s s co c s system concepts and design principles

50
SS CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES Werner Weiss AEE - Institute for Sustainable Technologies (AEE INTEC) A-8200 Gleisdorf, Feldgasse 19 AUSTRIA

Upload: hathuan

Post on 01-Jan-2017

227 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

S S CO C SSYSTEM CONCEPTSAND DESIGN PRINCIPLES

Werner WeissAEE - Institute for Sustainable Technologies (AEE INTEC)A-8200 Gleisdorf, Feldgasse 19AUSTRIA

Page 2: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

THERMOSYPHON SYSTEM - ChinaTHERMOSYPHON SYSTEM China

Page 3: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

THERMOSYPHON SYSTEMS

Page 4: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

THERMOSYPHON SYSTEMS

Page 5: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

W t diti it bl f i it tWater conditions suitable for one-circuit systems

Description Maximum Recommended LevelPh 6.5 - 8.5TDS 600 mg/lTotal Hardness 200 mg/lTotal Hardness 200 mg/lChlorides 300 mg/lMagnesium 10 mg/lCalcium 12 mg/lSodium 150 mg/lSodium 150 mg/lIron 1 mg/lSource: Solar Edwards, Australia

Page 6: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

INDIRECT SYSTEMINDIRECT SYSTEM

Page 7: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Indirect Thermosyphon SystemIndirect Thermosyphon System

Source: TONG HUA, China

Page 8: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Domestic Hot Water System with Forced CirculationDomestic Hot Water System with Forced Circulation

Page 9: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

HYDRAULIC SCHEME OF A SOLAR HOT WATER SYSTEMU C SC O SO O S S

6

1 circulation pumpcollector area

thermometer and pressure gaugelock valve

gravity brakecirculation pump

432

hot water3bar

°C/bar °C

5

escape valvethermometer

pressure relief valvethermometer and pressure gauge

7654

°C3

5

74

fill and empty valve

expansion tankthermometer

9

87

tankstorage1

22

10

8

cold water

10

Page 10: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES
Page 11: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES
Page 12: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

HYDRAULIC SCHEME OF A SOLAR HOT WATER SYSTEMU C SC O SO O S S

6

1 circulation pumpcollector area

thermometer and pressure gaugelock valve

gravity brakecirculation pump

432

hot water3bar

°C/bar °C

5

escape valvethermometer

pressure relief valvethermometer and pressure gauge

7654

°C3

5

74

fill and empty valve

expansion tankthermometer

9

87

tankstorage1

22

10

8

cold water

10

Page 13: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Stagnation behaviour

Kollektor im Stagnationszustand

Stagnation behaviour

Kollektor im Normalbetrieb Dampfbildung im Kollektor

Stagnationszustand

Page 14: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Stagnation behaviourKollektorverschaltung mit ungünstigem Entleerungsverhalten:

Stagnation behaviour

D fbild i K ll ktStagnationszustandKollektor im

Normalbetrieb Dampfbildung im KollektorNormalbetrieb

Page 15: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Stagnation behaviour

Einfluss der Rückschlagklappenposition relativ zur Ausdehnungsgefäßanordnung

Stagnation behaviour

auf das Entleerungsverhalten von Kollektoranlagen

Dampfbildung im Kollektor

Page 16: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Stagnation behaviourStagnation behaviour

Page 17: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar CombisystemsSolar Combisystems

P ditiP ditiPreconditionsPreconditions

andand

RequirementsRequirements

Page 18: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar Combisystems

Hot WaterHot Water

Solar Combisystems

Hot WaterHot WaterHot water temperature: 60 °C

Cold water: 6 - 12 °CW a rm w a sse rve rbra uch- Ta ge sprofil

50

60

70

225

250

275

20

30

40

ratu

r [°C

]

150

175

200

enge

[l/h

]

20

-10

0

10

Tem

per

50

75

100

125

Zapf

me

-40

-30

-20

3,11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0

0

25

50

3

Z e it

Page 19: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar Combisystems

Space HeatingSpace Heating

Solar Combisystems

Space HeatingSpace Heating

Flow temperature: 30 50 °CFlow temperature: 30 - 50 °CReturn temperature: 20 - 40 °C

Demand:• is not always corresponding to the solar y p g

irradiation

• varies in dependence of ambient temperature, passive solar gains and the internal gains of the p g g

building

Page 20: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar Combisystems

Designs

Solar Combisystems

Designs

M

A H1

M

M

S A H1 (H2)

ENERGY SUPPLY TRANSFER, STORAGE, CONTROL AND DISTRIBUTION LOAD

S A H1 (H2)

M

H2

S

ENERGY SUPPLY TRANSFER, STORAGE, CONTROL AND DISTRIBUTION LOAD

M

ENERGY SUPPLY TRANSFER, STORAGE, CONTROL AND DISTRIBUTION LOAD

S A H1 DHW

Page 21: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar Combisystems

System using the thermal mass of the building to store the heat

Solar Combisystems

M

M

M

S A H 1 (H 2)

E N E R G Y S U P P L Y T R A N S F E R , S T O R A G E , C O N T R O L A N D D IS T R IB U T IO N L O A D

S A H 1 (H 2)

Page 22: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar CombisystemsUsing the domestic hot water to store the heat

Solar Combisystems

A

MM

M

S DHW

ENERG Y SUPPLY TRANSFER, STO RAG E, CO NTRO L AND DISTRIBUTIO N LO AD

S DHW

Page 23: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar CombisystemsUsing the domestic hot water to store the heat

Solar Combisystems

A H 1

M

H2

M

S

E N E R G Y S U P P L Y T R A N S F E R , S T O R A G E , C O N T R O L A N D D IS T R IB U T IO N L O A D

S

Page 24: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar Combisystems

Using the space heating store to store the heat

Solar Combisystems

M

E N E R G Y S U P P L Y T R A N S F E R , S T O R A G E , C O N T R O L A N D D IS T R IB U T IO N L O A D

S A H 1 D H W

Page 25: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar Combisystems

F

Solar Combisystems

From

Complex p

Designs…

Page 26: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar CombisystemsSolar Combisystems

…to

Compact

Products

Page 27: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar Combisystems19961995Optimisation (SOLVIS)

Solar Combisystems

WarmwasserKollektor

KW

WarmwasserKollektor

HeizkreisKW Heizkreis

35

H yd rau lic C o n n ectio n s

5

S p ace R equ irem ent W eig h t

20

25

30

2 53

3 ,54

4 ,55

m²] 150

200

250

g]

5

10

15

00 ,5

11 ,5

22 ,5[m

0

50

100

[kg

01 2 3

01 2 3

01 2 3

Page 28: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar CombisystemsSolar Combisystems

Page 29: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

MULTI FAMILY HOUSESMULTI FAMILY HOUSES

Page 30: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Market PenetrationMarket Penetration

1,9 MioHauptwohnsitze

110

80

90

100

ringu

ng [%

] .

50

60

70

nd M

arkt

durc

hdr

20

30

40

Pote

nzia

l un

~ 1 ProzentDurchdringung

0

10

GeschoßwohnbautenGeschoß-wohnbautenwohnbauten

Page 31: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solutions for Existing Buildings

Page 32: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Development of System ConceptsDevelopment of System Concepts1st Generation - Solar Plant Concepts for MFH(Concept for a small number of flats)

Kollek

torfel

d

KW zung

KW

Rau

mhe

iz

Trinkwasserspeicher

KWKW

Kessel

Page 33: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Development of System Concepts

2nd Generation - Solar Plant Concepts for MFH

Development of System Concepts

lektor

feld Energiespeicher

Raumheizung

Kolle T3 Raumheizung

War

mw

asse

r

Bereitschafts- speicher

Zirk

ulat

ion

T2

KW

W

Kessel

Page 34: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

3rd Generation - Solar Plant Concepts for MFHp

Kollek

torfel

d

T3

Energiespeicher

Boiler

Ko

T2

T3

Kaltwasser

Warmwasser

Boiler

Kaltwasser

Boiler

Kessel

Warmwasser

Boiler

Kaltwasser

Warmwasser

Heat distribution via 2-pipe network Domestic hot water preparation via decentralised storage tanksDomestic hot water preparation via decentralised storage tanksPreferred concept for row houses (low energy density)

Page 35: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

3rd Generation - Solar Plant Concepts for MFH

ektor

feld Energiespeicher

p

Kollek

T2

T3

Kaltwasser

Warmwasser

Kessel

Kaltwasser

Warmwasser

Kaltwasser

Warmwasser

Heat distribution via a 2-pipe network Decentralised instant hot water preparation Concept for „high energy density) MFH

Page 36: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Compact Heat Distribution Units

Warmwasser

Kaltwasser

1

1 2 39

10°C

45°C

Netz RL1 1

1

4

5

67 820 - 40°C

10

Heizung RL25 - 40°C

Netz VL

1 Absperrventil2 Rückschlagklappe3 Si h h it til

6 Differenzdruckregler7 Zählerpassstück8 Zonen entil

1 11

65°C Heizung VL65°C

3 Sicherheitsventil4 Durchflussgesteuerter

Temperaturregler5 Rücklauftemperaturbegrenzer

8 Zonenventil9 Passstück Kaltwasser10 Zirkulationsbrücke

Page 37: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Advantages of 2-pipe networksAdvantages of 2 pipe networks

Return flow nearly constant at 30°C Id l diti f l th l t

100

Ideal conditions for solar thermal systems

70

80

90 T-Netz-VL T-Netz-RL T-Solarsek.-VL T-Solarsek.-RL T-Puffer-VL

50

60

mpe

ratu

r [°C

]

30

40Tem

0

10

20

027.10.03 00:00 28.10.03 00:00 29.10.03 00:00 30.10.03 00:00 31.10.03 00:00 01.11.03 00:00 02.11.03 00:00 03.11.03 00:00

Page 38: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Advantages of 2 pipe concepts

Distribution losses minimized

Advantages of 2 pipe concepts

Distribution losses minimized

Provides in all cases integration into the space g p

heating system

No problems concerning legionnaires disease

Easy counting of delivered energy for each flat Easy counting of delivered energy for each flat

due to integrated heat meters

Prefabricated heat transfer stations reduce the

labour cost easy and faultless installationlabour cost, easy and faultless installation

Page 39: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

System MonitoringSystem Monitoring

120 m

²

TK ll

Wärmeverteilung für56 Wohneinheiten

WMZ n

Kollek

torflä

che 1

2

Neigun

g 30°

TKoll

TAussen

E i36 kW Brauchwasserbereitung

WMZ n

TSol RL

TSol VL

Daten-logger

TSek VL TPo

Energie-speicher7.500 l

Brauchwasserbereitung

KaltwasserWarmwasser

TSek RL

WMZSolar

TPm TNetz VL

T

WMZ nTPu

AutomatischerSystemwart

WMZ Netz

TNetz RL

36 kW Brauchwasserbereitung

KaltwasserWarmwasser

Systemwart

TNH RL

TNH VL

WMZ NH

Gas-brennwert-kessel225 kW Kaltwasser225 kW

Page 40: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Flow and return temperatures

Wärmeverteilnetztemperaturen (Vorlauf und Rücklauf) von 7 Objekten.70

Flow and return temperatures

60

65

ca. 55-65°C

45

50

55

mpe

ratu

r [°C

]

35

40

45

Syst

emte

m

20

25

30 ca. 25-37°C

2015.2.2005 00:00 16.2.2005 00:00 17.2.2005 00:00 18.2.2005 00:00 19.2.2005 00:00 20.2.2005 00:00 21.2.2005 00:00

Low return temperatures of 30°C are necessary for an p yoptimised operation of solar thermal systems

Page 41: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

System Efficiency –Annual system utilization

Ecellent system utilization between 80 and 90% are possible with 2 pipe networks!with 2-pipe networks!

Page 42: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Local District Heating – Hamburg GermanyLocal District Heating – Hamburg, Germany

Source: ITW, University Stuttgart

Page 43: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Local District Heating - Steinfurt-Borghorst, GermanyLocal District Heating Steinfurt Borghorst, Germany

Source: ITW, University Stuttgart

Page 44: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Local District Heating with Seasonal Storage

llekt

orfe

ld

llekt

orfe

ld

Local District Heating with Seasonal Storage

Hydraulische Weicheoder Pufferspeicher

Heizzentrale

Kolle

Kolle

Kaltwasser

Heiz-kessel

TW ZK

HeizzentraleWärme-übergabe-station

Wärme-übergabe-station

Wärmeübergabestation mitdirekter Heizungsanbindung

Wärmeübergabestation mitindirekter Heizungseinbindung

KaltwasserKaltwasser

SolarnetzWärmeverteilnetz

direkter Heizungsanbindungund Trinkwasserbereitungim Durchflußprinzip

indirekter Heizungseinbindungund Trinkwasserbereitungmit Speicherladesystem

Langzeit-Wärmespeicher

Source: ITW, University Stuttgart

Page 45: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Seasonal Heat StoragesKies-Wasser-WärmespeicherHeißwasser-Wärmespeicher

Seasonal Heat Storages

Erdsonden-Wärmespeicher Aquifer-Wärmespeicher

Page 46: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

District Heating – 1 MW GrazDistrict Heating – 1 MWth, Graz

Page 47: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

District Heating – 1 MW GrazDistrict Heating – 1 MWth, Graz

Page 48: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

District Heating – 3MW AEVG Graz AustriaDistrict Heating – 3MWth, AEVG, Graz, Austria

Page 49: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

Solar District HeatingSolar District Heating –– Marstal DKMarstal DK –– 1313 MWthSolar District HeatingSolar District Heating Marstal, DKMarstal, DK 13 13 MWth

Page 50: S S CO C S SYSTEM CONCEPTS AND DESIGN PRINCIPLES

District Heating - EibiswaldDistrict Heating - Eibiswald

Solar assisted biomass district heating plant, Eibiswald with an installed capacity of 875 kWth, (1250 m² collector array)