)foundthatverbswith40alternatingtransitivity(e.g.,breakcanoccurwithoneargument,asinthestatuebroke,orwith41twoarguments,asinthechildbrokethestatue)activatedleftAGmorethanverbsthatsolely42occurwithoneargument(e.g.,bark),furtherincreasingtheassociationoftheAGandverbal43argumentstructureprocessing.Finally,anfMRIstudybyBoylanetal.(2015)foundsimilarityin44

Page 5: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS5

activitypatternsintheleftAGfortwo-wordphrasessharingthesameverb,butnotforphrases1sharingthesameargumentbutwithaverbvs.apreposition,suggestingthattherelational2informationspecificallydenotedbytheverbdrivesactivityinAGratherthanconceptual3featuresofthenounorargumentstructureingeneral,whichwouldbethesamewhether4encodedbyaverborbyapreposition.56SuchevidenceraisesthepossibilitythattheassociationbetweentheAGandevent/relational7semanticsisactuallydrivenbyspecializedlinguisticoperationsforverb-argumentstructure.8However,mostofthesestudieshavecompareddifferentverbstoeachother,whichraisesthe9possibilitythattheseeffectsaredrivenbyconceptual-semanticdifferencesamongtheseverbs10(forinstance,thedegreetowhichagivenverbisassociatedwitheventsemantics)ratherthan11linguisticargumentstructurerelationsthemselves.12131.3.Generalsemanticprocessingandtheangulargyrus1415OtherevidencesuggeststhattheAGmaybeinvolvedinaverygeneralformofsemantic16processing.Forinstance,severalstudieshaveshownthattheAGshowsincreasedactivationfor17realnounsrelativetopseudowords(Binderetal.,2003;2005;Bonneretal.,2013),and18increasedactivationforconcretenounsrelativetoabstractnouns(Binderetal.,2005).Given19thatisolatednounspresumablydonotdenoteeventsorhaveargumentstructure,theseresults20speakagainstarolefortheAGineithergeneralrelationalconceptprocessingorverbargument21structure(attheveryleast,theysuggestatleastsomerolefornon-relationalsemantics).22Relatedly,whilePillayetal.(2017)foundanassociationbetweenAGdamageandsentence23comprehension,theyalsofoundanassociationbetweenAGdamageandpicturenaming;the24factthatbotheffectshighlightedAGsuggestthatthisregionisinvolvedinageneralsemantic25processunderlyingbothtasks.2627Additionally,Priceetal.(2015,2016)useanadjective-nounparadigmtoprobeAG,where28participantsneededtojudgewhethersequenceswerereadilycombinable(plaidjacket)ornot29(mosspony,turnipchapel,fastblueberry).Theyfindmoreactivityforthecongruousitemsin30AG,thatpatientswithdamagetoAGwerelessaccurateinthejudgment,andthatsubjectswith31“positive”tDCStoAGwerefasterintheirjudgments.Thedirectionoftheimagingresultsis32slightlysurprisinggiventhatEEG/MEGstudiesofsemanticincongruityfindeitherincreased33responsesforincongruity(e.g.Kutas&Hillyard1980,Molinaroetal.2012)orlittledifference34betweenconditions(Lauetal.2016),butthismaybeafunctionofthejudgmenttask,whichis35rareintheEEG/MEGliterature.Priceetal.suggestedthatAGplaysacriticalroleingeneral36semanticcombination;thisroledoesnotappeartobestraightforwardlyattributableto37relational/eventsemanticsorlinguisticargumentstructuregiventhattheirmaterialswere38simpletwowordmodificationswithoutverbs.AtleastoneMEGstudyofadjective-noun39combinationalsoreportsincreasedactivityforAG(Bemis&Pylkkanen,2012),althoughthis40findingisinconsistentacrosssimilarstudies(e.g.Bemis&Pylkkanen,2011;Westerlund&41Pylkkanen,2014).MorerecentlyWilliamsetal.(2017)associateAGwithrelationalitymore42generallybasedonastudycomparingnounphrasesdesignedtobehighorlowinrelationality43(director’schildvs.director’schair).Similarly,Lewisetal.(2015)reportevidenceforprocessing44

Page 6: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS6

ofbothtaxonomicandthematicrelationsinAG,andthusarguethatitplaysabroaderrolein1semanticcombination.23Tosumup,whilemuchpriorworkspecificallyassociatestheleftAGwithprocessingrelational4informationthathastodowitheitherverbargumentstructureorconceptualrelations5betweenentitiesandevents,otherpriorworkchallengesthisconclusionbyassociatingthis6regionwithmoregeneralsemanticorconceptualcombination.781.3.Thepresentstudy910ThepresentstudywasdesignedtoinvestigatethehypothesisthattheAGisinvolvedin11linguisticprocessingofverb-argumentstructurespecificallyasopposedtoamoregeneral12semanticfunction.Weusedasimpleparadigmthatcontraststheresponsetolexically-matched13verbphrases(VPs)andnounphrases(NPs)infMRI(seeFigure1forexamples).Weassumed14thatVPs,suchasfrightenedthechild,thoughnotacompletesentence,denoteeventsof15frightening,e.g.theargumentthechildreceivesanexperiencerthematicroleassignedbythe16verbfrighten.WecomparedVPssuchasthesetoNPsformedbytakingtheverbandswitching17itsorderwiththedeterminer.Thiscreatedphrasessuchasthefrightenedchild,inwhichthe18verbfrightenisusedasaparticipleadjective,modifyingthenounchild.Thus,VPsandNPsin19thisstudyinvolvedtheexactsamewords,denotingverysimilarconceptualrepresentations,but20theVPscontainargumentstructureandeventrepresentations,whiletheNPs(withoutverbsto21assignthematicroles)didnot2.Inaddition,NPsinvolvedmodificationofthenounbyan22adjective,whiletheVPsdidnot.Contrastingnounphraseslikethefrightenedchildwithverb23phraseslikefrightenedthechildallowsusaneleganttestofthehypothesisthattheAGis24especiallyengagedinprocessingargumentstructure.AccordingtohypothesesinwhichAGis25involvedinprocessingrelationalinformationspecifictoverbs,increasedactivitymightbe26predictedinthisregionfortheverbphraseconditionoverthenounphrasecondition,even27thoughthewordsineachphraseareidentical.Weincludedanunstructuredwordlistusingthe28samesetofwordsasinthephrasestimuliasacontroltoensurethatbrainareasshowinga29differencebetweenVPandNPwouldalsoactivateforbasiccombinatorialprocessing.3031AlternativehypothesesaboutthefunctionoftheleftAGmightpredictequivalentactivityinthe32verbphraseandnounphraseconditions.IftheAGisinvolvedinprocessingsemanticrelations33ofallkinds,itmightrespondequivalentlytoverb-argumentfulfillmentandadjectival34modification.Anotherpossibilityisthatthisregionisinvolvedinrepresentingbasiclexical35semanticsforsomesubclassofwords,andthattheseincluderootsthataretypicallyusedto36refertodescribeevents,suchasfrighten.Accordingtothishypothesis,eveniffrightenisused37asanadjectiveinsteadofaverb,itwouldactivatethesamelexicalsemanticrepresentationin38theAG.39401.4.Argumentstructure:syntaxandsemantics41

2AlthoughBresnan(1978)proposedthattheadjectivalformderivedfromatransformationofaverbalstructure,mostmodernsyntacticanalysesdonotholdthisview.

Page 7: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS7

1TheminimalVPsandNPsweconstructedforthisexperimentwerespecificallydesignedtotest2whethertheAGprocessesverbargumentstructure.However,wenotethatourmaterialsalso3containafundamentalsyntacticdistinction:ahead-complementconfigurationforVPs,andan4adjunctionconfigurationforNPs,withtheadjectivemodifieradjoinedtothenoun.This5structuraldistinctionmightinduceincreasedsyntacticprocessingforVPs,giventhathead-6complementconfigurationshavebeenarguedtorequiremoresyntacticlabelingthan7adjunctionstructures(Hornstein,2009).Also,wenotethatverbsnotonlydenotesemantic8argumentstructurebutalsohavesyntacticselectionrequirementsforarguments(i.e.,syntactic9subcategorization).Thisimpliesthat(most)contrastsofsemanticverbargumentstructureare10confoundedwithsyntacticselection.AnfMRIstudybyShetreetetal.(2006)attempedtode-11correlatesyntacticsubcategorizationandsemanticargumentstructurebytestingHebrewverbs12(insentencecontext)thathadtwosyntacticselectionoptionsbutonlyonethematicoption.13Thisstudyfoundincreasedactivityfortheseverbs(relativetothosethathadonlyonesyntactic14selectionoption)inbothpSTSandsuperior/posteriorIFG;thisstudydidnotreportactivityin15AG,althoughthepSTSclusterwasveryposteriorandpotentiallyrelatedtoAGeffects.Other16fMRIstudiesofargumentstructurealsoreportactivationinposteriortemporallobe(clearly17anteriortoAG)andIFGforargumentstructurecomplexity(Shetreetetal.,2010;Ben-Shachar18etal.,2003).ThissuggeststhatAGmaybeinvolvedinsemanticargumentstructure,whilepSTS19andIFGmaybeinvolvedinsyntacticstructure.Thisisalsoconsistentwiththemodeloflexical-20semanticprocessingproposedbyLauetal.(2008),wherelexicalaccessoccursintheposterior21temporallobe,withsemanticcombinatoricsandintegrationwithcontextinATLandAG.2223Overall,thereisevidencethatthesyntacticcategorydifferencebetweenverbandnounmight24affecttheactivationpatternsfortheVPsandNPs,eventhoughtheunderlyinglexical-semantic25rootwordisthesameinbothstructures.Forthisreason,weselectedregionsofinterest(ROIs)26forbrainareasimplicatedinbothsemanticandsyntacticprocessing,testingwhetheranyof27theseregionsshoweddifferencesbetweenNPsandVPs,andsignificantdifferencesforthis28comparisonmustbeevaluatedonbothasemanticandasyntacticlevel.2930

31Figure1.Examplestimuliforeachcondition,alongwithanillustrationoftheircorresponding32structures.LEFT:thelistconditioncontainedunstructuredsequencesofwordsderivedfromthe33phrases,notinvolvingcombinatorialsyntaxorsemantics.MIDDLE:theNPcondition,inwhich34theparticipleadjective(e.g.frightened)adjoinstothenounphraseandmodifiesitsmeaning.35RIGHT:theVPcondition,inwhichtheverbistheheadofthephrasewiththenounphraseasa36

Page 8: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS8

syntacticallyselectedcomplement.Thearrowindicatesthattheverbassignsanexperiencer1thematicroletothenounphraseaspartoftheargumentstructuredenotedbytheverb.232.Materialsandmethods452.1.Subjects6720right-handed,nativespeakersofEnglish(12female)wererecruitedforthisstudyandwere8paid$25anhourfortheirparticipation.Oneadditionalsubjectwasexcludedfromanalysesfor9fallingasleepearlyinthescanningsession.Consentwasacquiredfromeachsubjectbeforethe10studybegan,andallprocedureswereapprovedbytheInstitutionalReviewBoardofthe11UniversityofMaryland.12132.2.Stimuli1415Themainexperimenthadthreeconditions:nounphrases(NP),verbphrases(VP),and16unstructuredwordlists(LIST).Asinglestimulusineachconditionconsistedofasequenceof17threewords.IntheNPcondition,thesequenceconsistedofadeterminerfollowedbya18participleadjectivefollowedbyanoun(e.g.,thefrightenedchild;ascrubbedcountertop;our19woundedofficer).IntheVPcondition,thesequenceconsistedofaverbfollowedbya20determinerfollowedbyanoun(e.g.,frightenedthechild;scrubbedacountertop;woundedour21officer).IntheLISTcondition,thesequenceconsistedofthreedeterminers,threeverbs,or22threenouns(e.g.,frightenedscrubbedwounded;atheour;childcountertopofficer).Thesame23setofwordswasusedtogeneratestimuliforallconditions,withthreedifferentexperimental24listssuchthattherewasnorepetitionofitemsforeachsubject;itemswerecounterbalanced25acrosssubjects.Thethree-wordsequencesintheVPandNPconditionswereidenticalexcept26fororderandanoccasionalchangefrom“an”to“a”andviceversaasnecessary.2728Togeneratethesephrases,wefirstcreatedalargesetofthree-wordsequencesthatwere29ratedfornaturalnessbytheauthors,andweselectedonlythosestimulithatwereratedas30consistentlynaturalbyalltheauthorstobeexperimentalitemsforthemainexperiment.We31ensuredthatboththeNPandVPversionofeachstimuluswasnaturalandcoherent.We32selected270wordsequencesandthenselected90forwhichwecreatedprobestimulithat33wereusedforthesubjects’task,detailedbelow.Theseprobestimuliwereratedandselected34usingthesamecriteriaasthemainitems.3536Moststudiesofstructuredlinguisticmaterialshaveusedrapidevent-relateddesigns,whichare37mostefficientforestimatingthehemodynamicresponseassociatedwitheachcondition.38However,rapidevent-relateddesignshavetheconsequencethattheorderofconditionsis39random,sothatsubjectstypicallydonotknowtheconditionofeachtrialasitbegins.We40wantedtoensurethatsubjectswereconfidentabouttheidentityofeachconditionasthey41wereprocessingtheprobes(e.g.,thattheywouldnottrytoimposestructureaccidentallyon42theLISTcondition).Wethereforeusedablockdesign,consistingofsixthree-wordstimuliina43rowfromthesamecondition,withalabelindicatingwhethertheupcomingblockwas44

Page 9: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS9

comprisedofNPorVPtrials(“PHRASE”)orlisttrials(“LIST”).Weusedthesetofwordsfrom1eachVP/NPblocktocreatethecorrespondingLISTblock.LISTsequenceswerecreatedby2groupingtogetherthedeterminers,nouns,andverbsacrosstheVP/NPblocksintotheirown3three-wordsequences.Thisprocedurecounterbalancedthelexicalmaterialusedineachblock4acrosstheconditionswhileremovinglinguisticstructurefromtheLISTcondition.Theorderof5sequenceswithineachblockwasrandomizedforeachcondition.Stimulusblockswere6counterbalancedacrossconditions;thesamesetofsequenceswasusedinthecorresponding7blockacrosstheNP,VP,andLISTconditions.892.3.Taskandprocedure1011Thesubjects’taskwastomakeasemanticsynonymy/similarityjudgmenttoprobesthatwere12presentedtwiceperblock,oneprobeafterthefirstthreesequencesandoneprobeafterthe13lastthreesequences.Theprobewasamodifiedversionofoneoftheprecedingsequences;one14wordintheprobewasreplacedwithadifferentword,theothertwowordsbeingidentical.The15replacedwordwasalwayseitherthenounortheverb.Thewordwasreplacedwithonethat16waseithersemanticallysimilar(roughlysynonymous)ordissimilartoit.E.g.“thetiredman”->17“theexhaustedman”(similar)or->“thefrightenedman”(dissimilar).Thesubjectswere18instructedtopressabuttontoindicatewhethertheprobe,evaluatedasanentirephrase,was19semanticallysimilartooneoftheprecedingitemsornot.Thesequencethatwasprobedwas20randomlyselected,witharoughlyequalmixoffirst,second,andthirdsequencesbeingprobed.21Similaranddissimilarprobesoccurredwithequalfrequency.TheprobesfortheLISTitemswere22somewhatdifferentfromtheNPandVPitems;fortheseitemswedevelopedprobesusingthe23sameprocedure,butthesincetheLISTsequenceswereunstructured,thesemanticjudgment24wasrestrictedtothereplacedword.E.g.“fanstreatybystander”->“fansagreementbystander”25(similar)or“defendantcorpsephone”->“defendantequipmentphone”(dissimilar).Thisledto26asubstantialincreaseindifficultyperformingthetask,whichweaddressinthediscussion.27Subjectsmadetheirresponsesusingtwobuttonboxes,oneineachhand;mappingof28similar/dissimilartohandwascounterbalancedacrosssubjects.2930Weexplainedtosubjectsthenatureofthestimuliandtaskandtrainedthemonapracticerun31beforetheyenteredthescanner.Thispracticerunwasidenticaltotheexperimentrunsexcept32forbeingoutsidethescannerwithmaterialsnotusedinthemainexperiment,anditwasthe33sameforeverysubject.Itconsistedofthreesix-sequencebocksofeachconditioninrandom34order.Followingthispracticesession,subjectswereplacedinthescanner.Beforebeginningthe35mainexperiment,theyweregivenoneblockofeachconditionformthispracticesessiontore-36familiarizethemwiththetask.3738Themainexperimentconsistedof15blocksfromeachcondition,dividedinto5experimental39runsof3blocksfromeachcondition.Inaddition,therewere3blocksofblankscreen(rest)40presentedineveryexperimentalrunlastingtoestimatethebaseline;everyrunendedonarest41blockinordertoallowthehemodynamicresponsetoreturntobaseline.Wegavesubjectsa42shortbreakin-betweenruns.Theexperimentlastedabout1hourand15minutes.4344

Page 10: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS10

WepresentedtheexperimentvisuallyusingthePsychToolBoxMatlabpackage(Brainard,1997;1Pelli,1997;Kleineretal,2007).Thescreenwasblackandthefontwaswhite.Eachtrialblock2beganwithafixationcrosspresentedforarandomjitteredduration,either1.5,2.5,or3.53seconds(withuniformfrequencyamongjitterdurations)(1350-3350mson,150msblank),and4thenalabelthatsaideither“PHRASE”(VPanNPconditions)or“LIST”(LISTcondition)which5appearedonthescreenfor2s(1850mson,150msblank).Wepresentedthesecuessothat6subjectswouldbepreparedforthatconditionandadapttheirexpectationsappropriately.The7conditioncuewasfollowedby1soffixation(850mson,150msblank),andthenthefirst8sequenceoftheblockstarted.Allwordswerepresentedwithrapidserialvisualpresentation,9witheachitemappearingfor600ms(450mson,150msblank).Aftereachsequencewas10fixationfor1.5seconds(1350mson,150msblank).Afterthreesequencesandfixationperiods,11theprobeingreenfontappearedonthescreenfor2.85s(2700mson,150msblank),followed12bythefixation(1.5seconds)precedingthenextthree-wordsequence.Weinstructedthe13subjectstomaketheirresponsetotheprobeatanypointbeforethefixationcrossreappeared.14Eachblocklastedatotalof29.5seconds,notcountingthevariable(jittered)fixationthat15precededtheonsetofeachblock.TheRESTperiodsconsistedofaninitialnon-jitteredfixationof161.5seconds(1350mson,150msblank),thelabelfor2seconds(1850secondson,150msoff),17ablankscreenfor13seconds,followedbyanumericalcountdownfrom5-1,5secondstotalin18duration(850mson,150msblankpernumber),thatallowedsubjectstogetreadyforthenext19block.Therestblocklastedatotalof20seconds,notincludingthe1.5secondinitialfixation.A20schematicoftheexperimentaldesignispresentedinFigure2.2122

23Figure2.Schematicofstimuluspresentation.MIDDLE:illustrationofthesequenceofblocks24withinarun.TOP:timingofstimuliwithinagivenblock.BOTTOM:timingofstimulifortherest25blocks.26272.4.Languagelocalizer2829Beforethemainexperimentwepresentedsubjectswithashortlanguagelocalizerruninorder30toderiveindependentROIsforanalysisofthemainexperiment.Thisrunconsistedofsentences31takenfromRogalsky&Hickok(2009)aswellasunstructuredwordliststhatwerecreatedby32

Page 11: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS11

randomizingtheorderofwordsineachsentence.Sentencesandlistswerepresentedin1randomorderbutwithalabeltoindicatewhethertheupcomingstimuluswasasentenceor2list.Forsentencetrials,thesubjects’taskwastodetectanoccasionalsentencethatwas3semanticallyanomalous(weremovedthesetrialsfromouranalysis).Forthewordlist4condition,thesubjects’taskwastodeterminewhetheraprobewordwaspresentintheword5listornot.Westartedwithasetof40sentences,andscrambledtheorderofwordstocreate6thelistconditions.Wethencreatedtwostimulusliststhatincludedwordliststhatdidnot7overlapwithsentences,andcounterbalancedacrosssubjects.Wepresentedstimuliusingrapid8serialvisualpresentation.Theconditionlabelappearedonthescreenfor1.3s(1050mson,9250msblank),theneachwordwaspresentedfor600ms(450mson,150msblank),followed10byfixationfor900ms(750mson,150msblank).Theprobewaspresentedonthescreenin11greenfontfor1700ms(1550mson,150msblank).Weinstructedsubjectstomaketheir12responseswhiletheprobewasstillonthescreen.Followingeachtrialwasarandomfixation13foraminimumdurationof900ms,variablefrom.9secondsto15seconds,optimizedto14estimatethehemodynamicresponseusingFreeSurfer’sOPTSEQprogram15(https://surfer.nmr.mgh.harvard.edu/optseq/).Thelocalizerrunlastedabout10minutes.16172.5.fMRIdatacollectionandanalysis1819MRimageswereobtainedinaSiemensTRIO3Tscanner(SiemensMedicalSystems)usinga32-20channelheadcoil.Wefirstcollectedahigh-resolutionT1-weightedanatomicalimageinthe21axialplane(voxeldimension:0.45mmX0.45mmX0.9mm).Wethencollectedatotalof120322T2*-weightedEPIvolumesover6runs(1localizerrunof298volumes,5experimentalrunsof23181volumesapiece).Eachvolumecontained36obliqueslicesorientedapproximately2024degreesclockwiserelativetotheAC-PCaxis(TR=2s,TE=25ms,flipangle=90°,in-plane25resolution=3mmx3mm,slicethickness=3mmwith0.3mmgap).Thefirstfourvolumesof26eachrunwerecollectedbeforestimuluspresentationanddiscardedtocontrolforT1saturation27effects.Slice-timingcorrection,motioncorrection,andspatialsmoothingwereperformedusing28AFNIsoftware(Cox,1996;http://afni.nimh.nih.gov/afni).Motioncorrectionwasachievedby29usinga6-parameterrigid-bodytransformation,witheachfunctionalvolumeineachrunfirst30alignedtoasinglevolumeinthatrun.Functionalvolumeswerealignedtotheanatomical31image,andsubsequentlyalignedtoTalairachspace(TalairachandTournoux,1988).Functional32imageswereresampledto3mmisotropicvoxels,andspatiallysmoothedusingaGaussian33kernelof6mmFWHM. 3435First-levelanalyseswereperformedoneachindividual’sdatausingAFNI’s3dDeconvolve36function.Theregressionanalysiswasperformedtofindparameterestimatesthatbest37explainedvariabilityinthedata.Eachpredictorvariablerepresentingthetimecourseof38stimuluspresentationwasenteredintoaconvolutionanalysisusingacanonicalhemodynamic39responsefunction(AFNI’sBLOCKparameter).Forthelocalizerexperiment,wemodeledthe40threeconditions(list,goodsentence,anomaloussentence).Forthemainexperiment,we41includedaregressorforeachcondition,VP,NP,andLIST,modelingthedurationofthethree42consecutivephraseswithineachhalfoftheblockseparately.Weaddedoneregressorforthe43conditionlabelsthatprecededeachlanguageblockincludingtheprecedingandfollowing44

Page 12: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS12

fixationcross.Weaddedanotherregressorfortheconditionlabelsthatprecededtherest1block,includingtheprecedingfixationperiod.Wealsomodeledthe5secondcountdown2periodattheendoftherestblock,andmodeledthetwotaskportionsofeachlanguageblock,3includingthefollowingfixationcrossforthefirsttaskportion.Thesixmotionparameterswere4includedasregressorsofnointerest. 56Toperformthegroup-levelanalysis,wefirstidentifiedROIsfromthelanguagelocalizertask.7Weenteredtheparameterestimatesforthesentenceandlistconditionsforeachsubjectinto8AFNI’s3dANOVA2functionandidentifiedROIsusingthefollowingcontrasts:sentences>rest,9andsentences>wordlists.Weusedavoxel-wisethresholdofp<0.005(one-tailed)andasmall10volumecorrectionof20voxelsinordertoidentifysignificantclusters.Thisthresholdresultedin11acorrespondingFalseDiscoveryRateqvalue<0.05forbothofthesecomparisons,indicating12thattheseresultspassedacorrectionformultiplecomparisons.Weusedthesamevoxel-wise13thresholdtoensurethattheclusterswereofapproximatelythesamesizeforbothcontrasts.14WethenselectedthefollowinglefthemisphereROIsfromthesentence>listcontrast:anterior15temporallobe(ATL),inferiorangulargyrus(AG),andinferiorfrontalgyrus(IFGanterior),16straddlingtheparstriangularisandparsorbitalis.Fromthesentence>restcontrast,we17selectedthepSTSROIandthepotionoftheIFGthatcenteredontheparsopercularis(IFG18opercularis).Wethenaveragedtheestimatedpercentsignalchangevaluesforeachcondition19ofthemainexperiment(LIST,VP,NP)withineachROIandranpairwisecomparisonsamongall20theconditions.2122ToensurethatourROIanalyseswerenotmissingsignificanteffectsinthemainexperiment,we23alsoperformedwholebrainanalysesgroupanalysesbyenteringtheparameterestimatesforall24conditionsandsubjectsintoAFNI’s3dANOVA2function.WeperformedthecontrastsofVP>25LIST,NP>LIST,VP>NP,andNP>VP,usingaliberalvoxel-wisethresholdofp<0.01(two-tailed)26andaclustersizecorrectionof20voxels.Weusedthisliberalanduncorrectedthresholdin27ordertoensurethatnoeffectsthatmightcompromiseourROIanalyseswerelefthidden,and28asinformationforfutureresearcherswhomightseektoperformasimilarexperimental29manipulation.30313.Results32333.1.Behavioralperformance3435Forallbehavioralanalyses,weperformedallthreeplannedpairwisecomparisonsamong36conditionsusingtwo-tailedt-testsandaBonferronicorrectionformultiplecomparisons37(adjustedalphaofp<0.0167).Subjects’accuracyonthebehavioraltaskisshowninFigure2,38left.SubjectsperformedsignificantlybetterontheNPconditionrelativetotheListcondition:39t(19)=5.529,p<0.001(two-tailed),significantlybetterontheVPconditionrelativetotheList40condition:t(19)=4.704,p<0.001(two-tailed),withnosignificantdifferencebetweentheNP41andVPconditions:t(19)=1.064,p=0.301(two-tailed).TheseresultsindicatethattheList42conditionwassubstantiallyharderthanthetwophraseconditions.Thiseffectislikelyinlarge43partduetothemoreextremeworkingmemoryburdenintheListcondition.Overall,these44

Page 13: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS13

resultsindicatethatsubjectswereattentivetothetask,giventhefactthatperformanceon1boththeNPandVPconditionswashigherthanad’of1.5(byconvention,ad’of1is2consideredgoodperformance),andtheListconditionwascloseto1.34ResponsetimesareshowninFigure3,right.SubjectsperformedsignificantlyfasterontheNP5conditionrelativetotheListcondition:t(19)=6.145,p<0.001(two-tailed),andsignificantly6fasterontheNPconditionrelativetotheVPcondition:t(19)=2.984,p=0.008(two-tailed).The7VPconditiontrendedtowardsbeingfasterrelativetotheListcondition,butthiseffectdidnot8survivemultiplecomparisonscorrection:t(19)=2.392,p=0.027(two-tailed).910

11Figure3.BehavioralperformanceduringthefMRIexperiment.Errorbarsreflectonestandard12errorofthemeanwithsubjecteffectsremoved(Cousineau,2005).LEFT:sensitivity.RIGHT:13reactiontime.Seetextfordetailsofstatisticalanalysis.*=significanteffect,~=trendtowards14significance.15163.2.fMRI:Languagelocalizer1718Thecontrastofsentencesvs.restinthelocalizerrevealedeffectsinbilateraloccipito-temporal19cortex,theleftpSTS,andalargeclusterintheleftprecentralgyrusandinferiorfrontalgyrus,20withsomeadditionalsmallclustersintherighthemispherefrontalandparietallobes.The21contrastofsentencesvslistsrevealedsignificantclustersintheleftATL,rightATL,leftAG,left22IFG(parsorbitalis/triangularis),aswellasseveralmedialareas,includingtheanteriorcingulate,23ventromedialprefrontalcortex,leftprecuneus,leftamygdala,andleftparahippocampalgyrus.24Asmentionedabove,weselectedthefollowingsignificantlefthemisphereclustersfromthese25analyses.Fromthesentence>listcontrast:anteriortemporallobe(ATL),inferiorangulargyrus26(AG),andinferiorfrontalgyrus(IFGanterior)(straddlingtheparstriangularisandthepars27orbitalis).Fromthesentence>restcontrast:thepSTSandtheIFG(parsopercularis).2829

Page 14: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS14

1Figure4.Whole-brainactivationmapsforthelocalizerexperiment.TOP:sentence>rest.2BOTTOM:sentence>list.ClustersselectedtoserveasROIsforthemainexperimentareshown3surroundedbyawhitecirclewiththeircorrespondinganatomicallabels.Activationsare4displayedonaninflatedtemplatebraininTalairachspace(Talairach&Tournoux,1988).56Region Hemisphere x y z Clustersize

(voxels)Sentence>Rest Inferiorfrontalgyrus/precentralgyrus

Left -45 7 33 670

IFG(parsopercularis/triangularis)peak

Left -44 13 26

IFG(parstriangularis/orbitalis)peak

Left -50 32 4

Page 15: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS15

Precentralgyruspeak

Left -49 -8 50

Occipito-temporalcortex

Left -32 -72 -9 653

Inferioroccipitalgyruspeak

Left -26 -85 -5

Fusiformgyruspeak Left -39 -46 -13 Occipito-temporalcortex

Right 31 -77 -8 515

Inferioroccipitalgyruspeak

Right 25 -86 -4

Fusiformgyruspeak Right 41 -60 -10 Fusiformgyruspeak Right 36 -40 -15 Inferiorfrontalgyrus/precentralgyrus

Right 42 6 28 110

pSTS Left -53 -39 5 71Medialfrontalgyrus Left -5 0 57 71aSTS Left -54 -4 -5 33Inferiorparietal Right 28 -58 35 31Precentralgyrus Right 54 -6 44 25 Sentences>Lists Superiormedialgyrus Left/right -4 40 47 399IFGorbitalis Left ?Angulargyrus Left -46 -66 25 127aSTS Left -54 -4 -9 120aSTS Right 49 11 -15 83Ventromedialprefrontalcortex

Left/Right 1 45 -8 76

IFG(parsorbitalis) Right 42 28 -7 60Parahippocampalgyrus Left -27 -32 -11 50Precuneus Left -6 -52 21 45Amygdala Right 25 -4 -6 20Table1.Coordinatesofsignificantclustersfromthelanguagelocalizeranalyses.Individualvoxel1thresholdp<.005(one-tailed),clustersizethresholdof20voxels.AllvoxelspassedanFDR2correctionthresholdformultiplecomparisonsofq<0.05.Allcoordinatesarecenterofmass3(unlessnotedaslocalpeaks)reportedinTalairachspace(Talairach&Tournoux,1988).453.3.fMRI:Mainexperiment673.3.1.ROIanalyses89Region NPvs.List VPvs.List VPvs.NP

Page 16: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS16

AG t(19)=3.451*p=0.003

t(19)=2.279~p=0.034

t(19)=-0.326p=0.748

pSTS t(19)=1.883~p=0.075

t(19)=4.054*p<0.001

t(19)=2.790*p=0.012

ATL t(19)=3.052*p=0.007

t(19)=3.277*p=0.004

t(19)=0.466p=0.646

IFG(anterior) t(19)=3.283*p=0.004

t(19)=4.232*p<0.001

t(19)=1.817~p=0.085

IFG(opercularis) t(19)=-1.259p=0.235

t(19)=-0.449p=0.658

t(19)=2.750*p=0.013

Table2.StatisticalresultsoftheROIanalyses.*indicatesasignificanteffectwhencorrectedfor1multiplecomparisons,~indicatesatrendtowardssignificance.Allcomparisonsweretwo-2tailed.Significanceiscorrectedformultiplecomparisonswithafamily-wisealphathresholdofp3<.05(eachregionisdefinedasaseparatefamily),usingaBonferronicorrectionwithan4individualpthresholdofp<.0167.56

7Figure5.ROIanalyses.ROIsaredisplayedonaninflatedtemplatebraininTalairachspace8(Talairach&Tournoux,1988).Errorbarsreflectonestandarderrorofthemeanwithsubject9effectsremoved(Cousineau,2005).DetailsofteststatisticsarereportedinTable2.*=10significanteffect.~=trendtowardssignificance.11123.3.2.Whole-brainanalyses1314Weperformedwholebrainanalysesforthefollowingcontrasts:VP>list,NP>list,andVP–NP,15initiallyusingavoxel-wisethresholdofp<0.01(two-tailed)withaminimumclustersizeof2016voxels.Weperformedthisexploratoryanalysisbecausewewantedtoensurethatany17

Page 17: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS17

differencesweobtainedinourROIanalyseswereinterpretableinlightofthewhole-brain1contrasts.Forinstance,ifthecontrastbetweentheseconditionsresultedinoverallgreater2activityforoneconditionacrossmanybrainareas,thedifferencesbetweenNPandVPwe3obtainedinthepSTSandIFGROIswouldbelessmeaningful.45TheNPconditionshowedincreasedactivityrelativetotheListconditioninbilateral6ventromedialprefrontalcortex,biasedtothelefthemisphere(Figure6).TheVPcondition7showedincreasedactivityrelativetotheListconditioninatypicallefthemispherelanguage8network:thepSTS,theATL,andtheIFG(parstriangularis/orbitalis)(Figure7).Inthe9exploratoryanalysisofVPvs.NP,VPshowedincreasedactivityinpSTS,IFG(pars10opercularis/triangularis,anddorsalpremotorcortex,asimilarbutnotidenticalpatterntothe11contrastofVP>List.NPshowedincreasedactivityinabilateralnetworkthatroughly12correspondedtothedefaultnetwork:dorsalAG,ventromedialprefrontalcortex,and13precuneus(Figure8).1415

16Figure6.WholebrainanalysesforthecontrastofNP>list.Activationsaredisplayedonan17inflatedtemplatebraininTalairachspace(Talairach&Tournoux,1988).1819

Page 18: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS18

1Figure7.WholebrainanalysesforthecontrastsofVP>list.Activationsaredisplayedonan2inflatedtemplatebraininTalairachspace(Talairach&Tournoux,1988).34

5Figure8.WholebrainanalysesforthecontrastofVPvs.NP.Activationsaredisplayedonan6inflatedtemplatebraininTalairachspace(Talairach&Tournoux,1988).78Region Hemisphere x y z Clustersize

(voxels)VP>List IFG/aSTS/Anteriorcingulate

Left-35 15 -6 709

IFG(parsorbitalis)peak

Left-37 25 -9

Hippocampus Left -22 -16 -8

Page 19: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS19

aSTS Left -53 -4 -6 Anteriorcingulate

Left-1 38 -6

pSTS Left -48 -39 7 209Insula/Inferiorparietal

Left-32 -19 22 85

Superiormedialgyrus

Left-9 52 25 71

AG Left -42 -61 21 54Parahippocampalgyrus

Left-31 -32 -13 37

Temporalpole Right 48 21 -20 26Cerebellum Right 21 -75 -31 25Heschl’sgyrus Right 41 -17 4 23Caudate Left -13 9 25 23 NP>List Anteriorcingulate Left/Right -2 42 10 995IFG(parsorbitalis)

Left -35 22 -12 189

AG Left -43 -58 21 112aSTS Left -54 -2 -8 94Precuneus Left -7 -56 21 84Hippocampus Left -22 -13 -9 50Temporalpole Right 46 19 -17 45Insula Left -31 -17 18 44pSTS Left -46 -33 1 33aSTS Right 53 1 -10 30IFG(parsorbitalis)

Right29 12 -13 20

Table3.Coordinatesofsignificantclustersfromthewhole-brainanalysesofthemain1experimentforVP>ListandNP>List.Individualvoxelthresholdp<.01(two-tailed),cluster2sizethresholdof20voxels(uncorrectedformultiplecomparisons).Allcoordinatesarecenterof3massreportedinTalairachspace(Talairach&Tournoux,1988).456Region Hemisphere x y z Clustersize

(voxels)VP>NP Cerebellum Right 22 -56 -39 65IFG(parstriangularis)

Left -50 21 23 58

Cerebellum Right 17 -64 -22 41

Page 20: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS20

Precentralgyrus Left -45 -2 49 29pSTS Left -52 -43 5 26IFG(parsorbitalis)

Left -46 26 5 20

NP>VP Anteriorcingulate

Left/Right 7 51 11 168

Superiorfrontalgyrus

Right 26 19 43 45

Precuneus Right 3 -71 30 30Angulargyrus Right 50 -56 29 29Angulargyrus Right 38 -67 24 22Table4.Coordinatesofclustersfromtheexploratorywhole-brainanalysesofthemain1experimentforVP>NPandNP>VP.Voxel-wisep<0.01(two-tailed),clustersizethreshold202voxels.AllcoordinatesarecenterofmassreportedinTalairachspace(Talairach&Tournoux,31988).454.Discussion67ThecurrentfMRIstudywasdesignedtoinvestigatetheextenttowhichlefthemispherebrain8regionsthatshowincreasedactivityforstructuredlanguageinput(pSTS,ATL,AGandIFG)are9specificallyinvolvedincomputingverbargumentvs.modificationrelations.Replicatingprior10work(Pallieretal.,2011;Fedorenkoetal.,2012;Matchinetal.,2017),wefoundthatallofthe11lefthemispherelanguage-relatedregionswetestedexceptfortheparsopercularisshowed12increasedactivityforlexically-matchedverbphrases(VPs)andnounphrases(NPs)relativeto13listsoratrendtowardsthiseffect.However,onlypSTSandposteriorIFGshowedincreased14activityforVPsrelativetoNPs(therewasalsoanon-significantbutsuggestivetrendforthis15effectinanteriorIFG).Notably,althoughAGhasoftenbeenassociatedwiththematic16processinginthepreviousliterature,nodifferencesintheresponsetoVPsandNPswere17observedhere.Inwhatfollows,wediscusstheseresultsinturn.18194.1.TheroleoftheAGinprocessingargumentstructureandeventsemantics2021PreviousworkhasdemonstratedthatAGandsurroundingtemporalcortexissensitivetoverbal22argumentstructure,showingincreasedactivityinresponsetoverbsthatrequiremore23arguments(Thompsonetal.,2007;2010;Meltzer-Asscheretal.,2012;2015).Thecurrent24resultssuggestthattheseeffectsdonotdirectlyreflectpredicate-argumentrelationsinthe25logicalform,asweobservednodifferenceintheAGresponsebetweenVPsthatcontained26predicate-argumentrelationsandNPsthatdidnot.However,thefactthatbothtypesof27phraseselicitedalargerAGresponsethanunstructuredwordlistsisconsistentwithprevious28workimplicatingtheAGincombinatorialand/orconceptual-semanticprocessing(Priceetal.,292016;Boylanetal.,2015;Binderetal.,2009;Pallieretal.,2011;Williamsetal.,2017).One30

Page 21: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS21

possibleexplanationforthepresentpatternofresultsisthattheleftAGplaysageneralrolein1semanticcombination,regardlessofwhetherthesemanticrepresentationsare2thematic/relational,taxonomic,orotherwiseinnature.Thiswouldbeconsistentwiththe3severalpriorstudiesthathavereportedanassociationbetweenleftAGandgeneralconceptual4combinationusingmaterialsthatdon’tincludeverb-argumentcombination(Priceetal.,2015;52016;Bemis&Pylkkanen,2012;2013;Williamsetal.,2017).67However,ageneralroleinsemanticcombinationdoesnotaccountforthefactsthatledtothis8proposedstudy–thelargevolumeofdataassociatingtheAGmorespecificallywith9event/relationalsemanticsandverbargumentstructure.Rather,theentirebodyofdata10incorporatingbothpresentandpastresultsseemsmoreconsistentwithamorespecificrolefor11AGincomputingand/oraccessingconceptualrelationsbetweeneventsandparticipants—in12otherwords,placingthespecificitynotinrepresentinglinguisticverb/predicate-argument13relations,butconceptualevent-participantrelations.Totakeourownexperimentasan14illustration,inthenounphrase“thefrightenedboy”,noverbisrepresentedinthesyntaxofthe15phrase,andnopredicate-argumentrelationsinthelogicalform.However,therootfrighten16denotesanevent,anditisconceivablethatthelexicalaccessroutinethatinvolvesretrieving17themorphemesthatcomposetheadjectivefrightenedmayautomaticallyengenderactivation18ofthisstoredeventrepresentation.Onthisaccountthen,theleftAGmaybeinvolvedin19processingtheeventinformationassociatedwithparticularwordsregardlessofwhetherthey20areusedinasyntacticcontextwhoselogicalformdenotesaneventornot.2122HerewestepbackandreconsiderthepreviousstudiesthatfoundanassociationbetweenAG23activityandargumentstructure.StudiesthathavefoundincreasedactivityinAGforthe24complexityofaverb’sargumentstructurehavemostlyusedsinglewordpresentationanda25lexicaldecisiontask(Thompsonetal.,2007;2010;Meltzer-Asscheretal.,2012;2015).Itmay26bethatthesesubjectsattemptedtoaccessthesemanticinformationassociatedwithwordsin27ordertomakethelexicalitydecision,includingeventsemantics.Underthepresenthypothesis,28verbswithmorecomplexargumentstructuresmayinducetheconstructionand/oraccessin29memoryofmorecomplexeventrepresentations,increasingactivationintheAG.3031ThishypothesiscanalsopotentiallyexplainwhytheAGactivatesforgeneralsemantictasks32(Binderetal.,2009).Forinstance,theactivationofeventscanonicallyassociatedwithparticular33words(ortheimplicitcomputationofsuchevents)regardlessofovertargumentstructure34couldexplainincreasedactivityintheAGforrealnounsrelativetopseudowordsinlexical35decisiontasks(Binderetal.,2003;2005;Bonneretal.,2013).Thisexplanationalsoextendsto36studiesfindingthatmeaningfulsemanticcombinationsactivatetheleftAGmorethanless37meaningfulones(Priceetal.,2015;2016).Forinstance,thefMRIstudybyPriceetal.(2015)38foundthatmeaningfulcombinationslikeplaidjacketactivatedtheleftAGmorethanless39meaningfulonessuchasmosspony.Plaidjacketsareassociatedwithmanyevent40representations,suchasalumberjackcuttingdownatreeoracocktailpartyinthe1960s.By41contrast,mossponiesarenotassociatedwithanyeventrepresentations.However,wenote42thatthisexplanationdoesnotaccountforsomestudiesthatobservesimilaractivityinAGfor43

Page 22: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS22

bothtaxonomicandthematicrelations(Lewisetal.,2015;Sachsetal.,2008).Thismeansthat1theseresultsshouldbereplicatedandexploredfurther.23Thishypothesisisalsoconsistentwiththelesiondata,whichshowageneralassociation4betweenleftAGdamageordegenerationandsentencecomprehensiondeficits(Dronkerset5al.,2004;Thothathirietal.,2011;Mesulametal.,2015;Pillayetal.,2017;Magnusdottiretal.,62013).ThefindingthatpicturenamingdeficitsareassociatedwithAGdamage(Pillayetal.,72017)isconsistentwithideathatsubjectsfindthewordassociatedwithapictureinpartby8identifyingthethematicinformationassociatedwithapictureandthenidentifyingwords9associatedwiththoseeventrepresentations.Finally,thefindingbySchwartzetal.(2011)that10thematicerrorswereassociatedwithAGdamage(andnottaxonomicerrors)ismuchbetter11explainedbyaroleforAGineventsemanticsthaningeneralsemanticprocessing.Similar12resultswereobtainedintheeyetrackingstudybyMirman&Graziano(2012)–patientswith13posteriorlesions(includingAG)showeddifferentprocessingofthematicrelationsthancontrol14patients,butnodifferencefortaxonomicrelations;thereversepatternwasfoundforpatients15withanteriorlesions(overlappingwithATL).Webelieveaparticularlyimportantgoalfor16researchonthematicprocessinginAGistoreplicateandextendthefindingsofadistinction17betweendamagetoATLandAGbeforemakingfirmconclusionsbasedonthesestudies.1819Overall,whileinourstudytheleftAGwasnotmoreengagedforVPs(withargumentstructure)20relativetoNPs(withoutargumentstructure),theresultsarereconcilablewitharoleforthis21brainregioninprocessingeventinformation,whetheritisaccesstostoredevent22representationsortheimplicitcomputationofevents.Ourresultshelpnarrowdownthe23functionalcontributionofthisregion,suggestingthatitdoesnotsimplyrespondtothe24presenceorabsenceofovertargumentstructuredenotedbyaverb,butrathermightbe25involvedinprocessingevent-levelrepresentationsmoregenerally.2627Thisresultthenraisesafurtherquestion:howdoesthebrainprocesslinguisticargument28structure?Suchaquestiongoesbeyondthescopeofthepresentinvestigation.However,the29failuretoprovidegoodevidenceforaplausibleneuralcorrelateoflinguisticargumentrelations30highlightstheneedtodevelopandtestmoredetailedmodelsoflinguisticandsemantic31processinginthebraintopursuethisandotherquestionsregardingtheneurobiologyof32language.33344.2.pSTS:lexical-syntacticprocessing3536ThepSTSandanteriorIFGshowedincreasedactivityforVPsrelativetoNPs,andincreased37activationforphrasesrelativetolistsinthemainexperiment.Inprinciple,thisactivationcould38reflectsemanticargumentstructure.However,thepSTShasnotbeenstronglyassociatedwith39semanticprocessing,butratherlexicalandsyntacticprocesses(Pallieretal.,2011;Wilsonetal.,402010;Bornkessel-Schlesewsky&Schlesewsky,2013;Matchinetal.,2017),suggestingthat41effectsintheSTSarenotduetosemanticargumentstructure.4243

Page 23: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS23

WesuggestthattheincreasedactivationforVPsrelativetoNPsinpSTSinthecurrentstudyis1duetotheactivationofsyntacticsubcategorizationframesstoredinthisregion.Allofourverbs2weretransitive,requiringanounphrasecomplement;suchinformationispresumablyaccessed3incomputingthesyntacticstructureoftheVPsinthisstudy.However,theadjectivalversionsof4thesewordsdonotrequireanycomplements;itmaybethatwhenthesewordsareclearly5adjectives(inNPcontext),theydonotactivatethesubcategorizationinformationstoredonthe6correspondingverbs.Previousresearchhasassociatedtheposteriortemporallobewithlexical7access(seeLauetal.,2008andHickok&Poeppel,2007forreview),consistentwiththeidea8thatlexicalizedsubcategorizationinformationisstoredinthepSTS,exhibitingincreased9activationforverbswithsubcategorizationrelativetoadjectiveswithoutsuch10subcategorization.1112Asnotedintheintroduction,semanticargumentstructureandsyntacticsubcategorizationare13usuallyconfounded.OnepriorfMRIstudybyShetreetetal.(2006)de-confoundedthese14variablesthroughthepropertyofambiguity,whichhasbeenshowntomodulateneuralactivity15intheposteriortemporallobe(Roddetal.,2005;Snijdersetal.,2008).Theyexaminedverbs16thatareambiguouswithrespecttothesyntacticframesthattheycanappearin,suchas17discover,whichcantakeanouncomplement(discoveredthetreasure)orasentence18complement(discoveredthattheearthisround).Shetreetetal.arguethatwhileinsomecases19thesyntacticambiguityisassociatedwiththematicambiguity(fordiscover,thecomplementis20interpretedaseitherathemeoraproposition),inothercasesbothsyntacticframesconveythe21samethematicrelations(forexample,inHebrewtastethesoupvs.tastefromthesoup,the22complementisalwaysinterpretedasatheme).Theyobservedincreasedactivityinposterior23temporallobe(aswellasIFG)forverbswithmorethanonesyntacticframe,butthisactivity24wasunaffectedbythenumberofthematicoptions,suggestingthattheseactivationsweredue25tosyntacticsubcategorizationratherthanargumentstructure.Ifthishypothesisiscorrect,the26increasedactivationforVPsrelativetoNPsinourstudymightbeduetotheactivationof27syntacticsubcategorizationinformationstoredwithalexicalitem.However,giventhatour28studywasnotdesignedspecificallytodiscriminateamongthesealternatives,wecannotbe29confidentinthisinterpretation,andmoreresearchisneededtodeterminewhether30subcategorizationisspecificallytiedtopSTSactivity.3132Finally,anadditionalpossibilityisthatincreasedactivityforVPsinpSTS(andposteriorIFG)33actuallyreflectsafrequencyeffectratherthanalinguisticone.Althoughthelexicalitemswere34controlledacrossconditionswithrespecttotherootwordandovertmorphology,itmaybe35thatthefrequencyofusagewithrespecttosyntacticcategorywasdifferentacrosstheNP36(adjectiveusage)andVP(verbusage)conditions.PreviousfMRIresearchhasoccasionally37observedthatsomelefthemisphereregionsshowsincreasedactivityforlowfrequencywords38relativetohighfrequencywords(Fiebachetal.,2002;Kronbichleretal.,2003;deZubicarayet39al.,2005;Hauketal.,2008),althoughthepresenceofthiseffectdependsontaskandsyntactic40context(Kelleretal.,2001;Carreirasetal.,2006).Futureresearchcouldinvestigatetheeffect41ofsuchcontextualfrequencyeffectsonbrainactivationinlanguageareas.42434.3.AnteriorIFG44

Page 24: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS24

1TheanteriorIFG(parsorbitalis/triangularis)showedanon-significanttrendtowardsincreased2activationforVPsrelativetoNPs,andincreasedactivationforbothkindsofphrasesrelativeto3lists.Theincreasedactivationforstructuredphrasesrelativetolistsisconsistentwithprevious4researchidentifyingeffectsoflinguisticstructureandsemantics(Badre&Wagner,2007;Binder5etal.,2009;Pallieretal.,2011;Gouchaetal.,2015;Rogalskyetal.,2015;Matchinetal.,2017).6WehesitatetointerpretthenonsignificanttrendtowardsadifferencebetweenVPsandNPs,7giventhatwedidnotexpectanargumentstructureeffectinthisregion;moredatawouldbe8neededtodetermineifthiseffectisindeedreliableandinformativeastothefunctionalroleof9theanteriorIFG.10114.3.Theparsopercularis–verbalworkingmemory1213TheparsopercularisROIshowedasignificantincreasedresponsetoVPsrelativetoNPs.Given14thestrongassociationofthisregionwithsyntacticprocessingintheliterature(Ben-Shacharet15al.,2003;Snijdersetal.,2008;Goucha&Friederici,2015;Zaccarellaetal.,2017),itistempting16tointerpretthisresultassyntacticstructurebuilding.However,alargepriorliteraturehas17attributedthefunctionofthemid-posteriorIFGinsentenceprocessinginsteadtocognitive18controland/orverbalworkingmemoryresources(Thompson-Schilletal.,1997;Novicketal.,192005;Rogalsky&Hickok,2011;Matchinetal.,2017).Consistentwiththis,unlikethemore20anteriorportionoftheIFGandthepSTS,activityinthisregionwasactuallynumericallyhigher21forthelistconditionrelativetotheNPcondition,andalmostnumericallyequaltotheVP22condition.Giventhatthelistconditiondidnotinvolvecombinatorialprocessing,andour23blockeddesignlikelypreventedsubjectsfrommistakenlybuildingstructureinthesestimuli,24theseeffectswouldbehardtoattributetosyntacticprocessing.2526Ontheotherhand,thesomewhatelevatedactivationforlistsrelativetoNPsinthisregionfits27witharoleforthisregioninverbalworkingmemoryand/orcognitivecontrol.Giventhat28unstructuredwordlistsdonotallowforefficientchunkingtoreduceworkingmemoryload,29whilesentencesfacilitateworkingmemorythroughsyntacticandsemanticchunking,theword30listsinourstudygreatlyincreaseddemandsonworkingmemoryresourcesand/orexecutive31functionresources.Thisisconsistentbothwiththemuchlowerperformanceonthewordlist32conditionrelativetothephraseconditions,aswellastheinformalreportsofoursubjectsthat33wordrecallinthelistconditionwasquitehard.Theparsopercularishasbeenpreviously34implicatedinverbalworkingmemorytasks,consistentwiththisexplanation(Hickoketal.,352003;Buchsbaumetal.,2011).Itisalsorelevanttonotethatthereducedthresholdwhole36brainanalysisofVP>NPrevealedaneffectinthedorsalprecentralgyrus,whichisalsostrongly37implicatedinverbalworkingmemorytasks(Buchsbaumetal.,2011).Conversely,itis38somewhatlessclearwhyverbalworkingmemoryorcognitivecontroldemandswouldbe39greaterinVPsrelativetoNPs,asbothconditionshadhierarchicalstructurethatlikelyfacilitated40demandsonverbalworkingmemoryresources.However,onecouldspeculatethatthe41conceptualdifferencesbetweenobjectsandeventsresultindifferencesintheresources42requiredtorepresenttheminworkingmemory,anditisworthnotingthatreactiontimeswere43significantlyslowerfortheVPscomparedtotheNPs.44

Page 25: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS25

1OnealternativeinterpretationoftheincreasedresponsetotheVPconditioninposteriorIFGis2thatitreflectstheactivationofembodiedsemanticrepresentationsofverbsand/oractionsin3premotorcortex.Someimagingstudieshaveshownthatverbsactivateinferiorfrontalregions4morestronglythannouns(seeViglioccoetal.,2011forareview),consistentwiththeideathat5actionmeaningsprimarilydenotedbyverbsareembodiedinregionsneighboringmotorcortex6(Pulvermuller,2005).However,thischaracterizationhasbeenchallengedboththeoreticallyand7empirically(e.g.deZubicarayetal.,2013),andwithrespecttothecurrentstudydoesnot8explainwhyunstructuredlistsofnouns,determiners,andverbswoulddriveactivationtonearly9thesameextent.Thus,thisexplanationofthecurrenteffectsseemslesslikely.10114.4.Conclusions1213Ourstudyintroducedanovel,fullylexically-matchedparadigmtotestwhetheractivityinthe14leftangulargyruscontributesspecificallytothecomputationofargumentstructureinlinguistic15input.ThelackofdifferenceweobservedintheresponsetoVPsandNPsinthisregionsuggests16thatitdoesnot.However,thispatternisconsistentwitharoleforthisregionintheprocessing17ofeventinformationassociatedwithagivenword,independentofitslinguisticcontext,and18futureresearchshouldaimtofurtherdiscriminatebetweenthematicandmoregeneral19semanticprocessinginthisregion.Inaddition,thesignificantincreaseinactivationweobtained20forVPsrelativetoNPsinthepSTSfurthersupportsaroleforthisregioninsyntacticprocessing,21generallydefined(Pallieretal.,2011;Matchinetal.,2017),whichmayberelatedtothe22processingofsyntacticselectionorsubcategorization.23245.Acknowledgements2526ThisresearchwassupportedbyinternalresearchfundsfromtheUniversityofMaryland.We27wouldliketothankAlexanderWilliamsandtheaudienceoftheCognitiveNeuroscienceSociety28annualmeetingin2017forhelpfuldiscussion.29306.References3132Badre,D.,&Wagner,A.D.(2007).Leftventrolateralprefrontalcortexandthecognitivecontrol33

ofmemory.Neuropsychologia,45(13),2883-2901.3435Bedny,M.,Dravida,S.,&Saxe,R.(2014).Shindigs,brunches,androdeos:Theneuralbasisof36

eventwords.Cognitive,Affective,&BehavioralNeuroscience,14(3),891-901.3738Bemis,D.K.,&Pylkkänen,L.(2011).Simplecomposition:Amagnetoencephalography39

investigationintothecomprehensionofminimallinguisticphrases.Journalof40Neuroscience,31(8),2801-2814.41

42Bemis,D.K.,&Pylkkänen,L.(2012).Basiclinguisticcompositionrecruitstheleftanterior43

Page 26: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS26

temporallobeandleftangulargyrusduringbothlisteningandreading.Cerebral1Cortex,23(8),1859-1873.2

3Ben-Shachar,M.,Hendler,T.,Kahn,I.,Ben-Bashat,D.,&Grodzinsky,Y.(2003).Theneural4

realityofsyntactictransformations:Evidencefromfunctionalmagneticresonance5imaging.PsychologicalScience,14(5),433-440.6

7Binder,J.R.,McKiernan,K.A.,Parsons,M.E.,Westbury,C.F.,Possing,E.T.,Kaufman,J.N.,&8

Buchanan,L.(2003).Neuralcorrelatesoflexicalaccessduringvisualwordrecognition.9JournalofCognitiveNeuroscience,15(3),372-393.10

11Binder,J.R.,Westbury,C.F.,McKiernan,K.A.,Possing,E.T.,&Medler,D.A.(2005).Distinct12

brainsystemsforprocessingconcreteandabstractconcepts.JournalofCognitive13Neuroscience,17(6),905-917.14

15Binder,J.R.,Desai,R.H.,Graves,W.W.,&Conant,L.L.(2009).Whereisthesemanticsystem?16

Acriticalreviewandmeta-analysisof120functionalneuroimagingstudies.Cerebral17Cortex,19(12),2767-2796.18

19Bonner,M.F.,Peelle,J.E.,Cook,P.A.,&Grossman,M.(2013).Heteromodalconceptual20

processingintheangulargyrus.Neuroimage,71,175-186.2122Bornkessel-Schlesewsky,I.,&Schlesewsky,M.(2013).Reconcilingtime,spaceandfunction:a23

newdorsal–ventralstreammodelofsentencecomprehension.BrainandLanguage,24125(1),60-76.25

26Boylan,C.,Trueswell,J.C.,&Thompson-Schill,S.L.(2015).Compositionalityandtheangular27

gyrus:Amulti-voxelsimilarityanalysisofthesemanticcompositionofnounsandverbs.28Neuropsychologia,78,130-141.29

30Boylan,C.,Trueswell,J.C.,&Thompson-Schill,S.L.(2017).Relationalvs.attributive31

interpretationofnominalcompoundsdifferentiallyengagesangulargyrusandanterior32temporallobe.BrainandLanguage,169,8-21.33

34Brainard,D.H.(1997).Thepsychophysicstoolbox.SpatialVision,10,433-436.3536Bresnan,J.(1978).Arealistictransformationalgrammar.InHalle,M.,Bresnan,J.&Miller,G.A.37

(eds.),LinguisticTheoryandPsychologicalReality.Cambridge,MA:TheMITPress.1-59.3839Bresnan,J.(1981).AnapproachtoUniversalGrammarandthementalrepresentationof40

language.Cognition,10(1-3),39-52.4142Buchsbaum,B.R.,Baldo,J.,Okada,K.,Berman,K.F.,Dronkers,N.,D’esposito,M.,&Hickok,G.43

Page 27: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS27

(2011).Conductionaphasia,sensory-motorintegration,andphonologicalshort-term1memory–anaggregateanalysisoflesionandfMRIdata.BrainandLanguage,119(3),2119-128.3

4Caplan,D.,Stanczak,L.,&Waters,G.(2008).Syntacticandthematicconstrainteffectsonblood5

oxygenationleveldependentsignalcorrelatesofcomprehensionofrelative6clauses.JournalofCognitiveNeuroscience,20(4),643-656.7

8Carreiras,M.,Mechelli,A.,&Price,C.J.(2006).Effectofwordandsyllablefrequencyon9

activationduringlexicaldecisionandreadingaloud.HumanBrainMapping,27(12),963-10972.11

12deZubicaray,G.I.,McMahon,K.L.,Eastburn,M.M.,Finnigan,S.,&Humphreys,M.S.(2005).13

fMRIevidenceofwordfrequencyandstrengtheffectsduringepisodicmemory14encoding.CognitiveBrainResearch,22(3),439-450.15

16deZubicaray,G.,Arciuli,J.,&McMahon,K.(2013).Puttingan“end”tothemotorcortex17

representationsofactionwords.JournalofCognitiveNeuroscience,25(11),1957-1974.1819Dronkers,N.F.,Wilkins,D.P.,VanValinJr,R.D.,Redfern,B.B.,&Jaeger,J.J.(2004).Lesion20

analysisofthebrainareasinvolvedinlanguagecomprehension.Cognition,92(1-2),145-21177.22

23Fedorenko,E.,Nieto-Castanon,A.,&Kanwisher,N.(2012).Lexicalandsyntacticrepresentations24

inthebrain:anfMRIinvestigationwithmulti-voxelpattern25analyses.Neuropsychologia,50(4),499-513.26

27Fiebach,C.J.,Friederici,A.D.,Müller,K.,&Cramon,D.Y.V.(2002).fMRIevidencefordual28

routestothementallexiconinvisualwordrecognition.JournalofCognitive29Neuroscience,14(1),11-23.30

31Frege,G.(1892).Übersinnundbedeutung.ZeitschriftfürPhilosophieundphilosophische32

Kritik,100(1),25-50.3334Goucha,T.,&Friederici,A.D.(2015).Thelanguageskeletonafterdissectingmeaning:a35

functionalsegregationwithinBroca'sArea.Neuroimage,114,294-302.3637Hauk,O.,Davis,M.H.,&Pulvermüller,F.(2008).Modulationofbrainactivitybymultiplelexical38

andwordformvariablesinvisualwordrecognition:AparametricfMRIstudy.39Neuroimage,42(3),1185-1195.40

41Hickok,G.,Buchsbaum,B.,Humphries,C.,&Muftuler,T.(2003).Auditory–motorinteraction42

revealedbyfMRI:speech,music,andworkingmemoryinareaSpt.JournalofCognitive43Neuroscience,15(5),673-682.44

Page 28: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS28

1Hickok,G.,&Poeppel,D.(2007).Thecorticalorganizationofspeechprocessing.Nature2ReviewsNeuroscience,8(5),393.3

4Hornstein,N.(2009).Atheoryofsyntax:Minimaloperationsanduniversalgrammar.5

CambridgeUniversityPress.67Joshi,A.K.,&Schabes,Y.(1997).Tree-adjoininggrammars.InHandbookofformallanguages8

(pp.69-123).Springer,Berlin,Heidelberg.910Kalénine,S.,Peyrin,C.,Pichat,C.,Segebarth,C.,Bonthoux,F.,&Baciu,M.(2009).Thesensory-11

motorspecificityoftaxonomicandthematicconceptualrelations:Abehavioraland12fMRIstudy.Neuroimage,44(3),1152-1162.13

14Keller,T.A.,Carpenter,P.A.,&Just,M.A.(2001).Theneuralbasesofsentence15

comprehension:afMRIexaminationofsyntacticandlexicalprocessing.Cerebral16Cortex,11(3),223-237.17

18Kleiner,M.,Brainard,D.,Pelli,D.,Ingling,A.,Murray,R.,&Broussard,C.(2007).What'snewin19

Psychtoolbox-3.Perception,36(14),1.2021Kratzer,A.,&Heim,I.(1998).Semanticsingenerativegrammar(Vol.1185).Oxford:Blackwell.2223Kronbichler,M.,Hutzler,F.,Wimmer,H.,Mair,A.,Staffen,W.,&Ladurner,G.(2004).Thevisual24

wordformareaandthefrequencywithwhichwordsareencountered:evidencefroma25parametricfMRIstudy.Neuroimage,21(3),946-953.26

27Kutas,M.,&Hillyard,S.A.(1980).Readingsenselesssentences:Brainpotentialsreflect28

semanticincongruity.Science,207(4427),203-205.2930Lapinskaya,N.,Uzomah,U.,Bedny,M.,&Lau,E.(2016).Electrophysiologicalsignaturesof31

eventwords:Dissociatingsyntacticandsemanticcategoryeffectsinlexicalprocessing.32Neuropsychologia,93,151-157.33

34Lau,E.F.,Phillips,C.,&Poeppel,D.(2008).Acorticalnetworkforsemantics:(de)constructing35

theN400.NatureReviewsNeuroscience,9(12),920.3637Lau,E.,Namyst,A.,Fogel,A.,&Delgado,T.(2016).AdirectcomparisonofN400effectsof38

predictabilityandincongruityinadjective-nouncombination.Collabra:Psychology,2(1).3940Lewis,G.A.,Poeppel,D.,&Murphy,G.L.(2015).Theneuralbasesoftaxonomicandthematic41

conceptualrelations:AnMEGstudy.Neuropsychologia,68,176-189.4243Magnusdottir,S.,Fillmore,P.,DenOuden,D.B.,Hjaltason,H.,Rorden,C.,Kjartansson,O.,...&44

Page 29: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS29

Fridriksson,J.(2013).Damagetoleftanteriortemporalcortexpredictsimpairmentof1complexsyntacticprocessing:Alesion-symptommappingstudy.HumanBrain2Mapping,34(10),2715-2723.3

4Matchin,W.,Hammerly,C.,&Lau,E.(2017).TheroleoftheIFGandpSTSinsyntactic5

prediction:EvidencefromaparametricstudyofhierarchicalstructureinfMRI.Cortex,688,106-123.7

8Matchin,W.(2017).Aneuronalretuninghypothesisofsentence-specificityinBroca’s9

area.PsychonomicBulletin&Review.1011Meltzer-Asscher,A.,Schuchard,J.,denOuden,D.B.,&Thompson,C.K.(2013).Theneural12

substratesofcomplexargumentstructurerepresentations:Processing“alternating13transitivity”verbs.LanguageandCognitiveProcesses,28(8),1154-1168.14

15Meltzer-Asscher,A.,Mack,J.E.,Barbieri,E.,&Thompson,C.K.(2015).Howthebrainprocesses16

differentdimensionsofargumentstructurecomplexity:EvidencefromfMRI.Brainand17Language,142,65-75.18

19Mesulam,M.M.,Thompson,C.K.,Weintraub,S.,&Rogalski,E.J.(2015).TheWernicke20

conundrumandtheanatomyoflanguagecomprehensioninprimaryprogressive21aphasia.Brain,138(8),2423-2437.22

23Mirman,D.,&Graziano,K.M.(2012).Damagetotemporo-parietalcortexdecreasesincidental24

activationofthematicrelationsduringspokenword25comprehension.Neuropsychologia,50(8),1990-1997.26

27Molinaro,N.,Carreiras,M.,&Duñabeitia,J.A.(2012).Semanticcombinatorialprocessingof28

non-anomalousexpressions.Neuroimage,59(4),3488-3501.2930Novick,J.M.,Trueswell,J.C.,&Thompson-Schill,S.L.(2005).Cognitivecontrolandparsing:31

ReexaminingtheroleofBroca’sareainsentencecomprehension.Cognitive,Affective,&32BehavioralNeuroscience,5(3),263-281.33

34Pallier,C.,Devauchelle,A.D.,&Dehaene,S.(2011).Corticalrepresentationoftheconstituent35

structureofsentences.ProceedingsoftheNationalAcademyofSciences,201018711.3637Pelli,D.G.(1997).TheVideoToolboxsoftwareforvisualpsychophysics:Transformingnumbers38

intomovies.SpatialVision,10,437-442.3940Pillay,S.B.,Binder,J.R.,Humphries,C.,Gross,W.L.,&Book,D.S.(2017).Lesionlocalizationof41

speechcomprehensiondeficitsinchronicaphasia.Neurology,10-1212.4243Price,A.R.,Bonner,M.F.,Peelle,J.E.,&Grossman,M.(2015).Convergingevidenceforthe44

Page 30: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS30

neuroanatomicbasisofcombinatorialsemanticsintheangulargyrus.Journalof1Neuroscience,35(7),3276-3284.2

3Price,A.R.,Peelle,J.E.,Bonner,M.F.,Grossman,M.,&Hamilton,R.H.(2016).Causalevidence4

foramechanismofsemanticintegrationintheangulargyrusasrevealedbyhigh-5definitiontranscranialdirectcurrentstimulation.JournalofNeuroscience,36(13),3829-63838.7

8Pulvermüller,F.(2005).Brainmechanismslinkinglanguageandaction.NatureReviews9

Neuroscience,6(7),576.1011Rodd,J.M.,Davis,M.H.,&Johnsrude,I.S.(2005).Theneuralmechanismsofspeech12

comprehension:fMRIstudiesofsemanticambiguity.CerebralCortex,15(8),1261-1269.1314Rogalsky,C.,&Hickok,G.(2008).Selectiveattentiontosemanticandsyntacticfeatures15

modulatessentenceprocessingnetworksinanteriortemporalcortex.Cerebral16Cortex,19(4),786-796.17

18Rogalsky,C.,&Hickok,G.(2011).TheroleofBroca'sareainsentencecomprehension.Journal19

ofCognitiveNeuroscience,23(7),1664-1680.2021Rogalsky,C.,Almeida,D.,Sprouse,J.,&Hickok,G.(2015).Sentenceprocessingselectivityin22

Broca'sarea:evidentforstructurebutnotsyntacticmovement.Language,Cognition23andNeuroscience,30(10),1326-1338.24

25Rogalsky,C.,LaCroix,A.N.,Chen,K.H.,Anderson,S.W.,Damasio,H.,Love,T.,&Hickok,G.26

(2018).Theneurobiologyofagrammaticsentencecomprehension:alesionstudy.27JournalofCognitiveNeuroscience,30(2),234-255.28

29Sag,I.A.,&Wasow,T.(1999).Syntactictheory:Aformalintroduction(Vol.92).Stanford,CA:30

CenterfortheStudyofLanguageandInformation.3132Shetreet,E.,Palti,D.,Friedmann,N.,&Hadar,U.(2006).Corticalrepresentationofverb33

processinginsentencecomprehension:Numberofcomplements,subcategorization,34andthematicframes.CerebralCortex,17(8),1958-1969.35

36Shetreet,E.,Friedmann,N.,&Hadar,U.(2010).Theneuralcorrelatesoflinguisticdistinctions:37

Unaccusativeandunergativeverbs.JournalofCognitiveNeuroscience,22(10),2306-382315.39

40Schwartz,M.F.,Kimberg,D.Y.,Walker,G.M.,Brecher,A.,Faseyitan,O.K.,Dell,G.S.,...&41

Coslett,H.B.(2011).Neuroanatomicaldissociationfortaxonomicandthematic42knowledgeinthehumanbrain.ProceedingsoftheNationalAcademyofSciences,43201014935.44

Page 31: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS31

1Snijders,T.M.,Vosse,T.,Kempen,G.,VanBerkum,J.J.,Petersson,K.M.,&Hagoort,P.(2008).2

Retrievalandunificationofsyntacticstructureinsentencecomprehension:anfMRI3studyusingword-categoryambiguity.CerebralCortex,19(7),1493-1503.4

5Talairach,J.,&Tournoux,P.(1988).Co-planarstereotaxicatlasofthehumanbrain.NewYork,6

NY:ThiemeMedicalPublishers.78Thompson-Schill,S.L.,D’Esposito,M.,Aguirre,G.K.,&Farah,M.J.(1997).Roleofleftinferior9

prefrontalcortexinretrievalofsemanticknowledge:areevaluation.Proceedingsofthe10NationalAcademyofSciences,94(26),14792-14797.11

12Thompson,C.K.,&Meltzer-Asscher,A.(2014).Neurocognitivemechanismsofverbargument13

structureprocessing.StructuringtheArgument.Amsterdam:JohnBenjamins,141-168.1415Thompson,C.K.,Bonakdarpour,B.,Fix,S.C.,Blumenfeld,H.K.,Parrish,T.B.,Gitelman,D.R.,&16

Mesulam,M.M.(2007).Neuralcorrelatesofverbargumentstructureprocessing.17JournalofCognitiveNeuroscience,19(11),1753-1767.18

19Thompson,C.K.,Bonakdarpour,B.,&Fix,S.F.(2010).Neuralmechanismsofverbargument20

structureprocessinginagrammaticaphasicandhealthyage-matchedlisteners.Journal21ofCognitiveNeuroscience,22(9),1993-2011.22

23Thothathiri,M.,Kimberg,D.Y.,&Schwartz,M.F.(2012).Theneuralbasisofreversible24

sentencecomprehension:evidencefromvoxel-basedlesionsymptommappingin25aphasia.JournalofCognitiveNeuroscience,24(1),212-222.26

27Vigliocco,G.,Vinson,D.P.,Druks,J.,Barber,H.,&Cappa,S.F.(2011).Nounsandverbsinthe28

brain:areviewofbehavioural,electrophysiological,neuropsychologicalandimaging29studies.Neuroscience&BiobehavioralReviews,35(3),407-426.30

31Westerlund,M.,&Pylkkänen,L.(2014).Theroleoftheleftanteriortemporallobeinsemantic32

compositionvs.semanticmemory.Neuropsychologia,57,59-70.3334Williams,A.,Reddigari,S.,&Pylkkänen,L.(2017).Earlysensitivityofleftperisylviancortexto35

relationalityinnounsandverbs.Neuropsychologia,100,131-143.3637Wilson,S.M.,Dronkers,N.F.,Ogar,J.M.,Jang,J.,Growdon,M.E.,Agosta,F.,...&Gorno-38

Tempini,M.L.(2010).Neuralcorrelatesofsyntacticprocessinginthenonfluentvariant39ofprimaryprogressiveaphasia.JournalofNeuroscience,30(50),16845-16854.40

41Zaccarella,E.,Meyer,L.,Makuuchi,M.,&Friederici,A.D.(2017).Buildingbysyntax:theneural42

basisofminimallinguisticstructures.CerebralCortex,27(1),411-421.4344

Page 32: Same words, different structures: an fMRI investigation of ...ling.umd.edu/~ellenlau/papers/Matchin_ArgStruct.pdf · 22 etc. (e.g. Bresnan, 1981, Joshi & Schabes, 1997, Sag & Wasow,

ARGUMENTRELATIONS32

1