rubber fsa

Upload: -

Post on 02-Jun-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Rubber FSA

    1/35

    TECHNICAL HANDBOOK PIPING SYSTEMSNon-Metallic Expansion Joints

    7.1EDITION

  • 8/10/2019 Rubber FSA

    2/35

    NON-METALLIC EXPANSION JOINT DIVISIONFLUID SEALING ASSOCIATIONTe lephone : (215 ) 569 -3650

    994 Old Eagle School Road, Suite 1019, Wayne, PA 19087Facs im i le : (215) 569-1410

    Copyright 1970, 1995, 2008 by FLUID SEALING ASSOCIATION. Printed In United States of America. All rights reserved. this handbook or parts

    thereof may not be reproduced in any form without permission of the copyright owner.

    Edition 7.1 2010

    For current Members and AssociateMembers, please go to the Piping Division

    section of the Fluid Sealing Association website:

    www.fluidsealing.com

    AcknowledgementsThe FSA is pleased to recognize the cooperation of Member Companies of the Non-Metallic Piping Expansion Joint Division in the preparation of this document. Withouttheir support, this document would not have been possible. Technical Committeemembers who have made a particularly significant contribution to this publication include:

    Jim Richter The Metraflex Company

    Bruce Stratton Garlock Sealing TechnologiesHans Vemb Hansen KE-BurgmannEd Marchese Proco ProductsRick DiGiovanni General Rubber Corp.Ted White Unaflex

  • 8/10/2019 Rubber FSA

    3/35

    Table of Contents

    Members of the Division

    Regular Members..............................................................1Associate Members...........................................................1

    Foreword.................................................................................3Chapter I - Product Description of Rubber

    Expansion Joints

    A.Definitions.................................................................4B.Functions............... ................ ................ ................. ....4C.Advantages................................................................4D.ConstructionDetails...................................................5

    Chapter II - Types of Rubber Expansion Joints

    and ConnectorsA. ArchType................................................................6B. ReducerType:Taper..............................................7C. CustomType.............................................................7D. SleeveType..............................................................7E. SpecialFlangeType..................................................7F. DesignsforReductionofTurbulence

    AndAbrasion.............................................................8G.RectangularwithArchType.............. ................ ........8

    H. UType....................................................................8I. BeltDogboneType.................................................9J. SphericalMoldedType..............................................9K. RubberFlangedPipe,Fittings,PipeElbows.............10L. Unions.......................................................................10M. FanConnectors.........................................................10N. RetainingRingsandControlUnits............................10O. ExpansionJointProtective

    ShieldsandCovers...................................................10

    Chapter III - Definition of Performance

    Characteristics

    A. ExpansionJointMotions...........................................11B. SoundLimitingCharacteristics..................................11C. PressureCharacteristics...........................................11D. ResistancetoFluids..................................................11E. ForcePoundsandSpringRates...............................12

    F. HydrostaticTesting....................................................12G. SeismicTesting.........................................................12H. CycleLife...................................................................12

    Chapter IV - Installation and Maintenance

    A. AnchoringandGuidingthePipingSystem................15B. ControlUnits..............................................................15C. OtherInstallations.....................................................16D. InstallationInstructionsforNon-Metallic

    ExpansionJoints.......................................................17E.InspectionProcedureforExpansion

    JointsinService........................................................18Chapter V - Flexible Rubber Pipe Connectors

    Foreword...................................................................19A. Definition...................................................................19B. PerformanceCharacteristic.......................................19

    C. ConstructionDetails..................................................19D. TypesofPipeConnectors.........................................19E. AnchoringandControlUnits.....................................19F. InstallationandMaintenance.....................................20

    Chapter VI - All Fluoroplastic Couplings, Expansion

    Joints, Bellows

    Foreword................ ................. ................ ................ ..21A. ConstructionDetails..................................................21B. PerformanceCharacteristics....................................21C. ConstructionDetail...................................................21D. Dimensions...............................................................21E. TypesofConnectors.................................................21F. Anchoring..................................................................22G. InstallationandMaintenance....................................22

    Tables

    I. MaximumTemperatureRatings...............................4II. ListofElastomersUsedinExpansion

    JointsandRubberPipes................ ................ ...........5III. ComparisonofAcousticalImpedances....................11IV.PressureCharacteristicsofRubber

    ExpansionJoints.............. ................ ................ .........11V. TypicalNarrowArchExpansionJointMovement/

    SpringRateCapabilities...........................................13VI.TypicalWideArchMovement/Spring

    RateCapabilities................ ................. ................ ......14VII.RubberPipeConnectors..........................................20VIII.Coupling,2Convolution...........................................22IX.ExpansionJoint,3Convolution................................22X.Bellows,5Convolution.............................................22

    Figures

    1. CrossSectionViewofStandardExpansionJoint........................................................3

    2. 2Ato2T,TypesofExpansionJoints........................6-103. 3Ato3F,TypesofMovements.................................114. ThrustFormula.........................................................145. 5Ato5F,PipingLayoutwithUseof

    ExpansionJoints.............. ................. ................ ........14-166. AssemblyofControlRods........................................157. 7Ato7C,TypesofRubberPipe

    Connectors...............................................................188. CrossSectionViewofRubber

    PipeConnectors.......................................................19

    9. 9Ato9C,TypesofFluoroplasticConnectors...............................................................2010. FluoroplasticExpansionJointFlange.......................21

    Appendixes

    A. DimensionInspectionProcedure..............................20B. CommonFlangeDimensions/DrillingChart..............23C. ControlUnitDimensionsandRatings.......................24D. MatingFlangeThickness..........................................24E. GlossaryofTerms....................................................25F. NoiseandVibrationTransmittedThrough

    theHydraulicMediaReducedwiththeInstallationofExpansionJoints................................28

    G. MechanicalVibrationinaSteelPipingSystemReducedwiththeInstallationofPipeConnectorsorExpansionJoints...................29

    H. PressureTerminology...............................................30

    I. ListofSpecifications.................................................30J. BibliographyofRubberExpansionJoint

    Articles......................................................................30K. WouldaRubberorMetalExpansionJoint

    BetterSuitemyApplication................ ................. ......31

  • 8/10/2019 Rubber FSA

    4/35

    FOREWORD:

    Rubberexpansionjointshavebeenspecifiedandusedformanyyearsbyconsultingengineers,mechanicalcontractors,pressure

    vesseldesigners, plantengineersandturn-keyconstruction firms. Theyare installed to accommodatemovement in pipingruns,

    protectpipingfromexpansionandcontractionandinsureefficientandeconomicalon-streamoperations.

    Rubberexpansionjointsprovidetime-testedwaystoaccommodatepressureloads,relievemovementstresses,reducenoise,isolate

    vibration, compensate formisalignment after plants goon streamand prolongthelifeofmotiveequipment.Rubberexpansion

    joints,designedbyengineersandfabricatedbyskilledcraftsmen,areused inallsystemsconveying fluidsunderpressureand/or

    vacuumatvarioustemperatures:

    Air Conditioning, heating and ventilating systems*incommercialandinstitutionalbuildings,schools,

    apartments,stores,hospitals,motels,hotelsandaboardships

    Central and ancillary power-generating stationsincommunities,factories,buildingsandaboard

    ships.

    Sewage disposal and water-treatment plants.

    Process piping inpaperandpulp,chemical,primarymetalandpetroleumrefiningplants.

    Thishandbookisacompilationofstandardsofconstructionandaguide

    for specifying and purchasing non-metallic expansion joints. The

    information set forth is based upon the substantial experience in

    research, design and application of rubber expansion joints by

    engineeringpersonnelassociatedwiththemembercompaniesoftheNon-

    MetallicExpansionJointDivisionoftheFluidSealingAssociation.

    Thepurposeofthispublicationistoprovideahandyreferencesourceof

    pertinent information and factualdata for the thousands of engineers

    whose daily concern is designing piping systems and overseeing

    installations.Noportionofthishandbookattemptstoestablishdictates

    inmodernpipingdesign.Thishandbookisnowwidelyusedincustomer

    inquiriesasareferencefordesignandperformancestandards.

    3

    *ASHRAE Handbook and Product Directory, 1984 Systems, Chapter 32.

    Rubberinthiscatalogreferstoalltypesofelastomers,syntheticaswellasnaturalrubber.

    Neither the Association nor any of its members makes any warranty concerning the information or any statement set forth in this handbook,

    and both expressly disclaim any liability for incidental and consequential damages rising out of damage to equipment, injury to persons or

    products, or any harmful consequences resulting from the use of the information or reliance on any statement set forth in the

    handbook.

    Careful selectionof theexpansion jointdesignandmaterialfor a givenapplication,as wellas properlyengineered installation areimportantfactorsindeterminingperformance.Thesefactorsshouldbefullyevaluatedbyeverypersonselectingandapplyingexpansion

    jointsforanyapplication.

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    5/35

    Note: Temperatureslistedabovearethetypicalmaximumdegreeratingsforcontinuoususe.All Fabrics loose a percentage of their strength in relation to exposure temperature andduration. That being said, higher operating temperatures may be achieved if operationpressures are reduced and sound engineering practices are usedduring the design andmanufacturerofaproduct.

    CHAPTER I - Product Description of Rubber Expansion Joints.

    A. DEFINITION:

    Anon-metallicexpansionjointisaflexibleconnectorfabricatedofnaturalorsynthetic elastomers, f luoroplastics and fabrics and, i fnecessary,metallicreinforcementstoprovidestressreliefinpiping systems due to thermal and mechanical vibration and/ormovements.

    Noteworthy performance features include f lexibi li ty and

    concurrentmovementsineithersingleormultiplearchtypeconstruction,

    isolation of vibration and noise, resistance to abrasion and chemical

    erosion.

    B. FUNCTIONS:

    Engineers can solve anticipated problems of vibration, noise,

    shock, corrosion, abrasion, stresses and space by

    incorporatingrubberexpansionjointsintodesignedpipingsystems.

    B.1. Reduce Vibration. Rubberexpansionjointsisolateorreduce

    vibration caused by equipment. Some equipment requires

    more vibration control than others. Reciprocating pumps and

    compressors,for example,generate greater unbalanced forces

    than centr ifugal equipment . However, rubber pipe and

    expansion joints dampen undesirable disturbances including

    harmonic overtonesandvibrationscausedbycentrifugalpumpand fan

    bladefrequency.Thisisbasedonactualtestsconductedbyanationally

    recognizedindependent testing laboratory. Rubber expansion joints

    reducetransmissionofvibrationand protec t equipment from

    the adverse effects of vibration. See Appendixes F, G and

    Chapter III, Section B.

    B.2. Dampen Sound Transmission. Subsequent to going on

    stream,normalwear, corrosion, abrasionanderosioneventually bring

    about imbalance in motive equipment, generating undesirable

    noises transmitted to occupied areas. Rubber expansion

    joints tend to dampen transmission of sound because of the

    steel-rubber interface of joints andmatingflanges. Thick-wall

    rubber expansion joints, compared with their metallic

    counterparts, reduce considerably the transmission of sound.

    See Appendixes F, G and Chapter III, Section B.

    B.3. Compensate Lateral, Torsional and Angular Movements. Pumps,

    compressors,fans,pipingandrelatedequipmentmoveoutofalignment

    due to wear, load stresses, relaxat ion and set tl ing of

    supportingfoundations.Rubberexpansionjointscompensate

    for lateral, torsional and angular movements - preventing

    damageandunduedowntimeof plant operations.See Table VI

    and Chapter III, Section. A.

    B.4. Compensate Axial Movements. Expansionandcontraction

    movementsduetothermalchangesorhydraulicsurgeeffects

    arecompensatedforwithstrategicallylocatedrubberexpansion

    joints. They act as he lix sp rings, compensating for ax ial

    movements.See Table V and Chapter III, Section A.

    C. ADVANTAGES:

    The industry has all ied itself with designers, architects,contractors and erectors in designing and fabricating rubberexpansion joints under rigid standards to meet present-dayoperating conditions. The industry has kept abreast of thetechnological advances in rubbercompoundingandsyntheticfabricstoproviderubberexpansionjointshavingadvantagesnotavailableinothermaterials.

    C.1. Minimal Face-to-Face Dimensions. Minimal face-to-face

    dimensions in r ubber expansion join ts offe r untold

    economies comparedwithcostlyexpansionbendsorloops.Therelative

    cost of the pipe itself may be less or no more than a rubber

    expansion joint; however , tot al costs a re h igher when

    consider ing plant space, installationlabor,supportsandpressuredrops.

    See Table V.

    C.2. Lightweight Rubber Expansion joints are relatively light in

    weight,requiringnospecialhandlingequipmenttoposition,contributingtolowerinstallationlaborcosts.

    C.3. Low Movement Forces Required. The inherent flexibility of

    rubber expansion joints permits almost unlimited flexing to recover from

    imposedmovements,requiringrelativelylessforcetomove,thus

    preventingdamagetomotiveequipment.See Table V.

    C.4. Reduced Fatigue Factor. Compared to steel the inherent

    characteris ticsofnaturalandsyntheticelastomersarenotsubjecttofatigue

    breakdown or embrittlement and prevent any electrolytic action

    because of the steel-rubber interfaceofjoints andmating flanges.See

    Table II.

    C.5. Reduced Heat Loss. Rubberexpansion joints reduceheat loss,

    givinglongmaintenance-freeservice.Theaddedpipingrequiredforloopscontributetohigheroperatingcostsaftergoingonstreamduetoincrease

    inheatlosses.

    C.6. Corrosion, Erosion Resistant. Awidevarietyofnatural,synthetic

    and special purpose elastomers and fabrics are available to the

    industry.Materialsaretreatedandcombinedtomeetawiderangeofpractical

    pressure/temperature operating conditions, corrosive attack,

    abrasion and erosion. Standard and special sizes of rubber

    expansion joints are available with PTFE/TFE/FEP l iners,

    fabricated to the configurationsof thejointbody,as added insurance

    against corrosive attack. Fluoroplastics possesses unusual and

    unique characteristics of thermal stability, non-sticking surface,

    extremelylowco-efficientoffrictionand resistanceto practicallyall

    corrosivefluidsandformsofchemicalattack.See Table II.

    C.7. No Gaskets. Elastomeric expansion jointsare suppliedwith

    flangesofvulcanizedrubberandfabricintegratedwiththetube,makingtheuse

    ofgasketsunnecessary.Thesealingsurfacesoftheexpansionjointequalize

    unevensurfacesofthepipeflangetoprovideafluidandgas-tight seal. A

    ring gasket may be required for raised face flanges. Consult

    manufactureraboutspecificapplications.

    4

    Table I: Maximum Temperature Ratings

    Tube or Cover Elastomer

    Reinforcing

    Fabric

    Pure Gum

    Rubber Neoprene Butyl Nitrile Hypalon EPDM FKM

    Nylon

    180F/82C

    225F/107C

    250F/121C

    210F/99C

    250F/121C

    250F/121C

    250F/121C

    Polyester

    180F/82C

    225F/107C

    250F/121C

    210F/99C

    250F/121C

    250F/121C

    250F/121C

    Aramid

    180F/82C

    225F/107C

    300F/149C

    210F/99C

    250F/121C

    300F/149C

    400F/204C

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    6/35

    C.8. Acoustical Impedance. Elastomeric expansion joints

    significantly reduce noise transmission in piping systems

    because the elastomeric composition of the joint acts as a

    dampenerthatabsorbsthegreatestpercentageofnoiseand

    vibration.See Appendix F.

    C.9. Greater Shock Resistance. Theelastomerictypeexpansionjoints

    providegoodresistanceagainstshockstressfromexcessivehydraulic

    surge,waterhammerorpumpcavitation.

    D. CONSTRUCTION DETAILS:

    D.1. Tube. A protective, leakproof lining made of synthetic ornaturalrubberastheservicedictates.Thisisaseamlesstube

    that extends through the bore to the outside edges of the

    flanges.Itspurposeistoeliminatethepossibilityofthematerials

    being handled penetrating the carcass and weakening the fabric.

    Thesetubescanbe designed to cover service conditions for

    chemicalpetroleum,sewage,gaseousandabrasivematerials.

    See Tables I and II ,and Figure 1.

    D.2. Cover.Theexteriorsurfaceofthejointisformedfromnaturalorsyntheticrubber,dependingonservicerequirements.

    The prime function of the cover is to protect the carcass fromoutside

    damageorabuse.Specialpolymerscanbesuppliedtoresist

    chemicals,oils,sunlight,acidfumesandozone.Also,aprotective

    coatingmaybeappliedtotheexteriorofthejointforadditional

    protection.SeeTables I and II,and Figure 1.

    D.3. Carcass. Thecarcassorbodyoftheexpansionjointconsistsoffabric

    and,whennecessary,metalreinforcement.

    D.3.A. Fabric Reinforcement.Thecarcassfabricreinforcementisthe

    flexibleandsupportingmemberbetweenthetubeandcover.

    Standardconstructionsnormallyutilizehighqualitysynthetic

    fabric. Naturalfabrics can also be used at somepressures

    and temperatures. All fabric plies are impregnated with rubber or

    syntheticcompoundstopermitflexibilitybetweenthefabricplies.

    See Figure 1-3A. and Table 1.

    D.3.B. Metal Reinforcement.Wireorsolidsteelringsimbeddedinthe

    carcassarefrequentlyusedasstrengtheningmembersofthejoint.The

    useofmetalsometimesraisestheratedworkingpressureand

    cansupply rigidityto thejoint forvacuumservice.See Table IV

    and Figure 1-3B.

    5

    7-Outstanding3-Fairtogood6-Excellent2-Fair5-VeryGood1-PoortoFair4-Good0-PoorX-ContactMfg.

    MATERIAL

    DESIGNATION:

    SI

    NBR

    SBR

    CSM

    FKM

    EPR

    AFMU

    NR

    IR

    IIR

    CIIR

    CR

    GE

    BEBKCH

    AA

    CE

    HK

    BACADA

    AA

    AA

    AA

    AABA

    BCBE

    BUNA-N/NITRILE

    NITRIL-BUTADIENE

    EPDM

    ETHYLENE-PROPYLENE-DIENE-TERPOLYMER

    GUM RUBBER

    POLYISOPRENE,SYNTHETIC

    5550

    4350

    53X2

    5644

    5660

    5656

    7777

    53XX

    5 3 X X

    5654

    5654

    4340

    66664036256600262X02 22676020

    40220554554146444520 30344544

    20204544065500334004 30534425

    67675222454323464431 34444244

    77775562655366654610 26274555

    6 7 6 77 5 4 60 7 6 60 0 4 66 0 3 6 4 0 5 66 5 4 5

    7777XXXX737X77777777 XXX7XXX4

    4020664606550033X004 50526627

    4020664606550033X004 50526226

    65565430045500464034 40455264

    65565430045500464034 40455264

    55655424454323464401 44445245

    RATING SCALE CODE:

    ELASTOMER PHYSICAL AND CHEMICAL PROPERTIES COMPARISON

    ALKALI,C

    ON

    C.

    ANIMALVE

    G.OIL

    CHEMICAL

    WATER

    ACIDDIL

    UTE

    ACID

    ,CON

    C.

    ALPHATICHYDR

    O

    AR

    OMATICHYDR

    O

    HEAT

    COLD

    FLAME

    TEAR

    OZONE

    WEATHER

    SUNLIGHT

    OXIDATION

    OXYGENATEDHYDRO.

    LACQUERS

    OIL&GASOLINE

    ALKALI,DILUTE

    BUTYL

    ISOBUTENE-ISOPRENE

    NATURAL RUBBERPOLYISOPRENE,SYNTHETIC

    CHLOROBUTYL

    CHLORO-ISOBUTENE-ISOPRENE

    HYPALON*

    CHLORO-SULFONYL-POLYETHYLENE

    SBR/GRS/BUNA-S

    STYRENE-BUTADIENE

    FLUOROCARBONELASTOMER

    PTFE/TFE/FEP

    FLUORO-ETHYLENE-POLYYMERS

    SILICONE

    A

    A

    M

    D

    7

    COMMON NAME

    CHEMICALGROUPNAME

    NEOPRENE

    CHLOROPRENE

    A

    M

    D

    2

    D

    7

    REB

    OUND-C

    OLD

    COMP.SET

    TEN

    SILESTREN

    GTH

    DIELE

    CTRICSTR.

    ELE.INSULATION

    WATERABSORP

    RADIATION

    SWELLINGINOIL

    ABRASION

    IMPERMEABILITY

    DYNAMIC

    REBOUND-HOT

    TABLE II: List of Elastomers Used in Expansion Joints and Rubber Pipes

    Note: Thislistingisonlyageneralguide.Specificelastomercompoundsproducedbymembermanufacturersmayhavedifferentproperties.

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    7/35

    Figure 2B: Multiple Arch Type Expansion Joint

    6

    CHAPTER II - Types of Rubber Expansion Joints and Connectors

    A. ARCH TYPE:

    Afullface integralflangedesignisavailableinbothSingleArchand

    Multiple Arch Types. These basic types can bemanufactured to

    meet the requirements ofASTMF1123-87(Note: The U.S. Navy

    previously used MIL-E-15330D, Class A-Type I as its standard

    specification,buthasadoptedtheASTMSpecification.)Thesetypes

    are available in several construction design series, based on the

    applicationpressurerequirements.See Table IV.

    A.1. Single Narrow Arch Type. Constructionisoffabricandrubber,

    reinforcedwithmetalringsorwire.Thefullfaceflangesareintegral

    withthebodyofthejointanddrilledtoconformtotheboltpatternof

    thecompanionmetalflangesofthepipeline.Thistypeofrubberface

    flangeisofsufficientthicknesstoformatightsealagainstthemetal

    flanges without the use of gaskets. The shortest face-to-face

    dimensionsareavailablewiththistypeofconstruction.See Table V

    and Figure 2A.

    Figure 2A: Single Narrow Arch Type Expansion Joint

    A.3. Lightweight Type. BoththeSingleArchandMultipleArchTypes

    are available in a lightweight series from most manufacturers.

    Dimensionallythesameasthestandardproduct,exceptforreduced

    body thickness, this series is a designed for lower pressure and

    vacuum applications. For a No-Arch design see Section H.3, this

    chapter. Contact the manufacturer for specific information.

    A.2. Multiple Arch Type. Joints with two ormore arches may be

    manufactured to accommodate movements greater than those of

    whicha SingleArch Type jointis capable. Multiple Arch joints of

    mostmanufacturersarecompositesofstandardsizedarchesandare

    capableofmovementsof asinglearchmultipliedby thenumberof

    arches. See Figure 2B. The minimum length of the joint is

    dependentuponthenumberof arches. Inordertomaintainlateral

    stabilityandpreventsaggingwhenthejointisinstalledinahorizontal

    position, a maximumnumber of four (4) arches is recommended.

    See Table V, Note 3.

    A.4. PTFE Lined. Spool Arch Type joints are available in many

    standard pipe sizes with Fluoroplastic liners of TFE and/or FEP.

    Theselinesarefabricatedasanintegralpartoftheexpansionjoint

    during manufactureand coverall wetted surfaces inthe tube and

    flangeareas.Fluoroplasticprovidesexceptionalresistancetoalmost

    all chemicals within the temperature range of the expansion joint

    bodyconstruction.Filledarchesarenotavailable.

    A.5.B. Metallic Reinforced Design. Amoldedversion of theSpool

    ArchTypeutilizingsolidsteelringsinacarcass,atthebaseofthe

    arch. The reducedbodythickness requiresspecial retainingrings

    availablefromthemanufacturer.See Figure 2D.

    Figure 2D: Molded Wide Arch Metallic

    Reinforced Type Expansion Joint

    A.5. WIDE ARCH TYPE:

    Thistype,similartotheNarrowArchType,isavailableinametallic

    reinforcedandanon-metallicreinforceddesign.Generally,theWide

    Arch Type features greater movements than the Standard Spool

    ArchType.See Table VI.

    A.5.A. Non-metallic Reinforced Design. Constructedsimilar tothe

    SpoolArchTypeexceptthecarcassdoesnotcontainwireormetal

    ringreinforcement.Pressureresistanceisaccomplishedthroughthe

    use of a special external flanged retaining ring furnished with the

    joint.AvailablealsoinaFilledArchdesign.See Figure 2C.

    Figure 2C: Molded Wide Arch Non-Metallic

    Reinforced Type Expansion Joint

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    8/35

    7

    D.2. Lightweight Type. Dimensionallythesameasthesleeve

    "Spool Type", except for reduced body thickness. This

    ser ies is designed for very low pressure and vacuum

    applications. Joints are available insingleandmultiplearchtypes.

    Consultthemanufacturerfor the types of clamps available for

    sealing.Thistypegenerallyoffersgreaterflexibilitythanthespool

    type.

    D.3. Enlarged End Type. Thisjointcanbemanufacturedinthe

    samedesignasthespooltypeandlightweighttype.Thesleeveends

    onthisdesignarethesamedimensionastheO.D.ofthepipe,whilethe

    restofthejointisthesamedimensionastheI.D.ofthepipe.

    E. SPECIAL FLANGE TYPE:

    Most ofthe expansion jointtypesdepictedin this chapter

    are available with modif icat ions to the f langes. These

    modifications include enlarged flanges, different drill patterns

    andweld-endstubs.

    E.2. Enlarged Flange Type. Expansionjointsutilizingafullfaceintegralflangedesigncanbefurnishedwithanenlargedflange

    on oneend. (Forexample,an 8" (203mm) expansion joint

    can befabricated with aflange to matetoan 8" (203 mm)

    pipe flange on one end; and a 12" (305mm) flange on the

    otherendtomatetoa12"(304mm)pipeflange.)Additionally,

    dri ll ing of dif ferent specificat ions may be furnished. For

    example, an expansion joint can be furnished with one end

    drilled toANSIB16.5,Class150,and the otherenddrilledto

    MIL-F-20042C.See Figure 2I.Note:Specialcontrolrodswillbe

    requiredwhenneeded.

    C. CUSTOM TYPE:

    Offsetjointsarecustombuilttospecificationstocompensatefor

    initialmisalignmentandnonparallelismoftheaxisofthepipingtobe

    connected. Offset joints are sometimes used in close quarters where

    availablespacemakesitimpracticaltocorrectmisalignmentwith

    conventional piping. Generally, theindustry follows thepractice of

    drillingflangesaccordingtopipesizeofflangeswhennotspecified

    otherwise. I t is recommended that complete drawings and

    specificationsaccompanyinquiriesorordersforoffsetjoints.See

    Figure 2G.

    D. SLEEVE TYPE:

    A sleeve design is available in both single and multiple arch

    types. Bothtypesareavailable inseveralconstructiondesignseries,

    basedonthe applicationpressure and flexibilityrequirements.

    Contactthemanufacturerformovementandpressurelimitations;

    andtypeofsleeveendsrequired.

    Figure 2G: Custom Type Expansion Joint

    B. REDUCER TYPE: TAPER:

    Reducingexpansion jointsareusedto commentpipingof unequal

    diameters.Theymaybemanufacturedasaconcentricreducerwith

    theaxisofeachendconcentricwitheachotherorasaneccentric

    reducerhavingtheaxisofeachendoffsetfromeachother.Tapers

    in excess of 20 degrees are not desirable. Recommendations

    concerning thedegree of taper andworking pressuresshouldbe

    obtainedfromthemanufacturerofyourchoice.Normally,pressures

    arebasedonthelargerofthetwoinsidedimensions.Availablewith

    orwithoutarches.See Figures 2E and 2F. Figure 2F shows aneccentric reducer of a No-Arch U Type Connector. See Section

    H.3, this Chapter.

    D.1. Sleeved Arch Type. This joint issimilarto the "Arch" Type (See

    Figures 2A and 2B) exceptthatthecappedsleeveendshave

    anI.D.dimensionequaltotheO.D.ofthepipe.Thesejoints

    are designedtoslipoverthestraightendsoftheopenpipeandbe

    held securelyin placewithclamps.Thistypeofjointisrecommended

    onlyforlowtomediumpressureandvacuumservicebecause

    of the difficulty of obtaining adequate clamp sealing. See

    Figure 2H.

    Figure 2E: Concentric Reducer Type Expansion Joint

    Figure 2F: Eccentric Reducer Type Expansion Joint

    Figure 2H: Sleeve Type Expansion Joint

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    9/35

    F. DESIGNS FOR REDUCTION OF

    TURBULENCE AND ABRASION:

    Theopen-archdesignoftheStandardSpoolTypeExpansionJoint

    maybemodifiedtoreducepossibleturbulenceandtoprevent

    thecollectionofsolidmaterialsthatmaysettlefromthesolution

    handledandremaininthearchway.

    F.1. Filled Arch Type. Arch-type expansion joints may be

    supplied with abonded-in-placesoftrubber filler toprovidea

    smoothinterior bore. Filled archjoints alsohave a seamless

    tube so the arch filler cannot be dislodged during service. Filled

    arches,builtasanintegralpartofthecarcass,decreasetheflexibil ity

    ofthejointandshouldbeusedonlywhennecessary.Movements

    of expansion joints with filledarches are limited to 50% of the

    normalmovements ofcomparable size expansion joints with

    unfilled(open)arches.See Table VI and Figure 2J.

    F.2. Top Hat Liner. This product consists of a sleeve

    extending through theboreoftheexpansion jointwitha full face

    flange on oneend. Constructedof hardrubber, metal or

    Fluoroplastic; it reducesfrictionalwearof theexpansionjoint

    and provides smooth flow,reducingturbulence.Thistypesleeve

    shouldnotbeusedwherehighviscosityfluids,suchastars,arebeing

    transmitted.Thesefluidsmaycause"packing-uporcaking"ofthe

    arch area,which reducesmovements andin turnmay cause

    premature expansion joint failure. Bafflesarerarely requiredon

    rubberexpansionjoints.See Figure 2K.

    8

    E.3. Weld-End Type.Severalmanufacturersofferanexpansionjointwith

    weld-endnippleswhichallowtheunittobedirectlyweldedintoplace

    on the job or welded to associated equipment before final

    installation. The design is basically theSleeve Type expansion

    jointbondedtomatchingsteelweld-endnipples.Normally,thereare

    steelbandclampsaroundtheperipheryoftherubbersleeve

    endtoreinforcetherubber-metalbond.

    Figure 2I: Enlarged Type Expansion Joint

    Figure 2J: Single Arch Type Expansion

    Joint With Filled Arch

    Figure 2K: Top Hat Liner

    G. RECTANGULAR WITH ARCH TYPE:

    Acustommadeflexibleconnector forusewithrectangular flangeson

    low pressure service. The arch design accommodates greater

    movement than the U type joint. (See Figure 2L and Section H,

    below.)

    H. U TYPE:

    "U"typejointsareavailableforlowpressureapplicationsinexternalandinterna

    flangedesignandforhigherpressureserviceinano-archmodificationofthe

    singleArchType.

    H.1. External Full Face Integral Flange Joint. Thislightweightcustom

    -madeflexiblejointisgenerallyusedbetweenaturbineandcondenser

    It is constructedof pliesof rubberand fabricusually withoutmeta

    reinforcement. The joint is recommended for full vacuum service or a

    maximum pressure of 25PSIG (172 kPa). Flange drillingmay be

    staggered to facilitate installation and tightening of bolts. The

    joint is securely bolted in placewith conventional retaining rings fo

    vacuumserviceorspecialsupportringsforpressureservice.Thejointmaybe

    rectangular,roundorovalinshape.See Figure 2M. For greater movement

    see Chapter II, Section G

    .

    Figure 2L: Rectangular With Arch Type Expansion Joint

    Figure 2M: Lightweight External Flange U Type Connector

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    10/35

    H.2. Internal Full Face Integral Flange Joint Thisjointissimilarto

    the external flange joint except that conventional retaining

    ringsareused forpressure serviceand special support

    ringsareusedfor vacuumservice.Thejointmayberectangular,

    round or oval in shape. See Figure 2N which depicts a

    rectangularversionwith special support rings. Based

    oninstallation,fieldsplicingmaybenecessary.

    I. BELT DOGBONE TYPE:

    A molded construction of plies of rubber impregnated fabric,

    rubbercoveredandsplicedendless,to a specifiedperipheral

    dimension. Usedas a flexible connection incentralpower

    stations on condensers. Designed for compression and lateral

    movements forfull vacuumserviceandamaximumpressure of25

    PSIG (172 kPa). Must be used with special clamping devices

    normally supplied by the condenser equipmentmanufacturers.

    See Figure 2S

    .

    H.3. No Arch U Type. Theconstructionofthisjointissimilarto

    theSingleArchType,exceptmodifiedtoeliminatethearch.

    Reduced movement, this connector will absorb vibration and

    sound.AreducerversionisshowninFigure 2D. See Table Il for

    pressures and Figure 2O. For alternate designs, see Chapter V.

    J. SPHERICAL MOLDED TYPE:

    A molded spherical design is manufactured in two types. One

    typeutilizessolidfloatingmetallicflanges.Theothertypehasbuilt-

    in full face integral flanges. The design incorporates a long

    radius arch, providing addit ional movement capabil i ties

    when compared to other types. The arch is self-cleaning,

    eliminating the need of Filled Arch Type construction. These

    types arerecommended forbasically thesameapplications as

    theSpool"Arch"Type.

    J.1. Floating Flange Spherical Type. The molded sphere design

    utilizessimilarconstructiondetailsasthoseinChapter1,Section

    D, except the carcass does not contain metallic reinforcement.

    Utilizing special weave fabric for reinforcement, the spherical

    shapeoffersa highburst pressure.Movementsand pressure

    ratings should be obtained from the manufacturer.Furnished

    complete with sol id floatingflanges,thisdesignisgenerallyavailable

    forpipesizesunder30inches(762mm)indiameterandinsingleordouble

    archdesigns.SeeFigure 2Q.

    9

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

    Figure 2P: Molded Double Spherical Type

    Expansion Joint With Solid Floating

    Flanges

    Figure 2Q: Molded Spherical Type Expansion

    Joint

    Figure 2R: Molded Spherical Type Expansion

    Joint With Integral Flanges

    Figure 2S: Belt Type Expansion Joint

    Wire Spring Steel

    VanStoneO.D.

    Flanges

    JointI.D.

    RetainingFlangeO.D.

    NominalPipeSize

    F

    G

    Section AA

  • 8/10/2019 Rubber FSA

    11/35

    K. RUBBER FLANGED PIPE, FITTINGS, PIPE

    ELBOWS:

    Elastomeric elbows and fittings are frequently used in place ofmetal

    fittingswherehighabrasionandchemicalresistanceisrequired

    and/orwherevibrationandstressreliefisdesirable.45 ,900short

    radiusand90longradiuselbowsaswellasY's,T's,lateralsand

    crossescanbefurnishedtoANSIB-16.1dimensions.

    L. UNIONS:

    Unionsaresmalldoublearchrubberconnectorswithfemale

    threaded (usuallyANSINPT)ends.Theseconnectorsare foruse

    withsmalldiameterpipeandwhereclearancespaceforflangesis

    notavailable.Usuallyavailableforstandardpipesizesfrom3/4inch(19

    mm)to3inch(76mm)diameterandawidevarietyofelastomers.Normally,

    unionsare found in Heating, Ventilating and Air-Conditioning

    (HVAC)applications.

    M. FAN CONNECTORS:

    Industrial fans and their related ducting frequently require a

    flexibleconnectortoabsorbvibrationreducenoiseandprovide

    an easyaccess tofanswhen overhaul orcleaningis required.

    Elastomeric fan connectors have a lighter body and flanges

    designedtomatchthespecificfandesign.Usuallytheirpressure

    and vacuum ratingsare approximately 2 PSIG(14 kPa)to

    match the service. Face-to-face dimensionasshortas2-1/2"(63

    mm) face-to-face are available. Slip over fan connectors are also

    frequentlyspecified.

    N. RETAINING RINGS AND CONTROL UNITS:

    N.1. Split Metal Retaining Rings. Retainingringsmustbeusedto

    distributetheboltingloadandassureapressuretightseal.Theyarecoated

    for corrosion resistance and dri lled as speci fied. (See

    Appendix B-Common Flange Drilling). The rings are installed

    directlyagainstthebackoftheflangesofthejointandboltedthroughto the

    matingflangeofthepipe.Steelwashersarerecommendedunder

    the bolt headsagainst the retaining rings; at a minimum at the

    splits.Ringsarenormally3/8(9mm)thick,butcanvarydueto

    conditions. TheringI.D.edgeinstallednextto therubberflange

    should be broken or beveled to prevent cutting of the rubber.

    SpecialretainingringsmayberequiredformanyoftheexpansionjointtypesdepictedintheChapter.See Figure 2T.

    N.2. Control Unit Assemblies. See Chapter IV for information

    regardingthedefinition,purposeandrecommendationsconcerning

    theuseofcontrolrodassemblies.Manymanufacturerspresently

    brand their expansion joint products with the following label

    identification:WARNING Control units Must Be Used To Protect

    This Part From Excessive Movement If Piping is Not Properly

    Anchored. See Appendixes C, D and Figure 6.

    Whenanelastomericexpansionjointwithacontrolunitassemblyistobe

    installeddirectlytoapumpflange,specialcaremustbetaken.Makesure

    thatthereissufficientclearancebehindthepumpflangenotonlyfor the

    plates,butalsoforthenuts,boltsandwashers.Incaseswhere

    thereisnotsufficientclearance,thecontrolrodplatesonthepump

    end can be mounted behind the expansion joint flange if the

    expansion joint flange has a metal flange. If the elastomer

    expansionjoint hasan integral flange withsplit retaining rings,

    thismethodisnotusuallyrecommendedasthesplitretainingrings

    maynothaveenoughstrengthtowithstandthetotalforceencountered.

    O. EXPANSION JOINT PROTECTIVE SHIELDS

    AND COVERS:

    Unusual applications of rubber expansion joints may require the

    specificationof:A.ProtectiveShield;B.ProtectiveCover;C.Fire

    Cover. Thesethreetypesofcovers,whenmanufacturedofmetal,

    have one end which is bolted to or clamped to the mating pipe

    flange.Theotherendisfree,designedtohandlethemovementsof

    theexpansionjoint.AProtectiveCoverofmetalisrequiredwhen

    an expansion joint is installed underground. Protective Shieldsshould be used on expansion joints in lines that carry high

    temperatureorcorrosivemedia. Thisshieldwillprotectpersonnel

    or adjacent equipment in the event of leakage or splash. Wrap

    around Protective Shields of Fluoroplastic impregnated fiberglass

    are themost common. Protective coversof expandedmetal are

    usedtopreventexteriordamagetotheexpansionjoint.Firecovers,

    designedoversize,areinsulatedontheI.D.toprotecttheexpansion

    jointfromruptureduringa flashfire.Theyarenormallyinstalledon

    firewaterlines.Contactthemanufacturerforspecificdesigndetails.

    Whenpossible,itisnotrecommendedtoinsulateoverelastomeric

    expansionjoints.CAUTION: Protection / Spray shield have some

    insulating properties. Thecontainmentofsystemtemperaturescan

    accelerate theaging of the product andmakes requiredexternal

    inspectionsdifficult.

    10

    the Floating Flange Spherical Type (See Section J.1. above),

    except full face flanges are integral with the body of the joint.

    Pressure-resistinghoopstrengthisafunctionofthespecialweave

    fabricanditsplyplacementinthebody,aswellasthedesignofthe

    retaining rings. Special retaining rings are sometimes required.

    Contactthemanufacturerforpressureandmovementrating. See

    Figure 2R.

    J.2. Integral Flange Spherical Type. Basicallythesamedesignas

    MAX1/8(3 mm)

    igure 2T: Retaining Rings For Standard

    Arch Type Expansion Joints

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    12/35

    A. EXPANSION JOINT MOTIONS

    A.1. Axial Compression. Thedimensionalreductionorshorteningin the face-

    to-face parallel lengthof the jointmeasured along the longitudinal

    axis.See Figure 3A and Table V.

    A.2. Axial Elongation. Thedimensionalincreaseorlengtheningofface-to-face

    parallellengthofthe jointmeasuredalong thelongitudinalaxis.See

    Figure 3B and Table V.

    A.3. Lateral or Transverse Movement The movement or relating

    displacement of the two ends of the joint perpendicular to i ts

    longitudinalaxis.See Figure 3C and Table V.

    A.4. Vibration. The abil ity of a flexible connec tor to absorb

    mechanical oscillations in the system, usually high frequency. See

    Figure 3D and Appendixes F and G.

    A.5. Angular Movement. The angular displacement of the

    longitudinalaxis ofthe expansionjointfromits initial straight line

    position, measured in degrees. This is a combination of axial

    elongationandaxialcompression.See Figure 3E and Table V.

    A.6. Torsional Movement. Thetwistingofone endof anexpansion jointwith respect to the other end about its longitudinal axis. Such

    movementismeasuredindegrees.See Figure 3F and Table V.

    A.7. Concurrent Movement. Thecombinationoftwoormoreoftheabove

    expansion jointmovements. This value is expressedas theResultant

    Movement. To calculate concurrent movement use the following

    formula:

    Theconcurrentmovement formulais thesum of theindividualmovements except forAngular (becauseangularmovement iscovered by compression and elongation when looking atconcurrent movements). Therefore the sum of the following:Compression,Elongation,Lateral,andTorsionalstillneedtobeless thanoneor thejointisoperatingoutsidethedesignintent

    andneedstobeevaluated.

    Formula:1C+E+L+TRCRERLRT

    SampleCalculation:12+0+.75+0 4215

    1.5+.75+0

    11.25Jointisoperatingoutsideitsdesignmovementsandneedstobeevaluated.

    C=Changeincompression RC=RatedCompressionE=ChangeinElongation RE=RatedElongationL=ChangeinLateral RL=RatedLateralT=ChangeinTorsional RT=RatedTorsional

    CHAPTER III - Definition of Performance Characteristics

    11

    NOTES:

    1. Pressurelimitationslistedaregenerallyacceptedbymostmanufacturersfortemperaturesupto180yieldinga3:1safetyfactor.Forhighertermperatures,consultthemanufacturerforalternatedesignsand/ormaterials.

    2. Forhigherpressurethaninducated,contactmanufacturerforguidance.3. Alwaysadvisemanufacturerifproductwillbesubjectedtofullvacuum4. Forterminalogyonpressure.See Appnedix H.5. Partslistedat26(660mm)Hgvacuumhaveadesignratingof30(762mm)Hg

    (fullvacuum).

    D. RESISTANCE TO FLUIDS:

    Thesuperiorcorrosionresistance characteristic of natural rubber

    andsyntheticelastomerspermitsthesafehandlingofawidevariety

    of materials within the pressure limits and temperature

    characteristics noted above. Contact the manufacturer for a

    specificelastomerrecommendation.See Table II.

    The pressure ratings decrease with size and/or temperature

    increases from 200 PSIG (1379kPa)to 30 PSIG (207 kPa)

    operating pressure, dependent upon construction design. If

    requirementsexceed these ratings,specialconstructionscan be

    designedtomeettherequiredconditions.Thenumberofcontrol

    rods are specified onthe basis of the design pressure of the

    system,nottheratedoperatingpressureoftheexpansionjoint.

    See Table IV and Appendixes C, D, and H.

    Table IV: Typical Pressure Characteristics of Spool Type

    Rubber Expansion Joints.

    B. Sound Limiting Characteristic:

    The abil ity of a rubber expansion joint to limit or interrupt thetransmissionofasoundfromoperatingequipmenttothepipingsystem.See Appendixes F and G and Table III.

    NOMINAL PIPE SIZE I.D.

    OF EXP. JOINT

    DESIGN OF EXPANSION JOINT

    CONSTRUCTION

    Pressure/VacuumDesign

    HighPressureDesign

    in.

    Positive Negative Positive Negative

    PSIG kPa in. of Hg. mm of Hg. PSIG kPa in. of Hg. mm of

    1/4to45to1214

    6to102127to305

    356

    16514085

    1138965586

    262626

    660660660

    200190130

    13791310896

    262626

    660660660

    16to2022to2426to40

    406to508559to610660to1,016

    656555

    448448379

    262626

    660660660

    11010090

    758689621

    262626

    660660660

    42to6668to9698to108110to155

    1067to16761727to24382489to27432794to3937

    55454030

    379310276207

    26262626

    660660660660

    80706050

    552483414374

    26262626

    660660660660

    mm

    Material

    Sound

    Velocity

    In/sec.

    Density

    lbs./In.

    3

    Acoustical

    Impedance

    lbs./In.

    2

    sec

    Relative

    Impedance

    SteelCopperCastIronLeadGlass

    206,500140,400148,80049,800216,000

    0.2830.3200.2600.4110.094

    58,40045,00038,70020,40020,300

    500.0425.0365.0190.0190.0

    ConcreteWaterPineCorkRubber

    198,00056,400132,00019,2002,400

    0.0720.0360.01450.00860.0442

    14,2002,0301,910165106

    134.019.018.01.61.0

    TABLE III: Comparison of Acoustical Impedances

    Acousticalimpedanceisdefinedastheproductofmaterialdensitytimesvelocityofsoundinthematerial.Inacousticalsystems,lowimpedancecorrespondstolowsoundtransmission.RelativeimpedanceisbasedonRubber=1.0

    C. PRESSURE CHARACTERISTICS

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    13/35

    E.2.A. Filled Arch. The spring rate for a Fil led Arch Type

    expansionjointisapproximately4timesthatofaStandardSingle

    ArchType.Thisratewillvarywithmanufacturersandisdependentupon

    thematerialusedinthefilledarchsectionoftheexpansionjoint.

    E.2.B. Multi-Arch. ThespringrateforaMufti-ArchTypeexpansionjoint

    isequalto thespringrateforaSingleArchTypeproductdividedby the

    numberofarches.

    F. HYDROSTATIC TESTING:

    If required, joints can be hydrostatic tested up to1.5 times theMaximum

    Allowable Working Pressure of the product , for a minimum of 10

    minuteswithoutleaks.See Appendix C - Terminology and Table II.

    G. SEISMIC TESTING:

    Association Position. It is the position of the Non-Metallic Expansion Joint

    D iv is ion that, a lthough seismic tes ting may apply to r ig id

    componentsofapipingsystem,itdoesnotapplytoanindividualnon-

    metallicexpansionjointduetoitsinherentflexibility.Theproblemis

    furthercomplicatedbytheabsenceofanydefinitivespecification.

    Theindustryisunabletoquoteonseismictestingunlessspecific

    informationontestproceduresandresultsrequiredbecomesavailable.

    H. CYCLE LIFE:

    Onefullmovementcycleisdefinedasthesumofthetotalmovementsincurred

    whenan expansion jointfully compressesfrom theneutral position

    thenmovestothepositionofmaximumallowedelongationandfinallyreturnsto

    neutral.Cyclelifedependsnot only onthe amountofmovement,but

    also onthe frequency ofcyclesor cyclerate. Cyclelife can also be

    affectedbyinstallationpractices,temperatureandtypeofmediabeing

    handled.

    Testingcaninvolvefullmovementcyclingofanexpansionjointattherateof10

    cyclesperminuteatratedmaximumtemperaturesandpressures to variousduration,withoutfailure.Much longercyclelife occurswithreduced

    movement.

    12

    E. FORCE POUNDS AND SPRING RATES:

    E.1. Force Pounds. Theforcetodeflectanexpansionjointisdefined

    as, the total load required todeflect the expansion joint a distance

    equal to the maximum ratedmovement of the product. This force

    figureisexpressedinpoundsforcompression,elongationandlateral

    movements.Theforcefigureisexpressedinfoot-poundsforangular

    deflection.

    E.2. Spring Rate. Thespringrateis definedas theforcein poundsrequired to deflect an expansion joint one inch in compressionand

    elongationorin alateraldirection.Forangularmovementthespring

    rateistheforceneededinfoot-poundstodeflecttheexpansionjoint

    onedegree.See Table V & VI.

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

    NOMINAL

    PIPE SIZES

    ID X ID

    Minimum

    Concentric

    Minimum

    Eccentric

    Inches Length Length

    1.5 X 1. 6 6

    2. X 1.

    2. X 1.252. X 1.5

    6

    66

    6

    69

    2.5 X 1.2.5 X 1.252.5 X 1.52.5 X 2.

    6666

    8666

    3. X 1.3. X 1.253. X 2.3. X 2.5

    8866

    9866

    3.5 X 1.53.5 X 2.3.5 X 2.53.5 X 3.

    8666

    9866

    4. X 1.54. X 2.4. X 2.54. X 3.4. X 3.5

    86666

    129866

    5. X 2.55. X 3.5. X 3.55. X 4.5. X 4.5

    86666

    119866

    6. X 3.6. X 3.56. X 4.6. X 5.

    8866

    121196

    8. X 4.8. X 5.8. X 6.

    1086

    15129

    10. X 6.10. X 8.

    106

    159

    12. X 8.12. X 10.

    108

    159

    14. X 10.

    14. X 12.

    10

    8

    15

    9

    16. X 10.16. X 12.16. X 14.

    1088

    21159

    18. X 12.18. X 14.18. X 16.

    12108

    221610

    20. X 14.20. X 16.20. X 18.

    12108

    221610

    24. X 16.24. X 18.24. X 20.

    161410

    282216

    30. X 20.30. X 24.

    1814

    3422

    36. X 24.36. X 30.

    2414

    4022

    42. X 30.42. X 36.

    2413

    4022

    48. X 42. 14 22

    54. X 42.54. X 48.

    2213

    4022

    60. X 48.60. X 54.

    2213

    4022

    NMEJ DIVISION STANDARDS

    RECOMMENDATIONS

    NOTES:

    1. TheNMEJDivisionstandardrecommendationsarecalculatedusingthefollowingformulas:a.ConcentricExpansionJoints:Maximumangleof20plus3.b.EccentricExpansionJoints:Maximumangleof20 plus 4.

    2. Forsizesotherthanshown,consultthemanufacturer.

    Reducer Type (Taper):

    Minimum Recommended Face-to-Face Lengths.

  • 8/10/2019 Rubber FSA

    14/35

    13

    in mm in mm in mm in mm in mm lbs/in N/mm lbs/in N/mm lbs/in N/mmft-lbs/

    deg

    Nm/deg

    1*1-1/4*1-1/2*2

    2-1/23

    253240506575

    666666

    150150150150150150

    7/167/167/167/167/167/16

    111111111111

    1/41/41/41/41/41/4

    666666

    1/21/21/21/21/21/2

    131313131313

    27.522.518.514.511.510.0

    333333

    3-1/24568

    88100125150200

    66666

    150150150150150

    7/167/167/167/1611/16

    1111111118

    1/41/41/41/43/8

    666610

    1/21/21/21/21/2

    1313131313

    8.37.56.05.05.5

    33333

    1012141618

    250300350400450

    88888

    200200200200200

    11/1611/1611/1611/1611/16

    1818181818

    3/83/83/83/83/8

    1010101010

    1/21/21/21/21/2

    1313131313

    4.53.753.252.752.5

    33221

    2022242628

    500550600650700

    810101010

    200250250250250

    13/1613/1613/1615/1615/16

    2121212424

    7/167/167/161/21/2

    1111111313

    1/21/21/21/21/2

    1313131313

    2.52.252.02.32.0

    11111

    3032343638

    750800850900950

    1010101010

    250250250250250

    15/1615/1615/1615/1615/16

    2424242424

    1/21/21/21/21/2

    1313131313

    1/21/21/21/21/2

    1313131313

    2.01.81.751.51.5

    11111

    4042444648

    10001050110011501200

    1012121212

    250300300300300

    15/161-1/161-1/161-1/161-1/16

    2427272727

    1/29/169/169/169/16

    1314141414

    1/21/21/21/21/2

    1313131313

    1.51.51.51.31.25

    11111

    505254

    5658

    125013001350

    14001450

    121212

    1212

    300300300

    300300

    1-1/161-1/161-1/16

    1-1/161-1/16

    272727

    2727

    9/169/169/16

    9/169/16

    141414

    1414

    1/21/21/2

    1/21/2

    131313

    1313

    1.251.251.25

    1.251.0

    111

    11

    6066727884

    15001650180019502100

    1212121212

    300300300300300

    1-1/161-1/161-1/161-1/161-1/16

    2727272727

    9/169/169/169/169/16

    1414141414

    1/21/21/21/21/2

    1313131313

    1.01.00.90.90.8

    .5

    .5

    .5

    .5

    .5

    96102108120132144

    240025502700300033003600

    121212121212

    300300300300300300

    1-1/161-1/161-1/161-1/161-1/161-1/16

    272727272727

    9/169/169/169/169/169/16

    141414141414

    1/21/21/21/21/21/2

    131313131313

    0.700.660.620.560.510.47

    .5

    .5

    .5

    .5

    .5

    .5

    235294353423530635

    4151627493111

    304383459552689828

    53678097121145

    350438524700762824

    617792123133144

    .04

    .10

    .15

    .30

    .50

    .80

    .05

    .13

    .20

    .41

    .681.10

    742848105812711412

    130148185223247

    9651104137616521837

    169193241289322

    888952109212341506

    155167191216264

    1.31.93.76.412.7

    1.82.65.08.717.2

    17662118185321182382

    309371325371417

    22962755241127553101

    402482422482543

    16181896223425722840

    283332391450497

    24.242.119.276106

    32.857.180.3103144

    26492913317830603296

    464510557536577

    34403785413039804286

    602663723697751

    31763296341236583904

    556577597641684

    152205274292382

    206278371396518

    35323769400242384475

    619660701742784

    45944899560255125818

    8048589819651019

    41504876560263286502

    72785498111081139

    437555645844943

    59275287411441278

    47084452466448705087

    824780817853891

    61245783605763396608

    10721013106111101157

    66766846714274367732

    11691199125113021354

    10421163127016801825

    14131577172222782474

    530055125724

    59366148

    9289651002

    10391076

    688471667435

    77177992

    120612551302

    13511400

    802483148606

    88969184

    140514561507

    15581608

    196821382308

    24643310

    266828993129

    33414488

    63606996763282688904

    11141225133714481559

    8268909599221074811575

    14481593173818822027

    947210216109541190212850

    16591789191820842250

    35374288568170228641

    479558137702952011715

    101761081211448127201399215264

    178218932005222824502673

    132281405614883165371819019843

    231724622606289631853475

    147501570016652185502028822026

    253827492916324935532857

    134411696721855298713354742902

    182232300329630404984548158164

    TABLE V: TYPICAL NARROW ARCH EXPANSION JOINT MOVEMENT/SPRING RATE CAPABILITIES

    NOTES:A. MOVEMENT CAPABILITY

    1.FilledArchconstructionreducesabovemovementby50%.2.ThedegreeofAngularMovementisbasedonthemaximumextensionshown.3.Ifgreatermovementsaredesired,expansionjointscanbesuppliedwithtwo,threeorfourarches.Relativelylonger"Face-to-Face"lengthdimensionsareincorporatedintodesignsofMultipleArchTypeexpansionjoints.

    4.TocalculateapproximatemovementofMultipleArchexpansionjoints,takethemovementshownintheabovetableandmultiplybythenumberofarches.5.Movementsshownabovearebasedonproperinstallationpractice.(SeeChapterIV,SectionD).

    B. SPRING RATE

    1.Forcesrequiredtomoveexpansionjointsarebasedonzeropressureconditionsandroomtemperatureinthepipeline.2.Theseforcesshouldbeconsideredonlyasapproximateswhichmayvarywiththeelastomersandfabricsusedinfabricationandthespecificconstructiondesignofanindividualmanufacturer.3.SeeChapterIII,SectionFfordefinitionofvaluesshown.4.TocalculatetheapproximateSpringRateforMultipleArchJoints,dividethesinglearchvaluesbythenumberofarches.5.ForPressureThrustForcesseeChapterIV,SectionA.2.

    C. FORCE POUNDS

    1.Istheforcerequiredtomoveanexpansionjointitsratedmovement.

    2.Tocalculatetheforcepoundsrequiredtomoveanexpansionjointitsratedmovement:Multiplytheratedmovementbythecorrespondingspringrate.

    D

    O

    T

    O

    O

    M

    M

    A

    A

    C

    O

    A

    A

    E

    O

    L

    A

    D

    E

    O

    A

    A

    M

    M

    SPRING RATES

    L

    A

    D

    E

    O

    A

    A

    E

    O

    A

    A

    C

    O

    N

    m

    n

    F

    o

    a

    M

    n

    m

    m

    L

    h

    N

    m

    n

    P

    p

    S

    z

    E

    o

    J

    n

    MOVEMENTS

    D

    G

    O

    A

    A

    M

    M

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

    *ItemsarenormallyfurnishedwithFilledArchconstruction.

  • 8/10/2019 Rubber FSA

    15/35

    A

    A

    M

    M

    L

    A

    D

    E

    O

    A

    A

    E

    O

    A

    A

    C

    O

    in mm in mm in mm in mm in mm lbs/in N/mm lbs/in N/mm lbs/in N/mmft-lbs/

    deg

    Nm/

    deg

    1*1-1/4*1-1/2*2

    2-1/23

    253240506575

    666666

    150150150150150150

    3/43/43/43/43/43/4

    191919191919

    7/167/167/167/167/167/16

    111111111111

    3/43/43/43/43/43/4

    191919191919

    34.428.123.118.114.412.5

    333333

    3-1/24568

    88100125150200

    66666

    150150150150150

    3/43/43/43/4

    1-3/16

    1919191930

    7/167/167/167/1611/16

    1111111117

    3/43/43/43/43/4

    1919191919

    10.49.47.56.26.9

    33333

    1012141618

    250300350400450

    88888

    200200200200200

    1-3/161-3/161-3/161-3/161-3/16

    3030303030

    11/1611/1611/1611/1611/16

    1717171717

    3/43/43/43/43/4

    1919191919

    5.64.74.13.43.1

    33221

    2022242628

    500550600650700

    810101010

    200250250250250

    1-7/161-7/161-7/161-5/81-5/8

    3737374141

    3/43/43/411

    1919192525

    3/43/43/43/43/4

    1919191919

    3.12.82.52.92.5

    11111

    3032343638

    750800850900950

    1010101010

    250250250250250

    1-5/81-5/81-5/81-5/81-5/8

    4141414141

    11111

    2525252525

    3/43/43/43/43/4

    1919191919

    2.52.22.21.91.9

    11111

    4042444648

    10001050110011501200

    1012121212

    250300300300300

    1-5/81-7/81-7/81-7/81-7/8

    4148484848

    11111

    2525252525

    3/43/43/43/43/4

    1919191919

    1.91.91.91.61.6

    11111

    505254

    5658

    125013001350

    14001450

    121212

    1212

    300300300

    300300

    1-7/81-7/81-7/8

    1-7/81-7/8

    484848

    4848

    111

    11

    252525

    2525

    3/43/43/4

    3/43/4

    191919

    1919

    1.61.61.6

    1.61.2

    111

    11

    6066727884

    15001650180019502100

    1212121212

    300300300300300

    1-7/81-7/81-7/81-7/81-7/8

    4848484848

    11111

    2525252525

    3/43/43/43/43/4

    1919191919

    1.21.21.11.11.0

    11.5.5.5

    96102108120132144

    240025502700300033003600

    121212121212

    300300300300300300

    1-7/81-7/81-7/81-7/81-7/81-7/8

    484848484848

    111111

    252525252525

    3/43/43/43/43/43/4

    191919191919

    .87

    .82

    .77

    .70

    .64

    .59

    .5

    .5

    .5

    .5

    .5

    .5

    176220265317397476

    313846556983

    228287344414517621

    3950607290109

    262328393525571618

    46576992100108

    .03.075.11.22.375.60

    .04

    .10

    .15

    .30

    .51

    .81

    5566367939531059

    97111139167185

    724828103212391378

    127145181217241

    6667148199251129

    117125143162198

    .9751.4253510

    1.321.934713

    13241588139015881786

    232278243278313

    17222066180820662326

    302362317362407

    12131422167519292130

    212249293338373

    1832145780

    24431977108

    19872185238322952472

    348383417402433

    25802839309729853214

    452497542523563

    23822472255927432928

    417433448480513

    114154205219286

    155209278297388

    26492827300131783356

    464495525556588

    34453674420141344363

    603643736724764

    31123657420147464876

    545640736831854

    328416484633707

    445564656926959

    35313339349836523815

    618585613640668

    45934337454347544956

    804759796832868

    50075134535655775799

    8778999389771016

    78187295212601369

    10591182129117081856

    397541344293

    44524611

    696724752

    780807

    516353745576

    57875994

    904941976

    10131050

    601862356454

    66726888

    105410921130

    11681206

    147616031731

    18482482

    200121732347

    25053365

    47705247572462016678

    835919100210861169

    62016821744180618681

    10861194130314121520

    71047662821589269637

    12441342143915631688

    26533216426152666481

    35974360577771408787

    76328109858695401049411448

    133714201503167018382005

    99211054211162124031364214882

    173718461955217223892606

    110621177512489139121521616519

    193720622187243626652893

    100811272516391224032516032176

    136681725322223303743411243625

    NOTES:A. MOVEMENT CAPABILITY

    1.ThedegreeofAngularMovementisbasedonthemaximumextensionshown.2.Ifgreatermovementsaredesired,expansionjointscanbesuppliedwithtwo,threeorfourarches.Relativelylonger"Face-to-Face"lengthdimensionsareincorporatedintodesignsofMultipleArchTypeexpansionjoints.

    3.TocalculateapproximatemovementofMultipleArchexpansionjoints,takethemovementshownintheabovetableandmultiplybythenumberofarches.4.Movementsshownabovearebasedonproperinstallationpractice.(SeeChapterIV,SectionD).

    B. SPRING RATE

    1.Forcesrequiredtomoveexpansionjointsarebasedonzeropressureconditionsandroomtemperatureinthepipeline.2.Theseforcesshouldbeconsideredonlyasapproximateswhichmayvarywiththeelastomersandfabricsusedinfabricationandthespecificconstructiondesignofanindividualmanufacturer.3.SeeChapterIII,SectionFfordefinitionofvaluesshown.4.TocalculatetheapproximateSpringRateforMultipleArchJoints,dividethesinglearchvaluesbythenumberofarches.5.ForPressureThrustForcesseeChapterIV,SectionA.2.

    C. FORCE POUNDS

    1.Istheforcerequiredtomoveanexpansionjointitsratedmovement.

    2.Tocalculatetheforcepoundsrequiredtomoveanexpansionjointitsratedmovement:Multiplytheratedmovementbythecorrespondingspringrate.

    N

    m

    n

    F

    o

    a

    M

    n

    m

    m

    L

    h

    Table VI: Typical Wide Arch Movement/Spring Rate Capabilities

    14

    N

    m

    n

    P

    p

    S

    z

    E

    o

    J

    n

    SPRING RATESOVEMENTS

    A

    A

    C

    O

    A

    A

    E

    O

    L

    A

    D

    E

    O

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

    A

    A

    D

    G

    T

    O

    O

    D

    G

  • 8/10/2019 Rubber FSA

    16/35

    15

    A.3. Branch Connection Anchors. Figure5Bisanotherillustrationof

    the proper anchoring that should beprovided ina linewith a

    branch connection. The anchor shown at the tee and elbow

    connectionsmustbedesignedtowithstandboththethrustandanyother

    forcesimposedonthesystematthesepoints.Againemphasisisplacedon

    therelativelocationofthejoints,theiranchoringpointsandthepipeguides.

    INTRODUCTION:

    It can be stated generally that the proper location of rubber

    expansion jointsisclosetoamainanchoringpoint.Followingthejointinthe

    line,apipeguideorguidesshouldbeinstalledtokeepthepipein

    line and preventunduedisplacement ofthis line.This isthe simplest

    applicationofajoint,namely,toabsorbtheexpansionandcontractionofa

    pipelinebetweenfixedanchorpoints.

    A.1. Anchors Are Required. Figure5Aillustratesasimplepiping

    system. You will notice that in all cases, solid anchoring is

    providedwhereverthepipelinechangesdirectionandthattheexpansion

    jointsinthat linearelocatedascloseaspossibleto thoseanchor

    points.Inaddition,followingtheexpansionjoints,andagainas

    close as is practical, pipe guides are employed to prevent

    displacement of the pipeline.Itshouldbepointedoutthattheelbows

    adjacenttothepumpare securelysupportedby thepumpbaseso

    that no piping forces are transmittedtotheflangesofthepumpitself.

    Anchorsshownatthe900andthe450bendinthepipelinemustbe

    solid anchors designed to withstandthethrustdevelopedintheline

    togetherwithanyotherforcesimposedonthesystematthispoint.

    A.2. Calculation of Thrust. Whenexpansion jointsareinstalled inthe

    pipeline,thestaticportionofthethrustiscalculatedasaproductofthearea

    oftheI.D.ofthearchoftheexpansionjointtimesthemaximumpressurethat

    willoccurwiththeline.Theresultisaforceexpressedinpounds.Refer

    to Figure 4.

    A. ANCHORING AND GUIDING THE

    PIPING SYSTEM:

    B. CONTROL UNITS:

    B.1. Definition and Purpose.Acontrolunitassemblyisasystemoftwo

    ormorecontrolrods(tierods)placedacrossanexpansionjoint

    from f lange to flange to minimize possible damage to the

    expansion joint caused by excessive motion of the pipeline.

    This excessive motioncouldbecausedby the failureofananchoror

    someotherpieceofequipmentinthepipeline.Figure6showstheproper

    assemblyofanexpansion jointwith controlunit details. Thecontrolrod

    assembliesaresetatthemaximumallowableexpansionand/orcontraction

    ofthejointandwillabsorbthestaticpressurethrustdevelopedatthe

    expansionjoint.Whenusedinthismanner,theyareanadditional

    safetyfactor,minimizingpossiblefailureoftheexpansionjointandpossible

    damagetotheequipment.Controlunitswilladequatelyprotectthejoints,but

    theusershouldbesurethatpipeflangestrengthissufficienttowithstand

    totalforcethatwillbeencountered.The term Control Unit Is

    synonymous with the term Tie Rod as defined by the standards of the

    Expansion Joint Manufacturer's Association (EJMA).

    CHAPTER IVInstallation and Maintenance

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    17/35

    C. OTHER INSTALLATIONS:

    C.1. Vibration Mounts Under Foundation. Figure 5D shows a very

    common pump installation. Instead of being mounted on a solid

    foundation, thepump is supported off the floor on vibration mounts

    Thereisnothingwrongwiththistypeofinstallation.Thesupplierofthe

    vibrationmountsshouldbemadeawareof thefactthatthesemounts

    mustbedesigned,notonlytosupporttheweightofthepump,itsmoto

    andbase,butmustalsoabsorbtheverticalthrustthatwilloccurinbot

    thesuctionanddischargelines.TocalculatethrustseeChapterIV,

    B.2.A. Extension. Controlunitsmustbeusedwhenitisnotfeasible

    in a given structure to provide adequate anchors in the proper

    location.Insuchcases,thestaticpressurethrustofthesystemwill

    causetheexpansionjointtoextendtothelimitsetbythecontrol

    rodswhichwill thenprecludethepossibilityoffurthermotion that

    would over-elongate the joint. Despite the limiting action that

    control rods have on the joint, theymust beused when proper

    anchoring cannot be provided. It cannot be emphasized too

    stronglythatrubberexpansionjoints,byvirtueoftheirfunction,are

    notdesignedtotakeendthrustsand,inallcaseswheresuchare

    likelytooccur,properanchoringisessential.Ifthisfactisignored,

    prematurefailureoftheexpansionjointisaforegoneconclusion.

    B.2.B. Compression. Pipe sleevesor insidenutscanbe installed

    on the control rods. The purpose of the sleeve is to prevent

    excessive compressionin theexpansion joint. The length of this

    pipe sleeve should be such that the expansion joint cannot be

    compressed beyond themaximumallowable compression figure

    statedbythemanufacturer.See Table V and Figure 6.

    B.3. Specifications. For control unit dimensional specifications see

    Appendix C. These specifications are recommended for standard

    constructiontypeexpansionjoints.Theexactnumberofcontrolrods

    shouldbeselectedon thebasisof theactualdesign/testpressureof

    thesystem.Alwaysspecifythematingflangethicknesswhenordering

    controlunitassemblies.See Appendix D.

    B.4. Illustration of the Use of Control Rods. Figure5Cdemonstratesthe type of piping connections thatmust beused in the event itisimpossible toemploy anchoring. The anchor pointat the upper90elbowinthedischargelinehasbeeneliminated.(ItisshowninFigure5A.) In this situation, it is necessary to employ properly designedcontrolunitswiththe jointslocatedin thisnon-anchoredline.Withoutheuseofthesecontrolunits,thepipelinebetweenthepumpandtheanchor,atthe45bend,wouldbeseverelydisplacedduetoelongationintheflexiblerubberexpansionjoint. Thiselongationwouldproceeduntilthejointsrupture.Theuseofcontrolunitsinthiscasepermitsexpansionofthe pipelinein both theverticalandhorizontal directionbetweenthepumpandtheanchor,atthe45bend.However,itdoesprecludethepossibilityof contractionin theserespectivelinesasthe

    furtherextensionoftheexpansionjointis impossiblebecauseof thecontrolunits.

    16

    Forsignificantlateralmovementsphericalwashersarerecommended.

    B.2. Use in Restraining the Piping System. Control units may be

    requiredtolimitbothextensionandcompressionmovements.

    Figure 5D: Typical Pump Installation With Expansion Joints Utilizing

    Vibration Mounts

    Spherical washer equal axial and lateral load distribution

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    18/35

    17

    C.2. Vibration Mounts or Springs Under Base and Anchor.

    AvariationofthedesignasshowninFigure5DisillustratedinFigure5E.

    Animprovedinstallationisshownhere.Thevibration mounts

    underthepumpbaseneedonlysupportthepump,itsmotor

    and base.Thevibrationmountsundertheelbowsupportscan

    thenbedesigned towithstandthe thrustdevelopedin the

    suctionanddischargelines,respectively.

    C.3. Secondary Base. See Figure 5F. In this installation, a

    completesecondarybaseisprovidedforthepumpbaseandthe

    two elbow supports. This secondary base is equipped with

    vibrationmountstoisolateitfromthefloor.Onceagain,thesemounts

    mustbe designedto take into account all of the loads and

    forces acting upon the secondarybase.Theseobviouslyare

    theweightoftheequipmentplusthethrustsdevelopedinthesuction

    anddischargelines.

    D. INSTALLATION INSTRUCTIONS FOR NON

    -METALLIC EXPANSION JOINTS:

    D.1. Service Conditions. Make sure theexpansionjointrating

    fortemperature,pressure,vacuumandmovementsmatchthe

    systemrequirements.Contact themanufacturerfor adviceif

    the system requirements exceed those of theexpansion joint

    selected. Check to make sure the elastomer selected is

    chemicallycompatiblewiththeprocessfluidorgas.

    D.2. Alignment. Expansionjointsarenormallynotdesignedto

    compensateforpipingmisalignmenterrors.Pipingshouldbe linedup

    within1/8".Misalignmentreducestheratedmovementsofthe expansionjointandcan induceseverestressandreduceservice

    life.Pipeguidesshouldbeinstalledto keepthepipealigned

    andtopreventunduedisplacement.See Chapter IV, Section A and

    Table IV.

    D.3. Anchoring. Solid anchoring is required wherever the

    pipeline changesdirection,andexpansionjointsshouldbelocatedas

    closeaspossibletoanchorpoints.Ifanchorsarenotused,

    the pressure thrust may cause excessive movements and

    damagetheexpansionjoints.SeeChapter IV, Section A &B for

    Anchoring, Guiding and Control Rods.

    D.4. Pipe Support. Pipingmustbe supportedsoexpansionjointsdonot

    carryanypipeweight.

    D.5. Mating Flanges. Installthe expansionjoint against thematingpipe

    flangesandinstallboltssothattheboltheadandwasherareagainst

    theretainingrings.Ifwashersarenotused,flangeleakagecanresult-

    particularlyatthesplit intheretainingrings.Flange-to-flangedimensions

    oftheexpansionjointmustmatchthebreech typeopening.Makesure the

    mating flanges are clean and are flat-face- type or nomore than 1/16"

    raised-face-type.Neverinstall expansion joints thatutilizesplit retaining

    rings next towafertype check or butterflyvalves. Seriousdamage can

    resulttoarubberjointofthistypeunlessinstalledagainstfullfaceflanges.

    D.6. Tightening Bolts. Tightenbolts in stages by alternatingaround the

    flange.Ifthejointhasintegralfabricandrubberflanges,theboltsshould

    betightenoughtomaketherubberflangeO.D.bulgebetweenthe retaining

    ringsandthematingflange.Torqueboltssufficientlytoassureleak-free

    operationathydrostatictestpressure.Bolttorquingvaluesareavailable

    frommostmanufacturers.Ifthejointhasmetalflanges,tightenboltsonly

    enoughtoachieveasealandnevertightentothepointthatthereismetal-

    to-metalcontactbetweenthejointflangeandthematingflange.

    D.7. Storage. Idealstorageisawarehousewitharelativelydry,coollocation.Storeflangefacedown ona pallet orwoodenplatform.Donot store

    otherheavyitemsontopofanexpansionjoint.Tenyearshelf-lifecanbe

    expectedwithidealconditions. Ifstoragemust beoutdoorsjointsshould

    beplacedonwoodenplatformsandshouldnotbeincontactwiththeground.

    Coverwithatarpaulin.

    D.8. Large Joint Handling. Donotliftwithropesorbarsthroughthebolt

    holes. I f l if ting through the bore, use padding or a saddle to

    distributetheweight.Makesurecablesorforklifttinesdonotcontacttherubber.

    Donotletexpansionjointssitverticallyontheedgesoftheflanges for any

    periodoftime.

    D.9. Additional Tips.

    D.9.A. Forelevatedtemperatures,donotinsulateoveranon-metallic

    expansionjoint.Seealsopage10.

    D.9.B. Itisacceptable(butnotnecessary)tolubricatetheexpansion

    jointflangeswithathinfilmofgraphitedispersedinglycerinorwater

    toeasedisassemblyatalatertime.

    D.9.C. Donotweldinthenearvicinityofanon-metallicjoint.

    D.9.D. Ifexpansionjointsaretobeinstalledunderground,orwillbe

    submerged in water, contact manufacturer for specific

    recommendations.

    Section A.2. It should also be noted that the thrust in the

    respectivepipelineswillexertaforceontheinletandoutletflanges

    ofthepump,andthepumpmanufacturershouldbecontactedto

    determine whether or not the pump casing is strong enough to

    withstandthisforce.Ifthisisnotdone,itisverypossiblethatthis

    forcecanbelargeenoughtocracktheconnectingflanges.

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    19/35

    D.9.E. Iftheexpansionjointwillbeinstalledoutdoors,makesure

    thecovermaterialwillwithstandozone,sunlight,etc.Materials

    such as EPDM and Hypalon are recommended. Materials

    paintedwithweatherresistantpaintwillgiveadditionalozoneand

    sunlightprotection.

    D.9.F. Checkthetightnessofleak-freeflangestwoorthreeweeksafter

    installationandre-tightenifnecessary.

    WARNING

    : Expansion joints may operate in pipelines or

    equipment carrying fluids and/or gases at elevated

    temperatures and pressures and may transport hazardous

    materials.Precautionsshouldbetakentoprotectpersonnelin

    the event of leakage or splash. SeeChapter 11, Section P.

    Rubber joints should not be installed in inaccessible areas

    where inspection is impossible. Make sure proper drainage is

    availableintheeventofleakagewhenoperatingpersonnelare

    notavailable.

    D.11. Location. Theexpansionjointshouldalwaysbe installed inan

    accessiblelocationtoallowforfutureinspectionorreplacement.

    D.10. Control Rod Installation. Also see Chapter II, 0.2. Control Unit

    Assemblies.

    E. INSPECTION PROCEDURE FOR

    EXPANSION JOINTS IN SERVICE:

    Thefollowingguideis intendedtoassist indeterminingi f an expansion

    jointshouldbereplacedorrepairedafterextendedservice.

    E.1. Replacement Criteria. Ifanexpansionjointisinacriticalservice

    conditionand is five ormoreyearsold,consideration shouldbe

    given tomaintainingaspareorreplacingtheunitatascheduledoutage.If

    theservice is notof a critical nature, observethe expansion

    jointon aregularbasisandplantoreplaceafter10yearsservice.

    Applicationsvaryandlifecanbeaslongas30yearsinsomecases.

    E.2. Procedures.

    E.2.A. Cracking. (SunChecking) Cracking, or crazingmay

    notbe seriousif onlythe outercoveris involvedandthe

    fabric is not exposed.Ifnecessary, repaironsitewith rubber

    cementwhere cracks areminor. Crackingwherethe fabric is

    exposed and torn, indicatestheexpansionjointshouldbereplaced.

    Such cracking is usually the result of excess extension,

    angular or lateral movements.Suchcrackingisidentifiedby:

    (1)aflatteningofthearch,(2)cracksatthebaseofthearch,

    and/or(3)cracksatthebaseof theflange.To avoidfuture

    problems, replacement expansion joints should be orderedwith

    controlrodunits.

    E.2.B. Blisters-Deformation-Ply Separation. Some blisters or

    deformations, when on the external portions of an expansion

    joint,maynot affect theproper performanceof theexpansion

    joint. Theseblistersordeformationsarecosmeticinnatureand

    do not require repair. If major blisters, deformations and/or plyseparationsexistinthetube,theexpansionjointshouldbereplacedas

    soon as possible. Ply separation at the flange O.D. can

    somet imes be observedand isnotacausefor replacementofthe

    expansionjoint.

    E.2.C. Metal Reinforcement. Ifthemetalreinforcement ofan

    expansionjointisvisiblethroughthecover,theexpansionjoint

    shouldbereplacedassoonaspossible.

    E.2.D. Dimensions. Any inspections should veri fy that the

    installation is correct; that there is no excessive

    misalignment between the flanges;and, that theinstalled face-to-

    face dimension is correct. Check for over-elongation, over-

    compression, lateral or angular misalignment. If incorrect

    instal lat ionhascaused theexpansionjointtofail,adjustthepiping

    andorderanewexpansionjointtofittheexistinginstallation.

    E.2.E. Rubber Deterioration. Ifthejointfeelssoftorgummy,planto

    replacetheexpansionjointassoonaspossible.

    E.2.F. Leakage. Ifleakageorweepingisoccurringfromany

    surfaceoftheexpansionjoint,exceptwhereflangesmeet,replacethe

    joint immediately.If leakageoccurs betweenthe matingflange

    andexpansionjointflange,tightenallbolts.Ifthisisnotsuccessful,turn

    off the system pressure, loosen all flange bolts and then

    retightenboltsinstagesbyalternatingaroundtheflange.Make

    suretherearewashersundertheboltheads,particularlyatthe

    split in the retaining rings. Remove the expansion joint andinspectbothrubberflangesandpipematingflangefacesfor

    damage and surface condi tion. Repair or replace as

    required. Also,makesure theexpansionjointisnotoverelongated

    as this cantendto pull thejoint flange away from the mating

    flange resulting inleakage.If leakage persists, consult the

    manufacturerforadditionalrecommendations.

    18

    D.10.A. Assemble expansion joint between pipe flanges to

    the manufactured face-to-face length of the expansion joint.

    Includetheretainingringsfurnishedwiththeexpansionjoint.

    D.10.B. Assemblecontrolrodplatesbehindpipe flangesasshownin

    Figure6.Flangeboltsthrough the controlrodplate mustbe

    longertoaccommodatetheplate.Controlrodplatesshould

    beequallyspacedaroundtheflange.Dependinguponthesize

    and pressure ratingofthesystem,2,3ormorecontrolrodsmaybe

    required.Contactmanufacturerforoptionalinstallations.

    D.10.C. Insertcontrolrodsthroughtopplateholes.Steelwashersareto

    be positioned at the outer plate surface. An optional rubber

    washer ispositioned between the steelwasher and the outerplate

    surface.(See Figure 6.)

    D.10.D. Ifasinglenutperunitisfurnished,positionthisnutsothatthere

    isa gap betweenthenutandthesteelwasher.This gap isequal to the joint's maximum extension (commencing with

    the nominal face-to- face length). Do not consider the

    thicknessoftherubberwasher.Tolockthisnutinposition,

    either"stake"thethreadintwoplacesortackweldthenutto

    therod.Iftwojamnuts arefurnishedforeachunit,tighten

    the two nuts together,soastoachievea"jamming"effecttoprevent

    loosening. Note: Consult the manufacturer if there is any

    question as to the rated compression and elongation. These two

    dimensions are critical in setting the nuts and sizing the compression pipe

    sleeves.

    D.10.E. I f there is a requirement for compression pipe

    sleeves,ordinarypipemaybeusedandsizedinlengthtoallow

    thejointtobecompressedtoitsnormallimit. (See Figure 6.)

    D.10.F. Forreducerinstallations,itisrecommendedthatallcontrolrod

    installationsbeparalleltothepiping.

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    20/35

    CHAPTER V - Flexible Rubber Pipe Connectors

    E. ANCHORING AND CONTROL UNITS:

    Flexiblerubberconnectorsshouldalways be installed in

    piping systems that are properly anchored so that the

    connectors are not required to absorb compression or

    elongationpipingmovements.Ifaxial forces can act in

    the system to compress orelongatetheconnector,control

    unitswillberequiredtopreventaxialmovement.Ingeneral,control

    units are always recommended as an additional safety factor,

    preventingdamage totheconnectorandassociatedequipment.

    See Chapter IV, Section B, and Appendixes C and D.

    D.3. Floating Flange Type. Similar to the flanged type.

    Instead of havinga full-facerubberflange,thisdesignhasasolid

    floatingmetallicflangeorasplitinterlockingflange.TheVan

    Stoneflangeprincipleisusedwiththebeadsoftherubber

    partspecificallydesignedtofitthematingpipeflange.

    D.2. Coupled Type. Insmallerdiameters,rubberpipeisavailablewith

    factoryattachedcouplings.Normallyfurnishedwithmale/male

    couplings,thistypeisalsoavailablewithmale/femalefittings.

    See Figure 7B.

    FOREWORD:

    Thefour previous chaptershave deal t pr imar i ly wi th

    rubberexpansionjointsmanufacturedinsingleormultiplearch

    type designs.Thisdesignprovidessubstantialflexibilitytoallowthe

    expansion jointto absorbpipemovements,whetherinduced by

    thermalchangesorothermechanicalmeans.Incertainapplications,

    the featuresprovidedby arch--type constructionmaynotbe of

    paramountimportance,anditispossibletomanufactureno-arch-

    typeexpansionjoints.It ismorecommon, however, to specify

    flangedpipeconnectorshavingasubstantiallylongerlengththanan

    expansionjointofthesamepipesize,andthischapterwillconsider

    theconstruction,usageanddimensionsofthesepipeconnectors.

    A. DEFINITION:

    A flexible rubberpipeconnector is a reinforced straight rubber

    pipe, fabricated of natural or synthetic elastomersand fabrics,

    primarilydesignedtoabsorbnoiseandvibrationinapipingsystem.

    B. PERFORMANCE CHARACTERISTICS:

    B.1. Sound Limiting Characteristics. Rubber pipeconnectors are

    used inair-conditioningandheatinginstallationsbecauseof their

    ability to limit or interrupt the transmission of sound fromoperatingequipment to thepipingsystem.See Appendixes F and

    G.

    B.2. Pressure/Temperature Limits. Flexible rubber pipe can be

    furnished in either 150 PSIG or 250 PSIG working pressure

    designs at different temperature ratings.See Tables I and II for

    standardmaterialtypesandtemperaturelimits.

    B.3. Resistance to Fluids. Rubber pipe corrosion resistance is the

    sameasforelastomericexpansionjoints. See Chapter III,Section E

    and Table II.

    C. CONSTRUCTION DETAILS:

    C.1. Tube, Cover and Carcass. Detailsconcerningthetube ,cover

    andcarcassfabricreinforcementarethesameasforexpansion

    joints.See Chapter I,Section D and Figure 7A.

    C.2. Metal Reinforcement. Helical-wound, steel reinforcement

    wire is imbedded in the carcass to provide strength for high

    pressureoperations and toprevent collapseundervacuum.See

    Figure 7A.

    D. TYPES OF PIPE CONNECTORS:

    D.1. Flanged Type. Themostcommontypeofrubberpipeincorporates

    afullfaceflangeintegralwiththebodyofthepipe.Theflangeisdrilledto

    conformtotheboltpatternofthe-companionmetalflangesof the

    pipeline. (See Appendix B.) This typeofa rubber-faced flange,backedwitharetainingring,isofsufficientthicknesstoforma

    tightsealagainstthecompanionflangewithouttheuseofagasket.

    19

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

  • 8/10/2019 Rubber FSA

    21/35

    F. INSTALLATION AND MAINTENANCE:

    TheinformationinchapterIV,SectionDappliestoflexiblepipe

    connectorsaswellasexpansionjoints.See Chapter IV, Section D.

    2

    TYPICAL FLANGE THICKNESS

    Nominal Flange

    Thickness

    # Measurements

    in. mm in. mm

    9/16 14 4 1/16 2

    5/8-7/8 16-22 4 3/16 5

    1 25 4 1/4 6

    1-1/8-1-1/4 29-32 5 5/16 8

    1-1-3/8 25-35 6 3/8 10

    Tolerance

    NOTE: Measurementstakenatthebolthole.

    TABLE VII: Rubber pipe connectors. Available Sizes

    and Suggested Length-to-Face Lengths.

    Thisinformationisprovidedtohelpguideyourselection.EachFSAmembersproductmayvaryfromthisinformation.Consultandconfirmyourmanufacturersperformancedata.

    Nominal Pipe Size C