sama5d2 dynamic memory implementation...

82
AN2717 SAMA5D2 Dynamic Memory Implementation Guidelines Scope This application note provides design recommendations for SAMA5D2 series microprocessors regarding PCB layout and software settings to ensure proper device functionality with multiple SDRAM device types. Reference Documents SAMA5D2 Series datasheet (Lit. No. DS60001476). Available on www.microchip.com. Technical Note TN-46-14: Hardware Tips for Point-to-Point System Design Introduction – Micron Technology Inc. Available on http://www.micron.com. Standard IPC-2141: Controlled Impedance Circuit Boards and High Speed Logic Design, 1996 – Institute for Interconnection and Packaging Electronic Circuits, 2215 Sanders Road, Northbrook, IL 60062, 847-509-9700 Software Used IAR Embedded Workbench for ARM 7.80.1.11873 SAM-BA 3.2.1 Altium Designer 18.0.2 Hardware Used SAMA5D2-XULT (official demo kit) SAMA5D2-PTC-EK (official demo kit) MPUx-DRAMx (internal R&D board) © 2018 Microchip Technology Inc. DS00002717A-page 1

Upload: others

Post on 16-Apr-2020

13 views

Category:

Documents


1 download

TRANSCRIPT

  • AN2717 SAMA5D2 Dynamic Memory Implementation Guidelines

    Scope

    This application note provides design recommendations for SAMA5D2 series microprocessors regardingPCB layout and software settings to ensure proper device functionality with multiple SDRAM devicetypes.

    Reference Documents

    • SAMA5D2 Series datasheet (Lit. No. DS60001476). Available on www.microchip.com.• Technical Note TN-46-14: Hardware Tips for Point-to-Point System Design Introduction – Micron

    Technology Inc. Available on http://www.micron.com.• Standard IPC-2141: Controlled Impedance Circuit Boards and High Speed Logic Design, 1996 –

    Institute for Interconnection and Packaging Electronic Circuits, 2215 Sanders Road, Northbrook, IL60062, 847-509-9700

    Software Used

    • IAR Embedded Workbench for ARM 7.80.1.11873• SAM-BA 3.2.1• Altium Designer 18.0.2

    Hardware Used

    • SAMA5D2-XULT (official demo kit)• SAMA5D2-PTC-EK (official demo kit)• MPUx-DRAMx (internal R&D board)

    © 2018 Microchip Technology Inc. DS00002717A-page 1

    http://www.microchip.comhttp://www.micron.com

  • Table of Contents

    Scope.............................................................................................................................. 1

    Reference Documents.....................................................................................................1

    Software Used.................................................................................................................1

    Hardware Used................................................................................................................1

    1. SAMA5D2 DDR Controller Capabilities.....................................................................3

    2. Our Approach............................................................................................................ 4

    3. Hardware Aspects..................................................................................................... 73.1. SAMA5D2-XULT Development Kit............................................................................................... 83.2. SAMA5D2-PTC-EK Development Kit.........................................................................................143.3. SAMA5D24/BGA256 Custom Test Board.................................................................................. 21

    4. Software Aspects.....................................................................................................474.1. On-board SDRAM Device(s) Initialization Sequence.................................................................474.2. SDRAM Controller Configuration............................................................................................... 53

    5. Setting Recommendations...................................................................................... 75

    6. Conclusion...............................................................................................................77

    7. Revision History.......................................................................................................787.1. Rev. A - 06/2018.........................................................................................................................78

    The Microchip Web Site................................................................................................ 79

    Customer Change Notification Service..........................................................................79

    Customer Support......................................................................................................... 79

    Microchip Devices Code Protection Feature................................................................. 79

    Legal Notice...................................................................................................................80

    Trademarks................................................................................................................... 80

    Quality Management System Certified by DNV.............................................................81

    Worldwide Sales and Service........................................................................................82

    AN2717

    © 2018 Microchip Technology Inc. DS00002717A-page 2

  • 1. SAMA5D2 DDR Controller CapabilitiesThe SAMA5D2 series MPU features a Multiport DDR-SDRAM Controller (MPDDRC).

    The MPDDRC is a high-bandwidth scrambleable 16-bit or 32-bit Double Data Rate (DDR) multiportmemory controller supporting up to 512-Mbyte 8-bank DDR2, DDR3, DDR3L, LPDDR1, LPDDR2 andLPDDR3 devices. Data transfers are performed through a 16/32-bit data bus on one chip select.

    The controller operates with the following power supplies:

    • DDR2, LPDDR1: 1.8V• DDR3: 1.5V• DDR3L: 1.35V• LPDDR2, LPDDR3: 1.2V

    This application note covers the implementation of the above-mentioned devices providing layoutexamples and software support.

    AN2717SAMA5D2 DDR Controller Capabilities

    © 2018 Microchip Technology Inc. DS00002717A-page 3

  • 2. Our ApproachThe essential objective of this application note is to provide SAMA5D2 adopters with practicalimplementation guidelines and software settings, inferred from actual hardware and extensive testsperformed on that hardware:

    Figure 2-1. Obtaining Optimal Hardware and Software Implementation

    Design a board

    Perform basic functionalverification

    Determine “functional” low level settings

    Perform preliminary tests (and refine low level settings)

    Develop stress test algorithm (multipattern

    + temperature conditionvariation)

    Perform extensivetesting campaign,

    confirm validparameters

    PCB design filesand layout recommendations

    Memory controller settingsdata and procedure

    Confirm valid parameters+ proof of some invalid parameters

    Collect datato “feed” the

    application note

    To ensure proper functionality of all SDRAM devices supported by the external memory controller(MPDDRC), numerous hardware and software considerations must be taken into account. While lowspeed circuits have few physical constraints on the PCB, circuits featuring high speed signals do haveconstraints that must be applied regarding trace length, width and clearance, PCB stacking and lengthmatching. These rules were applied when designing previously released development kits likeSAMA5D2-XULT and SAMA5D2-PTC-EK. In addition, a custom board has been designed and producedfor the purpose of further testing to ensure proper compatibility of SAMA5D2 MPUs with all supportedSDRAM devices, from different manufacturers.

    Apart from the boards, several pieces of testing software were developed. See the figure below.

    AN2717Our Approach

    © 2018 Microchip Technology Inc. DS00002717A-page 4

  • Figure 2-2. Stress Test Algorithm

    Run all available testcases at roomtemperature

    Set climatechamberat 0°C

    Run all testcases

    Continuouslymonitor results

    Testedat 70°C?

    Yes

    No

    Stop testing cycle

    Increment testingtemperature

    by 10°C

    The table below describes the testing cases.

    Table 2-1. Testing Cases

    Test Case No. Description Purpose

    1 Performs pin stuck at high/low testWrites sequential data patterns

    Checks data integrity

    2 Generates and writes random data Checks data mismatch, unaligned access

    3 Generates and transfers large data buffers Checks data transfers in memory via DMAcontroller

    All SDRAM devices are tested at a clock frequency of 166 MHz (clock period is 6 ns).

    AN2717Our Approach

    © 2018 Microchip Technology Inc. DS00002717A-page 5

  • Important:  The board that we used for the tests was designed for use in a commercialtemperature range, therefore our study is limited to the 0 to +70°C range. This does in no waymean that the components involved - SAMA5D2 and DDR memory – are limited to function inthat range. On the contrary, industrial grades are available and work equally well in theextended -40/+85°C range.

    We performed such tests using a programmable climatic chamber.

    During testing, all test results returned were logged for further analysis.

    AN2717Our Approach

    © 2018 Microchip Technology Inc. DS00002717A-page 6

  • 3. Hardware AspectsFormerly released development kits containing SDRAM devices can be used as references whendesigning a new board. Layout examples for SDRAM implementation are provided.

    Also, some general guidelines must be followed when routing such devices. Most SDRAM manufacturersprovide application notes concerning high speed signal routing, usually offering minimum andrecommended constraints for trace width, clearance, length matching, etc. The distances are measuredin mils, the usual metric for PCB design, where 1 mil = 0.0254 mm.

    The SDRAM controller interface includes:

    • Four data byte lanes (see Note 1): DQS[3:0], DQSN[3:0], DQM[3:0], D[31:0]• ADDR/CMD/CTL signals: BA[2:0], A[13:0], RAS/CAS, CS, CKE, WE, RESETN• Clock signals: CK/CKn

    Here is an exhaustive list of design guidelines for SDRAM signals, grouped by signal types (refer toTechnical Note TN-46-14):

    • All SDRAM signals:– Trace width (see Note 2) for all signals should be 4 mils minimum (0.101 mm) and nominal

    width should be 6 mils (0.152 mm).– The reference power planes must have no splits across any high-speed signal.– The impedance of any single-ended signal trace should be 50 ±10% Ω.– The impedance of any differential signal trace should be 100 ±10% Ω.

    • Data lane signals recommendations:– Clearance between two adjacent data signals (includes D, DQS, DQM) should be 8 mils

    minimum and 12 mils nominal (see Note 2).– Signals belonging to the same data byte lane should be routed on the same layer.– Trace length difference between signals from the same data byte lane should not exceed 50

    mils.– Different D byte lanes should be matched within 0.5 inch of each other.– DQS/DQSN signal pairs should be routed as differential signals with the length difference

    between traces not exceeding 20 mils.– The length difference between any data byte lane signal and CK/CKn should not exceed 400

    mils.• Address/Control/Clock signals recommendations (see Note 2):

    – Clearance between command/control signals should be 6 mils minimum and 15 mils nominal.– Clearance between address signals should be 6 mils minimum and 12 mils nominal.– Clearance between address/control and data signals should be at least 20 mils.– Clearance between clock signals of the same differential pair should be 4 mils minimum and 6

    mils nominal.– Clearance between the differential CK/CKn signal and any other signal should be 8 mils

    minimum and 12 mils nominal.– This type of signals should be routed on the same layer.– CK/CKn should be routed as differential signals with the length difference between traces not

    exceeding 20 mils.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 7

  • – The length difference between any address/control signal and CK/CKn should not exceed 200mils.Note: 

    1. A data byte lane is a group of SDRAM signals which ensures that byte-formatted dataare properly transferred between the SDRAM device and controller. It features 8 datasignals (D[7:0]), one data mask signal (DQM) and a pair of data strobe signals (DQS/DQSN). An 8-, 16- or 32-bit SDRAM device has one, two or four data byte lanes,respectively.

    2. The trace width and clearance values from these recommendations are chosen in orderto match the desired impedance of each signal trace in relation with manufacturablePCB parameters, e.g. dielectric height. Consult the PCB manufacturer to accuratelyoptimize these values.

    Refer to Micron technical note TN-46-14 “Hardware Tips for Point-to-Point System Design Introduction”for more details.

    3.1 SAMA5D2-XULT Development KitThe SAMA5D2-XULT development kit is built on a 6-layer PCB. The board features a SAMA5D27/BGA289 MPU and two 2-Gbit Micron DDR3L-SDRAM devices (Part No: MT41K128M16JT-125:K).

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 8

  • Figure 3-1. SAMA5D2C-XULT Development Kit rotatethispage90

    DDR_VREF

    DDR_D0DDR_D1DDR_D2DDR_D3DDR_D4DDR_D5DDR_D6DDR_D7DDR_D8DDR_D9DDR_D10DDR_D11DDR_D12DDR_D13DDR_D14DDR_D15DDR_D16DDR_D17DDR_D18DDR_D19DDR_D20DDR_D21DDR_D22DDR_D23DDR_D24DDR_D25DDR_D26DDR_D27DDR_D28DDR_D29DDR_D30DDR_D31

    DDR_DQM0DDR_DQM1DDR_DQM2DDR_DQM3

    DDR_DQS0+DDR_DQS0-

    DDR_DQS1+DDR_DQS1-

    DDR_DQS2+DDR_DQS2-

    DDR_DQS3+DDR_DQS3-

    DDR_A0DDR_A1DDR_A2DDR_A3DDR_A4DDR_A5DDR_A6DDR_A7DDR_A8DDR_A9DDR_A10DDR_A11DDR_A12DDR_A13

    DDR_BA0DDR_BA1

    DDR_RASDDR_CAS

    DDR_BA2

    DDR_CSDDR_WE

    DDR_D0DDR_D1DDR_D2DDR_D3DDR_D4DDR_D5DDR_D6DDR_D7DDR_D8DDR_D9DDR_D10DDR_D11DDR_D12DDR_D13DDR_D14DDR_D15

    DDR_D16DDR_D17DDR_D18DDR_D19DDR_D20DDR_D21DDR_D22DDR_D23DDR_D24DDR_D25DDR_D26DDR_D27DDR_D28DDR_D29DDR_D30DDR_D31

    DDR_A0DDR_A1DDR_A2DDR_A3DDR_A4DDR_A5DDR_A6DDR_A7DDR_A8DDR_A9DDR_A10DDR_A11DDR_A12DDR_A13

    DDR_A0DDR_A1DDR_A2DDR_A3DDR_A4DDR_A5DDR_A6DDR_A7DDR_A8DDR_A9DDR_A10DDR_A11DDR_A12DDR_A13

    DDR_BA0DDR_BA1DDR_BA2

    DDR_BA0DDR_BA1DDR_BA2

    DDR_RESETN DDR_RESETN

    DDR_CLK+DDR_CLK-DDR_CKEDDR_CSDDR_RASDDR_CASDDR_WE

    DDR_CLK+DDR_CLK-DDR_CKEDDR_CSDDR_RASDDR_CASDDR_WE

    DDR_DQS0-DDR_DQS0+

    DDR_DQS1-DDR_DQS1+

    DDR_DQS2+DDR_DQS2-

    DDR_DQS3-DDR_DQS3+

    DDR_DQM1DDR_DQM0

    DDR_DQM3DDR_DQM2

    DDR_VREF DDR_VREF

    DDR_VREF

    DDR_RESETN

    DDR_CLK+DDR_CLK-DDR_CKE

    VDD_1V35

    VDD_1V35

    VDD_1V35

    VDD_1V35

    VDD_1V35

    VDD_1V35

    VDD_1V35

    VDDIODDRL14 10uH_150mA

    R242100K

    R250

    23.2K 1%

    C564.7uF

    C834.7uF

    R243100K

    C106

    22pF

    R178 0R R258 0R

    R1806.8K 1%

    R179 DNP(1K)

    U8

    MT41K128M16JT-125:K

    CKJ7

    CK#K7

    CKEK9

    CS#L2

    RAS#J3

    CAS#K3

    WE#L3

    A0N3

    A1P7

    A2P3

    A3N2

    A4P8

    A5P2

    A6R8

    A7R2

    A8T8

    A9R3

    A10/APL7

    A11R7

    A12/BC#N7

    A13T3

    A14T7

    BA0M2

    BA1N8

    BA2M3

    DQ0E3

    DQ1F7

    DQ2F2

    DQ3F8

    DQ4H3

    DQ5H8

    DQ6G2

    DQ7H7

    ODTK1

    VSS1A9

    VSS2B3

    VSS3E1

    VSS4G8

    VSSQ4D8VSSQ3D1VSSQ2B9VSSQ1B1

    VSSQ5E2

    VDDQ1A1

    VDDQ2A8

    VDDQ3C1

    VDDQ4C9

    VDDQ5D2

    VDD1B2

    VDD2G7

    UDQS#B7

    UDMD3

    LDME7

    LDQS#G3

    UDQSC7

    LDQSF3

    DQ8D7

    DQ10C8

    DQ11C2

    DQ14B8

    DQ12A7

    DQ15A3

    DQ13A2

    VDD9D9

    VSSQ6E8

    VDDQ6E9

    VDDQ7F1

    VSSQ7F9

    VSSQ8G1

    VSSQ9G9

    VREFDQH1

    VDDQ8H2

    VDDQ9H9

    NC1J1

    NC2J9

    VSS5J2

    VSS6J8

    VDD4K2

    VDD5K8

    NC3L1

    ZQL8

    NC4L9

    VSS7M1

    A15M7

    VREFCAM8

    VSS8M9

    VDD6N1

    VDD7N9

    VSS9P1

    VSS10P9

    VDD8R1

    VDD3R9

    VSS11T1

    RESET#T2

    VSS12T9

    DQ9C3

    C55100nF

    C121100nF

    U4

    MT41K128M16JT-125:K

    CKJ7

    CK#K7

    CKEK9

    CS#L2

    RAS#J3

    CAS#K3

    WE#L3

    A0N3

    A1P7

    A2P3

    A3N2

    A4P8

    A5P2

    A6R8

    A7R2

    A8T8

    A9R3

    A10/APL7

    A11R7

    A12/BC#N7

    A13T3

    A14T7

    BA0M2

    BA1N8

    BA2M3

    DQ0E3

    DQ1F7

    DQ2F2

    DQ3F8

    DQ4H3

    DQ5H8

    DQ6G2

    DQ7H7

    ODTK1

    VSS1A9

    VSS2B3

    VSS3E1

    VSS4G8

    VSSQ4D8VSSQ3D1VSSQ2B9VSSQ1B1

    VSSQ5E2

    VDDQ1A1

    VDDQ2A8

    VDDQ3C1

    VDDQ4C9

    VDDQ5D2

    VDD1B2

    VDD2G7

    UDQS#B7

    UDMD3

    LDME7

    LDQS#G3

    UDQSC7

    LDQSF3

    DQ8D7

    DQ10C8

    DQ11C2

    DQ14B8

    DQ12A7

    DQ15A3

    DQ13A2

    VDD9D9

    VSSQ6E8

    VDDQ6E9

    VDDQ7F1

    VSSQ7F9

    VSSQ8G1

    VSSQ9G9

    VREFDQH1

    VDDQ8H2

    VDDQ9H9

    NC1J1

    NC2J9

    VSS5J2

    VSS6J8

    VDD4K2

    VDD5K8

    NC3L1

    ZQL8

    NC4L9

    VSS7M1

    A15M7

    VREFCAM8

    VSS8M9

    VDD6N1

    VDD7N9

    VSS9P1

    VSS10P9

    VDD8R1

    VDD3R9

    VSS11T1

    RESET#T2

    VSS12T9

    DQ9C3

    C72100nF

    C91100nF

    R254 DNP(1K)

    C54100nF

    R238

    240R 1%

    R124

    240R 1%

    C145100nF

    SAMA5D27C-CU (MRLC)

    U6E

    DDR_A0F12

    DDR_A1C17

    DDR_A10C15

    DDR_A11A16

    DDR_A12A17

    DDR_A13G11

    DDR_A2B17

    DDR_A3B16

    DDR_A4C16

    DDR_A5G14

    DDR_A6F14

    DDR_A7F11

    DDR_A8C14

    DDR_A9D13

    DDR_BA0H12

    DDR_BA1H13

    DDR_BA2F17

    DDR_CALE13

    DDR_CASG12

    DDR_CKEF16

    DDR_CLKE17

    DDR_CLKND17

    DDR_CSG13

    DDR_D0B12

    DDR_D1A12

    DDR_D10H17

    DDR_D11K17

    DDR_D12K16

    DDR_D13J13

    DDR_D14K14

    DDR_D15K15

    DDR_D16B8

    DDR_D17B9

    DDR_D18C9

    DDR_D19A9

    DDR_D2C12

    DDR_D20A10

    DDR_D21D10

    DDR_D22B11

    DDR_D23A11

    DDR_D24J12

    DDR_D25H10

    DDR_D26J11

    DDR_D27K11

    DDR_D28L13

    DDR_D29L11

    DDR_D3A13

    DDR_D30L12

    DDR_D31M17

    DDR_D4A14

    DDR_D5C13

    DDR_D6A15

    DDR_D7B15

    DDR_D8G17

    DDR_D9G16

    DDR_DQM0C11

    DDR_DQM1G15

    DDR_DQM2C8

    DDR_DQM3H11

    DDR_DQS0B13

    DDR_DQS1J17

    DDR_DQS2C10

    DDR_DQS3L17

    DDR_DQSN0B14

    DDR_DQSN1J16

    DDR_DQSN2B10

    DDR_DQSN3L16

    DDR_RASF13

    DDR_RESETNE16

    DDR_VREFCMD16 DDR_VREFB0H16

    DDR_WEF15

    R1821R 1%

    C100100nF

    C99100nF

    R1816.8K 1%

    AN

    2717H

    ardware A

    spects

    © 2018 M

    icrochip Technology Inc.

    DS00002717A-page 9

  • Figure 3-2. SAMA5D2-XULT Layer 1 (Top)

    Control/command signalsTrace width = 5 milsTrace clearance = 11 mils

    Address signalsTrace width = 5 milsTrace clearance = 9 mils

    Data signalsTrace width = 5 milsTrace clearance = 9 mils

    CK/CKn signalsTrace width = 4 milsTrace clearance = 8 mils

    The layout example in the above figure shows the top layer of the board focused on the DDR3-SDRAMrouting. Part of the address signals and the differential clock is present on the top layer, with thementioned trace width and minimum clearance. These values are equal to or above the minimumrequired. There is also a 30 mils clearance between the control/command and data signals, above theminimum required.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 10

  • Figure 3-3. SAMA5D2-XULT Layer 6 (Bottom)

    Data lane 2 (D16-D23)Trace width = 5 milsTrace clearance = 11 mils

    Data lane 0 (D0-D7)Trace width = 5 milsTrace clearance = 9 mils

    The above figure shows the bottom layer of the DDR3-SDRAM layout. Signals from two data lanes arebeing routed on the bottom layer, belonging to data lane 2 (D16-D23) and data lane 0 (D0-D7), includingtheir respective DQS/DQSn and DQM signals. Trace width used is 5 mils, and the smallest clearance is 9mils, both values exceeding the minimum required. These traces are tightly matched, the maximummismatch length not exceeding 7 mils, well below the maximum allowed.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 11

  • Figure 3-4. SAMA5D2-XULT Layer 5 (VDD)

    The above figure shows layer 5 of the board, used as power plane. The highlighted region covers thetraces belonging to the DDR3-SDRAM routing and serves as reference plane for the impedancematching of the bottom traces. Also, it contains no splits across any high-speed signal.

    The trace impedance for top or bottom layers is calculated using the impedance formula (according toStandard IPC-2141) for a microstrip line:

    Equation 1

    Z0(Ω)=87��+ 1.41 �� 5.98�0.8�+ �

    Where εr is the dielectric constant, H is the dielectric height, W is the trace width and T the tracethickness.

    In our case (available in Table SAMA5D2-XULT Detailed PCB Stack-up):

    • εr = 3.95 for FR-4 dielectric• H = 3.8207 mils between bottom layer (layer 6) and power plane (layer 5)• W = 5 mils width for bottom traces• T = 1.87 mils copper thickness.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 12

  • Using the above parameters, the trace impedance is calculated to be Z0 = 51.18 Ω, covered by the ±10%tolerance.Figure 3-5. SAMA5D2-XULT PCB Stacking

    Table 3-1. SAMA5D2-XULT Detailed PCB Stack-up

    Layer Name Type Material Thickness[mm]

    Thickness[mil]

    DielectricMaterial

    DielectricConstant

    Top Overlay Overlay – – – – –

    Top Solder SolderMask/Coverlay

    SurfaceMaterial

    0.01016 0.4 Solder Resist 3.5

    TOP Signal Copper 0.0475 1.87 – –

    Dielectric1 Dielectric Core 0.09705 3.8207 FR-4 3.95

    GND2 Signal Copper 0.03048 1.2 – –

    Dielectric2 Dielectric Core 0.1 3.937 FR-4 3.85

    INT3 Signal Copper 0.03048 1.2 – –

    Dielectric3 Dielectric Core 0.93484 36.8047 FR-4 3.99

    INT4 Signal Copper 0.03048 1.2 – –

    Dielectric4 Dielectric Core 0.1 3.937 FR-4 3.85

    VCC5 Signal Copper 0.03048 1.2 – –

    Dielectric5 Dielectric Core 0.09705 3.8207 FR-4 3.95

    BOTTOM Signal Copper 0.0475 1.87 – –

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 13

  • Layer Name Type Material Thickness[mm]

    Thickness[mil]

    DielectricMaterial

    DielectricConstant

    Bottom Solder SolderMask/Coverlay

    SurfaceMaterial

    0.01016 0.4 Solder Resist 3.5

    BottomOverlay

    Overlay – – – – –

    3.2 SAMA5D2-PTC-EK Development Kit

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 14

  • Figure 3-6. SAMA5D2-PTC-EK Development Kitrotatethispage90

    DDR_D0DDR_D1DDR_D2DDR_D3DDR_D4DDR_D5DDR_D6DDR_D7DDR_D8DDR_D9DDR_D10DDR_D11DDR_D12DDR_D13DDR_D14DDR_D15DDR_D16DDR_D17DDR_D18DDR_D19DDR_D20DDR_D21DDR_D22DDR_D23DDR_D24DDR_D25DDR_D26DDR_D27DDR_D28DDR_D29DDR_D30DDR_D31

    DDR_DQM0DDR_DQM1DDR_DQM2DDR_DQM3

    DDR_DQS0+DDR_DQS0-

    DDR_DQS1+DDR_DQS1-

    DDR_DQS2+DDR_DQS2-

    DDR_DQS3+DDR_DQS3-

    DDR_A0DDR_A1DDR_A2DDR_A3DDR_A4DDR_A5DDR_A6DDR_A7DDR_A8DDR_A9DDR_A10DDR_A11DDR_A12DDR_A13

    DDR_BA0DDR_BA1

    DDR_RASDDR_CAS

    DDR_BA2

    DDR_CSDDR_WE

    DDR_VREF

    DDR_RESETN

    DDR_CLK+DDR_CLK-DDR_CKE

    DDR_VREF

    DDR_VREFDDR_VREF

    DDR_DQM0DDR_DQM1

    DDR_DQM2DDR_DQM3

    DDR_DQS0-DDR_DQS0+

    DDR_DQS1+DDR_DQS1-

    DDR_DQS2+DDR_DQS2-DDR_DQS3+DDR_DQS3-

    DDR_BA1DDR_BA0

    DDR_BA1DDR_BA0

    DDR_WE DDR_WEDDR_CSDDR_CS

    DDR_CLK-DDR_CLK+

    DDR_CLK-DDR_CLK+

    DDR_CKE DDR_CKE

    DDR_CASDDR_RAS

    DDR_CASDDR_RAS

    DDR_D16DDR_D17DDR_D18DDR_D19DDR_D20DDR_D21DDR_D22DDR_D23DDR_D24DDR_D25DDR_D26DDR_D27DDR_D28DDR_D29DDR_D30DDR_D31

    DDR_D0DDR_D1DDR_D2DDR_D3DDR_D4DDR_D5DDR_D6DDR_D7DDR_D8DDR_D9DDR_D10DDR_D11DDR_D12DDR_D13DDR_D14DDR_D15

    DDR_A0DDR_A1DDR_A2DDR_A3DDR_A4DDR_A5DDR_A6DDR_A7DDR_A8DDR_A9DDR_A10DDR_A11DDR_A12

    DDR_A0DDR_A1DDR_A2DDR_A3DDR_A4DDR_A5DDR_A6DDR_A7DDR_A8DDR_A9DDR_A10DDR_A11DDR_A12

    DDR_BA2 DDR_BA2

    DDR_A13DDR_A13

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    VDDIODDR

    GND_POWER

    VDD_1V8GND_POWER

    VDD_1V8

    GND_POWER

    GND_POWER

    VDD_1V8GND_POWER

    VDD_1V8

    GND_POWER

    VDDIODDR

    R23100KR0402

    R25100KR0402

    C63100nFC0402

    C6422pF

    C0402

    C67100nFC0402

    R2421K-1%

    R0402

    R32 0R R0402

    C951nFC0402

    C66100nFC0402

    R30 0R R0402

    C654.7uFC0805

    C751nFC0402

    R31 DNP R0402

    R272.2K-1%R0402

    U7

    W972GG6KB-25bga84-32-1509e

    A0M8

    A1M3

    A2M7

    A3N2

    A4N8

    A5N3

    A6N7

    A7P2

    A8P8

    A9P3

    A10M2

    A11P7

    A12R2

    A13R8

    BA0L2

    BA1L3

    BA2L1

    CKEK2

    CK_PJ8

    CK_NK8

    RASK7

    CASL7

    WEK3

    CSL8

    DQ0G8

    DQ1G2

    DQ2H7

    DQ3H3

    DQ4H1

    DQ5H9

    DQ6F1

    DQ7F9

    DQ8C8

    DQ9C2

    DQ10D7

    DQ11D3

    DQ12D1

    DQ13D9

    DQ14B1

    DQ15B9

    LDQS_PF7

    NU/LDQS_NE8

    UDQS_PB7

    NU/UDQS_NA8

    LDMF3

    UDMB3

    ODTK9

    NC1A2 NC2E2 NC3R3 NC4R7

    VDD1A1

    VDD2E1

    VDD3J9

    VDD4M9

    VDD5R1

    VDDQ1A9

    VDDQ2C1

    VDDQ3C3

    VDDQ4C7

    VDDQ5C9

    VDDQ6E9

    VDDQ7G1

    VDDQ8G3

    VDDQ9G7

    VDDQ10G9

    VDDLJ1

    VREFJ2

    VSS1A3

    VSS2E3

    VSS3J3

    VSS4N1

    VSS5P9

    VSSQ1A7

    VSSQ2B2

    VSSQ3B8

    VSSQ4D2

    VSSQ5D8

    VSSQ6E7

    VSSQ7F2

    VSSQ8F8

    VSSQ9H2

    VSSQ10H8

    VSSDLJ7

    C94100nFC0402

    ATSAMA5D27C-CN

    U6E

    bga289p8

    DDR_A0F12

    DDR_A1C17

    DDR_A10C15

    DDR_A11A16

    DDR_A12A17

    DDR_A13G11

    DDR_A2B17

    DDR_A3B16

    DDR_A4C16

    DDR_A5G14

    DDR_A6F14

    DDR_A7F11

    DDR_A8C14

    DDR_A9D13

    DDR_BA0H12

    DDR_BA1H13

    DDR_BA2F17

    DDR_CALE13

    DDR_CASG12

    DDR_CKEF16

    DDR_CLKE17

    DDR_CLKND17

    DDR_CSG13

    DDR_D0B12

    DDR_D1A12

    DDR_D10H17

    DDR_D11K17

    DDR_D12K16

    DDR_D13J13

    DDR_D14K14

    DDR_D15K15

    DDR_D16B8

    DDR_D17B9

    DDR_D18C9

    DDR_D19A9

    DDR_D2C12

    DDR_D20A10

    DDR_D21D10

    DDR_D22B11

    DDR_D23A11

    DDR_D24J12

    DDR_D25H10

    DDR_D26J11

    DDR_D27K11

    DDR_D28L13

    DDR_D29L11

    DDR_D3A13

    DDR_D30L12

    DDR_D31M17

    DDR_D4A14

    DDR_D5C13

    DDR_D6A15

    DDR_D7B15

    DDR_D8G17

    DDR_D9G16

    DDR_DQM0C11

    DDR_DQM1G15

    DDR_DQM2C8

    DDR_DQM3H11

    DDR_DQS0B13

    DDR_DQS1J17

    DDR_DQS2C10

    DDR_DQS3L17

    DDR_DQSN0B14

    DDR_DQSN1J16

    DDR_DQSN2B10

    DDR_DQSN3L16

    DDR_RASF13

    DDR_RESETNE16

    DDR_VREFCMD16 DDR_VREFB0H16

    DDR_WEF15

    C62100nFC0402

    R29 DNP R0402

    C72100nFC0402

    U8

    W972GG6KB-25bga84-32-1509e

    A0M8

    A1M3

    A2M7

    A3N2

    A4N8

    A5N3

    A6N7

    A7P2

    A8P8

    A9P3

    A10M2

    A11P7

    A12R2

    A13R8

    BA0L2

    BA1L3

    BA2L1

    CKEK2

    CK_PJ8

    CK_NK8

    RASK7

    CASL7

    WEK3

    CSL8

    DQ0G8

    DQ1G2

    DQ2H7

    DQ3H3

    DQ4H1

    DQ5H9

    DQ6F1

    DQ7F9

    DQ8C8

    DQ9C2

    DQ10D7

    DQ11D3

    DQ12D1

    DQ13D9

    DQ14B1

    DQ15B9

    LDQS_PF7

    NU/LDQS_NE8

    UDQS_PB7

    NU/UDQS_NA8

    LDMF3

    UDMB3

    ODTK9

    NC1A2 NC2E2 NC3R3 NC4R7

    VDD1A1

    VDD2E1

    VDD3J9

    VDD4M9

    VDD5R1

    VDDQ1A9

    VDDQ2C1

    VDDQ3C3

    VDDQ4C7

    VDDQ5C9

    VDDQ6E9

    VDDQ7G1

    VDDQ8G3

    VDDQ9G7

    VDDQ10G9

    VDDLJ1

    VREFJ2

    VSS1A3

    VSS2E3

    VSS3J3

    VSS4N1

    VSS5P9

    VSSQ1A7

    VSSQ2B2

    VSSQ3B8

    VSSQ4D2

    VSSQ5D8

    VSSQ6E7

    VSSQ7F2

    VSSQ8F8

    VSSQ9H2

    VSSQ10H8

    VSSDLJ7

    R262.2K-1%R0402

    AN

    2717H

    ardware A

    spects

    © 2018 M

    icrochip Technology Inc.

    DS00002717A-page 15

  • The SAMA5D2-PTC-EK is a development kit built on an 8-layer PCB. The board features a SAMA5D27/BGA289 MPU and two 2-Gbit Winbond DDR2-SDRAM devices (Part No.: W972GG6KB-25).

    Figure 3-7. SAMA5D2-PTC-EK Layer 1 (Top)

    Address signalsTrace width = 5 milsTrace clearance = 6 mils

    CK/CKn signalsTrace width = 4 milsTrace clearance = 8 mils

    Control/command signalsTrace width = 5 milsTrace clearance = 10 mils

    The layout example in the above figure shows the top layer of the board focused on the DDR2-SDRAMrouting. Some of the address signals and the differential clock are present on the top layer, with thementioned trace width and minimum clearance. These values are equal to or above the minimumrequired. There is also a 10 mils clearance between the CK/CKn signals and any other signal, above theminimum required.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 16

  • Figure 3-8. SAMA5D2-PTC-EK Layer 8 (Bottom)

    Data lane 2 (D16-D23)Trace width = 5 milsTrace clearance = 10 mils

    Data lane 0 (D0-D7)Trace width = 5 milsTrace clearance = 10 mils

    The layout example in the above figure shows the bottom layer of the DDR2-SDRAM layout. Signals fromtwo data lanes are being routed on the bottom layer, belonging to data lane 2 (D16-D23) and data lane 0(D0-D7), including their respective DQS/DQSn and DQM signals. Trace width used is 5 mils, and theclearance is 10 mils, both values exceeding the minimum required. On very short distances (typically theroute a path needs to take to escape a dense BGA area), the clearance may go slightly below theminimum required. This is acceptable for dense designs only and shall be applied only if no other solutionexists. These signals are also length-matched.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 17

  • Figure 3-9. SAMA5D2-PTC-EK Layer 5 (VDD)

    The above figure shows layer 5 of the board, used as power plane. The highlighted region covers thetraces belonging to the DDR2-SDRAM routing and serves as reference plane for the impedancematching of the signals from layer 6 (see layer stack-up). Also, it contains no splits across any high-speedsignal.

    The trace impedance for inner layer 6 (see the figure below), which is used as signal layer, is calculatedusing the impedance formula (according to Standard IPC-2141) for an asymmetric stripline:

    Equation 2

    Z0(Ω)=80�� �� 1.9 2�+ �0.8�+ � 1− �4�1

    Where εr is the dielectric constant, H1 is the dielectric height below the signal layer, H is the dielectricheight above the signal layer, W is the trace width and T the trace thickness.

    In our case (available in Table SAMA5D2-PTC-EK Detailed PCB Stack-up):

    • εr = 4.5 for FR-4 dielectric• H1 = 13.8 mils below layer 6• H = 5.12 mils above layer 6• W = 5 mils trace width• T = 1.38 mils copper thickness.

    Using the above parameters, the trace impedance is calculated to be Z0 = 48.26 Ω, covered by the ±10%tolerance.

    Applying Equation 1 for traces on top or bottom layer, for the above parameters and a dielectric height H= 3.63 mils, results in a near perfect 49.92 Ω trace impedance.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 18

  • Figure 3-10. SAMA5D2-PTC-EK Layer 6

    Address signalsTrace width = 5 milsTrace clearance = 8 mils

    Control/command signalsTrace width = 5 milsTrace clearance = 9 mils

    Data lane 1 (D8-D15)Trace width = 5 milsTrace clearance = 8 mils

    All trace widths and clearances shown in the above figure are in accordance with the general designrules.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 19

  • Figure 3-11. SAMA5D2-PTC-EK PCB Stacking

    Table 3-2. SAMA5D2-PTC-EK Detailed PCB Stack-up

    Layer Name Type Material Thickness[mm]

    Thickness[mil]

    DielectricMaterial

    DielectricConstant

    Top Overlay Overlay – – – – –

    Top Solder SolderMask/Coverlay

    SurfaceMaterial

    0.01016 0.4 Solder Resist 3.5

    TOP Signal Copper 0.035052 1.38 – –

    Dielectric1 Dielectric Core 0.092202 3.63 FR-4 4.5

    GND02 Signal Copper 0.035052 1.38 – –

    Dielectric2 Dielectric Core 0.130048 5.12 FR-4 4.5

    ART03 Signal Copper 0.035052 1.38 – –

    Dielectric3 Dielectric Core 0.35052 13.8 FR-4 4.5

    PWR04 Signal Copper 0.035052 1.38 – –

    Dielectric4 Dielectric Core 0.130048 5.12 FR-4 4.5

    PWR05 Signal Copper 0.035052 1.38 – –

    Dielectric5 Dielectric Core 0.35052 13.8 FR-4 4.5

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 20

  • Layer Name Type Material Thickness[mm]

    Thickness[mil]

    DielectricMaterial

    DielectricConstant

    ART06 Signal Copper 0.035052 1.38 – –

    Dielectric6 Dielectric Core 0.130048 5.12 FR-4 4.5

    GND07 Signal Copper 0.035052 1.38 – –

    Dielectric7 Dielectric Core 0.092202 3.63 FR-4 4.5

    BOTTOM Signal Copper 0.035052 1.38 – –

    Bottom Solder SolderMask/Coverlay

    SurfaceMaterial

    0.01016 0.4 Solder Resist 3.5

    BottomOverlay

    Overlay – – – – –

    3.3 SAMA5D24/BGA256 Custom Test BoardThis is a custom board solely designed for testing multiple MPU+SDRAM configurations. It features fiveindividual sets of SAMA5D24 MPU paired with 2xDDR3L-SDRAM, 2xDDR2-SDRAM, 2xLPDDR1-SDRAM, 2xLPDDR2-SDRAM and 1xLPDDR3-SDRAM devices. Each set has its own powermanagement integrated circuit (PMIC).

    The layer stack-up is shown in the following figure and table. Since all five sets are on the same board,they share the same stack-up.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 21

  • Figure 3-12. SAMA5D24/BGA256 Custom Test Board Layer Stack-up

    Notice the use of blind vias. Considering the very fine 0.4 mm ball pitch of the SAMA5D24, microvias inMPU pads were used. Large through-hole vias were not used in the fan-out of the MPU.

    Table 3-3. Detailed Test Board Layer Stack-up

    Layer Name Type Material Thickness[mm]Thickness[mil]

    DielectricMaterial

    DielectricConstant

    Top Overlay Overlay – – – – –

    Top SolderSolderMask/Coverlay

    SurfaceMaterial 0.02 0.79 Solder Resist 3.5

    TOP Signal Copper 0.035 1.38 – –

    Dielectric1 Dielectric Prepreg 0.105 4.13 FR-4 4.5

    GND02 Signal Copper 0.018 0.71 – –

    Dielectric2 Dielectric Core 0.13 5.12 FR-4 4.5

    ART03 Signal Copper 0.018 0.71 – –

    Dielectric3 Dielectric Prepreg 0.105 4.13 FR-4 4.5

    ART04 Signal Copper 0.018 0.71 – –

    Dielectric4 Dielectric Core 0.13 5.12 FR-4 4.5

    PWR05 Signal Copper 0.018 0.71 – –

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 22

  • Layer Name Type Material Thickness[mm]Thickness[mil]

    DielectricMaterial

    DielectricConstant

    Dielectric5 Dielectric Prepreg 0.105 4.13 FR-4 4.5

    ART06 Signal Copper 0.018 0.71 – –

    Dielectric6 Dielectric Core 0.13 5.12 FR-4 4.5

    GND07 Signal Copper 0.018 0.71 – –

    Dielectric7 Dielectric Prepreg 0.105 4.13 FR-4 4.5

    BOTTOM Signal Copper 0.035 1.38 – –

    Bottom SolderSolderMask/Coverlay

    SurfaceMaterial 0.02 0.79 Solder Resist 3.5

    BottomOverlay Overlay

    – – – – –

    3.3.1 SAMA5D24/BGA256/DDR3L-SDRAM Devices

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 23

  • Figure 3-13. MPUx-DRAMX DDR3L SDRAM Device rotatethispage90

    A_DDR_D0A_DDR_D1A_DDR_D2A_DDR_D3A_DDR_D4A_DDR_D5A_DDR_D6A_DDR_D7A_DDR_D8A_DDR_D9A_DDR_D10A_DDR_D11A_DDR_D12A_DDR_D13A_DDR_D14A_DDR_D15

    A_DDR_D16A_DDR_D17A_DDR_D18A_DDR_D19A_DDR_D20A_DDR_D21A_DDR_D22A_DDR_D23A_DDR_D24A_DDR_D25A_DDR_D26A_DDR_D27A_DDR_D28A_DDR_D29A_DDR_D30A_DDR_D31

    A_DDR_A0A_DDR_A1A_DDR_A2A_DDR_A3A_DDR_A4A_DDR_A5A_DDR_A6A_DDR_A7A_DDR_A8A_DDR_A9A_DDR_A10A_DDR_A11A_DDR_A12A_DDR_A13

    A_DDR_BA0A_DDR_BA1A_DDR_BA2

    A_DDR_RESETN A_DDR_RESETN

    A_DDR_CLK+A_DDR_CLK-A_DDR_CKEA_DDR_CSA_DDR_RASA_DDR_CASA_DDR_WE

    A_DDR_CLK+A_DDR_CLK-A_DDR_CKEA_DDR_CSxA_DDR_RASA_DDR_CASA_DDR_WE

    A_DDR_DQS0-A_DDR_DQS0+

    A_DDR_DQS1-A_DDR_DQS1+

    A_DDR_DQS2+A_DDR_DQS2-

    A_DDR_DQS3-A_DDR_DQS3+

    A_DDR_DQM1A_DDR_DQM0

    A_DDR_DQM3A_DDR_DQM2

    A_DDR_VREF

    A_DDR_VREF

    A_DDR_D0A_DDR_D1A_DDR_D2A_DDR_D3A_DDR_D4A_DDR_D5A_DDR_D6A_DDR_D7A_DDR_D8A_DDR_D9A_DDR_D10A_DDR_D11A_DDR_D12A_DDR_D13A_DDR_D14A_DDR_D15A_DDR_D16A_DDR_D17A_DDR_D18A_DDR_D19A_DDR_D20A_DDR_D21A_DDR_D22A_DDR_D23A_DDR_D24A_DDR_D25A_DDR_D26A_DDR_D27A_DDR_D28A_DDR_D29A_DDR_D30A_DDR_D31

    A_DDR_DQM0A_DDR_DQM1A_DDR_DQM2A_DDR_DQM3

    A_DDR_DQS0+A_DDR_DQS0-

    A_DDR_DQS1+A_DDR_DQS1-

    A_DDR_DQS2+A_DDR_DQS2-

    A_DDR_DQS3+A_DDR_DQS3-

    A_DDR_A0A_DDR_A1A_DDR_A2A_DDR_A3A_DDR_A4A_DDR_A5A_DDR_A6A_DDR_A7A_DDR_A8A_DDR_A9A_DDR_A10A_DDR_A11A_DDR_A12A_DDR_A13

    A_DDR_BA0A_DDR_BA1

    A_DDR_RASA_DDR_CAS

    A_DDR_BA2

    A_DDR_CSA_DDR_WE

    A_DDR_CKE

    A_DDR_VREF

    A_DDR_RESETN

    A_DDR_CLK+A_DDR_CLK-

    A_DDR_A0A_DDR_A1A_DDR_A2A_DDR_A3A_DDR_A4A_DDR_A5A_DDR_A6A_DDR_A7A_DDR_A8A_DDR_A9A_DDR_A10A_DDR_A11A_DDR_A12A_DDR_A13

    A_DDR_BA0A_DDR_BA1A_DDR_BA2

    A_DDR_VREF

    A_DDR_CS

    A_DDR_CSx

    GND_POWER

    GND_POWER GND_POWERGND_POWER GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER GND_POWER

    GND_POWER

    A_VDD_DRAMA_VDD_DRAM

    A_VDD_DRAMA_VDD_DRAM

    A_VDD_DRAM

    A_VDD_DRAMA_VDD_DRAMA_VDD_DRAM

    A_VDD_DRAM

    R57100KR0402

    R58240R-1%R0402

    R51 1K-NC R0402

    C115100nFC0402

    C91100nFC0402

    C8822pFC0402

    U5

    IS43TR16640B-15GBLBGADDR96p8b90x140

    CKJ7

    CK#K7

    CKEK9

    CS#L2

    RAS#J3

    CAS#K3

    WE#L3

    A0N3

    A1P7

    A2P3

    A3N2

    A4P8

    A5P2

    A6R8

    A7R2

    A8T8

    A9R3

    A10/APL7

    A11R7

    A12/BC#N7

    A13T3

    A14T7

    BA0M2

    BA1N8

    BA2M3

    DQ0E3

    DQ1F7

    DQ2F2

    DQ3F8

    DQ4H3

    DQ5H8

    DQ6G2

    DQ7H7

    ODTK1

    VSS1A9

    VSS2B3

    VSS3E1

    VSS4G8

    VSSQ4D8VSSQ3D1VSSQ2B9VSSQ1B1

    VSSQ5E2

    VDDQ1A1

    VDDQ2A8

    VDDQ3C1

    VDDQ4C9

    VDDQ5D2

    VDD1B2

    VDD2G7

    UDQS#B7

    UDMD3

    LDME7

    LDQS#G3

    UDQSC7

    LDQSF3

    DQ8D7

    DQ10C8

    DQ11C2

    DQ14B8

    DQ12A7

    DQ15A3

    DQ13A2

    VDD9D9

    VSSQ6E8

    VDDQ6E9

    VDDQ7F1

    VSSQ7F9

    VSSQ8G1

    VSSQ9G9

    VREFDQH1

    VDDQ8H2

    VDDQ9H9

    NC1J1

    NC2J9

    VSS5J2

    VSS6J8

    VDD4K2

    VDD5K8

    NC3L1

    ZQL8

    NC4L9

    VSS7M1

    A15M7

    VREFCAM8

    VSS8M9

    VDD6N1

    VDD7N9

    VSS9P1

    VSS10P9

    VDD8R1

    VDD3R9

    VSS11T1

    RESET#T2

    VSS12T9

    DQ9C3

    U6

    IS43TR16640B-15GBLBGADDR96p8b90x140

    CKJ7

    CK#K7

    CKEK9

    CS#L2

    RAS#J3

    CAS#K3

    WE#L3

    A0N3

    A1P7

    A2P3

    A3N2

    A4P8

    A5P2

    A6R8

    A7R2

    A8T8

    A9R3

    A10/APL7

    A11R7

    A12/BC#N7

    A13T3

    A14T7

    BA0M2

    BA1N8

    BA2M3

    DQ0E3

    DQ1F7

    DQ2F2

    DQ3F8

    DQ4H3

    DQ5H8

    DQ6G2

    DQ7H7

    ODTK1

    VSS1A9

    VSS2B3

    VSS3E1

    VSS4G8

    VSSQ4D8VSSQ3D1VSSQ2B9VSSQ1B1

    VSSQ5E2

    VDDQ1A1

    VDDQ2A8

    VDDQ3C1

    VDDQ4C9

    VDDQ5D2

    VDD1B2

    VDD2G7

    UDQS#B7

    UDMD3

    LDME7

    LDQS#G3

    UDQSC7

    LDQSF3

    DQ8D7

    DQ10C8

    DQ11C2

    DQ14B8

    DQ12A7

    DQ15A3

    DQ13A2

    VDD9D9

    VSSQ6E8

    VDDQ6E9

    VDDQ7F1

    VSSQ7F9

    VSSQ8G1

    VSSQ9G9

    VREFDQH1

    VDDQ8H2

    VDDQ9H9

    NC1J1

    NC2J9

    VSS5J2

    VSS6J8

    VDD4K2

    VDD5K8

    NC3L1

    ZQL8

    NC4L9

    VSS7M1

    A15M7

    VREFCAM8

    VSS8M9

    VDD6N1

    VDD7N9

    VSS9P1

    VSS10P9

    VDD8R1

    VDD3R9

    VSS11T1

    RESET#T2

    VSS12T9

    DQ9C3

    C90100nFC0402

    C92100nFC0402

    SAMA5D24_BGA256

    U4E

    TFBGA256_0p4_8x8mm

    DDR_A0D17

    DDR_A1A17

    DDR_A10H11

    DDR_A11J10

    DDR_A12D15

    DDR_A13J11

    DDR_A2A18

    DDR_A3F15

    DDR_A4G12

    DDR_A5H12

    DDR_A6F13

    DDR_A7H10

    DDR_A8A16

    DDR_A9E12

    DDR_BA0H13

    DDR_BA1K12

    DDR_BA2H17

    DDR_CALG17

    DDR_CASE17

    DDR_CKEF18

    DDR_CLKC18

    DDR_CLKNC17

    DDR_CSJ12

    DDR_D0B12

    DDR_D1B13

    DDR_D10J13

    DDR_D11H15

    DDR_D12J15

    DDR_D13J14

    DDR_D14K13

    DDR_D15K18

    DDR_D16A8

    DDR_D17B9

    DDR_D18D9

    DDR_D19A9

    DDR_D2D13

    DDR_D20B11

    DDR_D21D10

    DDR_D22A11

    DDR_D23A12

    DDR_D24L18

    DDR_D25K15

    DDR_D26K14

    DDR_D27M18

    DDR_D28N17

    DDR_D29M14

    DDR_D3A13

    DDR_D30M15

    DDR_D31N18

    DDR_D4A15

    DDR_D5D14

    DDR_D6B15

    DDR_D7B16

    DDR_D8G18

    DDR_D9K17

    DDR_DQM0D11

    DDR_DQM1H14

    DDR_DQM2B8

    DDR_DQM3L13

    DDR_DQS0A14

    DDR_DQS1H18

    DDR_DQS2A10

    DDR_DQS3M17

    DDR_DQSN0B14

    DDR_DQSN1J18

    DDR_DQSN2B10

    DDR_DQSN3L17

    DDR_RASE18

    DDR_RESETNF17

    DDR_VREFCMD12 DDR_VREFB0J17

    DDR_WED18

    C954.7uFC0603

    JP3Header 1X2h2p20

    12

    R53 0R R0402

    R60240R-1%R0402

    R37210KR0402

    R612.2K-1%R0402

    R54 0R R0402

    R5622K-1%R0402

    R622.2K-1%R0402

    C93100nFC0402C96100nF

    C0402

    C89100nFC0402

    R52 1K-NC R0402

    C94100nFC0402

    R55100KR0402

    AN

    2717H

    ardware A

    spects

    © 2018 M

    icrochip Technology Inc.

    DS00002717A-page 24

  • This set features a SAMA5D24/BGA256 MPU and two 1-Gbit ISSI DDR3L-SDRAM devices (Part No.:IS43TR16640B-15GBL).

    Figure 3-14. SAMA5D24/BGA256/DDR3L-SDRAM Layer 3

    Address/control/command signalsTrace width = 5 milsTrace clearance = 6 mils

    Data lane 0 (D0-D7)Trace width = 5 milsTrace clearance = 8 mils

    Data lane 1 (D8-D15)Trace width = 5 milsTrace clearance = 8 mils

    Data lane 2 (D16-D23)Trace width = 5 milsTrace clearance = 8 mils

    Traces with 3 mils width/clearance

    The layout example in the above figure shows layer 3 of the test board focused on the DDR3L-SDRAMconfiguration. It is used as a signal layer and contains traces for data lane 0..2 and address/control/command signals. Trace width and clearance are in accordance with the minimum required for most ofthese signals. There are, however, exceptions in the region underneath the MPU, where the 0.4 mm ballpitch does not allow routing of traces wider than 3 mils. In this case, we must violate the 4 mils minimumwidth rule due to physical constraints.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 25

  • Figure 3-15. SAMA5D24/BGA256/DDR3L-SDRAM Layer 5

    Layer 5 of the test board serves as power plane and is also used as impedance matching reference forthe neighboring signal layers (layers 4 and 6). The highlighted region shown in the above figure powersthe SDRAM device. It covers a large surface and it does not feature any splits over any high-speedsignal, in order to ensure a good signal integrity.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 26

  • Figure 3-16. SAMA5D24/BGA256/DDR3L-SDRAM Layer 6

    Data lane 3 (D24-D31)Trace width = 5 milsTrace clearance = 9 mils

    DQS3/DQS3nTrace width = 4 milsTrace clearance = 8 mils

    Layer 6 contains signals (see the above figure) belonging to data lane 3. All traces belonging to data lane3 are tightly matched, with a mismatch of only 15 mils.

    To calculate the trace impedance for differential signals located in inner layers, like the DQS/DQSn pair,we recommend using impedance calculators/solvers to speed up the design process. For maximumaccuracy, make sure that these tools are in accordance with the IPC-2141 standard.

    Using the parameters from Table Detailed Test Board Layer Stack-up, and having the trace width of 4mils and 8 mils clearance, the trace impedance of differential pair DQS3/DQS3n is calculated to be 94.83Ω, which is within tolerance.

    In the same manner, the CK/CKn differential clock trace impedance can be calculated. The clock signal isrouted on the top layer (see the figure below), has a 4 mils width, an 8 mils clearance and 4.13 milsdielectric height, resulting in a 101.73 Ω impedance.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 27

  • Figure 3-17. SAMA5D24/BGA256/DDR3L-SDRAM Layer 1 (Top)

    CK/CKn signalsTrace width = 4 milsTrace clearance = 8 mils

    3.3.2 SAMA5D24/BGA256/DDR2-SDRAM Devices

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 28

  • Figure 3-18. MPUx-DRAMx DDR2 Device rotatethispage90

    B_DDR_A10B_DDR_A11

    B_DDR_DQM0

    B_DDR_DQM2B_DDR_DQM3

    B_DDR_DQM1

    B_DDR_DQS0+B_DDR_DQS0-

    B_DDR_DQS1+B_DDR_DQS1-

    B_DDR_DQS2+B_DDR_DQS2-

    B_DDR_DQS3+B_DDR_DQS3-

    B_DDR_BA1B_DDR_BA0

    B_DDR_CASB_DDR_RAS

    B_DDR_CSB_DDR_WE

    B_DDR_CKE

    B_DDR_CLK+B_DDR_CLK-

    B_DDR_VREF

    B_DDR_VREF

    B_DDR_RESETN

    B_DDR_A0B_DDR_A1B_DDR_A2B_DDR_A3B_DDR_A4B_DDR_A5B_DDR_A6B_DDR_A7B_DDR_A8B_DDR_A9

    B_DDR_A12

    B_DDR_A10B_DDR_A11

    B_DDR_A0B_DDR_A1B_DDR_A2B_DDR_A3B_DDR_A4B_DDR_A5B_DDR_A6B_DDR_A7B_DDR_A8B_DDR_A9

    B_DDR_A12

    B_DDR_A10B_DDR_A11

    B_DDR_A0B_DDR_A1B_DDR_A2B_DDR_A3B_DDR_A4B_DDR_A5B_DDR_A6B_DDR_A7B_DDR_A8B_DDR_A9

    B_DDR_A12

    B_DDR_D0B_DDR_D1B_DDR_D2B_DDR_D3B_DDR_D4B_DDR_D5B_DDR_D6B_DDR_D7B_DDR_D8B_DDR_D9B_DDR_D10B_DDR_D11B_DDR_D12B_DDR_D13B_DDR_D14B_DDR_D15B_DDR_D16B_DDR_D17B_DDR_D18B_DDR_D19B_DDR_D20B_DDR_D21B_DDR_D22B_DDR_D23B_DDR_D24B_DDR_D25B_DDR_D26B_DDR_D27B_DDR_D28B_DDR_D29B_DDR_D30B_DDR_D31

    B_DDR_D0B_DDR_D1B_DDR_D2B_DDR_D3B_DDR_D4B_DDR_D5B_DDR_D6B_DDR_D7B_DDR_D8B_DDR_D9B_DDR_D10B_DDR_D11B_DDR_D12B_DDR_D13B_DDR_D14B_DDR_D15

    B_DDR_D16

    B_DDR_D18B_DDR_D17

    B_DDR_D19B_DDR_D20B_DDR_D21B_DDR_D22B_DDR_D23B_DDR_D24B_DDR_D25B_DDR_D26B_DDR_D27B_DDR_D28B_DDR_D29B_DDR_D30B_DDR_D31

    B_DDR_BA1B_DDR_BA0

    B_DDR_BA1B_DDR_BA0

    B_DDR_WE B_DDR_WEB_DDR_CSxB_DDR_CS

    B_DDR_CLK-B_DDR_CLK+

    B_DDR_CLK-B_DDR_CLK+

    B_DDR_CKE B_DDR_CKE

    B_DDR_CASB_DDR_RAS

    B_DDR_CASB_DDR_RAS

    B_DDR_VREFB_DDR_VREF

    B_DDR_DQM0B_DDR_DQM1

    B_DDR_DQM2B_DDR_DQM3

    B_DDR_DQS0-B_DDR_DQS0+

    B_DDR_DQS1+B_DDR_DQS1-

    B_DDR_DQS2+B_DDR_DQS2-B_DDR_DQS3+B_DDR_DQS3-

    B_DDR_CS

    B_DDR_CSx

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    B_VDD_DRAM

    B_VDD_DRAM

    GND_POWER

    GND_POWER

    B_VDD_DRAMGND_POWER

    B_VDD_DRAM

    GND_POWER

    GND_POWER

    B_VDD_DRAMGND_POWER

    B_VDD_DRAM

    GND_POWER

    B_VDD_DRAM

    SAMA5D24_BGA256

    U9E

    TFBGA256_0p4_8x8mm

    DDR_A0D17

    DDR_A1A17

    DDR_A10H11

    DDR_A11J10

    DDR_A12D15

    DDR_A13J11

    DDR_A2A18

    DDR_A3F15

    DDR_A4G12

    DDR_A5H12

    DDR_A6F13

    DDR_A7H10

    DDR_A8A16

    DDR_A9E12

    DDR_BA0H13

    DDR_BA1K12

    DDR_BA2H17

    DDR_CALG17

    DDR_CASE17

    DDR_CKEF18

    DDR_CLKC18

    DDR_CLKNC17

    DDR_CSJ12

    DDR_D0B12

    DDR_D1B13

    DDR_D10J13

    DDR_D11H15

    DDR_D12J15

    DDR_D13J14

    DDR_D14K13

    DDR_D15K18

    DDR_D16A8

    DDR_D17B9

    DDR_D18D9

    DDR_D19A9

    DDR_D2D13

    DDR_D20B11

    DDR_D21D10

    DDR_D22A11

    DDR_D23A12

    DDR_D24L18

    DDR_D25K15

    DDR_D26K14

    DDR_D27M18

    DDR_D28N17

    DDR_D29M14

    DDR_D3A13

    DDR_D30M15

    DDR_D31N18

    DDR_D4A15

    DDR_D5D14

    DDR_D6B15

    DDR_D7B16

    DDR_D8G18

    DDR_D9K17

    DDR_DQM0D11

    DDR_DQM1H14

    DDR_DQM2B8

    DDR_DQM3L13

    DDR_DQS0A14

    DDR_DQS1H18

    DDR_DQS2A10

    DDR_DQS3M17

    DDR_DQSN0B14

    DDR_DQSN1J18

    DDR_DQSN2B10

    DDR_DQSN3L17

    DDR_RASE18

    DDR_RESETNF17

    DDR_VREFCMD12 DDR_VREFB0J17

    DDR_WED18

    JP6Header 1X2h2p20

    12

    C210100nFC0402

    U11

    IS43DR16320Ebga84-32-1509e

    A0M8

    A1M3

    A2M7

    A3N2

    A4N8

    A5N3

    A6N7

    A7P2

    A8P8

    A9P3

    A10M2

    A11P7

    A12R2

    A13R8

    BA0L2

    BA1L3

    BA2L1

    CKEK2

    CK_PJ8

    CK_NK8

    RASK7

    CASL7

    WEK3

    CSL8

    DQ0G8

    DQ1G2

    DQ2H7

    DQ3H3

    DQ4H1

    DQ5H9

    DQ6F1

    DQ7F9

    DQ8C8

    DQ9C2

    DQ10D7

    DQ11D3

    DQ12D1

    DQ13D9

    DQ14B1

    DQ15B9

    LDQS_PF7

    NU/LDQS_NE8

    UDQS_PB7

    NU/UDQS_NA8

    LDMF3

    UDMB3

    ODTK9

    NC1A2 NC2E2 NC3R3 NC4R7

    VDD1A1

    VDD2E1

    VDD3J9

    VDD4M9

    VDD5R1

    VDDQ1A9

    VDDQ2C1

    VDDQ3C3

    VDDQ4C7

    VDDQ5C9

    VDDQ6E9

    VDDQ7G1

    VDDQ8G3

    VDDQ9G7

    VDDQ10G9

    VDDLJ1

    VREFJ2

    VSS1A3

    VSS2E3

    VSS3J3

    VSS4N1

    VSS5P9

    VSSQ1A7

    VSSQ2B2

    VSSQ3B8

    VSSQ4D2

    VSSQ5D8

    VSSQ6E7

    VSSQ7F2

    VSSQ8F8

    VSSQ9H2

    VSSQ10H8

    VSSDLJ7

    R1332.2K-1%R0402

    C209100nFC0402

    R129100KR0402

    R37310KR0402

    R125 1K-NC R0402

    U10

    IS43DR16320Ebga84-32-1509e

    A0M8

    A1M3

    A2M7

    A3N2

    A4N8

    A5N3

    A6N7

    A7P2

    A8P8

    A9P3

    A10M2

    A11P7

    A12R2

    A13R8

    BA0L2

    BA1L3

    BA2L1

    CKEK2

    CK_PJ8

    CK_NK8

    RASK7

    CASL7

    WEK3

    CSL8

    DQ0G8

    DQ1G2

    DQ2H7

    DQ3H3

    DQ4H1

    DQ5H9

    DQ6F1

    DQ7F9

    DQ8C8

    DQ9C2

    DQ10D7

    DQ11D3

    DQ12D1

    DQ13D9

    DQ14B1

    DQ15B9

    LDQS_PF7

    NU/LDQS_NE8

    UDQS_PB7

    NU/UDQS_NA8

    LDMF3

    UDMB3

    ODTK9

    NC1A2 NC2E2 NC3R3 NC4R7

    VDD1A1

    VDD2E1

    VDD3J9

    VDD4M9

    VDD5R1

    VDDQ1A9

    VDDQ2C1

    VDDQ3C3

    VDDQ4C7

    VDDQ5C9

    VDDQ6E9

    VDDQ7G1

    VDDQ8G3

    VDDQ9G7

    VDDQ10G9

    VDDLJ1

    VREFJ2

    VSS1A3

    VSS2E3

    VSS3J3

    VSS4N1

    VSS5P9

    VSSQ1A7

    VSSQ2B2

    VSSQ3B8

    VSSQ4D2

    VSSQ5D8

    VSSQ6E7

    VSSQ7F2

    VSSQ8F8

    VSSQ9H2

    VSSQ10H8

    VSSDLJ7

    C2111nFC0402

    R126 1K-NC R0402

    C212100nFC0402

    R131DNPR0402

    C2264.7uFC0603

    C20722pFC0402

    R1342.2K-1%R0402

    C2131nFC0402

    R128 0R R0402R127 0R R0402

    C228100nFC0402

    C208100nFC0402

    C227100nFC0402

    R13021K-1%R0402

    AN

    2717H

    ardware A

    spects

    © 2018 M

    icrochip Technology Inc.

    DS00002717A-page 29

  • This set features a SAMA5D24/BGA256 MPU and two 512-Mbit ISSI DDR2-SDRAM devices (Part No.:IS43DR16320E-25DBL).

    Figure 3-19. SAMA5D24/BGA256/DDR2-SDRAM Layer 3

    Address/control/commandsignalsTrace width = 5 milsTrace clearance = 6 mils

    Data lane 0 (D0-D7)Trace width = 5 milsTrace clearance = 8 mils

    Data lane 1 (D8-D15)Trace width = 5 milsTrace clearance = 8 mils

    Data lane 2 (D16-D23)Trace width = 5 milsTrace clearance = 8 mils

    Traces with 3-mil width/clearance

    The above figure shows layer 3 of the test board focused on the DDR2-SDRAM configuration. It is usedas a signal layer, contains traces for data lane 0..2 and address/control/command signals. Trace widthand clearance are in accordance with the minimum required for most of these signals. There are,however, exceptions in the region underneath the MPU, where the 0.4 mm ball pitch did not allow to routetraces wider than 3 mils or a larger than 3 mils clearance. In this case we must violate the 4 mils minimumwidth rule due to physical constraints.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 30

  • Figure 3-20. SAMA5D24/BGA256/DDR2-SDRAM Layer 5

    Layer 5 of the test board serves as power plane and is also used as impedance matching reference forthe neighboring signal layers (layers 4 and 6). The highlighted region shown in the above figure powersthe SDRAM device. It covers a large surface and it does not feature any splits over any high-speedsignal, in order to ensure a good signal integrity.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 31

  • Figure 3-21. SAMA5D24/BGA256/DDR2-SDRAM Layer 6

    Data lane 3 (D24-D31)Trace width = 5 milsTrace clearance = 8 mils

    DQS3/DQS3nTrace width = 4 milsTrace clearance = 8 mils

    Layer 6 contains signals (see the above figure) belonging to data lane 3. All traces belonging to data lane3 are tightly matched, with a mismatch of only 17 mils.

    To calculate the trace impedance for differential signals located in inner layers, like the DQS/DQSn pair,we recommend using impedance calculators/solvers to speed up the design process. For maximumaccuracy, make sure that these tools are in accordance with the IPC-2141 standard.

    Using the parameters from Table Detailed Test Board Layer Stack-up, and having the trace width of 4mils and 8 mils clearance, the trace impedance of differential pair DQS3/DQS3n is calculated to be 94.83Ω, which is within tolerance.

    In the same manner, the CK/CKn differential clock trace impedance can be calculated. The clock signal isrouted on the top layer (see the figure below), has a 4 mils width, an 8 mils clearance and a 4.13 milsdielectric height, resulting in a 101.73 Ω impedance.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 32

  • Figure 3-22. SAMA5D24/BGA256/DDR2-SDRAM Layer 1 (Top)

    CK/CKnTrace width = 4 milsTrace clearance = 8 mils

    3.3.3 SAMA5D24/BGA256/LPDDR1-SDRAM Devices

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 33

  • Figure 3-23. MPUx-DRAMx LPDDR1 Device rotatethispage90

    C_DDR_A10C_DDR_A11

    C_DDR_DQM0

    C_DDR_DQM2C_DDR_DQM3

    C_DDR_DQM1

    C_DDR_DQS0+C_DDR_VREF

    C_DDR_DQS1+

    C_DDR_DQS2+

    C_DDR_DQS3+

    C_DDR_BA1C_DDR_BA0

    C_DDR_CASC_DDR_RAS

    C_DDR_CSC_DDR_WE

    C_DDR_CKE

    C_DDR_CLK+C_DDR_CLK-

    C_DDR_VREF

    C_DDR_VREF

    C_DDR_RESETN

    C_DDR_D0C_DDR_D1C_DDR_D2C_DDR_D3C_DDR_D4C_DDR_D5C_DDR_D6C_DDR_D7C_DDR_D8C_DDR_D9C_DDR_D10C_DDR_D11C_DDR_D12C_DDR_D13C_DDR_D14C_DDR_D15C_DDR_D16C_DDR_D17C_DDR_D18C_DDR_D19C_DDR_D20C_DDR_D21C_DDR_D22C_DDR_D23C_DDR_D24C_DDR_D25C_DDR_D26C_DDR_D27C_DDR_D28C_DDR_D29C_DDR_D30C_DDR_D31

    C_DDR_A0C_DDR_A1C_DDR_A2C_DDR_A3C_DDR_A4C_DDR_A5C_DDR_A6C_DDR_A7C_DDR_A8C_DDR_A9

    C_DDR_DQM2C_DDR_DQM3

    C_DDR_DQM0C_DDR_DQM1

    C_DDR_DQS0+C_DDR_DQS1+

    C_DDR_DQS2+C_DDR_DQS3+

    C_DDR_D0C_DDR_D1C_DDR_D2C_DDR_D3C_DDR_D4C_DDR_D5C_DDR_D6C_DDR_D7C_DDR_D8C_DDR_D9C_DDR_D10C_DDR_D11C_DDR_D12C_DDR_D13C_DDR_D14C_DDR_D15

    C_DDR_D16

    C_DDR_D18C_DDR_D17

    C_DDR_D19C_DDR_D20C_DDR_D21C_DDR_D22C_DDR_D23C_DDR_D24C_DDR_D25C_DDR_D26C_DDR_D27C_DDR_D28C_DDR_D29C_DDR_D30C_DDR_D31

    C_DDR_A12

    C_DDR_A10C_DDR_A11

    C_DDR_A0C_DDR_A1C_DDR_A2C_DDR_A3C_DDR_A4C_DDR_A5C_DDR_A6C_DDR_A7C_DDR_A8C_DDR_A9

    C_DDR_A12

    C_DDR_A10C_DDR_A11

    C_DDR_A0C_DDR_A1C_DDR_A2C_DDR_A3C_DDR_A4C_DDR_A5C_DDR_A6C_DDR_A7C_DDR_A8C_DDR_A9

    C_DDR_A12

    C_DDR_BA1C_DDR_BA0

    C_DDR_BA1C_DDR_BA0

    C_DDR_WE C_DDR_WE

    C_DDR_CS C_DDR_CSx

    C_DDR_CASC_DDR_RAS

    C_DDR_CASC_DDR_RAS

    C_DDR_CKE

    C_DDR_CLK+C_DDR_CLK-

    C_DDR_CKE

    C_DDR_CLK+C_DDR_CLK-

    C_DDR_CS

    C_DDR_CSx

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    C_VDD_DRAM

    C_VDD_DRAM

    GND_POWER

    C_VDD_DRAM

    GND_POWER

    C_VDD_DRAM

    C_VDD_DRAM

    C334100nFC0402

    U15

    IS43LR16160Gbgalpddr60p8b80x100

    A0J8

    A1J9

    A2K7

    A3K8

    A4K2

    A5K3

    A6J1

    A7J2

    A8J3

    A9H1

    A10J7

    A11H2

    A12H3

    DQ0A8

    DQ1B7

    DQ2B8

    DQ3C7

    DQ4C8

    DQ5D7

    DQ6D8

    DQ7E7

    DQ8E3

    DQ9D2

    DQ10D3

    DQ11C2

    DQ12C3

    DQ13B2

    DQ14B3

    DQ15A2

    LDQSE8

    UDQSE2

    LDMF8

    UDMF2

    CKG2

    CK#G3

    WE#G7

    CAS#G8

    RAS#G9

    CS#H7

    CKEG1

    VSS1A1

    VSS2F1

    VSS3K1

    VSSQ1A3

    VSSQ2C1

    VSSQ3B9

    VSSQ4D9

    VSSQ5E1

    VDD1A9

    VDD2F9

    VDD3K9

    VDDQ1B1

    VDDQ2D1

    VDDQ3A7

    VDDQ4C9

    VDDQ5E9

    NC1F3

    NC2F7

    BA0H8

    BA1H9

    C315100nFC0402 C335

    100nFC0402

    R19821K-1%R0402

    SAMA5D24_BGA256

    U14E

    TFBGA256_0p4_8x8mm

    DDR_A0D17

    DDR_A1A17

    DDR_A10H11

    DDR_A11J10

    DDR_A12D15

    DDR_A13J11

    DDR_A2A18

    DDR_A3F15

    DDR_A4G12

    DDR_A5H12

    DDR_A6F13

    DDR_A7H10

    DDR_A8A16

    DDR_A9E12

    DDR_BA0H13

    DDR_BA1K12

    DDR_BA2H17

    DDR_CALG17

    DDR_CASE17

    DDR_CKEF18

    DDR_CLKC18

    DDR_CLKNC17

    DDR_CSJ12

    DDR_D0B12

    DDR_D1B13

    DDR_D10J13

    DDR_D11H15

    DDR_D12J15

    DDR_D13J14

    DDR_D14K13

    DDR_D15K18

    DDR_D16A8

    DDR_D17B9

    DDR_D18D9

    DDR_D19A9

    DDR_D2D13

    DDR_D20B11

    DDR_D21D10

    DDR_D22A11

    DDR_D23A12

    DDR_D24L18

    DDR_D25K15

    DDR_D26K14

    DDR_D27M18

    DDR_D28N17

    DDR_D29M14

    DDR_D3A13

    DDR_D30M15

    DDR_D31N18

    DDR_D4A15

    DDR_D5D14

    DDR_D6B15

    DDR_D7B16

    DDR_D8G18

    DDR_D9K17

    DDR_DQM0D11

    DDR_DQM1H14

    DDR_DQM2B8

    DDR_DQM3L13

    DDR_DQS0A14

    DDR_DQS1H18

    DDR_DQS2A10

    DDR_DQS3M17

    DDR_DQSN0B14

    DDR_DQSN1J18

    DDR_DQSN2B10

    DDR_DQSN3L17

    DDR_RASE18

    DDR_RESETNF17

    DDR_VREFCMD12 DDR_VREFB0J17

    DDR_WED18

    R197100KR0402

    R2012.2K-1%R0402

    R37410KR0402

    U16

    IS43LR16160Gbgalpddr60p8b80x100

    A0J8

    A1J9

    A2K7

    A3K8

    A4K2

    A5K3

    A6J1

    A7J2

    A8J3

    A9H1

    A10J7

    A11H2

    A12H3

    DQ0A8

    DQ1B7

    DQ2B8

    DQ3C7

    DQ4C8

    DQ5D7

    DQ6D8

    DQ7E7

    DQ8E3

    DQ9D2

    DQ10D3

    DQ11C2

    DQ12C3

    DQ13B2

    DQ14B3

    DQ15A2

    LDQSE8

    UDQSE2

    LDMF8

    UDMF2

    CKG2

    CK#G3

    WE#G7

    CAS#G8

    RAS#G9

    CS#H7

    CKEG1

    VSS1A1

    VSS2F1

    VSS3K1

    VSSQ1A3

    VSSQ2C1

    VSSQ3B9

    VSSQ4D9

    VSSQ5E1

    VDD1A9

    VDD2F9

    VDD3K9

    VDDQ1B1

    VDDQ2D1

    VDDQ3A7

    VDDQ4C9

    VDDQ5E9

    NC1F3

    NC2F7

    BA0H8

    BA1H9

    C316100nFC0402

    C3334.7uFC0603

    R199DNPR0402

    JP9Header 1X2h2p20

    12

    C31422pFC0402

    R2022.2K-1%R0402

    AN

    2717H

    ardware A

    spects

    © 2018 M

    icrochip Technology Inc.

    DS00002717A-page 34

  • This set features a SAMA5D24/BGA256 MPU and two 256-Mbit ISSI LPDDR1-SDRAM devices (PartNo.: IS43LR16160G-6BLI).

    Figure 3-24. SAMA5D24/BGA256/LPDDR1-SDRAM Layer 6

    Data lane 3 (D24-D31)Trace width = 5 milsTrace clearance = 8 mils

    The layout example in the above figure shows layer 6 of the layout centered on the LPDDR1-SDRAM set.On this layer, the data lane 3 (D24-D31) signals have been routed, with the commented trace width andclearance, in accordance with the general routing rules. The route length mismatch within the data lane is17 mils, well below the maximum 50 mils mismatch.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 35

  • Figure 3-25. SAMA5D24/BGA256/LPDDR1-SDRAM Layer 8 (Bottom)

    Address signalsTrace width = 5 milsTrace clearance = 8 mils

    CK/CKn signalsTrace width = 4 milsTrace clearance = 8 mils

    Control/command signalsTrace width = 5 milsTrace clearance = 25 mils

    The above figure shows the bottom layer of the test board, centered on the LPDDR1-SDRAM device withthe indicated trace width and clearance.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 36

  • Figure 3-26. SAMA5D24/BGA256/LPDDR1-SDRAM Layer 5

    Layer 5 of the test board serves as power plane and is also used as impedance matching reference forthe neighboring signal layers (layers 4 and 6). The highlighted region shown in the above figure powersthe SDRAM device. It covers a large surface and it does not feature any splits over any high-speedsignal, in order to ensure a good signal integrity.

    3.3.4 SAMA5D24/BGA256/LPDDR2-SDRAM Devices

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 37

  • Figure 3-27. MPUx-DRAMx LPDDR2 Device rotatethispage90

    D_DDR_DQM0

    D_DDR_DQM2D_DDR_DQM3

    D_DDR_DQM1

    D_DDR_DQS0+D_DDR_DQS0-

    D_DDR_DQS1+D_DDR_DQS1-

    D_DDR_DQS2+D_DDR_DQS2-

    D_DDR_DQS3+D_DDR_DQS3-

    D_DDR_CS

    D_DDR_CKE

    D_DDR_CLK+D_DDR_CLK-

    D_DDR_VREF

    D_DDR_VREF

    D_DDR_RESETN

    D_DDR_D0D_DDR_D1D_DDR_D2D_DDR_D3D_DDR_D4D_DDR_D5D_DDR_D6D_DDR_D7D_DDR_D8D_DDR_D9D_DDR_D10D_DDR_D11D_DDR_D12D_DDR_D13D_DDR_D14D_DDR_D15D_DDR_D16D_DDR_D17D_DDR_D18D_DDR_D19D_DDR_D20D_DDR_D21D_DDR_D22D_DDR_D23D_DDR_D24D_DDR_D25D_DDR_D26D_DDR_D27D_DDR_D28D_DDR_D29D_DDR_D30D_DDR_D31

    D_DDR_A0D_DDR_A1D_DDR_A2D_DDR_A3D_DDR_A4D_DDR_A5D_DDR_A6

    D_DDR_CLK+D_DDR_CLK-

    D_DDR_CLK+D_DDR_CLK-

    D_DDR_DQM0D_DDR_DQM1

    D_DDR_DQM2D_DDR_DQM3

    D_DDR_DQS1+D_DDR_DQS1-

    D_DDR_DQS0+D_DDR_DQS0-

    D_DDR_DQS3-D_DDR_DQS3+D_DDR_DQS2-D_DDR_DQS2+

    D_DDR_D0D_DDR_D1D_DDR_D2D_DDR_D3D_DDR_D4D_DDR_D5D_DDR_D6D_DDR_D7D_DDR_D8D_DDR_D9D_DDR_D10D_DDR_D11D_DDR_D12D_DDR_D13D_DDR_D14D_DDR_D15

    D_DDR_D16

    D_DDR_D18D_DDR_D17

    D_DDR_D19D_DDR_D20D_DDR_D21D_DDR_D22D_DDR_D23D_DDR_D24D_DDR_D25D_DDR_D26D_DDR_D27D_DDR_D28D_DDR_D29D_DDR_D30D_DDR_D31

    D_DDR_VREFD_DDR_VREF

    D_DDR_CS

    D_DDR_CKE

    D_DDR_CSx

    D_DDR_CKE

    D_DDR_A1D_DDR_A0

    D_DDR_A4D_DDR_A3D_DDR_A2

    D_DDR_A6D_DDR_A5

    D_DDR_A1D_DDR_A0

    D_DDR_A4D_DDR_A3D_DDR_A2

    D_DDR_A6D_DDR_A5

    D_DDR_RASD_DDR_CASD_DDR_WE

    D_DDR_RASD_DDR_CASD_DDR_WE

    D_DDR_RASD_DDR_CAS

    D_DDR_WE

    D_DDR_CS

    D_DDR_CSx

    D_VDD18_LPDDR2

    D_VDD_DRAMGND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    D_VDD_DRAM

    D_VDD_DRAM

    D_VDD18_LPDDR2

    GND_POWER GND_POWER

    GND_POWER GND_POWER

    GND_POWER GND_POWER

    D_VDD_DRAM

    D_VDD_DRAM

    C414100nFC0402

    C419100nFC0402

    R26624K-1%R0402

    C422100nFC0402

    R265100KR0402

    C417100nFC0402

    R269240R-1%R0402

    R2712.2K-1%R0402

    C415100nFC0402

    R268240R-1%R0402

    U20

    bgalpddr134p65b100x115IS43LD16320A

    CA0P3

    CA1N3

    CA2M3

    CA3M2

    CA4M1

    CA5G2

    CA6F2

    CA7F3

    CA8E3

    CA9E2

    DQ0N8

    DQ1M8

    DQ2M7

    DQ3M9

    DQ4M6

    DQ5L7

    DQ6L8

    DQ7L9

    DQ8G9

    DQ9G8

    DQ10G7

    DQ11F6

    DQ12F9

    DQ13F7

    DQ14F8

    DQ15E8

    DQS0_tL6

    DQS0_cL5

    DQS1_tG6

    DQS1_cG5

    DM0K5

    DM1H5

    NC0A1

    NC1A2

    NC2A9

    NC3A10

    NC4B1

    NC5B2

    NC6B3

    NC7B7

    NC8B8

    NC9B9

    NC10B10

    NC11C3

    NC12C8

    NC13D6

    NC14D7

    NC15D8

    NC16D9

    NC17E5

    NC18E6

    NC19E7

    NC20J2

    NC21K2

    NC22K3

    NC23L2

    NC24L3

    NC25N5

    NC26N6

    NC27N7

    NC28P6

    NC29P7

    NC30P8

    NC31P9

    NC32R3

    NC33R8

    NC34T1

    NC35T2

    NC36T3

    NC37T7

    NC38T8

    NC39T9

    NC40T10

    NC41U1

    NC42U2

    NC43U9

    NC44U10

    VDD1_0B6

    VDD1_1C1

    VDD1_2R1

    VDD1_3T6

    VDD2_0B5

    VDD2_1D2

    VDD2_2G1

    VDD2_3J7

    VDD2_4P2

    VDD2_5T5

    VDDCA_0F1

    VDDCA_1H1

    VDDCA_2N2

    VDDQ_0C7

    VDDQ_1C10

    VDDQ_2D5

    VDDQ_3E9

    VDDQ_4F10

    VDDQ_5H6

    VDDQ_6J6

    VDDQ_7K6

    VDDQ_8M10

    VDDQ_9N9

    VDDQ_10P5

    VDDQ_11R7

    VSS_0C2

    VSS_1C5

    VSS_2D1

    VSS_3H2

    VSS_4J8

    VSS_5P1

    VSS_6R2

    VSS_7R5

    VSSCA_0E1

    VSSCA_1J1

    VSSQ_0C6

    VSSQ_1C9

    VSSQ_2D10

    VSSQ_3E10

    VSSQ_4F5

    VSSQ_5G10

    VSSQ_6J5

    VSSQ_7L10

    VSSQ_8M5

    VSSQ_9N10

    VSSQ_10P10

    VSSQ_11R6

    ZQD3

    VREFCAG3

    CK_tJ3

    CK_cH3

    CS0_nL1

    CKE0K1

    VREFDQJ9

    VDDQ_12R10

    VSSCA_2N1

    VSSQ_12R9

    C4204.7uFC0603

    R37510KR0402

    R267DNPR0402

    SAMA5D24_BGA256

    U19E

    TFBGA256_0p4_8x8mm

    DDR_A0D17

    DDR_A1A17

    DDR_A10H11

    DDR_A11J10

    DDR_A12D15

    DDR_A13J11

    DDR_A2A18

    DDR_A3F15

    DDR_A4G12

    DDR_A5H12

    DDR_A6F13

    DDR_A7H10

    DDR_A8A16

    DDR_A9E12

    DDR_BA0H13

    DDR_BA1K12

    DDR_BA2H17

    DDR_CALG17

    DDR_CASE17

    DDR_CKEF18

    DDR_CLKC18

    DDR_CLKNC17

    DDR_CSJ12

    DDR_D0B12

    DDR_D1B13

    DDR_D10J13

    DDR_D11H15

    DDR_D12J15

    DDR_D13J14

    DDR_D14K13

    DDR_D15K18

    DDR_D16A8

    DDR_D17B9

    DDR_D18D9

    DDR_D19A9

    DDR_D2D13

    DDR_D20B11

    DDR_D21D10

    DDR_D22A11

    DDR_D23A12

    DDR_D24L18

    DDR_D25K15

    DDR_D26K14

    DDR_D27M18

    DDR_D28N17

    DDR_D29M14

    DDR_D3A13

    DDR_D30M15

    DDR_D31N18

    DDR_D4A15

    DDR_D5D14

    DDR_D6B15

    DDR_D7B16

    DDR_D8G18

    DDR_D9K17

    DDR_DQM0D11

    DDR_DQM1H14

    DDR_DQM2B8

    DDR_DQM3L13

    DDR_DQS0A14

    DDR_DQS1H18

    DDR_DQS2A10

    DDR_DQS3M17

    DDR_DQSN0B14

    DDR_DQSN1J18

    DDR_DQSN2B10

    DDR_DQSN3L17

    DDR_RASE18

    DDR_RESETNF17

    DDR_VREFCMD12 DDR_VREFB0J17

    DDR_WED18

    R2722.2K-1%R0402

    C41322pFC0402

    C418100nFC0402

    JP13Header 1X2h2p20

    12

    U21

    bgalpddr134p65b100x115IS43LD16320A

    CA0P3

    CA1N3

    CA2M3

    CA3M2

    CA4M1

    CA5G2

    CA6F2

    CA7F3

    CA8E3

    CA9E2

    DQ0N8

    DQ1M8

    DQ2M7

    DQ3M9

    DQ4M6

    DQ5L7

    DQ6L8

    DQ7L9

    DQ8G9

    DQ9G8

    DQ10G7

    DQ11F6

    DQ12F9

    DQ13F7

    DQ14F8

    DQ15E8

    DQS0_tL6

    DQS0_cL5

    DQS1_tG6

    DQS1_cG5

    DM0K5

    DM1H5

    NC0A1

    NC1A2

    NC2A9

    NC3A10

    NC4B1

    NC5B2

    NC6B3

    NC7B7

    NC8B8

    NC9B9

    NC10B10

    NC11C3

    NC12C8

    NC13D6

    NC14D7

    NC15D8

    NC16D9

    NC17E5

    NC18E6

    NC19E7

    NC20J2

    NC21K2

    NC22K3

    NC23L2

    NC24L3

    NC25N5

    NC26N6

    NC27N7

    NC28P6

    NC29P7

    NC30P8

    NC31P9

    NC32R3

    NC33R8

    NC34T1

    NC35T2

    NC36T3

    NC37T7

    NC38T8

    NC39T9

    NC40T10

    NC41U1

    NC42U2

    NC43U9

    NC44U10

    VDD1_0B6

    VDD1_1C1

    VDD1_2R1

    VDD1_3T6

    VDD2_0B5

    VDD2_1D2

    VDD2_2G1

    VDD2_3J7

    VDD2_4P2

    VDD2_5T5

    VDDCA_0F1

    VDDCA_1H1

    VDDCA_2N2

    VDDQ_0C7

    VDDQ_1C10

    VDDQ_2D5

    VDDQ_3E9

    VDDQ_4F10

    VDDQ_5H6

    VDDQ_6J6

    VDDQ_7K6

    VDDQ_8M10

    VDDQ_9N9

    VDDQ_10P5

    VDDQ_11R7

    VSS_0C2

    VSS_1C5

    VSS_2D1

    VSS_3H2

    VSS_4J8

    VSS_5P1

    VSS_6R2

    VSS_7R5

    VSSCA_0E1

    VSSCA_1J1

    VSSQ_0C6

    VSSQ_1C9

    VSSQ_2D10

    VSSQ_3E10

    VSSQ_4F5

    VSSQ_5G10

    VSSQ_6J5

    VSSQ_7L10

    VSSQ_8M5

    VSSQ_9N10

    VSSQ_10P10

    VSSQ_11R6

    ZQD3

    VREFCAG3

    CK_tJ3

    CK_cH3

    CS0_nL1

    CKE0K1

    VREFDQJ9

    VDDQ_12R10

    VSSCA_2N1

    VSSQ_12R9

    C421100nFC0402

    C416100nFC0402

    AN

    2717H

    ardware A

    spects

    © 2018 M

    icrochip Technology Inc.

    DS00002717A-page 38

  • This set features a SAMA5D24/BGA256 MPU and two 512-Mbit ISSI LPDDR2-SDRAM devices (PartNo.: IS43LD16320A-25BLI).

    Figure 3-28. SAMA5D24/BGA256/LPDDR2-SDRAM Layer 3

    Traces with 3-milwidth/clearance

    Data lane 2 (D16-D23)Trace width = 5 milsTrace clearance = 8 mils

    Address/control/commandsignalsTrace width = 5 milsTrace clearance = 7 mils

    Data lane 0 (D0-D7)Trace width = 5 milsTrace clearance = 8 mils

    Data lane 1 (D8-D15)Trace width = 5 milsTrace clearance = 8 mils

    The above figure shows layer 3 of the test board focused on the LPDDR2-SDRAM configuration. It isused as a signal layer, contains traces for data lane 0..2 and address/control/command signals. Tracewidth and clearance are in accordance with the minimum required for most of these signals. There are,however, exceptions in the region underneath the MPU, where the 0.4 mm ball pitch does not allow toroute traces wider than 3 mils or a larger than 3 mils clearance. In this case, we must violate the 4 milsminimum width rule due to physical constraints.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 39

  • Figure 3-29. SAMA5D24/BGA256/LPDDR2-SDRAM Layer 5

    Layer 5 of the test board serves as power plane and is also used as impedance matching reference forthe neighboring signal layers (layers 4 and 6). The highlighted region shown in the above figure powersthe SDRAM device. It covers a large surface and it does not feature any splits over any high-speedsignal, in order to ensure a good signal integrity.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 40

  • Figure 3-30. SAMA5D24/BGA256/LPDDR2-SDRAM Layer 6

    Data lane 3 (D24-D31)Trace width = 5 milsTrace clearance = 9 mils

    DQS3/DQS3nTrace width = 4 milsTrace clearance = 8 mils

    Layer 6 contains signals (see the above figure) belonging to data lane 3. All traces belonging to data lane3 are tightly matched, with a mismatch of only 17 mils.

    To calculate the trace impedance for differential signals located in inner layers, like the DQS/DQSn pair,impedance calculators/solvers are recommended to be used to speed up the design process. Formaximum accuracy, make sure that these tools are in accordance with the IPC-2141 standard.

    Using the parameters from Table Detailed Test Board Layer Stack-up, and having the trace width of 4mils and a 8 mils clearance, results for differential pair DQS3/DQS3n in a trace impedance of 94.83 Ω,which is within tolerance.

    In the same manner, the CK/CKn differential clock trace impedance can be calculated. The clock signal isrouted on the top layer (see Figure SAMA5D24/BGA256/DDR2-SDRAM Layer 1 (Top)), has a 4 milswidth, 8 mils clearance and 4.13 mils dielectric height, resulting in a 101.73 Ω impedance.

    3.3.5 SAMA5D24/BGA256/LPDDR3-SDRAM Devices

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 41

  • Figure 3-31. MPUx-DRAMx LPDDR3 Device rotatethispage90

    E_DDR_D0E_DDR_D1E_DDR_D2E_DDR_D3E_DDR_D4E_DDR_D5E_DDR_D6E_DDR_D7E_DDR_D8E_DDR_D9E_DDR_D10E_DDR_D11E_DDR_D12E_DDR_D13E_DDR_D14E_DDR_D15E_DDR_D16E_DDR_D17E_DDR_D18E_DDR_D19E_DDR_D20E_DDR_D21E_DDR_D22E_DDR_D23E_DDR_D24E_DDR_D25E_DDR_D26E_DDR_D27E_DDR_D28E_DDR_D29E_DDR_D30E_DDR_D31

    E_DDR_A0E_DDR_A1E_DDR_A2E_DDR_A3E_DDR_A4E_DDR_A5E_DDR_A6

    E_DDR_D0E_DDR_D1E_DDR_D2E_DDR_D3E_DDR_D4E_DDR_D5E_DDR_D6E_DDR_D7E_DDR_D8E_DDR_D9E_DDR_D10E_DDR_D11E_DDR_D12E_DDR_D13E_DDR_D14E_DDR_D15E_DDR_D16E_DDR_D17E_DDR_D18E_DDR_D19E_DDR_D20E_DDR_D21E_DDR_D22E_DDR_D23E_DDR_D24E_DDR_D25E_DDR_D26E_DDR_D27E_DDR_D28E_DDR_D29E_DDR_D30E_DDR_D31

    E_DDR_DQM0

    E_DDR_DQM2E_DDR_DQM3

    E_DDR_DQM1

    E_DDR_DQS0+E_DDR_DQS0-

    E_DDR_DQS1+E_DDR_DQS1-

    E_DDR_DQS2+E_DDR_DQS2-

    E_DDR_DQS3+E_DDR_DQS3-

    E_DDR_DQM0

    E_DDR_DQM2E_DDR_DQM3

    E_DDR_DQM1

    E_DDR_DQS0-E_DDR_DQS0+

    E_DDR_DQS1+E_DDR_DQS1-

    E_DDR_DQS2+E_DDR_DQS2-

    E_DDR_DQS3+E_DDR_DQS3-

    E_DDR_CS

    E_DDR_CKE

    E_DDR_CLK+E_DDR_CLK-

    E_DDR_VREF

    E_DDR_RESETN

    E_DDR_CLK+E_DDR_CLK-

    E_DDR_CKE

    E_DDR_CS

    E_DDR_VREF

    E_DDR_VREF

    E_DDR_A0E_DDR_A1E_DDR_A2E_DDR_A3E_DDR_A4E_DDR_A5E_DDR_A6

    E_DDR_RASE_DDR_CASE_DDR_WE

    E_DDR_RASE_DDR_CAS

    E_DDR_WE

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    GND_POWER

    E_VDD18_LPDDR3

    GND_POWER

    GND_POWER

    GND_POWER

    E_VDD_DRAM

    E_VDD_DRAM

    E_VDD_DRAM

    E_VDD_DRAM

    C534100nFC0402

    C531100nFC0402

    MT52L256M32D1PF-107WT

    U25B

    bgalpddr178p8b110x115

    VDD1_0A3

    VDD1_1A4

    VDD1_2A5

    VDD1_3A6

    VDD1_4U3

    VDD1_5U4

    VDD1_6U5

    VDD1_7U6

    VDD1_8A10

    VDD1_9U10

    VDD2_0D4

    VDD2_1D5

    VDD2_2D6

    VDD2_3G5

    VDD2_4H5

    VDD2_5H6

    VDD2_6J5

    VDD2_7J6

    VDD2_8K5

    VDD2_9K6

    VDD2_10L5

    VDD2_11P4

    VDD2_12P5

    VDD2_13P6

    VDD2_14A8

    VDD2_15A9

    VDD2_16H12

    VDD2_17K12

    VDD2_18U8

    VDD2_19U9

    VDDQ_0A11

    VDDQ_1C12

    VDDQ_2E8

    VDDQ_3E12

    VDDQ_4G12

    VDDQ_5H8

    VDDQ_6H9

    VDDQ_7H11

    VDDQ_8J9

    VDDQ_9J10

    VDDQ_10K8

    VDDQ_11K11

    VDDQ_12L12

    VDDQ_13N8

    VDDQ_14N12

    VDDQ_15R12

    VDDQ_16U11

    VSS_0B2

    VSS_1B5

    VSS_2C5

    VSS_3E4

    VSS_4E5

    VSS_5F5

    VSS_6H2

    VSS_7J12

    VSS_8K2

    VSS_9L6

    VSS_10M5

    VSS_11N4

    VSS_12N5

    VSS_13R4

    VSS_14R5

    VSS_15T2

    VSS_16T3

    VSS_17T4

    VSS_18T5

    VSSQ_0B6

    VSSQ_1B12

    VSSQ_2C6

    VSSQ_3D12

    VSSQ_4E6

    VSSQ_5F6

    VSSQ_6F12

    VSSQ_7G6

    VSSQ_8G9

    VSSQ_9H10

    VSSQ_10K10

    VSSQ_11L9

    VSSQ_12M6

    VSSQ_13M12

    VSSQ_14N6

    VSSQ_15P12

    VSSQ_16R6

    VSSQ_17T6

    VSSQ_18T12 NC0

    A1

    NC1A2

    NC2A12

    NC3A13

    NC4B1

    NC5B13

    NC6C4

    NC7K9

    NC8R3

    NC9T1

    NC10T13

    NC11U1

    NC12U2

    NC13U12

    NC14U13

    VDDCA_0F2

    VDDCA_1G2

    VDDCA_2H3

    VDDCA_3L2

    VDDCA_4M2

    VSSCA_0C3

    VSSCA_1D3

    VSSCA_2F4

    VSSCA_3G3

    VSSCA_4G4

    VSSCA_5J4

    VSSCA_6M4

    VSSCA_7P3

    VREFCAH4VREFDQJ11

    R340100K-NCR0402

    C535100nFC0402

    R336 1K-NC R0402

    C532100nFC0402

    C52822pFC0402

    R3422.2K-1%R0402

    MT52L256M32D1PF-107WT

    U25A

    bgalpddr178p8b110x115

    DQ0P9

    DQ1N9

    DQ2N10

    DQ3N11

    DQ4M8

    DQ5M9

    DQ6M10

    DQ7M11

    DQ8F11

    DQ9F10

    DQ10F9

    DQ11F8

    DQ12E11

    DQ13E10

    DQ14E9

    DQ15D9

    DQ16T8

    DQ17T9

    DQ18T10

    DQ19T11

    DQ20R8

    DQ21R9

    DQ22R10

    DQ23R11

    DQ24C11

    DQ25C10

    DQ26C9

    DQ27C8

    DQ28B11

    DQ29B10

    DQ30B9

    DQ31B8

    DM0L8

    DM1G8

    DM2P8

    DM3D8

    DQS0_TL10

    DQS0_CL11

    DQS1_TG10

    DQS1_CG11

    DQS2_TP10

    DQS2_CP11

    DQS3_TD10

    DQS3_CD11

    CA0R2

    CA1P2

    CA2N2

    CA3N3

    CA4M3

    CA5F3

    CA6E3

    CA7E2

    CA8D2

    CA9C2

    ZQ0B3

    ZQ1B4

    CKE0K3

    CKE1K4

    CK_CJ2CK_TJ3

    CS0_NL3

    CS1_NL4

    ODTJ8

    C529100nFC0402

    R33924K-1%R0402

    R337 0R R0402

    SAMA5D24_BGA256

    U24E

    TFBGA256_0p4_8x8mm

    DDR_A0D17

    DDR_A1A17

    DDR_A10H11

    DDR_A11J10

    DDR_A12D15

    DDR_A13J11

    DDR_A2A18

    DDR_A3F15

    DDR_A4G12

    DDR_A5H12

    DDR_A6F13

    DDR_A7H10

    DDR_A8A16

    DDR_A9E12

    DDR_BA0H13

    DDR_BA1K12

    DDR_BA2H17

    DDR_CALG17

    DDR_CASE17

    DDR_CKEF18

    DDR_CLKC18

    DDR_CLKNC17

    DDR_CSJ12

    DDR_D0B12

    DDR_D1B13

    DDR_D10J13

    DDR_D11H15

    DDR_D12J15

    DDR_D13J14

    DDR_D14K13

    DDR_D15K18

    DDR_D16A8

    DDR_D17B9

    DDR_D18D9

    DDR_D19A9

    DDR_D2D13

    DDR_D20B11

    DDR_D21D10

    DDR_D22A11

    DDR_D23A12

    DDR_D24L18

    DDR_D25K15

    DDR_D26K14

    DDR_D27M18

    DDR_D28N17

    DDR_D29M14

    DDR_D3A13

    DDR_D30M15

    DDR_D31N18

    DDR_D4A15

    DDR_D5D14

    DDR_D6B15

    DDR_D7B16

    DDR_D8G18

    DDR_D9K17

    DDR_DQM0D11

    DDR_DQM1H14

    DDR_DQM2B8

    DDR_DQM3L13

    DDR_DQS0A14

    DDR_DQS1H18

    DDR_DQS2A10

    DDR_DQS3M17

    DDR_DQSN0B14

    DDR_DQSN1J18

    DDR_DQSN2B10

    DDR_DQSN3L17

    DDR_RASE18

    DDR_RESETNF17

    DDR_VREFCMD12 DDR_VREFB0J17

    DDR_WED18

    R335240R-1%R0402

    C5334.7uFC0603

    R3432.2K-1%R0402

    C530100nFC0402

    R338100KR0402

    AN

    2717H

    ardware A

    spects

    © 2018 M

    icrochip Technology Inc.

    DS00002717A-page 42

  • This set features a SAMA5D24/BGA256 MPU and one 8-Gbit Micron LPDDR3-SDRAM device (Part No.:MT52L256M32D1PF-107WT).

    Figure 3-32. SAMA5D24/BGA256/LPDDR3-SDRAM Layer 3

    Data lane 2 (D16-D23)Trace width = 5 milsTrace clearance = 8 mils

    Data lane 1 (D8-D15)Trace width = 5 milsTrace clearance = 9 mils

    The above figure shows layer 3 of the test board focused on the LPDDR3-SDRAM configuration. It isused as a signal layer, and contains traces for data lanes 1 and 2. Trace width and clearance are inaccordance with the minimum required for most of these signals. There are, however, exceptions in theregion underneath the MPU, where the 0.4-mm ball pitch does not allow to route traces wider than 3 mils.In this case, it is allowed to go below the 4 mils minimum because of high signal density.

    Traces belonging in each data lane are tightly matched, with a 14-mils length mismatch for data lane 1and a 34-mils mismatch for data lane 2. The DQS1/DQS1n and DQS2/DQS2n differential signals are alsovery precisely matched with a mismatch between signals from the same pair of 1 mil, respectively 3.2mils.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 43

  • Figure 3-33. SAMA5D24/BGA256/LPDDR3-SDRAM Layer 4

    Address signalsTrace width = 5 milsTrace clearance = 8 mils

    Control/command signalsTrace width = 5 milsTrace clearance = 9 mils

    The above figure shows layer 4 of the test board, centered on the LPDDR3-SDRAM device. It is used assignal layer and contains both address and control/command signals. The trace width and clearance sizeare in accordance with the general routing rules.

    The trace impedance can be calculated using the stripline impedance formula (Equation 2) or using aspecialized calculator. Applying the formula results in a trace impedance Z0 = 48.17 Ω.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 44

  • Figure 3-34. SAMA5D24/BGA256/LPDDR3-SDRAM Layer 1 (Top)

    CK/CKnTrace width = 4 milsTrace clearance = 8 mils

    The above figure shows the top layer of the test board centered on the LPDDR3-SDRAM device. Thedifferential CK/CKn signals are routed on this layer, with the commented trace width and clearance. Thedifferential pair impedance is 101.73 Ω, very close to the 100 Ω target.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 45

  • Figure 3-35. SAMA5D24/BGA256/LPDDR3-SDRAM Layer 6

    Data lane 0 (D0-D7)Trace width = 5 milsTrace clearance = 8 mils

    Data lane 3 (D24-D31)Trace width = 5 milsTrace clearance = 9 mils

    The above figure shows layer 6, where data lanes 0 and 3 from the LPDDR3-SDRAM are routed.

    The target impedance for DQS0/DQS0n and DQS3/DQS3n differential pairs is 100 Ω. Using animpedance calculator resulted in a value of 98.16 Ω. All power layers provide an unslotted referenceplane to maintain a good signal integrity.

    AN2717Hardware Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 46

  • 4. Software Aspects

    4.1 On-board SDRAM Device(s) Initialization SequenceEvery DDR-SDRAM type has a specific initialization sequence that must be performed after systempowerup. The required steps are a sequence of electrical patterns, executed by software by themicroprocessor and applied to the memory device through the embedded DRAM controller (“MPDDRC”).

    These settings are detailed in section “Multiport DDR-SDRAM Controller (MPDDRC)” of the SAMA5D2series datasheet. They are explained in a straightforward sequential manner below, for each kind ofmemory device. After the last step in the initialization sequence is issued, the SDRAM device is fullyfunctional.

    The tables in the following subchapters describe each initialization step with the necessary action (whatneeds to be done), the registers involved in that action, and the settings (values) to be written in theregister fields.

    Software support is provided with drivers and examples in the form of a software package.

    4.1.1 DDR3-SDRAM/DDR3L-SDRAM InitializationThe initialization sequence is performed by software. The DDR3-SDRAM devices are initialized by thesequence described in the table below.

    Note:  These settings were verified as functional for the Micron MT52L256M32D1PF-107WT device.Application to other brands should be verified against their respective datasheets.

    Table 4-1. DDR3-SDRAM/DDR3L-SDRAM Initialization

    Step Action Register Setting

    1 Program the memory devicetype

    MPDDRC_MD MD = 4 (for DDR3), DBW = 0(32 bits)

    2 Program the shift samplingvalue

    MPDDRC_RD_DATA_PATHSection 4.2 SDRAM ControllerConfiguration provides valuesfor these fields. These valuesdepend on the DDR clock.

    3 Program DDR3-SDRAMfeatures

    MPDDRC_CR MPDDRC_TPR0MPDDRC_TPR1

    MPDDRC_TPR2

    4 Issue a NOP command(4) MPDDRC_MR MODE = 1

    5 500 μs delay(1) – –

    6 Issue a NOP command(4) MPDDRC_MR MODE = 1

    7 Issue an EMRS2 cycle(2) MPDDRC_MR MODE = 5

    8 Issue an EMRS3 cycle(2) MPDDRC_MR MODE = 5

    9 Issue an EMRS1 cycle(2) MPDDRC_MR MODE = 5

    10 Write a ‘1’ to the DLL bit MPDDRC_CR DLL = 1

    AN2717Software Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 47

    https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=SAMA5D2%20Software%20Package

  • Step Action Register Setting

    11 Issue a Mode Register Set(MRS) cycle(3)

    MPDDRC_MR MODE = 3

    12 Issue a Calibration command(MRS) (3)

    MPDDRC_MR MODE = 6

    13 Provide a Normal Modecommand(4)

    MPDDRC_MR MODE = 0

    14 Write the refresh rate inCOUNT field

    MPDDRC_RTR COUNT = Trefi/Tck

    Note: 1. To issue a delay:

    – disable interrupts;– compute a deadline = ROUND_INT_DIV((timer_channel_freq/1000)*count, 1000), where

    count is the delay in µs;– start a timer and wait for the timer to reach the deadline;– enable interrupts.

    2. To issue an Extended Mode Register Set (EMRS) cycle, after setting the MODE field to 5, readMPDDRC_MR and add a memory barrier assembler instruction just after the read. Then perform awrite access to the DDR3-SDRAM device so that the BA[2:0] signals are set as follows:

    – BA[2] is set to 0, BA[1] is set to 0, BA[0] is set to 1 for EMRS1.– BA[2] is set to 0, BA[1] is set to 1, BA[0] is set to 0 for EMRS2.– BA[2] is set to 0, BA[1] is set to 1, BA[0] is set to 1 for EMRS3.

    The address at which the write access is issued in order to acknowledge the command needsto be calculated so that the BA[2:0] signals are in the right state for an EMRS cycle.

    3. After setting the MODE field, read MPDDRC_MR and add a memory barrier assembler instructionjust after the read. Perform a write access to acknowledge the command so that BA[2:0] signals areset to 0 (write at BASE_ADDRESS_DDR).

    4. After setting the MODE field, read MPDDRC_MR and add a memory barrier assembler instructionjust after the read. Perform a write access at any address to acknowledge the command.

    Refer to chapter ”Multiport DDR-SDRAM Controller (MPDDRC)” of the SAMA5D2 series datasheet formore information.

    4.1.2 DDR2-SDRAM InitializationThe initialization sequence is generated by software. The DDR2-SDRAM devices are initialized by thefollowing sequence:

    Table 4-2. DDR2-SDRAM Initialization

    Step Action Register Setting

    1 Program the memory devicetype

    MPDDRC_MD MD = 6 (for DDR2), DBW = 0(32 bits)

    2 Program the shift samplingvalue

    MPDDRC_RD_DATA_PATH Section 4.2 SDRAMController Configurationprovides values for these

    AN2717Software Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 48

  • Step Action Register Setting

    3fields. These values dependon the DDR clock.

    Program DDR2-SDRAMfeatures

    MPDDRC_CR MPDDRC_TPR0MPDDRC_TPR1

    MPDDRC_TPR2

    4 Issue a NOP command(4) MPDDRC_MR MODE = 1

    5 200 μs delay(1) – –

    6 Issue a NOP command(4) MPDDRC_MR MODE = 1

    7 Issue an All Banks Prechargecommand(4)

    MPDDRC_MR MODE = 2

    8 Issue an EMRS2 cycle(2) MPDDRC_MR MODE = 5

    9 Issue an EMRS3 cycle(2) MPDDRC_MR MODE = 5

    10 Issue an EMRS1 cycle(2) MPDDRC_MR MODE = 5

    11 2 μs delay(1) – –

    12 Write a ‘1’ to the DLL bit MPDDRC_CR DLL = 1

    13 Issue a Mode Register Set(MRS) cycle(3)

    MPDDRC_MR MODE = 3

    14 Issue an All Banks Prechargecommand(4)

    MPDDRC_MR MODE = 2

    15 Provide two autorefresh (CBR)cycles(4)

    MPDDRC_MR MODE = 4

    16 Write a ‘0’ to the DLL bit MPDDRC_CR DLL = 0

    17 Issue a Mode Register Set(MRS) cycle(3)

    MPDDRC_MR MODE = 3

    18 Configure the OCD field to 7 MPDDRC_CR OCD = 7

    19 Issue an EMRS1 cycle(2) MPDDRC_MR MODE = 5

    20 Configure the OCD field to 0 MPDDRC_CR OCD = 0

    21 Issue an EMRS1 cycle(2) MPDDRC_MR MODE = 5

    22 Provide a Normal Modecommand(4)

    MPDDRC_MR MODE = 0

    23 Write the refresh rate in COUNTfield

    MPDDRC_RTR COUNT = Trefi/Tck

    Note: 1. To issue a delay:

    – disable interrupts;– compute a deadline = ROUND_INT_DIV((timer_channel_freq/1000)*count, 1000), where

    count is the delay in µs;

    AN2717Software Aspects

    © 2018 Microchip Technology Inc. DS00002717A-page 49

  • – start a timer and wait for the timer to reach the deadline;– enable interrupts.

    2. To issue an Extended Mode Register Set (EMRS) cycle, after setting the MODE field to 5, readMPDDRC_MR and add a memory barrier assembler instruction just after the read. Then perform awrite access to the DDR2-SDRAM device so that the BA[1:0] signals are as follows:

    – BA[1] is set to 0, BA[0] is set to 1 for EMRS1;– BA[1] is set to 1, BA[0] is set to 0 for EMRS2;– BA[1] is set to 1, BA[0] is set to 1 for EMRS3.

    The address at which the write access is issued in order to acknowledge the command needsto be calculated so that the BA[1:0] signals are in the right state for an EMRS cycle.

    3. After setting the MODE field, read MPDDRC_MR and add a memory barrier assembler instructionjust after the read. Perform a write access to acknowledge the command so that BA[2:0] signals areset to 0 (write at BASE_ADDRESS_DDR).

    4. After setting the MODE field, read MPDDRC_MR and add a memory barrier assembler instructionjust after the read. Perform a write access at any address to acknowledge the command.

    Refer to chapter ”Multiport DDR-S