runaway electrons and iter 6-20161 runaway electrons and iter (summary of a paper submitted for...

15
1 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office of Fusion Energy Science grant De-FG02-03ER54696 Theory and simulation are essential for ensuring that relativistic runaway electrons will not prevent ITER from achieving its mission. The runaway phenomenon is unique because of The potential for damage, The magnitude of the extrapolation, The importance of the atypical---once in a 1000 shots. The planed injection of impurities is associated with magnetic surface breakup; avoidance is subtle; mitigation may be impossible.

Upload: others

Post on 01-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

1

RUNAWAYELECTRONSANDITER(Summaryofapapersubmittedforpublication)

AllenBoozerColumbiaUniversityJuly21,2016

WorksupportedbyDoEOfficeofFusionEnergySciencegrantDe-FG02-03ER54696Theory and simulation are essential for ensuring that relativisticrunawayelectronswillnotpreventITERfromachievingitsmission.

Therunawayphenomenonisuniquebecauseof

Thepotentialfordamage,

Themagnitudeoftheextrapolation,

Theimportanceoftheatypical---onceina1000shots.Theplanedinjectionofimpuritiesisassociatedwithmagneticsurface

breakup;avoidanceissubtle;mitigationmaybeimpossible.

Page 2: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

2

RunawayElectronsMayAriseWhen

Loopvoltage!ℓ ≡$%&

$' %(≳ 2.9

-

./01/34Volts.

1. Due to a thermal quench, ~1ms, as

partofanaturaldisruption.

ITER poloidal flux 56 ≈ 70V∙s;removaltimeis50-150ms.

!ℓ ≳ 500Volts

2. As a result of a mitigation strategy to prevent the plasmadriftingintoawall.Poloidalfluxremovaltime<150ms.

!ℓ ≳ 500Volts

Ifpoloidalfluxisnotremovedthisquicklyastronghalocurrentcanarisealongwitharelativisticelectroncurrent.

Page 3: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

3

AbsenceofaMaxwellianRunaway(optimisticresult)WhenelectronsarecooledsufficientlyslowlythattheyremainclosetoMaxwellian,arunawaycannotoccurinITER.Runawayonlypossiblewhen <=|| = <@A|| >

CDEF

GHIJKL.

M3NO ≡

P

0QRG/S

3NO≈ 50,maximumkineticenergy.

NumberoftailelectronsinaMaxwellianℱ'NUV

WNO M =G H

X<YH.

ForM > M3NO,eitherlessthanoneelectronintheplasmaornotenoughpossiblee-foldstoincreasetheirnumbertobesignificant.

Page 4: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

4

ConditionforMaxwellianRunaway

RunawayrequiresS < M3NOG [

\

/.].

GX

G ^||

^E

G

≲ 4eV,whereAa ≡ <bc. A||/Aa~2×10

Y[

MaintenanceofMaxwellianrequiressufficientlyslowcooling;

Coolingtime>g'h =G40

\

HIJKL

3a0

4

0 .

iEF

≲ 25ms,jah ≡CDEF

3a.

MinimalcoolingtimeformaintainingaMaxwellianis

muchshorterthanthefastesttimerequiredforpoloidalfluxremoval,~150ms,but

muchlongerthanthermalquenchtime,~1ms.

Page 5: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

5

MagneticSurfaceBreakup

BasisofpresentITERstrategyforavoidance

If allmagnetic field lines in theplasma strike thewalls within 100’s of toroidal circuits, runawayelectrons are lost too rapidly for relativisticelectronstobeanissue(anotheroptimisticresult).Unfortunately,tubesofmagneticfluxthatdonot

interceptthewallscanremaininthecoresof

islandsandneartheplasmacenter. Izzoetal,PPCF2012

Non-interceptingfluxtubesareplaceswhereenergeticelectronscanbestoredandacceleratedtorelativisticenergies.When outer surfaces reform before the flux tubes dissipate,electronscandumpin~0.5msalonganarrowfluxtube~150cm2.

6/1/16, 9:51 AMppcf419857f03 466×430 pixels

Page 1 of 1http://iopscience.iop.org.ezproxy.cul.columbia.edu/0741-3335/54/9/095002/downloadFigure/figure/ppcf419857f03

Page 6: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

6

FastMagneticRelaxationsThevoltagespikeaccompanyingathermalquenchgives

thetimescale,~1ms,ofthemagneticrelaxationand

thecompletenessofthemagnetichelicityconservingrelaxation.Flux change during the thermal quench, k56 ≲ Ψ'/9 ≈ 13V⋅s, issufficient to accelerate electrons in non-intercepting flux tubes torelativisticenergiesandexponentiatetheirnumber.ITER operability is determined by worst event in about a year,

~1000shots.

Page 7: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

7

PlasmaCoolingCross-fieldtransport:UpperlimitisBohmtransport--tooslow.Magneticsurfacebreakup:Maxwellianmaintenanceis impossible;fluxtubesthatdonotinterceptwallsallowelectronacceleration.Radiation: In principle highly controllable and consistent with arapidITERshutdown,<<150ms,butrequiresextremecare:

1. Cooling rate can increase as Te drops, which can cause theMaxwelliantobebrokenandproducearunaway.

2. Radialprofilecontrolrequiredto(a)coolcentralTeand(b)avoidlossofmagneticsurfaces(tearinginstabilities).

3. ImpuritydeliveryconsistentwithrequiredTe(r,t)probablynotproduciblebymassivegasinjectionorshatteredpellets.

Page 8: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

8

CircumscribingQuantitiesFourquantitiescircumscribewhatispossible1. Numberofseedelectrons,

2. Kineticenergyrequiredforrunaway,

3. Poloidalfluxrequiredforane-fold,and

4. Decayrateofrelativisticelectrons.

Page 9: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

9

NumberofSeedElectronsNeedseedelectronsabovecriticalkineticenergyforrunaway,Kr,tobeginrunawayprocess. (Needexperimentstostudynumber)

Mostcrediblesourceisthepre-thermal-quenchMaxwelliantailℱ'NUV

WNO M =G H

X<YH,whereM ≡ 3o0

GL.

WhenelectronswithM < Mp ≈ 9.5canrunawaywithℱ'NUV

WNO Mp ≡^||

^E,whereAa ≡ <bc,so^||

^E≈ 2×10Y[,

runawayisfastrequiringonlyatinypoloidalfluxchange,56N ≡

3a

C2qr ≈ 0.064V∙s.ApparentlyseenonTFTR.

Whenℱ'NUVWNO tu/S ≡

^||

^E<Yvw,xye-foldsrequiredforrunaway.

Page 10: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

10

KineticEnergyRequiredforRunaway

tu >3a0

G

zEF

zℓwhere!ah ≡ 2qr=ah ≈ 2.9

-

./01/34VPitch-anglescatteringandradiationcanincreaseKr.WhenKr>20kev,twosourcesofrunawaysareeliminated:(1) Tritiumdecay—max.electronenergyis18.6keV.

(2) Collisionwithan{particle—max.energyis4 3

W|t} ≈ 2keV.

Page 11: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

11

PoloidalFluxRequiredforanE-fold

5Cp~V� = ÄCp56N;simpletheorygivesÄCp = 2ÅbΛ ≈ 25.56N ≡

3a

C2qrandk Ä

o||

a=

Ñ%&

%&J

1.EnergyDistributionofRunaways

Large-anglecollisionsaddnewrunaways:

Attheminimumenergyforrunaway.Atarateproportionaltotherunawaynumberdensitybu(Ü).

Thedistributionfunctionforrelativisticrunawayelectronsisthen

à =-â(')

6160<Y6/61,whereä = ÄQcandä/ ≡ ÄCpQc.

AveragerelativisticfactorisÄ = ÄCp;effectsatÄ ≫ ÄCpirrelevant.

Page 12: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

12

2.EnergyinRunawaysEnergyinrelativisticelectronsåu = Ä − 1 éu56N ≪

P

4éΨ6,

éurunawaycurrent;P4éΨ6istheenergyinthepoloidalmagneticfield.Changeinpoloidalmagneticenergyaséu → égivenby

k P

4éΨ6 ≈ 0

4ékΨ6andkΨ6 = −xyÄCp56N.

Only1/xyfractionofthepoloidalfieldenergygoestotherelativisticelectrons;therestgoestoOhmicdissipation.

3.MaximumNumberofE-Foldsëíìî

x3NO =ï&

%ñóòôöõ=

.

úñò

ï&

%&J.

SimpletheorygivesÄCp = 2ÅbΛ ≈ 25andx3NO ≈ 40.

ForaMaxwellianseedneedM < M3NO = Mp + x3NO ≈ 53.

Page 13: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

13

4.MultipleRunawayStrikesduringOneDisruptionWhentherequiredM ≡ QRG/2Sforrunawayis≪ M3NO,onlyasmallfractionofthepoloidalfluxΨ6 ≈ 70V∙sislostinasingleacceleration.If90%oftherelativisticelectronsarelostinasinglestrike,only2.3e-foldsareneedtogiveanothersimilarstrike.

5.CalculationsofgefInstandardtheoryÄCp ∝ 1/tu,withtutherunawaykineticenergy.Sincex3NO ∝ 1/ÄCp,seriousnessofrunawayisstronglydependentonÄCp.ExistingcodescouldgiveamoreaccurateÄCp,buttheavalancheformularequiresmodificationforareliablevalue.

Page 14: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

14

DecayRateofRelativisticElectrons

Relativisticcurrentsdecaybythelossofrelativisticelectrons.

Forthecurrenttodecayneed!ℓ < !y,wheretheloopvoltagerequiredtosustainarelativisticcurrentsatisfies!y ≥ !ah.InequalitybecauseConnor-Hastievoltageomitssomedissipativeeffects.

When!y = !ah,thedecaytimeisg�CaN† ≈ 24°./01/34

-.

Importanceof!yisquestionablefortworeasons:

1.TheITERverticalfieldsystemappearsinadequate,sodissipationmustbefastcomparedto150mstoavoiddriftintothewall.

2.Theevolvingprofileoftherelativisticcurrentmustremaintearingstabletoavoidlossofmagneticsurfaces.

Mayprecludemitigationofrelativisticcurrentsbymassivegasor

shatteredpelletinjectionduetomagneticsurfacebreakup.

Page 15: RUNAWAY ELECTRONS AND ITER 6-20161 RUNAWAY ELECTRONS AND ITER (Summary of a paper submitted for publication) Allen Boozer Columbia University July 21, 2016 Work supported by DoE Office

15

Discussion

AstrongrelativisticelectroncurrentstrikingthewallsmorethanoneinathousandshotswouldprobablypreventITERfromachievingitsmission.Massivegasinjectionandshatteredpelletsrelyonmagneticsurfacebreakuptospreadeffectofimpurities,whichmayprecludeuseformitigation. Success for avoidancedepends ondissipationof non-interceptingfluxtubesbeforesurfacesre-form.Theoryandsimulationusingphysicsvalidatedinexperimentscouldadvancewhatapracticalmitigationsystemwouldlooklike.

TwopossibilitiesAfasterandmoreflexiblepelletinjector

Passivelyinducednon-axisymmetriccurrentsinchamberwalls.