ruben sandapen · 2019. 10. 1. · spacelike em form factors of pion and kaon drell & yan (prl,...

34
An overview of light-front holography Ruben Sandapen Ecole Polytechnique, Palaiseau, France 16-20 September 2019 1 / 35

Upload: others

Post on 08-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    An overview of light-front holography

    Ruben Sandapen

    Ecole Polytechnique, Palaiseau, France16-20 September 2019

    1 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Overview

    1 What is the QCD mass scale ?

    2 LFH: theory

    3 LFH: phenomenology

    4 Conclusions

    2 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Conformal QCD

    If

    no quantum loops (no ΛQCD)

    semiclassical approximationmassless quarks (mf → 0)

    QCD Lagrangian

    LQCD = Ψ̄(iγµDµ −✟✟✯0m )Ψ−1

    4G aµνG

    aµν

    then has no mass scale and QCD action

    SQCD =

    d4xLQCD

    is conformally invariant

    Gravity dual in higher dimensional anti-de Sitter space

    A realization of Maldacena’s Equation: AdS=CFT

    3 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    What sets the scale of hadron masses?

    Conformal symmetry is broken

    in QCD

    explicitly by non-zero quark masses: mf ∕= 0a mass scale → ΛQCD is generated after perturbativerenormalization of quantum loops (scheme-dependent)

    in scLFQCD by the dAFF mechanism: a mass scale κ2 = λcan introduced in the Hamiltonian while retaining theconformal invariance of the action

    dAFF: de Alfaro, Fubini and Furlan (76)

    4 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    LF QCD bound state equation

    LF Heisenberg EquationHQCDLF |Ψ〉 = M2|Ψ〉

    |Ψ〉 =

    n |n〉〈n|Ψ〉

    Heff |qq̄〉 = M2|qq̄〉

    LF Schrödinger EquationM2qq̄ + Ueff

    Ψ(x , k⊥, h, h̄) = M

    2Ψ(x , k⊥, h, h̄)

    Fock expansion of hadronic state

    ”Eliminate” higher Fock states

    Project on valence sector

    5 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Light-front wavefunctions

    LF Schrödinger Equation:M2qq̄ + Ueff

    Ψ(x , k⊥, h, h̄) = M

    2Ψ(x , k⊥, h, h̄)

    where the invariant mass squared of qq̄ pair is

    M2qq̄ =k2⊥ +m

    2

    x(1− x)and Ψ(x , k⊥, h, h̄) is the LFWF

    x = k+/P+: LF momentum fraction of quarkh, h̄: LF helicities of quark and antiquarkNormalization:

    h,h̄

    d2kdx |Ψ(x , k, h, h̄)|2 = 1

    Consistent with constituent quark model

    6 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    LFSE in impact space

    For massless quarks, introduce 2d Fourier transform of M2qq̄|mf =0

    ζ2 = x(1− x)b2⊥

    and separate variables

    Ψ(x , ζ,ϕ) =φ(ζ)√2πζ

    X (x)e iLϕ

    Then

    − d

    2

    dζ2− 1− 4L

    2

    4ζ2+ Ueff(ζ)

    φ(ζ) = M2φ(ζ)

    7 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    The impact LF variable

    Brodsky & de Téramond (PRL, 2009) Brodsky, de Téramond, Dosch & Erlich (Phys. Rep. 2015)

    − d

    2

    dζ2− 1− 4L

    2

    4ζ2+ Ueff(ζ)

    φ(ζ) = M2φ(ζ)

    ζ2 = x(1− x)b2⊥ : key light-front variable for bound states.x = k+/P+ : light-front momentum fraction of quark.

    b⊥ : transverse distance between quark and antiquark.

    Ueff : effective (includes coupling to higher Fock sectors) qq̄potential.

    Meson light-front wavefunction :

    Ψ(x , ζ,ϕ) =φ(ζ)√2πζ

    f (x)e iLϕ

    8 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Why holographic ?

    Physical spacetime

    LF transverse distance

    ζ

    Angular momentum

    L2

    Anti de Sitter spacetime

    Fifth dimension in AdS

    z5

    Spin + (AdS mass×radius)

    (µR)2 + (2− J)2

    LFSE maps onto wave equation for weakly coupled spin-J stringmodes in warped AdS with

    Ueff(ζ) =1

    2ϕ′′(z) +

    1

    4ϕ′(z)2 +

    2J − 32z

    ϕ′(z)

    ϕ(z): dilaton field that breaks conformal invariance in AdS9 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    A unique confinement potential

    The dilaton field that distorts pure AdS geometry drives theconfinement dynamics in physical spacetime

    A quadratic dilaton ϕ = κ2z2 gives

    Ueff(ζ) =

    Conformal SBκ4ζ2 +

    AdS/QCD 2κ2(J − 1)

    Only harmonic potential preserves the conformal invariance ofthe underlying QCD action while introducing a mass scale inLF Hamiltonian: dAFF mechanism for breaking conformalsymmetry in QM

    AdS/QCD mapping of EM form factors: f (x) =

    x(1− x)

    dAFF in scLFQCD: Brodsky, de Téramond & Dosch (Phys. Lett. 2013)

    10 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Predicting a massless pion

    Solving the holographic LF Schrödinger Equation− d

    2

    dζ2− 1− 4L

    2

    4ζ2+ Ueff(ζ)

    φ(ζ) = M2φ(ζ)

    withUeff(ζ) = κ

    4ζ2 + 2κ2(J − 1)gives

    M2n,J,L = 4κ2

    n +

    J + L

    2

    φn,L(ζ) = κ1+L

    2n

    (n + L)ζ1/2+L exp

    −κ2ζ2

    LLn(κ

    2ζ2)

    Lightest bound state (n = L = J = 0) is massless (M = 0)

    As expected in chiral QCD : massless quarks → massless pion11 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Baryon & mesons as SUSY partners

    Baryon (quark-diquark) -meson degeneracy with LM = LB + 1

    Tetraquark (diquark-antidiquark)-Baryon degeneracy with LT = LBS. J. Brodsky, G. de Téramond, H. G. Dosch, C. Lorcé Phys. Lett. B759 (2016) 171

    12 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Light quark masses

    In momentum space, ’complete’ invariant mass of qq̄ pair

    M2qq̄ =k2⊥

    x(1− x) →k2⊥ +m

    2f

    x(1− x)

    Brodsky, de Téramond, Subnuclear Series Proc. (2009)

    Meson wavefunction becomes

    Ψ(x , ζ2) = N

    x(1− x) exp−κ

    2ζ2

    2

    exp

    m2f2κ2x(1− x)

    mf are effective quark masses (because of coupling of valencesector to higher Fock sectors).

    13 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Extracting the light-front holographic scale

    Global fit: universal κ = λ2 = 0.523± 0.024 GeVLight quark masses: mu/d = 0.046, ms = 0.357 GeV

    S. J. Brodsky, G. de Téramond, H. G. Dosch, C. Lorcé Phys. Lett. B759 (2016) 171

    14 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Predicting ΛQCD

    A. Deur, S. J. Brodsky, G. de Téramond, J.Phys. G44 (2017) no.10, 105005

    Matching αAdSs to αMSs to 5-loops: Λ

    nf =3

    MS= 0.339± 0.019

    GeV (world average Λnf =3MS

    = 0.332± 0.017 GeV)Pert. to Npert. transition scale: Q0 = 0.87± 0.08 GeV

    15 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Can we predict the pion observables ?

    Using the pion holographic wavefunction to predict

    Charge radius

    Decay constant

    EM FF

    π → γ TFFPrevious work

    A. Vega, I. Schmidt, T. Branz, T. Gutsche, V. Lyubovitskij,PRD 055014 (2009): κ = 0.787 GeV, mf = 330 MeV,Pqq̄ = 0.279

    T. Banz, T. Gutsche, V. E. Lyubovitskij, PRD 82 074022(2010): κ = 0.787 GeV, mf = 330 MeV, Pqq̄ = 0.6

    R. Swarnkar and D. Chakrabarti, Phys. Rev. D92, 074023(2015): κ = 0.550 GeV, mf = 330 MeV, Pqq̄ = 0.61

    It is possible to simultaneously all pion data with the universal κ ?

    16 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Quark spins

    Non-dynamical spin

    Ψ(x , k2⊥, h, h̄) = Ψ(x , k2⊥)× Sh,h̄

    where

    Sπh,h̄

    =1√2hδh,−h̄

    and

    Sρ(L)

    h,h̄=

    1√2δh,−h̄

    Only longitudinally polarized ρ

    Degenerate decay constants for the π and ρ mesons

    17 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Dynamical spin effects

    More realistic spin structure:

    Ψ(x , k⊥) → Ψ(x , k⊥, h, h̄) = Ψ(x , k⊥)× Shh̄(x , k⊥)Vector meson:

    Sλhh̄(x , k⊥) =

    v̄h̄(x , k⊥)√1− x

    [λV · γ]uh(x , k⊥)√

    x

    Pseudoscalar meson:

    Shh̄(x , k⊥) =v̄h̄(x , k⊥)√

    1− x

    MP2P+

    γ+γ5 + Bγ5uh(x , k⊥)√

    x

    Spin structure is point-like

    Bound state effects captured by holographic wavefunction

    For pseudoscalars: B = 0 → no dynamical spin effects18 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Charge radii of pion and kaon

    M. Ahmady, C. Mondal, R.S, PRD (2018) 034010

    〈r2P〉 =

    3

    2

    dxd2b⊥[b⊥(1− x)]2|ΨP(x ,b⊥)|2

    1/2

    π±: B ≥ 1 preferredK±: B = 0 preferred(ms = 0.500 GeV)

    19 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Spacelike EM form factors of pion and kaon

    Drell & Yan (PRL, 70); West (PRL, 70)

    FEM(Q2) = 2π

    dxdb⊥ b⊥ J0[(1− x)b⊥Q] |ΨP(x ,b⊥)|2

    10−2 10−1 100 101

    0

    0.2

    0.4

    0.6

    0.8

    1

    Q2 [GeV2]

    Fπ (

    Q2)

    CERN (86)JLab (07)Harvard (74)Harvard (76)Cornell (77)JLab (01)JLab (06)Asymptotic pQCDB=0B=1B>>1

    10−2 10−1 100 1010

    0.2

    0.4

    0.6

    0.8

    1

    Q2 [GeV2]

    FK (

    Q2)

    FERMILAB (80)CERN (86)Asymptotic pQCDB=0B=1B>>1

    Left: π±, B ≥ 1 preferred. Right: K±, B = 0 preferred.20 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Decay constants of pion and kaon

    〈0|Ψ̄γµγ5Ψ|P〉 = fPpµ

    fP = 2

    Ncπ

    dx{((x(1− x)M2π) + B(xmq + x̄mq̄)MP}

    ΨP(x , ζ)

    x(1− x)

    ζ=0

    π±: B ≥ 1 preferredK±: B = 0 preferred.

    21 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Holographic pion PDF versus E615 Drell-Yan data

    f πv (x) =

    d2b⊥

    h,h̄

    |Ψhh̄(x ,b⊥)|2

    0 0.2 0.4 0.6 0.8 10

    0.1

    0.2

    0.3

    0.4

    0.5

    x

    x fπ v(x

    )

    B=0

    B>>1

    E615

    µ2=25 GeV2

    Original E615 DY data

    0 0.2 0.4 0.6 0.8 10

    0.1

    0.2

    0.3

    0.4

    0.5

    x

    x fπ v(x

    )

    B=0

    B>>1

    Modified E615

    µ2=25 GeV2

    Re-analyzed E615 DY dataDGLAP evolution from µ0 = 0.316 GeV to µ = 5 GeVReanalysis of E615 data: Aicher, Schafer, and Vogelsang, PRL 105, 252003 (2010)

    See also talk of Tianbo Lui on Friday22 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Holographic pion DA versus E971 di-jet data

    〈0|Ψ̄d(z)γ+(1− γ5)Ψu(0)|π+〉 = fπP+

    dxe ix(P·z)ϕπ(x , µ)

    0 0.2 0.4 0.6 0.8 10

    0.4

    0.8

    1.2

    1.6

    2

    x

    φπ(x

    ,µ)

    µ=0.316 GeVµ=1 GeVµ=3.16 GeVAsymptoticE791 di−jet data

    B=0

    0 0.2 0.4 0.6 0.8 10

    0.4

    0.8

    1.2

    1.6

    2

    x

    φπ(x

    ,µ)

    µ=0.316 GeVµ=1 GeVµ=3.16 GeVAsymptoticE791 di−jet data

    B>>1

    ERBL evolutionConsistent with E791 di-jet data

    23 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Meson-to-photon transition form factors

    Related to the inverse moment of the DA: Lepage & Brodsky (80)

    Fγπ(Q2) =

    ê2u − ê2d√

    2

    I (Q2;mf ,Mπ)

    I (Q2;mf ,Mπ) = 2

    1

    0dx

    ϕP(x , xQ;mf ,Mπ)

    xQ2

    24 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    π→γ transition form factor

    B ≥ 1 clearly preferredERBL evolution

    Cannot accommodateBaBar (2009) anomaly

    0 5 10 15 20 25 30 350

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Q2 [GeV2]Q

    2 F

    γπ [

    Ge

    V]

    with QCD evolution (B=0)with QCD evolution (B>>1)BaBar (09)Belle (12)CELLO (91)CLEO (98)

    25 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Pion TMDs

    Unpolarized TMD

    f1,π(x , k2⊥) =

    1

    2

    dz−d2z⊥e

    iz·k〈π|Ψ̄(0)[0, z ]γ+Ψ(z)|π〉z+=0

    Boer-Mulders TMDs

    h⊥1,π(x , k2⊥) =

    ijk j⊥k2⊥

    Mπ2

    dz−d2z⊥e

    iz·k〈π|Ψ̄(0)[0, z ]iσi+γ5Ψ(z)|π〉z+=0

    Gauge link ≡ gluon rescattering [Collins; Brodsky, Hwang,Schmidt (02)]

    Experimental signature: non-zero measured azimuthalasymmetry in angular distribution of muons in pion-inducedDrell-Yan scattering

    26 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Pion holographic TMDs

    M. Ahmady, C. Mondal, RS, Phys. Rev. D100 (2019) 054005

    f (x , k⊥) =2

    16π3(Mπxx̄ + Bmf )

    2 + B2k2⊥(xx̄)3

    N 2 exp−k2⊥ +m

    2f

    xx̄κ2

    .

    h⊥1 (x , k⊥) = BMπxx̄ + Bmf

    (xx̄)3N 2Mπ

    k⊥exp

    −k2⊥ +m

    2f

    κ2xx̄

    ×

    dq⊥4π2

    q2⊥iG (x , q⊥) exp

    q2⊥2κ2xx̄

    I1

    −k⊥q⊥κ2xx̄

    For pion B = 0 → h⊥1 = 0: Dynamical spin ≡ Boer-Mulders

    27 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Lensing function and gluon rescattering kernel

    L. Gamberg & M. Schelegel, Phys. Lett. B685 (2010) 95

    Perturbative U(1)

    Nonperturbative SU(3): x=0.1

    Nonperturbative SU(3): x=0.3

    Nonperturbative SU(3): x=0.5

    Nonperturbative SU(3): x=0.7

    0.0 0.5 1.0 1.5 2.0 2.5 3.00

    1

    2

    3

    4

    q [GeV]

    iG(x

    ,q)[G

    eV-

    2]

    Eikonal approximation

    See talk by S. Rodini on Wednesday

    Abelian perturbative limit → G (q⊥) ∝ αsCF/q2⊥28 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Comparison to lattice

    M. Engelhardt et al., Phys. Rev. D93, 054501 (2016)

    〈k⊥〉UT (b2⊥) = Mπh̃⊥[1](1)1,π (b

    2⊥)

    f̃[1](0)1,π (b

    2⊥)

    f̃ [m](n)(b2⊥) =2πn!

    M2nπ

    dx xm−1

    dk⊥k⊥

    k⊥b⊥

    nJn(b⊥k⊥)f (x , k

    2⊥)

    at Mπ = 518 MeV at µ = 2 GeV

    b⊥ Lat 1 Lat 2 NP P [αs = 0.3] P [αs = 0.9]

    0.27 -0.138(28) -0.133(19) -0.0663 -0.0424 -0.1273

    0.34 -0.128(29) -0.121(16) -0.0645 -0.0423 -0.1268

    0.36 -0.145(25) -0.148(15) -0.0639 -0.0422 -0.1267

    Perturbative evolution of the holographic TMDs not taken into account here

    Evolution: A. Bacchetta, S. Cotogno, B. Pasquini Phys. Lett. B771 (2017) 546-552

    29 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Diffractive ρ electroproduction in dipole model

    Aγ∗p→ρp ∼Ψγ

    ∗σΨρ

    κ = 0.54, mf = 0.14 GeV

    HERA data

    30 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Simultaneous ρ and φ electroproduction in dipole model

    M. Ahmady, N. Sharma, R.S, Phys. Rev. D94 (2016) 074018

    κ = 0.54 GeV

    Best fit: mf = 0.046 GeV,ms = 0.14 GeV

    HERA data

    0

    5000

    10000

    15000

    20000

    σ [n

    b]

    500

    1000

    1500

    2000

    200

    400

    600

    100

    200

    80

    120

    20

    30

    40

    80 120 160 200

    6

    12

    18

    80 120 160 200W [GeV]

    0

    2

    4

    Q2=0 Q2=2.0

    Q2=3.3 Q2=4.8

    Q2=6.6 Q2=11.9

    Q2=19.5 Q2=35.6

    31 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Holographic meson DAs in B physics

    Rare B decays to K ∗,φ:

    Existing anomalies in LHCb data in B → (φ,K ∗)µ+µ−

    Better understanding of non-perturbative effects needed

    See talk by Mohammad Ahmady on Monday

    B decays to (π,K ) see

    Qin Chang, Shuai Xu, Lingxin Chen, Nucl. Phys. B921(2017) 454-471

    Qin Chang, S. J. Brodsky, Xin-Chiang Li, Phys.Rev. D95(2017) no.9, 094025

    S. Momeni, R. Khosravi, Phys. Rev. D97 (2018) no.5, 056005

    32 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Summary

    Universal LFH scale κ ∼ 0.5 GeV describe wide range of dataEffects of quark masses and spins important in phenomenology

    Not covered: extension to heavy quarks and exotic states

    M. Nielsen, S. J. Brodsky, G. F. de Téramond, H. G. Dosch, F.S. Navarra, Liping Zou, Phys. Rev. D98 (2018) no.3, 034002Liping Zou, H. G. Dosch, G. F. de Téramond, S. J. Brodsky,Phys. Rev. D99 (2019) no.11, 114024

    See talk by Stan Brodsky today

    33 / 35

  • What is the QCD mass scale ? LFH: theory LFH: phenomenology Conclusions

    Acknowledgements

    Workshop organizers for their invitation.

    National Sciences and Engineering Research Council(Individual Discovery Grant SAPIN-2017-00031) for funding.

    34 / 35