rotation and translation mechanisms for tabletop interaction mark s. hancock, frédéric d. vernier,...

37
Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI ELECTRIC Changes for the better

Upload: loren-perry

Post on 28-Dec-2015

233 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Rotation and TranslationMechanisms for Tabletop Interaction

Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen

MITSUBISHIELECTRIC

Changes for the better

Page 2: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Rotation and translation techniquescan be better understood by comparing thedegrees of freedoms of input to output

Page 3: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Motivation

DownhillBack-Country (Telemark)

Page 4: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Motivation

• Downhill bindings– Attached at rear

•Telemark bindings–Free at rear

Page 5: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Motivation

Page 6: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Degrees of Freedom

The minimum number of independent variables that describes the possible movement in a system.

Page 7: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Degrees of Freedom

• Input (physical movement):– Single-point or multi-point (per person)– 2D surface or physical 3D space

• Output (virtual movement):– Position (2D)– Angle (1D)

Page 8: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Rotation & Translation

Can

you

read

this

?C

an y

ou

read

this

?

Page 9: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Methods ofRotation & Translation

Page 10: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Explicit Specification

• Input– x, y, θ, etc.– 1 DOF

• Output– x, y, θ, etc.– 1 DOF

• Input DOF = Output DOF

Page 11: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Independent Translation

• Input– x & y– 2 DOF

• Output– x & y– 2 DOF

• Input DOF = Output DOF

Page 12: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Independent Translation

T

C

O

T’

C’

Page 13: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Independent Rotation

• Input– x & y– 2 DOF

• Output– θ– 1 DOF

• Input DOF > Output DOF

Page 14: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Independent Rotation

C

T

T’

Ө

C

T

T’

Ө

Page 15: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Automatic Orientation

• Input– x & y– 2 DOF

• Output– r, θ– 2 DOF

• Input DOF = Output DOF

Page 16: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Automatic Orientation

T

O

T’

C

θ

Page 17: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Integral Rotation & Translation

• Input– x & y– 2 DOF

• Output– x, y, & θ– 3 DOF

• Input DOF < Output DOF

Page 18: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Integral Rotation & Translation

Ө

Ө T

T’

C

C’

C

Page 19: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Two-Point Rotation & Translation

T2 T’1

T1 T’2

T2

Ө

• Input– x1, y1, x2, y2

– 4 DOF

• Output– x, y, θ– 3 DOF

• Input DOF > Output DOF

Page 20: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Two-Point Rotation & Translation

T2 T’1

T1 T’2

T2

Ө

Page 21: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Degrees of Freedom

T2 T’1

T1 T’2

T2

Ө

1DOF → 1DOF 2DOF → 2DOF 2DOF → 2DOF

2DOF → 1DOF 4DOF → 3DOF 2DOF → 3DOF

Explicit Specification Independent Translation Automatic Orientation

Independent Rotation 2-Point Integrated

Page 22: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Impact ofDegrees of Freedom

Page 23: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Coordination & Communication

• Use rotation & translation to communicate

• Must support both:– Need all 3 DOF output

Page 24: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Coordination & Communication

T2 T’1

T1 T’2

T2

Ө

Communication-Friendly

Communication-Unfriendly

Page 25: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Consistency

• Consistent– Output = f(Input)– Output DOF ≤ Input DOF

• Inconsistent– Output ≠ f(Input)– Output DOF > Input DOF:

Page 26: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Consistency

ConsistentInconsistent

Page 27: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Completeness

• Complete– Output DOF ≥ Entire space

• Incomplete– Output DOF < Entire space

Page 28: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Completeness

Complete

Incomplete

Page 29: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

GUI Integration

• Restricted Areas– Input DOF = Output DOF

• Works!

Page 30: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

GUI Integration

Input DOF < Output DOF(Larger area desirable)

Input DOF > Output DOF(Difficult to constrain)

Page 31: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Role of Snapping

• Input DOF > Output DOF– e.g. Ruler: 2DOF Input, 1DOF Output– e.g. Independent Rotation, 2-Point

Page 32: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Role of Snapping

• Snap to polar-grid• Snap to rectilinear grid• Snap to one another

• Snap:– Position– Orientation– Both

Page 33: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Design Questions

• What DOF of output is necessary?

• What DOF of input is available?

• How can the input DOF be mapped to the output DOF?

• If the mapping involves a change in DOF, how will this affect interaction?

Page 34: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Conclusion

• Downhill bindings– Less DOF input– Good for downhill

•Telemark bindings–More DOF input–Good for uphill climbs

Page 35: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Conclusion

Alpine Touring (AT) Bindings

Page 36: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Rotation and translation techniquescan be better understood by comparing thedegrees of freedoms of input to output

Page 37: Rotation and Translation Mechanisms for Tabletop Interaction Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, Chia Shen MITSUBISHI

Mark S. Hancock ([email protected])

Frédéric D. Vernier ([email protected])

Daniel Wigdor ([email protected])

Sheelagh Carpendale ([email protected])

Chia Shen ([email protected])

Thank you!