robot-manual french codes

Upload: mehdi-ouakour

Post on 01-Jun-2018

235 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 ROBOT-Manual French Codes

    1/38

    AAuuttooddeesskk

    RRoobboottSSttrruuccttuurraallAAnnaallyyssiiss

    PPrrooffeessssiioonnaall

    VVEERRIIFFIICCAATTIIOONNMMAANNUUAALLFFOORRFFRREENNCCHHCCOODDEESS

    March 2014

  • 8/9/2019 ROBOT-Manual French Codes

    2/38

    2014 Autodesk, Inc. All Rights Reserved. Except as otherwise permitted by Autodesk, Inc., thispublication, or parts thereof, may not be reproduced in any form, by any method, for any purpose.Certain materials included in this publication are reprinted with the permission of the copyrightholder.

    DisclaimerTHIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE AVAILABLEBY AUTODESK, INC. AS IS. AUTODESK, INC. DISCLAIMS ALL WARRANTIES, EITHEREXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIESOF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE REGARDING THESEMATERIALS.

    TrademarksThe following are registered trademarks of Autodesk, Inc., in the USA and/or other countries:

    Autodesk Robot Structural Analysis Professional, Autodesk Concrete Building Structures, SpreadsheetCalculator, ATC, AutoCAD, Autodesk, Autodesk Inventor, Autodesk (logo), Buzzsaw,Design Web Format, DWF, ViewCube, SteeringWheels, and Autodesk Revit.

    All other brand names, product names or trademarks belong to their respective holders.

    Third Party Software Program CreditsACIS Copyright 1989-2001 Spatial Corp. Portions Copyright 2002 Autodesk, Inc.Copyright 1997 Microsoft Corporation. All rights reserved.International CorrectSpell Spelling Correction System 1995 by Lernout & Hauspie Speech Products, N.V. All rights reserved.InstallShield3.0. Copyright 1997 InstallShield Software Corporation. All rights reserved.PANTONE and other Pantone, Inc. trademarks are the property of Pantone, Inc. Pantone, Inc.,2002.Portions Copyright 1991-1996 Arthur D. Applegate. All rights reserved.Portions relating to JPEG Copyright 1991-1998 Thomas G. Lane. All rights reserved. Portions ofthis software are based on the work of the Independent JPEG Group.

    Portions relating to TIFF Copyright 1997-1998 Sam Leffler. Copyright 1991-1997 SiliconGraphics, Inc. All rights reserved.

    Government UseUse, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth inFAR 12.212 (Commercial Computer Software-Restricted Rights) and DFAR 227.7202 (Rights inTechnical Data and Computer Software), as applicable.

  • 8/9/2019 ROBOT-Manual French Codes

    3/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page i

    INTRODUCTION .................................................................................................................................................................................. 1

    SSTTEEEELL ................................................................................................................................................................................................... 2

    1. CM66 ................ ................. ................ ................ ................. ................ ................. ............... ................. ................ ................. ............. 3

    VERIFICATIONEXAMPLE1 -AXIAL COMPRESSION I ..................................................................................................................... 4VERIFICATIONEXAMPLE2 -AXIAL COMPRESSION II .................................................................................................................... 7

    VERIFICATIONEXAMPLE3 -BENDING WITH LATERAL/TORSIONAL BUCKLING EFFECT.................................................................. 10VERIFICATIONEXAMPLE4 -IPEPROFILE LOADED IN UNIAXIAL BENDING AND AXIAL COMPRESSION................. ................ ........... 13

    VERIFICATIONEXAMPLE5 -COMPRESSION AND SHEAR FORCE ................................................................................................. 16

    CCOONNCCRREETTEE ........................................................................................................................................................................................ 22

    1. BAEL 91 MOD. 99 - RC COLUMNS ............................................................................................................................................. 23

    VERIFICATIONEXAMPLE1 -COLUMN SUBJECTED TO AXIAL LOAD .............................................................................................. 24VERIFICATIONEXAMPLE2 -COLUMN SUBJECTED TO AXIAL LOAD .............................................................................................. 27VERIFICATIONEXAMPLE3 -COLUMN SUBJECTED TO AXIAL LOAD AND BIAXIAL BENDING............................................................ 29LITERATURE.................................................................................................................................................................................. 35

  • 8/9/2019 ROBOT-Manual French Codes

    4/38

  • 8/9/2019 ROBOT-Manual French Codes

    5/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 2/ 35

    SSTTEEEELL

  • 8/9/2019 ROBOT-Manual French Codes

    6/38

  • 8/9/2019 ROBOT-Manual French Codes

    7/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 4/ 35

    VERIFICATION EXAMPLE 1- Axial compression I

    Example taken from handbook STRUCTURES METALLIQUES

    CM66 - additif 80 - Eurocode 3written by Jean Morel

    TITLE:

    Axial compression (Example 1 page 119).

    SPECIFICATION:The column shown below is fully restraint at the bottom end and pinned at the top end about y-y andz-z axes. So the effective length lk along both of axes is 0,5h = 5000 mm. For the design value of thecompressive force N=73500 daN check the column made of S.235steel. It has been suggested that aIPE 400 section be considered.

    SOLUTION:Define a new type of member. For analysed member pre-defined type of member COLUMN may beinitially opened. It can be set in Member type combo-box. Press the Parameters button inDEFINITION-MEMBERS tab, which opens MEMBER DEFINITIONPARAMETERS dialog box. Typea new name Column 1in the Member Type editable field. Then, press Buckling Length coefficient Yicon and select the second icon (value 0.5). Repeat the same operation for Z direction.

  • 8/9/2019 ROBOT-Manual French Codes

    8/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 5/ 35

    In the CALCULATIONS dialog box set Member Verificationoption for member 1 and switch off LimitState Serviceability (only Ultimate Limit state will be analysed). Now, start the calculations bypressing Calculationsbutton.

    Member Verification dialog box with most significant results data will appear on screen. Pressing the

    line with results for member 1 opens the RESULTS dialog box with detailed results for the analysedmember.

    The view of the RESULTS window is presented below. Moreover, the printout note containing thesame results data as in Simplified resultstab of the RESULTS window is added.

  • 8/9/2019 ROBOT-Manual French Codes

    9/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 6/ 35

    STEEL DESIGN---------------------------------------------------------------------------------------------------------------------------------------CODE: CM66

    ANALYSIS TYPE: Member Verification

    ---------------------------------------------------------------------------------------------------------------------------------------

    CODE GROUP:MEMBER: 1 POINT: 1 COORDINATE: x = 0.00 L = 0.00 m

    ---------------------------------------------------------------------------------------------------------------------------------------

    LOADS:Governing Load Case: 1 test---------------------------------------------------------------------------------------------------------------------------------------

    MATERIAL:

    ACIER fy = 23.50 daN/mm2---------------------------------------------------------------------------------------------------------------------------------------

    SECTION PARAMETERS: IPE 400ht=40.0 cm

    bf=18.0 cm Ay=48.600 cm2 Az=34.400 cm2 Ax=84.464 cm2tw=0.9 cm Iy=23128.400 cm4 Iz=1317.820 cm4 Ix=46.800 cm4tf=1.4 cm Wely=1156.420 cm3 Welz=146.424 cm3

    ---------------------------------------------------------------------------------------------------------------------------------------STRESSES: SigN = 73500.00/84.464 = 8.70 daN/mm2---------------------------------------------------------------------------------------------------------------------------------------

    LATERAL BUCKLING PARAMETERS:---------------------------------------------------------------------------------------------------------------------------------------

    BUCKLING PARAMETERS:

    About Y axis: About Z axis:LY=10.00 m MuY=26.09 LZ=10.00 m MuZ=1.49

    LfY=5.00 m k0Y=1.03 LfZ=5.00 m k0Z=2.69Lambda Y=30.22 Lambda Z=126.58

    ---------------------------------------------------------------------------------------------------------------------------------------

    VERIFICATION FORMULAS:k0*SigN = 2.69*8.70 = 23.37 < 23.50 daN/mm2 (3.411)---------------------------------------------------------------------------------------------------------------------------------------

    Section OK! ! !

    COMPARISON:

    Resistance, interaction expression Robot HANDBOOK

    Factored compressive stress in a member k[daN/mm2]

    Amplification factor for compression stresses k

    Check of the formula k/e 1

    23,37

    2,69CM66 (3,412)

    0,99

    23,5

    2,71CM66 (3,411)

    1,000

  • 8/9/2019 ROBOT-Manual French Codes

    10/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 7/ 35

    VERIFICATION EXAMPLE 2- Axial compression II

    Example taken from handbook

    CONCEPTION ET CALCUL DES STRUCTURES METALLIQUESwritten by Jean Morel

    TITLE:Axial compression (Example 3.2.4.1 page 73).

    SPECIFICATION:The column shown aside is fully restraint at the both ends about y-y and z-z axes. The effective lengthlk along both of axes is 0,5h = 4000 mm. For the design value of the compressive force N=130167daN check the column made of E24 steel. It has been suggested that a HEB 200 section beconsidered.

    SOLUTION:Define a new type of member. For analysed member pre-defined type of member COLUMN may beinitially opened. It can be set in Member type combo-box. Press the Parameters button in

    DEFINITION-MEMBERS tab, which opens MEMBER DEFINITIONPARAMETERS dialog box. Type

    a new name Column 1in the Member Type editable field. Then, press Buckling Length coefficient Yicon and select the second icon (value 0.5). Repeat the same operation for Z direction.

  • 8/9/2019 ROBOT-Manual French Codes

    11/38

  • 8/9/2019 ROBOT-Manual French Codes

    12/38

  • 8/9/2019 ROBOT-Manual French Codes

    13/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 10/ 35

    VERIFICATION EXAMPLE 3- Bending with lateral/torsional buckling effect

    Example taken from handbook

    CONCEPTION ET CALCUL DES STRUCTURES METALLIQUESWritten by Jean Morel

    TITLE:

    Bending with lateral-torsional buckling effect (Example 3.3.4.1 page 92).

    SPECIFICATION:IS1 simply supported beam over a span of 40.0 m. is laterally restraint at both ends. For the loadingshown below check the beam made of IS 1 steel.

    SOLUTION:Define a new type of member. For analysed member pre-defined type of member BEAM may beinitially opened. It can be set in Member type combo-box. Press the Parameters button inDEFINITION-MEMBERS tab, which opens MEMBER DEFINITIONPARAMETERS dialog box. Typea new name Beam 1in the Member Type editable field. For defining appropriate load type diagram,press Morebutton. Choose the icon for Load type Y and double-click the first icon (Uniform Loads) inLoad Type dialog box. Repeat the same operation for Z direction. Save the newly-created type ofmember.

  • 8/9/2019 ROBOT-Manual French Codes

    14/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 11/ 35

    In the CALCULATIONS dialog box set Member Verificationoption for member 1 and switch off LimitState Serviceability (only Ultimate Limit state will be analysed). Now, start the calculations bypressing Calculationsbutton.

    Member Verification dialog box with most significant results data will appear on screen. Pressing theline with results for member 1 opens the RESULTS dialog box with detailed results for the analysed

    member.

    The view of the RESULTS window is presented below. Moreover, the printout note containing the

    same results data as in Simplified resultstab of the RESULTS window is added.

  • 8/9/2019 ROBOT-Manual French Codes

    15/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 12/ 35

    STEEL DESIGN---------------------------------------------------------------------------------------------------------------------------------------CODE: CM66

    ANALYSIS TYPE: Member Verification

    ---------------------------------------------------------------------------------------------------------------------------------------

    CODE GROUP:MEMBER: 1 POINT: 2 COORDINATE: x = 0.50 L = 20.00 m

    ---------------------------------------------------------------------------------------------------------------------------------------

    LOADS:Governing Load Case: 1 TEST---------------------------------------------------------------------------------------------------------------------------------------

    MATERIAL:

    ACIER E24 fy = 23.50 daN/mm2---------------------------------------------------------------------------------------------------------------------------------------

    SECTION PARAMETERS: IS 1ht=150.0 cm

    bf=40.0 cm Ay=320.000 cm2 Az=213.000 cm2 Ax=533.000 cm2tw=1.5 cm Iy=2063617.667 cm4 Iz=42706.604 cm4 Ix=1757.794 cm4tf=4.0 cm Wely=27514.902 cm3 Welz=2135.330 cm3

    ---------------------------------------------------------------------------------------------------------------------------------------

    STRESSES:SigFY = 83600.00/27514.902 = 3.04 daN/mm2

    ---------------------------------------------------------------------------------------------------------------------------------------

    LATERAL BUCKLING PARAMETERS:z=0.00 B=1.00 D=2.36 Sig D=1.78 daN/mm2lD_sup=40.00 m C=1.13 kD=7.63

    ---------------------------------------------------------------------------------------------------------------------------------------

    BUCKLING PARAMETERS:

    About Y axis: About Z axis:----------------------------------------------------------------------------------------------------------------------------------

    VERIFICATION FORMULAS:kD*SigFY = 7.63*3.04 = 23.20 < 23.50 daN/mm2 (3.611)---------------------------------------------------------------------------------------------------------------------------------------

    Section OK! ! !

    COMPARISON:

    Resistance, interaction expression Robot HANDBOOK

    1. Factored flexural stress in a member kDfy[daN/mm2]

    (lateral buckling analysis included)2. Check of the formula kDfy/e 1

    23,200,99

    24,001,02

    CONCLUSION:

    The differences are caused by different way of rounding-off the cross sectional properties (crosssectional area, section modulus, moment of inertia).

  • 8/9/2019 ROBOT-Manual French Codes

    16/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 13/ 35

    VERIFICATION EXAMPLE 4- IPE profile loaded in uniaxial bending and axial compression

    Example taken from handbook

    CONCEPTION ET CALCUL DES STRUCTURES METALLIQUESwritten by Jean Morel

    TITLE:IPE profile loaded in uniaxial bending and axial compression (Example 3.2.4.3 page 77).

    SPECIFICATION:The column shown aside is a part of a portal frame. It is fully restrained at the bottom end and isconnected by rigid connection with a regel at the top end (lky = 9,53 m.). For the design values of thecompressive force N=8000 daN and bending moment My = 12000 daNm check the beam made ofE24 steel. It has been suggested that a IPE 360 section be considered.

    SOLUTION:Define a new type of member. For analysed member pre-defined type of member COLUMN may beinitially opened. It can be set in Member type combo-box. Press the Parameters button inDEFINITION-MEMBERS tab, which opens MEMBER DEFINITIONPARAMETERS dialog box. Type

    a new name Column 1in the Member Type editable field. Then, select Member length ly - Real radio-button and tape the value 9.53.

  • 8/9/2019 ROBOT-Manual French Codes

    17/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 14/ 35

    In the CALCULATIONS dialog box set Member Verificationoption for member 1 and switch off LimitState Serviceability (only Ultimate Limit state will be analysed). Now, start the calculations bypressing Calculationsbutton.

    Member Verification dialog box with most significant results data will appear on screen. Pressing theline with results for member 1 opens the RESULTS dialog box with detailed results for the analysedmember.

    The view of the RESULTS window is presented below. Moreover, the printout note containing thesame results data as in Simplified resultstab of the RESULTS window is added.

  • 8/9/2019 ROBOT-Manual French Codes

    18/38

  • 8/9/2019 ROBOT-Manual French Codes

    19/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 16/ 35

    VERIFICATION EXAMPLE 5- Compression and shear force

    Example taken from handbook STRUCTURES METALLIQUES

    CM66 - additif 80 - Eurocode 3written by Jean Morel

    TITLE:

    Beam-column (Example 2 page 119).

    SPECIFICATION:The column is fully restrained at the bottom end and pinned at the top end about y-y andz-z axes (lky = lkz = 0,7). For the loading conditions (3 load cases) as shown below check the beam-column made of S.235 steel. It has been suggested that HEA 200 shape might be used.

    SOLUTION:Define a new type of member. For analyzed member pre-defined type of member COLUMN may beinitially opened. It can be set in Member type combo-box. Press the Parameters button inDEFINITION-MEMBERS tab, which opens MEMBER DEFINITIONPARAMETERS dialog box. Typea new name Column 1in the Member Type editable field. Then, press Buckling Length coefficient Yicon and select the third icon (value 0.7). Repeat the same operation for Z direction. To define anappropriate load type diagram, press More. Choose the icon for Load type Y and double-click the thirdicon (Concentrated Force in Center) in Load Type dialog box. Repeat the same operation for Zdirection. Save the newly-created type of member.

  • 8/9/2019 ROBOT-Manual French Codes

    20/38

  • 8/9/2019 ROBOT-Manual French Codes

    21/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 18/ 35

    RESULTS:1. Load case no. 1

    STEEL DESIGN---------------------------------------------------------------------------------------------------------------------------------------CODE: CM66ANALYSIS TYPE: Member Verification---------------------------------------------------------------------------------------------------------------------------------------

    CODE GROUP:MEMBER: 1 POINT: 1 COORDINATE: x = 0.00 L = 0.00 m---------------------------------------------------------------------------------------------------------------------------------------

    LOADS:Governing Load Case: 1 test1---------------------------------------------------------------------------------------------------------------------------------------

    MATERIAL:ACIER fy = 23.50 daN/mm2---------------------------------------------------------------------------------------------------------------------------------------

    SECTION PARAMETERS: HEA 200ht=19.0 cm

    bf=20.0 cm Ay=40.000 cm2 Az=12.350 cm2 Ax=53.831 cm2tw=0.7 cm Iy=3692.150 cm4 Iz=1335.510 cm4 Ix=18.600 cm4tf=1.0 cm Wely=388.647 cm3 Welz=133.551 cm3---------------------------------------------------------------------------------------------------------------------------------------

    STRESSES: SigN = 30000.00/53.831 = 5.57 daN/mm2SigFZ = 2250.00/133.551 = 16.85 daN/mm2

    ---------------------------------------------------------------------------------------------------------------------------------------

    LATERAL BUCKLING PARAMETERS:---------------------------------------------------------------------------------------------------------------------------------------

    BUCKLING PARAMETERS:

    About Y axis: About Z axis:

    LY=4.00 m MuY=32.536 LZ=4.00 m MuZ=11.769LfY=2.80 m k1Y=1.010 LfZ=2.80 m k1Z=1.029

    Lambda Y=33.809 Lambda Z=56.215 kFZ=1.107

  • 8/9/2019 ROBOT-Manual French Codes

    22/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 19/ 35

    ---------------------------------------------------------------------------------------------------------------------------------------

    VERIFICATION FORMULAS:k1*SigN + kFZ*SigFZ = 1.029*5.57 + 1.107*16.85 = 24.38 > 23.50 daN/mm2 (3.521)

    1.54*TauY = |0.000*-0.52| = |0.00| < 23.50 daN/mm2 (1.313)---------------------------------------------------------------------------------------------------------------------------------------

    I ncorr ect section! ! !

    2. Load case no. 2

    STEEL DESIGN---------------------------------------------------------------------------------------------------------------------------------------

    CODE: CM66ANALYSIS TYPE: Member Verification---------------------------------------------------------------------------------------------------------------------------------------

    CODE GROUP:MEMBER: 1 POINT: 1 COORDINATE: x = 0.00 L = 0.00 m---------------------------------------------------------------------------------------------------------------------------------------

    LOADS:Governing Load Case: 2 test2---------------------------------------------------------------------------------------------------------------------------------------

    MATERIAL:ACIER fy = 23.50 daN/mm2---------------------------------------------------------------------------------------------------------------------------------------

    SECTION PARAMETERS: HEA 200ht=19.0 cmbf=20.0 cm Ay=40.000 cm2 Az=12.350 cm2 Ax=53.831 cm2

    tw=0.7 cm Iy=3692.150 cm4 Iz=1335.510 cm4 Ix=18.600 cm4tf=1.0 cm Wely=388.647 cm3 Welz=133.551 cm3---------------------------------------------------------------------------------------------------------------------------------------

    STRESSES: SigN = 30000.00/53.831 = 5.57 daN/mm2SigFY = 2250.00/388.647 = 5.79 daN/mm2

    ---------------------------------------------------------------------------------------------------------------------------------------

  • 8/9/2019 ROBOT-Manual French Codes

    23/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 20/ 35

    LATERAL BUCKLING PARAMETERS:z=0.000 B=1.000 D=1.401 Sig D=20.34 daN/mm2lD_inf=4.00 m C=1.560 kD=1.002

    ---------------------------------------------------------------------------------------------------------------------------------------

    BUCKLING PARAMETERS:

    About Y axis: About Z axis:LY=4.00 m MuY=32.536 LZ=4.00 m MuZ=11.769LfY=2.80 m k1Y=1.010 LfZ=2.80 m k1Z=1.029Lambda Y=33.809 kFY=1.036 Lambda Z=56.215

    ---------------------------------------------------------------------------------------------------------------------------------------

    VERIFICATION FORMULAS:k1*SigN + kD*kFY*SigFY = 1.029*5.57 + 1.002*1.036*5.79 = 11.74 < 23.50 daN/mm2 (3.731)1.54*TauZ = 0.000*1.67 = 0.00 < 23.50 daN/mm2 (1.313)

    ---------------------------------------------------------------------------------------------------------------------------------------

    Section OK!! !

    3. Load case no. 3

    STEEL DESIGN---------------------------------------------------------------------------------------------------------------------------------------CODE: CM66ANALYSIS TYPE: Member Verification---------------------------------------------------------------------------------------------------------------------------------------

    CODE GROUP:MEMBER: 1 POINT: 1 COORDINATE: x = 0.00 L = 0.00 m---------------------------------------------------------------------------------------------------------------------------------------

    LOADS:Governing Load Case: 3 test3---------------------------------------------------------------------------------------------------------------------------------------

    MATERIAL:

    ACIER fy = 23.50 daN/mm2

    ---------------------------------------------------------------------------------------------------------------------------------------

  • 8/9/2019 ROBOT-Manual French Codes

    24/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 21/ 35

    SECTION PARAMETERS: HEA 200ht=19.0 cm

    bf=20.0 cm Ay=40.000 cm2 Az=12.350 cm2 Ax=53.831 cm2tw=0.7 cm Iy=3692.150 cm4 Iz=1335.510 cm4 Ix=18.600 cm4tf=1.0 cm Wely=388.647 cm3 Welz=133.551 cm3

    ---------------------------------------------------------------------------------------------------------------------------------------STRESSES: SigN = 30000.00/53.831 = 5.57 daN/mm2

    SigFY = 2250.00/388.647 = 5.79 daN/mm2

    SigFZ = 2250.00/133.551 = 16.85 daN/mm2---------------------------------------------------------------------------------------------------------------------------------------

    LATERAL BUCKLING PARAMETERS:z=0.000 B=1.000 D=1.401 Sig D=20.34 daN/mm2lD_inf=4.00 m C=1.560 kD=1.002

    ---------------------------------------------------------------------------------------------------------------------------------------

    BUCKLING PARAMETERS:

    About Y axis: About Z axis:LY=4.00 m MuY=32.536 LZ=4.00 m MuZ=11.769LfY=2.80 m k1Y=1.010 LfZ=2.80 m k1Z=1.029

    Lambda Y=33.809 kFY=1.036 Lambda Z=56.215 kFZ=1.107---------------------------------------------------------------------------------------------------------------------------------------

    VERIFICATION FORMULAS:k1*SigN + kD*kFY*SigFY + kFZ*SigFZ = 1.029*5.57 + 1.002*1.036*5.79 + 1.107*16.85 = 30.39 > 23.50daN/mm2 (3.731)1.54*TauY = |0.000*-0.52| = |0.00| < 23.50 daN/mm2 (1.313)1.54*TauZ = 0.000*1.67 = 0.00 < 23.50 daN/mm2 (1.313)

    ---------------------------------------------------------------------------------------------------------------------------------------

    I ncorr ect section! ! !

    COMPARISON:

    Resistance, interaction expression Robot HANDBOOK

    Case 1

    1. Factored compressive stress in a member n[daN/mm2]

    2. Factored flexural stress in a member fz[daN/mm2](lateral buckling analysis included)

    Check of the formula (k1n + kfzfz)/ e1,0( 3,521 from the CM66 code)

    Case 2

    1. Factored compressive stress in a member n[daN/mm2]

    2. Factored flexural stress in a member fy[daN/mm2]

    (lateral buckling analysis included)Check of the formula (k1n + kfyfy)/ e1,0

    ( 3,521 from the CM66 code)Case 3

    1. Factored compressive stress in a member n[daN/mm2]

    2. Factored flexural stress in a member fy[daN/mm2](lateral buckling analysis included)

    3. Factored flexural stress in a member fz[daN/mm2](lateral buckling analysis included)

    4. Check of the formula (k1n + kfyfy+ kfzfz)/ e1,0( 3,521 from the CM66 code)

    5,57

    16,85

    1,038

    5,57

    5,79

    0,500

    5,57

    5,79

    16,85

    1,293

    5,6

    16,8

    1,030

    5,6

    5,8

    0,498

    5,6

    5,8

    16,8

    1,285

    CONCLUSION:The differences are caused by different way of rounding-off the cross sectional properties (crosssectional area, section modulus, moment of inertia).

  • 8/9/2019 ROBOT-Manual French Codes

    25/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 22/ 35

    CCOONNCCRREETTEE

  • 8/9/2019 ROBOT-Manual French Codes

    26/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 23/ 35

    1. BAEL 91 mod. 99 - RC columns

  • 8/9/2019 ROBOT-Manual French Codes

    27/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 24/ 35

    VERIFICATION EXAMPLE 1- Column subjected to axial load

    Example based on:

    [2] J. Perchat, Pratique du BAEL 91, Deuxime dition, Eyrolles, 1998, Example 2, pp. 98

    DESCRIPTION OF THE EXAMPLE:

    The capacity of the column is determined with the Robot program and verified against the examplesolved in [2]. In [2], the reinforcement is assumed a priori, and the capacity is checked for thatreinforcement. For our purpose, we define the axial force equal to the capacity determined in [2], andthen compare the results.

    LOADS:

    Nu = 1310 (kN)

    GEOMETRY:

    lf= 2.80 (ft)

    cross section: 30x30 (cm)

    MATERIAL:

    Concrete : fc28 = 25.00 (MPa) Unit weight = 2501.36 (kG/m3)Longitudinal reinforcement : type HA fe = 500.00 (MPa)

    Fig.1. Cross section with reinforcement determined in [2] (4HA16).

    IMPORTANT STEPS:

    In the dialog box Buckling lengthset the length l fin both directions (Fig.1.2.).The program calculatesthe slenderness for the most unfavorable direction.

  • 8/9/2019 ROBOT-Manual French Codes

    28/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 25/ 35

    Fig. 1.2. Buckling parameters of the column.

    In the Loadsdialog box put the axial force N, equal to the capacity determined in [2].

    Fig. 1.3. Loads.

    RESULTS OF THE CALCULATIONS:

    The reinforcement generated by the program (Fig 1.4.) is different than that determined in [2]. Thegreater reinforcement generated by the program is the result of the fact, that 4HA16 is not actuallysufficient reinforcement. Although the calculations with small accuracy carried out in [2] show, that thecapacity is 1310 kN, after the accurate calculations it can be proven that it is in fact 1308 kN, thus4HA16 reinforcement is not correct. Robot finds the sufficient reinforcement 8HA12.The calculation of capacity is illustrated in the calculation note:

    Fig. 1.4. Reinforcement generated by the program (8HA12).

  • 8/9/2019 ROBOT-Manual French Codes

    29/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 26/ 35

    2.5.1 Slenderness analysis

    Lu (m) K

    Direction Y: 2.80 1.00 32.33

    Direction Z: 2.80 1.00 32.33

    2.5.2 Detailed analysis

    = max (y ; z)

    = 32.33

    < 50

    = 0,85/(1+0,2*(/35)^2) = 0.73Br = 0.08 (m2)A= 9.05 (cm2)

    Nulim = [Br*fc28/(0,9*b)+A*Fe/s] = 1339.79 (kN)

    FINAL VERIFICATION:

    Quantity [2] Robot

    Reinforcement 4 HA16 8 HA12

    uN 1310 kN* 1340 kN

    * According to accurate calculations should be 1308.5 kN

  • 8/9/2019 ROBOT-Manual French Codes

    30/38

  • 8/9/2019 ROBOT-Manual French Codes

    31/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 28/ 35

    RESULTS OF THE CALCULATIONS:

    Column 1 2 3

    Nu 1650 2150 2770

    RESULTS: [3] / Robot [3] / Robot [3] / Robot

    As (cm

    2

    ) 7.7 7.7 7.7 7.7 29.5 23.6

    Reinforcement4HA14 +2HA10

    4HA12 +4HA10

    4HA14 +2HA10

    4HA12 +4HA10

    6HA254HA20 +14HA10

  • 8/9/2019 ROBOT-Manual French Codes

    32/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 29/ 35

    VERIFICATION EXAMPLE 3- Column subjected to axial load and biaxial bending

    DESCRIPTION OF THE EXAMPLE:

    Following example illustrates the procedure of dimensioning of biaxial bending of column, which isnon-sway in one direction, whereas sway in the other. The results of the program are accompanied bythe manual calculations.

    NOTE: In Robot the calculations of compression with bending are carried out using EC2 code [4].

    1. SECTION DIMENSIONS

    2. MATERIALS

    Concrete : fc28 = 25.00 (MPa) Unit weight = 2447.32 (kG/m3)Longitudinal reinforcement : type HA fe = 500.00 (MPa)Transversal reinforcement : type HA fe = 500.00 (MPa)

    3. BUCKLING MODEL

    As can be seen the sway column is assumed for Z direction, and the non-sway column for Y direction.

  • 8/9/2019 ROBOT-Manual French Codes

    33/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 30/ 35

    4. LOADS

    NOTE: Let us assume, the moments in Y direction are linearly distributed along the height of thecolumn. Thus, we define only the ends moments for Y direction. In Z direction however, we assumethe mid-height moment is not a result of the linear distribution. For such a case, Robot let the userdefine the moments in the mid-section explicitly.

    5. CALCULATED REINFORCEMENT:

    Program generates the reinforcement 6 HA 20.

    6. RESULTS OF THE SECTION CALCULATIONS:

    The dimensioning combination is 1.35DL1+1.50LL1The dimensioning section (where the most unfavorable set of forces is found) is for that combinationthe section in the mid-height of the column (marked as (C)).

  • 8/9/2019 ROBOT-Manual French Codes

    34/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 31/ 35

    Since the column is found as slender, the second-order effects are taken into account in bothdirections.

    In parallel the other sections (at the ends of the column) are checked for all combinations of loads.In the top and bottom ends sections of the column in Y direction, the influence of buckling has notbeen taken into account, since the structure is non-sway in this direction. In Z direction however, theinfluence of slenderness is taken into account for all three sections of the column.All the results of total forces for each combination and each section of the column may be seen in thetable Intersection at the Column-results layout.

    7. CALCULATIONS OF TOTAL MOMENT:

    7.1. LOADS

    For the dimensioning combination, the loads are:

    CaseN(kN)

    MyA(kN*m)

    MyB(kN*m)

    MyC(kN*m)

    MzA(kN*m)

    MzB(kN*m)

    MzC(kN*m)

    1 DL1 500 100 30 72 20 30 40*

    2 LL1 200 50 30 42 10 20 30*

    Dimensioningcombination

    1.35DL1+1.5LL1 975 210 85.5 160.2 42 70.5 99

    where A, B and C denote upper, lower and mid-height sections of the column respectively.* - the values are written by hand by the user (see point 4 Loads)

  • 8/9/2019 ROBOT-Manual French Codes

    35/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 32/ 35

    7.2. THE INFLUENCE OF SLENDERNESS

    Two independent calculations of the total moment for both directions are carried out.

    Y DIRECTION

    Slenderness analysis:

    r

    l0 = 40.41

    Check if lim according to 4.3.5.3.5(2)

    u

    15

    ;25maxlim = 30.38

    cdc

    Sd

    u fA

    N

    = 0.244

    lim - column is slender

    Check, if the slenderness effects have to be taken into account. For this, we check if crit according to (4.62).

    )2(2502

    01

    e

    ecrit = 39.82

    975

    5.8501 e = 0.088 (m)

    975

    21001 e = 0.215 (m)

    crit - slenderness effects have to be taken into account.

    The abovementioned requirement means that the total eccentricity of the axial force in Z

    ( NMe yz / ) direction will be:

    20 eeee atot (it is decided to consider the additional eccentricity to act in Z direction, thusincreasing moment My)

    NOTE: If the requirement 4.62 is fulfilled ( crit ), the total eccentricity would be calculated as

    atot eee 0 .

    Calculation of initial eccentricity e0

    For the mid-height section, we have:

    02010 6.04.0 eeee e = 0.164 (m)

    Calculation of additional eccentricity ea

  • 8/9/2019 ROBOT-Manual French Codes

    36/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 33/ 35

    2

    0lea = 0.018 (m),

    h100

    1 = 0.0022

    h= 21.0 (m)200/1

    We assume = 0.005

    Calculation of second-order eccentricity e2

    r

    lKe

    1

    10

    2

    012 = 0.043 (m)

    K1 = 1 ( )35

    s

    yd

    Ed

    f

    Kr 9.02

    12 = 0.009

    K2= 1

    d = 0.552 (m)

    Es = 200 (GPa)

    ydf = 435 (MPa)

    The total eccentricity in Z direction:

    20 eeee atot = 0.225 (m)

    The total moment My:

    toty eNM 219 (kNm)

    Z DIRECTION

    Slenderness analysis:

    r

    l0 = 41.57

    Check if lim according to 4.3.5.3.5(2)

    u

    15

    ;25maxlim = 30.38

    cdc

    Sd

    ufA

    N

    = 0.244

    lim - column is slender

    Since the column is sway in Z direction, the slenderness effects have to be taken into account.

  • 8/9/2019 ROBOT-Manual French Codes

    37/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    March 2014 page 34/ 35

    The abovementioned requirement means that the total eccentricity of the axial force in Y

    ( NMe zy / ) direction will be:

    20 eeetot

    Calculation of initial eccentricity e0

    For the mid-height section, we have:

    sd

    sd

    N

    Me 0 = 0.102 (m) (the moment in mid-height section is given directly by the user)

    Calculation of second-order eccentricity e2

    r

    lKe 1

    10

    2

    012 = 0.057 (m)

    Since the column is sway, and the slenderness effects have to be considered, we take into accountthe influence of long-term effects (creep), increasing the buckling length of the column:

    00 lnl = 6.79 (m)

    sd

    sd

    N

    Nn

    1

    The ratio of long-term load to total load is calculated as a weighted average from theload cases. The weight factors are assumed according to the axial forces. Thus:

    3.0975

    2005.10.1

    975

    50035.1

    sd

    sd

    N

    N = 0.785

    Thus, the influence of creep is taken into account by means of n =1.3359

    The other parameters are:

    K1 = 1 ( )35

    s

    yd

    Ed

    fK

    r

    9.02

    12 = 0.014

    K2= 1

    d = 0.351 (m)

    Es = 200 (GPa)

    ydf = 435 (MPa)

    The total eccentricity in Z direction:

    20 eeetot = 0.158 (m)

    The total moment My:

    toty eNM 154 (kNm)

  • 8/9/2019 ROBOT-Manual French Codes

    38/38

    Autodesk Robot Structural Analysis Professional - Verification Manual for French Codes

    7.3. FINAL RESULT

    yM = 219 (kNm)

    zM = 154 (kNm)

    8. CONCLUSIONS

    The algorithm of calculations of the total moments (i.e. slenderness effects) in non-sway/sway columnhas been presented. The results obtained with the program (see point 6Results of the SectionCalculations) are in agreement with the manual calculations (see point 7.3 Final Result).

    LITERATURE

    [1] B.A.E.L. 91. Rgles techniques de conception et de calcul des ouvrages et constructions en btonarm suivant la mthode des tats-limites. Mod. 99.[2] J. Perchat, Pratique du BAEL 91, Deuxime dition, Eyrolles, 1998, Example 2, pp. 98[3] J-P. Mougin, Bton Arm. BAEL 91 et DTU associs, Eyrolles, 1995, Example 1, pp. 113