r.r. mishra · pulley-mass system h x 1 x 2 constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2....

47
R.R. Mishra Department Of Physics BITS Pilani

Upload: others

Post on 08-May-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

R.R. Mishra

Department Of Physics

BITS Pilani

Page 2: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Mechanics, Oscillations

and Waves (MEOW)

Page 3: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

1. Mechanics (R.R. Mishra)

20 ~ 22 Lectures

2. Oscillations & Waves (D.D. Pant)

20 ~ 22 Lectures

Major Division

Page 4: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Textbooks :

1. An Introduction to Mechanics :

Daniel Kleppner & Robert

Kolenkow

2. The Physics of Vibrations &

Waves : A. P. French

Page 5: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Mechanics

Chapter No. 2 : Review of Newton’s

Equations

Chapter No. 3 : Linear Momentum

Chapter No. 4 : Work, Energy & Power

Chapter No. 6 : Angular Momentum

Chapter No. 8 : Non-inertial systems and

Fictitious Forces

Page 6: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

A world simple enough to be

understood, would be too simple

to produce a mind that can

understand it. J.D. Barrow

Page 7: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Chapter 2

• Constrained Motion

• Newton’s Equations in Polar

Coordinates

Page 8: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Constrained Motion

Page 9: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Examples

1. Pulley-mass system

h

1x

2x

Constraint eq.

)xh()xh( 21

0aa 21

Page 10: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

2. Block on a fixed wedge

x

y

Constraint equation :

h

1h

yx

xy a

ha

Page 11: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Prob. 2.16

450

A Angle of wedge : 450

Acceleration of

wedge : A, to right

No friction between block and

wedge

Q : What is the acceleration of the

block w.r.t. the ground

Block on accelerated wedge

Page 12: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

450

A

N

mg

2tA2

1hyx Aaa yx

mAmg2

N

2

N

)gA(

2

mN

x

y

2At2

1 h

h

Constraint Equation :

Page 13: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

)gA(2

1a;)gA(

2

1a yx

The block will climb up the wedge iff A > g

Page 14: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

450

N

mg

x

y

h

h

X

Suppose the wedge is left to itself and

is free to move on a frictionless surface.

Xhyx xyx Aaa

Page 15: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

2

Nmg

2

N

2

N

3

mg

2

N

3

gA;

3

g2a;

3

ga xyx

(Mass of wedge : m)

Page 16: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

1M

2M

3M

Prob. 2.20

Consider the “pedagogic machine”. All

surfaces are frictionless. Find the

acceleration of block when the system

is released. 1M

The Pedagogic Machine

Page 17: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Constraint Equation :

)yy()xx( 021

0aaa 321

1M

2M

3M

1x

0y

2x

y

x

y

Page 18: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

22aMT

333 aMgMT

131 a)MM(T

0aaa 321

Four unknowns, , and four

equations ! 321 a&a,a,T

1M

2M

3M

T

T

T

Page 19: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

All four unknowns can be solved for.

In particular,

gMMM2MMMM

MMa

2

3323121

321

Page 20: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Newton’s Equations in Polar Co-ordinates

Review of Newton’s Eq. in Cartesian

Co-ordinates

Page 21: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

The Cartesian System

i

j F

i

j

jFiFF yx

jvivv yx

Page 22: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Equations of Motion

j)t(yi)t(x)t(r

jyixdt

rd)t(v

jyixdt

vda

m

x

y

r F

Fam

jFiF)jyix(m yx

yx Fym;Fxm

Page 23: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Polar Co-ordinates

P r

,r

Page 24: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

The Polar Grid and Unit Vectors

r

r

1ˆˆrr

0ˆr

Page 25: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Resolving Vectors in Polar Coordinates

r

A

ˆArAA r

Page 26: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Unit vectors in the polar co-ordinates

vary from point to point, unlike unit

vectors in the Cartesian co-ordinates.

Expressing in terms of .

)ˆ,r(

)j,i(

)ˆ,r( )j,i(

jsinicosr θ+θ=

jcosisin-ˆ θ+θ=θ

r

x

y

θ

θ

r

Page 27: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Newton’s Equations of Motion in Polar

Coordinates

r

x

y

θ

jsinicosr θ+θ=

jcosisin-ˆ θ+θ=θ

r-θ&θr

rrr =

We have,

Page 28: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

ˆrrr

Another differentiation leads to

rr-ˆrˆrˆrrrva 2

ˆ)r2r(r)r-r( 2

ˆaraawithComparing r

rrrrrv

rv&rvr

Page 29: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

r2ra&r-ra 2

r

r

2 F)r-r(m∴

F)r2r(m } Newton’s Eqs. in

polar coordinates

Page 30: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Prob. 2.29

A car moving radially

outward on revolving

platform.

Coeff. of friction = μ

Ang. Velocity of

platform = ω (constant)

Velocity of car w.r.t.

platform = v0

Car starts from centre of platform

v0

ω

Page 31: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Find :

a) Acceleration of car as a function of

time using polar coordinates. Show by

vector diagram

b) The time at which the car starts to

skid

c) Direction of frictional force at the

time of skidding

Page 32: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

a) We have :

tvr 0

t

22

r rrra

0v2r2ra

v0

x

y

Page 33: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

x

y

ra

aa

2

r ra

0v2a

Page 34: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

b) Net force on car :

22

r FFF 22

r aam

2

0

242 v4rm

22

0

2

0

2242

0 t4vmv4tvm

The car will start to skid when

gmF 2

0

2

0

222

v

v4gt

Page 35: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

c) Direction of frictional force at the

time of skidding

rF

F

F

2

r rmF

0vm2F

Direction of

skidding

Page 36: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Prob. 2.33

x

r

θ

y ω

m

Rod with a mass m

on it. Rod rotates

with constant

angular velocity

ωon a horizontal

plane and mass free

to slide.

i) Show that motion is given by tt- eBeA)t(r

Find β.

Page 37: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

ii) Show that for a particular choice of

initial conditions, it is possible to obtain

a solution such that r continually

decreases and that for all other choice, r

will eventually increase.

x

r

θ

y ω

m

a) The Polar equations

are :

0)rr( 2

NFrm2

N

Page 38: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

rdt

rd 2

2

2

The coordinate Should be such a

function of that twice differentiation of

w.r.t. will be proportional to itself.

rrt

t

An intelligent guess :

te)t(r

Substituting this into the LHS

The radial equation is

Page 39: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

rr 22

tt e&eBoth are solutions for r

The given equation being a linear

equation, the most general solution is

tt eBeA)t(r

where, A & B are constants to be determined

Page 40: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

ii) Let the initial conditions be :

00 v)0(r&r)0(r

The complete solution is then :

t

00

t

00 evr2

1evr

2

1)t(r

Now,

t00

t

00 evrevr2

1

dt

dr

Page 41: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Additional Part

rm2N

What is the normal force of the rod on

the bead?

t0

0

t00

2 ev

rev

rm

For to be negative, the coeff. of

must be negative.

dtdrte

Page 42: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Prob. 2.35

v0

A block of mass m slides

on the inside of a ring

fixed to a frictionless

table. It is given an initial

velocity of v0. Coefficient

of friction between the ring and the block

is μ. Find the velocity and position at a

later time t.

Page 43: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

N

μN

N-Fr =

N-F μ=θ

ANS :

NmR)rr(m 22

NmR)r2r(m

The polar equations are :

Page 44: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Substituting N from the first equation in

the second

2

Putting

2

dt

d

t

0

2td

d

0

t11

0

Page 45: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

t1 0

0

tvR

vRv

0

0

t1dt

d

0

0

0

t

0 0t1

tdd

t1n1

0

0

Page 46: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

Prob. 2.37

A bowl shaped racing

track, on which a

racing vehicle can

move in horizontal

circles without

friction.

Q : What should be the equation of the

vertical cross section of the track, so

that it takes the same time T to circle the

track, whatever be its elevation

Page 47: R.R. Mishra · Pulley-mass system h x 1 x 2 Constraint eq. (h x 1) (h x 2) " a 1 a 2 0. 2. Block on a fixed wedge x y Constraint equation : " h 1 h x y " y x a h a " Prob. 2.16 450

x

y

θ

x

y

θ

N

mg

mgcosN

x

mvsinN

2

xg

v

dx

dytan

2

,T

x2v,Since

xkTg

x4

dx

dy2

2

2

xky

2

(Parabola)