rotational and vibrational states in heavy nuclei described

43
Jacek Dobaczewski 1/33 Rotational and vibrational states in heavy nuclei described within the energy density functional methods Jacek Dobaczewski University of Warsaw & University of Jyväskylä Seminarium „Struktura jądra atomowego” Uniwersytet Warszawski 22 marca 2012

Upload: others

Post on 03-Feb-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Jacek Dobaczewski

1/33

Rotational and vibrational states

in heavy nuclei described within the

energy density functional methods

Jacek DobaczewskiUniversity of Warsaw & University of Jyväskylä

Seminarium „Struktura jądra atomowego”Uniwersytet Warszawski

22 marca 2012

Jacek Dobaczewski

2/33

The Jyväskylä theory team on January 10, 2012

Standing, from left: Markus Kortelainen, Jacek Dobaczewski

Seated, from left: Francesco Raimondi, Jussi Toivanen, Yuan Gao

Newcomer: Vaia Prassa

Former members: Gillis Carlsson, Alessandro Pastore, Nicolas Michel, Petr Veselý

Visitors: Dimitar Tarpanov, Yue Shi, Karim Bennaceur,Tamara Nikšić

Jacek Dobaczewski

3/33

Jacek Dobaczewski

4/33

Precise Penning-trap mass measurements beyond 132Sn Tilted-axis cranking determination of ultra-high-spin triaxial rotational

bands in 158Er Incompressibility of finite nuclei studied within modern QRPA

calculations Rotational bands in superheavy nuclei around 252No Low-lying vibrational (2+ and 3-) states in semi-magic nuclei

(Calsson, Toivanen) QRPA correlation energies up to multipolarity 7 (Calsson, Toivanen) Beta-decay rates in spherical nuclei (Veselý) Beta-decay rates in deformed nuclei (Toivanen, Pastore) Pseudopotentials and equation of continuity in higher-order EDF’s

(Raimondi) Adjustments of higher-order functionals to data (Prassa, Carlsson, Veselý,

Kortelainen) Error propagation in EDF approach (Gao) Approximate restoration of broken symmetries by the Lipkin method

(P. Toivanen, Gao) Particle- and Quasiparticle-phonon coupling (Tarpanov, Toivanen) Regularization of zero-range effective interactions (Bennaceur, Raimondi)

Projects

Jacek Dobaczewski

5/33

Precise Penning-trap mass measurements

beyond 132Sn

Jacek Dobaczewski

6/33

arXiv:1203.0958v2 [nucl-ex] 6 Mar 2012

Jacek Dobaczewski

7/33

En

erg

y

N-2 N-1 N N+1 N+2

D(3

) od

d

D(3

) od

dD(3

) ev

en

Odd-even mass staggering

W. S

atu

ła e

t a

l., P

hy

s.R

ev

.L

ett

. 8

1, 3

59

9(1

99

8)

Jacek Dobaczewski

8/33

Experimental data around 132Sn

Jacek Dobaczewski

9/33

Sn surSn mixSn vol

70 80 90

(b)

0.5

1.0

1.5

Sn

Te

Xe

70 80 90

Neutron Number N

D(3

) (N)

[Me

V]

SLy4 + HFB(sph)

(a)

Spherical EDF calculations around 132Sn

Jacek Dobaczewski

10/33

(b)SLy4 + HFB(sph)

50 52 54

SLy4 + PLN(def)

(d)0.0

0.5

50 52 54

(c)

Proton Number Z

SLy4 + HFB(def)

0.0

0.5

1.0

N=81N=83

D(3

) (N)

[Me

V]

EXP(a)

Odd-even mass staggering in N=81 & 83

Jacek Dobaczewski

11/33

Tilted-axis cranking determination of ultra-

high-spin triaxial rotational

bands in 158Er

Jacek Dobaczewski

12/33

Jacek Dobaczewski

13/33

X.

Wa

ng

et

al.

, Ph

ys.

Le

tt. B

70

2, 1

27

(2

01

1)

DSAM life-time measurements

Jacek Dobaczewski

14/33

X.

Wa

ng

et

al.

, Ph

ys.

Le

tt. B

70

2, 1

27

(2

01

1)

Cranked Nilsson–Strutinsky (CNS) model

Jacek Dobaczewski

15/33

Tilted-axis cranking

Kerman-Onishi theorem

Jacek Dobaczewski

16/33

Incompressibility of finite nuclei studied

within modern QRPA calculations

Jacek Dobaczewski

17/33

arXiv:1202.5617 [nucl-th] 25 Feb 2012

Ex

pe

rim

en

tal

da

ta f

rom

:T

. Li,

U. G

arg

, Y

. L

iu, e

t a

l.,

Ph

ys.

Re

v.

Le

tt. 9

9, 1

62

50

3 (

20

07

);P

hy

s. R

ev

. C

81

, 03

43

09

(2

01

0))

Jacek Dobaczewski

18/33

Fast RPA and QRPA + Arnoldi method

J. Toivanen et al., Phys. Rev. C 81, 034312 (2010)

Jacek Dobaczewski

19/33

Convergence of the Arnoldi method

Jacek Dobaczewski

20/33

Finite-range separable pairing interaction

Y. T

ian

, Z

.Y.

Ma

, P

.Rin

g,

Ph

ys.

Le

tt. B

67

6,

44

(2

00

9)

Jacek Dobaczewski

21/33

Nuclear incompressibility

J. P

. B

laiz

ot,

Ph

ys.

Re

p.

64

, 17

1 (

19

80

)

Jacek Dobaczewski

22/33

Nuclear incompressibility

P. Veselý, et al., arXiv:1202.5617

Full (empty) symbols correspond to the zero-range(separable) pairing force

Jacek Dobaczewski

23/33

Nuclear incompressibility

P.

Ve

selý

, et

al.

, arX

iv:1

20

2.5

61

7

Jacek Dobaczewski

24/33

Centroids of GMR

P.

Ve

selý

, et

al.

, arX

iv:1

20

2.5

61

7

Jacek Dobaczewski

25/33

P.

Ve

selý

, et

al.

, arX

iv:1

20

2.5

61

7

Nuclear incompressibility – liquid drop

Jacek Dobaczewski

26/33

Rotational bands in superheavy nuclei

around 252No(preliminary)

(with Yue Shi and Paul Greenlees)

Jacek Dobaczewski

27/33

P.

Gre

en

lee

s, e

t a

l.,

to b

e p

ub

lish

ed

Rotational bands in N=150 & 152 isotones

Experiment

Lines = Harris fits

Jacek Dobaczewski

28/33

Neutron quasiparticle spectra in 251Cf153

UNEDF1 = new parameterization adjusted to heavy deformed nucleiM. Kortelainen et al., Phys. Rev. C85, 024304 (2012)

Jacek Dobaczewski

29/33

Proton quasiparticle spectra in 249Bk152

Jacek Dobaczewski

30/33

A. Sobiczewski, I. Muntian, Z. PatykPhys. Rev. C63, 034306 (2001)

58

60

62

64

66

68

70

72

74Z=100JexpZ=102JexpZ=104Jexp

144 146 148 150 152 154 156

Neutron Number N

Without Lipkin-Nogami

Without Lipkin-NogamiWoods-Saxon & BCS

J(1) in N=150 & 152 isotones

Jacek Dobaczewski

31/33

With Lipkin-Nogami Without Lipkin-Nogami

251Cf153

249Bk152

J(1) in N=150 & 152 isotones

Jacek Dobaczewski

32/33

Conclusions

1. Precise Penning-trap mass measurements beyond 132Sn call for an improved analysis of correlations in odd nuclei

2. Tilted-axis cranking determination of ultra-high-spin triaxial rotational bands in 158Er proves the instability of excited configurations.

3. Incompressibilities of finite nuclei studied within modern QRPA calculations do not provide answer to the question “Why tin is so soft”

4. Rotational bands in superheavy nuclei around 252No challenge current approaches to pairing.

Jacek Dobaczewski

33/33

Thank you

Jacek Dobaczewski

34/33

What is DFT?

Density Functional Theory:

A variational method that uses observables as variational

parameters.

Jacek Dobaczewski

35/33

Rayleigh-Ritz Variational Method

Jacek Dobaczewski

36/33

Which DFT?

Jacek Dobaczewski

37/33

What is the DFT good for?

1) Exact: Minimization of E(Q) gives the exact E and exact Q2) Impractical: Derivation of E(Q) requires the full

variation d (bigger effort than to find the exact ground state)

3) Inspirational: Can we build useful models E’(Q) of the exact E(Q)?

4) Experiment-driven: E’(Q) works better or worse depending on the physical input used to build it.

Energy E is afunction(al) of Q

Jacek Dobaczewski

38/33

How the nuclear EDF is built?

Local energy density is afunction of

local densityLDA

Non-local energy density is afunction of

non-local densityGogny, M3Y,…

Jacek Dobaczewski

39/33

How the nuclear EDF is built?

Quasi-local energy density is a function of

local densities and gradientsSkyrme, BCP,

point-coupling,…

Non-local energy density is a function of

local densitiesRMF (Hartree)

Jacek Dobaczewski

40/33

Collectivity

beyond mean field, ground-state correlations, shape coexistence, symmetry restoration, projection on good quantum numbers, configuration interaction, generator coordinate method, multi-reference DFT, etc….

True formean field

Jacek Dobaczewski

41/33

I. Range separation and exact long-range effects

II. Derivatives of higher order:

III. Products of more than two densities:

Extensions

Jacek Dobaczewski

42/33

Finite-range separable pairing interaction

Jacek Dobaczewski

43/33

Nuclear incompressibility

P. Veselý, et al., arXiv:1202.5617