risk of bone fracture due to spaceflight- induced changes ...€¦ · 12/05/2017  · lead to...

34
1 Evidence Report: Risk of Bone Fracture due to Spaceflight- induced Changes to Bone Human Research Program Exploration Medical Capabilities Element Approved for Public Release: May 12, 2017 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas

Upload: others

Post on 17-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

1

EvidenceReport:RiskofBoneFractureduetoSpaceflight-inducedChangestoBoneHumanResearchProgramExplorationMedicalCapabilitiesElementApprovedforPublicRelease:May12,2017NationalAeronauticsandSpaceAdministrationLyndonB.JohnsonSpaceCenterHouston,Texas

Page 2: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

2

CURRENTCONTRIBUTINGAUTHORS:JeanD.Sibonga NASAJohnsonSpaceCenter,Houston,TXHarlanJ.Evans KBRwyle,Houston,TXScottA.Smith KBRwyle,Houston,TXElisabethR.Spector KBRwyle,Houston,TXGregYardley KBRwyle,Houston,TXPREVIOUSCONTRIBUTINGAUTHORS:JeanD.Sibonga NASAJohnsonSpaceCenter,Houston,TXJerryMyer NASAGlennResearchCenter,Cleveland,OH

Page 3: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

3

TableofContentsI. PRDRiskTitle:RiskofBoneFractureduetoSpaceflight-inducedChangestoBone.................................................................................................................................................................4II. Context..................................................................................................................................................4III. ExecutiveSummary....................................................................................................................4IV. Introduction...................................................................................................................................6V. Evidence............................................................................................................................................121. DataObtainedfromSpaceflightMedicalOperations................................................122. DataObtainedfromScientificInvestigationsinFlight............................................132.1 QuantitativeComputedTomography(QCT).........................................................132.2 BoneTurnoverBiomarkers.........................................................................................132.3 EndocrineRegulation....................................................................................................132.4 RiskFactorsforReductionsinBoneStrength......................................................132.5 ProbabilisticRiskAssessments...................................................................................142.6 AnalysisofDatafromLong-DurationMissions(MirandISS).......................15

3. DataObtainedfromGround-BasedStudies..................................................................17VI. Computer-BasedSimulationInformation.....................................................................19VII. RiskinContextofExplorationMissionOperations...................................................22VIII. Gaps................................................................................................................................................25IX. Conclusions.................................................................................................................................25X. References...................................................................................................................................27XI. Team..............................................................................................................................................34XII. ListofAcronyms.......................................................................................................................34

Page 4: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

4

I. PRDRiskTitle:RiskofBoneFractureduetoSpaceflight-inducedChangestoBone

RiskStatement:Giventhatspaceflightmayinduceadversechangesinboneultimatestrengthwithrespecttomechanicalloadsduringandpost-mission,thereisapossibilityafracturemayoccurforactivitiesotherwiseunlikelytoinducefracturepriortoinitiatingspaceflight.

II. ContextDeclinesinbonemineraldensity(BMD)occurduringspaceflightataveragedlossratesbetween1-1.5%permonthfornormallyweight-bearingskeletalsitesonEarth(e.g.,hip,lumbarspine,lowerlimbsofbody).ThesecalculationsarebasedupontotallossinBMD,asmeasuredbydual-energyX-rayabsorptiometry(DXA)technology,inastronautsbeforeandafteratypical4-6monthlong-durationmission.Currently,therearenodatavalidatingapercentagelossinBMDasapredictorofbonefractureforaterrestrialpopulationrepresentingtheagesofastronautsflyingonlong-durationmissions,butdeclinesinbonemass(ascapturedbyBMD)areclearlyariskfactorforfracture.Itisunclearwhetherbonemineraldensitywillstabilizeatalowerlevel,orcontinuetodiminishforlongerspaceflights.Itisalsounknowniffractionalgravity,presentonthemoonandMars,wouldmitigatetheloss.Thislevelofbonelossdoesnotcreateanunacceptableriskoffracturesformissionsinmicrogravity(ISSandasteroid),butmissionsinafractionalgravityenvironmentormissionsgreaterthan6monthindurationcouldcreatehigherfracturerisk.

Theriskoffractureduringamissioncannotbeestimatedwithanylevelofcertaintyuntiltheprobabilitiesofoverloadingbonesduringthemissionsareunderstood.Ifmission-relateddeclinesinbonestrength(orthefailureloadofbone)cannotbecorrectedbyin-andpost-missionrehabilitation,crewmemberscouldbeatgreaterriskoffracturesafterreturntoEarthoranyotherplanetarybody.Boneparametersthatcontributetobonestrengthandthataccuratelyreflectchangesinbonestrengthduetomicrogravityarenecessarytoframethisrisk.Forvariousspaceflightmissionscenarios,within-missiontasksandpost-missionactivitiesandinthecontextofotherriskfactors,theabilitytoassesstheprobabilityoffracturewillhelpdeterminewhichmitigationstrategiesareoptimalandhowtheyshouldbeemployed.

III. ExecutiveSummarySpaceflight-inducedboneatrophyistargetedtospecificregionsoftheskeleton.Site-specificlossesoccuratnormal(Earth)weight-bearingskeletalareas,suggestingthattheregionsthatexperiencelargerdeficitsinmechanicalloadinginmicrogravityundergothegreaterreductioninbonemass.Collectively,theaveragedecrementofpre-flightarealbonemineraldensity(aBMD)permonthis1-1.5%,althoughthereis

Page 5: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

5

considerablevariationoflossbetweendifferentskeletalsitesandbetweendifferentcrewmembers.Thetimecourseofboneminerallossduringatypical6-monthlong-durationmissionhasnotbeencharacterized,noraredataavailableforcharacterizationformissiondurationsofover6months.Consequently,itisnotknownifandwhenthelossofbonematrixandbonemineralwilleventuallyplateau,norisitknownifboneatrophycanbemitigatedbythepartialgravityenvironmentsofthemoonandMars.Asdictatedbyterrestrialmedicine,fullunderstandingoftheriskofbonefractureduringamissionandlaterinliferequiresthattheeffectsofspaceflightbeevaluatedwithadditionalmeasurementsthatarebeyondDXAaBMD.Consequently,theoperatingbandsforastronauthealthandperformanceduringamissionarenotfullydefined(NASA2014).Itisunclearwhichadditionalmeasurementsofbonecanfullycapturetheeffectsizeofspaceflight.Itisnotknownhowthespaceflight-inducedchangestoboneaffectsthestrengthofbone,suchastheloadvectorthatbonecanresistbeforefailure,orifbonestrengthcanbefullyrecoveredafterreturntoEarth.Thecomplexityofbonetissuerequiresalevelofevidencethatcannotbemetbybioastronauticsresearchduetotheslowaccumulationofbiomedicaldataandsmallnumberoflong-durationastronauts.Withthelackofclinicalevidencefortheriskandtheaggressiveplanningforfuturespaceexploration,researchtechnologiesandanalysesmayneedtotransitiontotheclinicalarenaundermissionoperationcircumstancestofacilitateriskdefinitionandattemptmitigation.Giventhepaucityofdata,statisticalandcomputationalmodelingmaybeusefultoolstounderstandinghowchangestomusculoskeletalphysiology,tissueandcellularactivitiescaninfluencefractureprobability.TheFactorofRiskindexforfractureevaluatestheratioofappliedloadtothefailureloadofbone.Consequently,theriskforfractureisminimalduringmissionsinlowEarthorbitbecauseappliedloadsassociatedwithfalling,orwithcrushing,areessentiallynon-existentinamicrogravityenvironment;thosethatdoexistcanbesuccessfullymitigatedby“engineeringout”theriskwithhuman-protectivedesign.Mechanicalloadstobone,however,mayincreaseinthegravitationalenvironmentofplanetarysurfaces.Likewise,theriskincreaseswiththeperformanceofmissionactivitiesduringexplorationmissions,suchastheconstructionofhabitats,ambulationinextravehicularsuits,jumpingfromladdersorstructures,conductingvehicleegresses,oroff-nominalspacecraftlandings.Similarly,riskincreasesafterreturntoEarthwiththeresumptionofpre-flightphysicalactivitiesthatmayoverloadskeletalintegritybeforeitisfullyrestored.Theincreasedriskforbonefracturemayalsoexistinlong-termskeletalhealthwiththecumulativeeffectsofagingandofspaceflight-associatedremodeling.Therearemedicalrequirementstomonitortheskeletaleffectsoflong-durationspaceflightwithmeasurementsofaBMDbyDXAandofbiomarkersforboneturnover.Somespecifictypesoffractureshaveonlyrecently(e.g.vertebralcompression)ornotatall(e.g.occultstressfractures)beenassessedinastronautsafterreturn.Structuralevaluationsofbonesusingnewerimagingtechnologieshavenotbeenmeasuredlongitudinallyinthemajorityofastronauts.ThepatternofBMDlossandrecoveryneedstobeevaluatedfurtheronamultifactorial,cross-discipline

Page 6: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

6

level.Inordertoidentify,understand,anddefinetheriskfactorsforbonefractureoccurringduringandafterspaceflight.Additionally,boneneedstobefullyevaluatedwithspecificandexpandedmeasuresbeyondBMDtocapturechangesto“bonequality.”Thisishighlightedfurtherbythemostmoderndefinitionofosteoporosisas“…askeletaldisordercharacterizedbycompromisedbonestrengthpredisposingapersontoanincreasedriskoffracture.Bonestrengthreflectstheintegrationoftwomainfeatures:bonedensityandbonequality”(NIHConsensusDevelopmentPanelonOsteoporosisPrevention,Diagnosis,andTherapy2001).Tosummarize:

• Bonechangesoccurduringspacetravel.• Multiplefactorsduringspaceflight(physiologicalandenvironmental)can

influencebonechanges• DXA-measuredarealBMDhasbeenshowntobeanincompleteindicatorof

wholebonestrength.• Knowledgecharacterizingchangesinbonestructureandmicrostructureis

incomplete.• Therelativecontributionoftrabecularmicroarchitectureandbonegeometry

towholebonestrengthisnotknownbuttheliteratureindicatesthatitcouldbesubstantial.

• Duetothemultiplecontributorstobonestrength,thefullimpactofspaceflightonwholebonestrengthisunknown.

• Thestateofboneloadingfordifferentmissionscenariosisnotfullydefined.Hence,theriskforfracturenecessitatesunderstandingthebiomechanicalrelationshipbetweenappliedloadstoboneandthestrengthofbone.Tothisaim,theresearchgapsandtasksassociatedwiththeRiskforEarlyOnsetOsteoporosisassessestheconditionofbone(includingthetechnologies,themeasurements,theestimationsofbonestrength,andtheinterpretations),whilethegapsandtasksassociatedwiththeRiskforFractureassessesthefactorsthatinfluenceappliedloadsexceedingbonestrengthresultinginfracture.

IV. IntroductionTheprobabilityoffracturesispresumedtobeminimal(<0.1%)duringorafteramissioninlowEarthorbit.Thisperceptionisbasedpredominantlyuponthelowtonoincidenceoffractureinoverfivedecadesofspacetravelofincreasingduration,andlowtonoincidenceoffractureinlong-durationastronauts.Theabilitytomaintainhealthandfitnessinastronautsafterspaceflightsfurtherenforcesthispresumption.Thereareanumberoffactorsthathavecontributedtothisperception,andnotallarebaseduponastrongevidencebase.First,significantdecrementsinBMD,beyondDXAmeasurementerror,havenotbeendetectedformissionsoflessthan90days.Thereareminimalimpactforcestothebodyintheweightlessenvironmentandonplanetarysurfaces,limitingimpactforcesthatcould

Page 7: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

7

leadtofracture,andNASA’sbonehealthstandardsensuresufficientpre-flightbonemineraldensityforhipandspinetopreventastronautsfromreturningbelowtheminimumpermissibleoutcome(T-score≤-2.0)afterspaceflight.TheavailabilityoftheAdvancedResistiveExerciseDevice(ARED)after2009aswellasadequatenutritionduringflighthavesufficientlyreducedthepreviouslyobserveddeclinesinpost-flightBMDmeasurements(Smithetal.2012).Post-flightrehabilitationprogramsonEarthpromoteskeletalrecoveryandreducethefallrisk,andfracturesinimmediatepost-missionandlong-termhealthperiodshavebeencommonlyattributedtooverloading(trauma)oraging-relatedeffects.Finally,relianceuponastronautself-reportingoffracturesorindicativesymptomatologylikelyleadstounderestimationsoffracture.Thus,itisentirelypossiblethattheassumptionoflowfractureriskandincidencerelatedtolong-durationflightisundersupportedandnotentirelydata-driven.Withexplorationclassmissionsaimingforthemoonandbeyond,theaustereandremoteenvironment,the“unknowns”ofplanetexploration,andthelimitedpoint-of-carecapabilitiesmayincreasetheseverityofevenalowprobabilitymedicaleventsuchasfracture.Theoccurrenceofafractureinacrewmemberwouldnotonlyjeopardizeperformanceofmissionobjectivesduetofunctionalityimpacts,itcouldalsoleadtomedicalcomplicationswhichmightresultinsignificantmorbidityorevenlossoflife.Thedocumentedeffectoftheweightlessenvironmentonbonecellactivitiescouldimpairthehealingprocess,increasetheriskfornon-unionfractures,andexposethecrewmembertoadditionalcomplicationssuchassepsisorthromboembolyticclots.Therefore,itisofparamountimportancetoevaluatethepropensityofacrewmembertofractureaboneundertheconditions,includingmissionlengthandmission-criticaltaskperformance,andeffects,includingadaptivephysiology,ofaspaceflighttoensureappropriatemedicalcapabilitiesareavailable.On-boardcapabilitiesmayincludein-flightinterventionstopreventlong-termhealthfractures,includingprematurefragilityfracturesassociatedwithirreversiblespaceflight-inducedalterations,throughmitigationofdeconditioningorrehabilitationcapabilities.Evaluationoftheprobabilityofabonefractureduringaspaceflightmissionrequiresanassessmentoftherelationshipbetweentwomeasurableparameters:theloadvectorexperiencedbyabone(“AppliedLoad,”whichincludesbothmagnitudeanddirection)andtheabilityofthebonetoresistthatloadvectorwithoutfracturing(“BoneStrength”).Thisrelationshipdeterminesthe“FactorofRisk.”EstimatingaFactorofRiskforbonefractureusestheengineeringapproach,oftenusedinstructuredesign,ofcalculatingthe“FactorofSafety,”wherestructuralfailurelikelyoccurswhentheratioofResistingForce(strength)toDisturbingForce(stress)is<1.FactorofRiskistheinverseratioofFactorofSafety(ortheratioofAppliedLoadtoBoneStrength)wherefracturelikelyoccurswhentheratio>1.AsimpleandaccuratemethodtodeterminingtheFactorofRiskforabonefracturewouldtoquantifytheloadrequiredtofractureabone.Becausethisapproachisneitherpracticalnorethical,RiskforBoneFractureintegratestheresearchgapsandtasks

Page 8: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

8

withintheRiskforEarlyOnsetOsteoporosisthatdescribetheconditionofboneanditsBoneStrength.AssessmentsofBoneDensityinTerrestrialMedicineAwidelyappliedsurrogatetoreplacethedestructivecalculationofaFactorofRiskisaBMD,measuredbyDXA.DXAisanx-raybasedimagingtechnologywithahighlevelofclinicalutilitybecauseitissafe,available,andaffordable.Becauseofitsclinicalutility,thismeasurementhasbeenappliedtoamultitudeofclinicalstudiessubstantiatingitsabilitytopredictfracture,todetectaneffectsizeofintrinsicriskfactorsincludingmenopauseandaging,togeneratereproducibleresults,andtomonitortheeffectofosteoporosiscountermeasures.Thus,thenoteworthyvalueofaBMDasasurrogateforfractureriskisnotbecauseitprovidesanaccurateassessmentofbonedensity(astruedensityisnotareal),butbecauseoftheabundanceofepidemiologicaldatacorrelatingaBMDwiththeincidentfragilityfractures(fracturesduetoosteoporosis)inpopulation-basedstudies.DXABMDcutoffofaT-scoreoflessthan-2.5wasestablishedfordiagnosingosteoporosisinpostmenopausalwomenbaseduponthedetectionofosteoporosisin~30%ofpostmenopausalwomenatthisscore(Kanisetal.1994).Usingthiscutoff,physicianscanidentifyaclinicallymeaningfulnumberofwomenwhowouldbegoodcandidatesforosteoporosistherapy.Inthiscase,aBMDisausefulindexforstratifyingtherelativeriskforfractureamongstpostmenopausal,Caucasianwomen;however,aBMDaloneisnotagoodpredictorofwhowillfracture(Cummingsetal.1995).Reportsintheliteraturehavehighlightedadisconnectbetweenactualfractureincidenceandcalculatedrelativerisk,asindicatedbyaBMDT-scores(Riggsetal.1990;Cummingsetal.1998;Gutteridgeetal.2002;Schuitetal.2004;Wainwrightetal.2005;Chesnutetal.2005;Sornay-Renduetal.2005).ThedeclineinthespecificityandsensitivityofDXAaBMDforpredictingfragilityfracturesmayberelatedtothefailureofaBMDtoreflectacompletepicturewholebonestrength(NIHConsensusDevelopmentPanelonOsteoporosisPrevention,Diagnosis,andTherapy2001).GiventhenecessitytoexpandmeasurementsbeyondaBMDT-scores,significantworkhasbeenputintothedevelopmentofmoreaccuratemeasurementtools.Ameta-analysisof12cohorts,representing60,000subjectsandmonitoringover250,000person-yearsand5,400fractures,providedthebasisfortheFRAXcalculator(FractureRiskAssessmentTool,UniversityofSheffield,UK)whichusesclinicalriskfactorswithandwithoutfemoralneckBMDtodeterminea10-yearprobabilityoffracture(WorldHealthOrganization2004).However,theFRAXcalculatorisnotrecommendedforuseinhumansunder45yearsofageanddoesnotincludeanimportantastronautriskfactor:theprolongedskeletalunloadinganddisuseofboneduringmicrogravityexposure.Asaresult,theFRAXcalculatorhaslimitedrelevancetoassessingfractureprobabilityinastronautsduetospaceflight.ThelimitationofaBMDasasurrogate,andthelackofabetteralternative,hadalsobeenexpressedinthepreviousevidence-basedBioastronauticsReport(NASA

Page 9: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

9

HumanResearchProgram2016).Thus,theNASAHumanResearchProgram(HRP)supportsinvestigationstosupplementthemeasurementofspaceflighteffectsontheskeleton.Manyrecentandongoingstudiesincludenovelandemergingtechnologyinordertomeasureindicesof“bonequality”andobtainanexpandedreflectionofskeletalintegrityassociatedwithspaceflight,forbetterpredictivecapabilityoftheriskoffractureinlong-duration,explorationmissions.AssessmentofBoneQualityforTerrestrialApplicationsOnelimitationoftheDXAtechnologyinitsmeasurementofaBMDisthattheindexfailstoaccountforthesizeandgeometryofabone.Figure1depictshowthebendingandcompressivestrengthofwholebonearedependentuponitssizeandgeometry,whichcannotbedirectlyevaluatedbyDXA.TherehavebeenrecentattemptstomodifytheuseofDXAtechnologyfortheevaluationofvolumetricorstructuralparametersasindicesofBoneQuality(Prevrhaletal.2004;Beck2007)butthefailuretoachieveabetterunderstandingandassessmentoffractureriskaboveandbeyondDXAmeasurementofaBMD(Bonnick2007;BoudreauxandSibonga2015)haspresumablylimitedtheirutilityintheclinicalarena.

Figure1.MaryBouxsein,Ph.D.,BoneGeometryandSkeletalFragility.May2005BoneQualityMeetingHowever,thereareemergingtechnologiesforthenon-invasiveassessmentsofotherskeletalindicesbesidesaBMD,suchasotherputativeparametersofBoneQualitythatcontributetobonestrength.Inparticular,measurementsoftrue,volumetricBMD(vBMD,measureding/cm3)ofwholeboneandofbonecompartmentscanbeobtainedbyquantitativecomputedtomography(QCT).QCTmeasurementswerevalidatedinarandomizedcontrolledtrialforthepredictionofhipfractureinmenover65yearsold(Blacketal.2008).WhilethemeasurementofvBMDonlymodestlyimprovesfracturepredictionoverDXA-measuredaBMD,QCTenablesadditionalmeasurementsofthefemoralnecktoincreasetheunderstandingofspaceflight-inducedeffectsonfracturerisk(Blacketal.2008);thatis,QCT

Page 10: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

10

measurementsofthefemoralneck(percentcorticalbonevolume,trabecularvBMD,andminimumcross-sectionalarea)arepredictorsofhipfractureindependentofarealBMD(Blacketal.2008).Thiscapabilityisvitaltounderstandingfractureriskinanunderstudiedastronautpopulation(generallyyoung,healthy,andpredominantlymale)inwhichbonelossisunlikeage-relatedboneloss(Orwolletal.2013).Furthermore,magneticresonanceimaging(MRI)andhigh-resolutionQCTareemergingasnoveltechnologiestoassesschangestotrabecularmicroarchitectureofcancellousboneatperipheralskeletalsites[HR-QCT,Scanco].MRI-basedimagingofhiptrabecularmicroarchitectureandDXA-basedvertebralmicrostructuralanalysesarebeingdevelopedformicrostructuralassessmentsofthehipandspine(Hansetal.2011;MedimapsGroup2015;Changetal.2015).Suchmeasurementsmaybeusedtoreflectthedisruptionoftrabecularconnectivityordegradationofcancellousboneinthebonemarrowcompartmentofbone,asverifiedagainstparameterspreviouslyderivedfrombonehistomorphometry(Parfittetal.1987).Changestomicroarchitecturecaninfluencethemechanicalpropertiesanddistributionsofloadsincancellousbone(vanderLindenetal.2001).Untilrecently,theskeletaleffectsofspaceflightonbonemasshadonlybeendescribedbymeasuringaBMDdeterminedfromDXAscansperformedincrewmembersbeforeandafterthetypicallong-durationspaceflightmissionof6monthsontheInternationalSpaceStation(ISS).Therefore,evaluationofBoneQualityisstillrequiredtosubstantiatethisrisk,asspaceflightrepresentsacollectionofnovelriskfactorsthatcouldlikelyaffectmorethanarealBMD(forexample,radiationeffectsonbonemarrow).Whiletherearemultipleindicesthatcaninfluencethequalityofboneandwholebonestrength,suchasthedegreeofmineralization,microcrackaccumulation,resorptioncavities,andactivationfrequency,HRPneedstobefocusedonmaturetechnologiesinordertomeetitspath-to-riskreductionforanexploration-classmission.Thus,tasksthatareconsideredessentialinclude,first,thedeliveryoftechnologiesandteststhatenablenon-invasivemeasurementsofcrewmembers,particularlyifsuchtechnologieshavebeenpreviouslyvalidatedforclinicalutilityinterrestrialpopulations;andsecond,provisionofknowledgethroughmodelingandanalogvalidationsthatcanbetranslateddirectlytomissionapplications.PossibleRiskFactorsforFallsorInjuryAgeisanindependentriskfactorforfracture.Theprobabilityforfractureinthepostmenopausalwoman,forexample,increasesexponentiallywitheverydecadeover50yearsforagivenmeasurementofaBMD(Figure2).Youngerpersonsdonothavethemetabolicco-morbidities,thenutritionalissues,orthecumulativeexposuretobonelossriskfactorsthatcompoundbonefragilityintheelderlypopulations.OnEarth,youngerindividualsalsodonothavethemuscleloss,theposturalinstability,theimpairedneuromuscularcontrolandpoorvisualacuitythatincreasetheriskforfallinginagedpersons.Theintegrationoftheseclinicalriskfactorsaccountsfortheincreasedprobabilityforfractureinolderpopulationsas

Page 11: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

11

theselatterriskfactorsincreasethepropensityforfallsand,accordingly,theappliedloadstobone(DeLaetetal.2005).However,thesecontributingfactorsforinjurymayexistinastronautsdeconditionedbyprolongedtransitsbeyondlowEarthorbit.

Figure2.AgeasanIndependentRiskFactorforOsteoporoticFractures.Probabilityoffirstfractureofhip,distalforearm,proximalhumerus,andsymptomaticvertebralfractureinwomenofMalmö,Sweden.WhiletherelativeriskforfracturesmaybethesamebaseduponBMD,theprobabilityoffractureinthe50yearoldislessthantheprobabilityforfractureinthe80yearold.AdaptedfromKanisJAetal.OsteoporosisInt.2001.SlidecourtesyofS.Petak,M.D.ThereisanimprovedabilityofaBMDtopredictfractureswhenconsideredconcurrentlywithclinicalriskfactorspredisposingindividualstoosteoporosis(Kanisetal.2007).Table1outlinesclinicalriskfactorsassociatedwithterrestrialosteoporosis(Espallarguesetal.2001),whicharerarelyobservedinyounger-aged,physicallyhealthypersonsoftheAstronautCorps(<55yearsofage)priortolaunch.However,thereareriskfactorsforosteoporosis,asidentifiedbyCummings(alsopresentedinTable1),thataremorerelevanttocrewmembersafterthetypical6-month,long-durationmissioninspace(Cummingsetal.1995);manyofthesefactorsareevidentincrewmembersduringflightandduringre-adaptationtoagravitationalenvironment.Thisincludestheastronautreturningtotheirpre-flightlevelhighphysicalactivitysoonafterreturntoEarthwithassociatedgaitinstability,imbalance,orvisionimpairmentthatmayincreasethefallingrisksoonafterlanding(CourtineandPozzo2004;Mulavaraetal.2010;Maderetal.2011).VitaminDdeficienciesmayalsobeariskincrewmembersonexplorationmissionsduetoinsufficientsupplementation;VitaminDdeficiencieshavebeenassociatedwithanincreasedriskforfallingduetothevitamin’sbenefittoneuromuscularcoordination(Bischoffetal.2003;Bischoff-Ferrarietal.2004).Giventhepotentialconsequencesofthefracturerisk,rangingfromlossofeffectiveperformancetolossoflife,probabilityriskassessmentsshouldalsoconsiderthepresenceoftheobservedriskfactorsthatinfluencetheriskforfalling.Inaddition,itmaybeofvaluetocollect

Page 12: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

12

kinematicmeasuresfrommotionanalysisandaccelerometersthatcouldbeusedestimatefallvelocityandfallorientationwhileperformingfunctionaltasksinadeconditionedstate(e.g.,FunctionalTaskTesting).Table1.ClinicalRiskFactorsobservedinosteoporosispatientpopulationandproposedcross-disciplineriskfactorsrelevanttolong-durationcrewmembers(Cummingsetal.1995;Espallarguesetal.2001).

ClinicalRiskFactorsforOsteoporosis(Espallargues2001)

PutativeandIdentifiedRiskFactorsRelevanttoLong-DurationandExplorationCrewmembers(Cummings1995)

Aging(>70y)LowbodyweightWeightlossPhysicalinactivityCorticosteroidsAnticonvulsantdrugsPrimaryhyperparathyroidismDiabetesmellitus(TypeI)GastrectomyPerniciousanemiaAnorexianervosaPriorosteoporoticfracture

OnFeet≤4hoursperDay(reducedgroundreactionforces)Can’tRiseFromChairWithoutUsingArmsLowestQuartileDepthPerceptionLowestQuartileContrastSensitivityFair,PoororVeryPoorHealthVitaminDdeficiencyWeightLosstoBWatAge25BalanceinstabilityGaitimpairmentsSarcopeniaLowsunlightexposureLowcalciumabsorption

Anincreasedriskforfracturewillbesubstantiatedwhenmoredataarecollectedanduncertaintycanbereduced.ThisreportwillsummarizethecurrentevidencefrommeasurementsofriskfactorsthatinfluenceBoneStrengthandwillhighlighttheknowledgerequirements(gapsinknowledgebase)inordertocalculateandassesstheprobabilityforfractureduringexplorationmissionsperaNASA-developedprobabilisticfractureriskassessmenttool,theBoneFractureRiskModule(Nelsonetal.2009).

V. Evidence1. DataObtainedfromSpaceflightMedicalOperationsTodate,theDXAmeasurementsconductedpre-andpost-flightinlong-durationcrewmembershavecharacterizeddeficitsinaBMDforweight-bearingskeletalsites,withlosses,averagedpermonth,thataregreaterthanthelossesdetectedinperyearincomparablesitesinelderlypersons(Orwolletal.2013)andexceedtheexpectedratepredictedbyanalgorithmderivedfromtheapopulationcohort,basedonserialBMDmeasurementsof150menand150womenwithagescomparable(20-50years)totheastronautcohort(Aminetal.2010,2011).WhiledeclinesinaBMDareariskfactorforbonefragility,theNASAtestsforbonehealtharebaseduponBMDT-scoresandnotonpercentagelossinBMD.Moreover,T-scoresassessarelativeriskforfragilityfractures,notfromfracturesfromthebiomechanicaloverloadingofbones,acharacteroffracturesthataremoretypicalofyounger-agedpersons(Garrawayetal.1979;Ngetal.2012).Themedicaltestingfor

Page 13: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

13

riskoffragilityfractures(Sibonga2017,figure9)doesnotrevealanyincreasedriskforfragilityfracturesinastronauts.Anon-clinicalBMD(forexample,BMDforhip,spine,forearm)may“mask”aweakenedbonethatmaystrongenoughtoresistthemechanicalloadswithphysicalactivitiesperformedbeforespaceflight.

2. DataObtainedfromScientificInvestigationsinFlightAlthoughtheassessmentofboneintegrityisincomplete,therearedataintheevidencebasethatextendskeletalevaluationbeyondDXAaBMD.Whiletheseadditionalmeasurementsarenotpredictorsoffractureperse,thesemeasuresaddtothecharacterizationofspaceflighteffectsthatmayhelptodefinetherisk.Thesignificanceofthesedataissummarizedinsections2.1-2.6below.

2.1 QuantitativeComputedTomography(QCT)TheapplicationofQCTtechnologyprovidesmeasurementsofvBMDsforwholeboneandforseparatebonecompartments(corticalbone,cancellousbone,andcombined)andthree-dimensionalgeometryofwholebone,whichcanbeusedtoassesstheimpactofspaceflightonwholebonestrengthbyapplyingafiniteelementanalysis(Keyaketal.2005;Hernandezetal.2006).ThedatafromQCTscansconductedinlong-durationcrewmemberscharacterizedhowtheseparatecompartmentsofthehipadapttospacedifferently.Asdescribedlaterinthisreport,thesedatawereusedtoestimateaFactorofRiskforhipfractureonMars,moon,andafterreturntoEarth(Lang2006).

2.2 BoneTurnoverBiomarkersMonitoringthechangesinboneturnovermarkersisreportedtobepredictiveforchangesinbonemassandfracture(Garneroetal.1999;BonnickandShulman2006).Biologicalspecimens(urineandblood)collectedbefore,during,andafterflightwereevaluatedaftersamplereturntoEarth.Thedatasuggestthatboneadaptationinspaceisdrivenbyapredominatingboneresorptionthatisuncoupledtoboneformation(Smithetal.2005,2015).Thisperturbedboneremodelinginspacesuggeststhatthereisanetlossinbonemass,albeitabiomarkerforchangesovertheentireskeleton.

2.3 EndocrineRegulationThehumanskeletonservesasmineralreservoirformaintainingcalciumbalance,whichcouldbeagreaterissuethanfracturesforexplorationmissionsexceedingayear.Studiesoncalcium-regulatinghormonesdemonstratedhowtheendocrineregulationofcalciumhomeostasiscanbeinfluencedbytheboneatrophyanddemineralizationthatoccursinspace(Smithetal.1999,2005;Sibonga2017;Smithetal.2015).

2.4 RiskFactorsforReductionsinBoneStrengthMultipleriskfactorshavebeenidentifiedwithregardstoreductionsinBoneStrength.Thesefactorsincludethefollowing.

• ReducedaBMDatweight-bearingsites,anetincreaseinboneresorptionfortheentireskeleton,geometricalchangesintheproximalfemur,andarapidrateofboneminerallosscollectivelysuggestthatbonesoftheskeletonmay

Page 14: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

14

havedeclineinstrength(LeBlancetal.2000a;Langetal.2004;Smithetal.2005).

• Reducedcorticalthicknessandcompartment-specificreductionsinvolumetricBMDincorticalandcancellousboneofhipareassociatedwithreductionsincompressiveandbendingstrength(Langetal.2004)andareindependentpredictorsofhipfractureinagedmales(Blacketal.2008).

• EstimationsofloadcapacitywereassessedbyanalysisofmodelsgeneratedfromQCThipscans,performedbeforeandafterspaceflight.Significantreductionswerenotedinboneloadcapacities(minimumforcetocausefracture)forappliedloadingwithone-leggedstanceandposterolateralfalls(Keyaketal.2009).

• Preferentiallossesintrabecularboneobservedincrewmembersmaydisrupttrabecularconnectivityorreducetrabecularthickness,bothofwhichcouldaffectbiomechanicalstrengthofbone(vanderLindenetal.2001;Hernandezetal.2006).

• PersistentdeficitsintrabecularvBMDofthehipandoflumbarspine(L1,L2)in8ISScrewmembersinwhomafourthscanwasperformedbetween2-4yearsafterreturn(DanaCarpenteretal.2010)mayaddtoage-relateddeclinesandinduceprematurefragility.

• DeficienciesinvitaminDobservedinlong-durationcrewmembersafterapproximately6-monthspaceflightsmayinducesimilarimpairmentsinneuromuscularcoordinationandincreasedriskforfallingasdocumentedintheelderly(Bischoffetal.2003;Bischoff-Ferrarietal.2004)ifin-flightsupplementationforspaceflightmissionsbeyondlowEarthorbitcannotbemaintained.

2.5 ProbabilisticRiskAssessmentsCalculatingtheFactorofRiskforfractureisonlyasaccurateastheestimationsofbonestrengthandofappliedloads.Likewise,theassessmentoffractureprobabilityisdependentuponthenumberoffactorsthatinfluencetheprobabilityofanoverloadingeventoccurring,suchasthedurationofthemission,thetotalnumberofEVAsconducted,thefrequencyofEVAs,thetypesofmechanically-loadedevent(forexample,fallimpactswithhighenergy(suchasafallwhilecycling),orlowenergy(suchasasimpletripandfall)events).Estimationsofappliedloadtoboneareclearlynotperfect.Forinstance,somereportedalgorithmstocalculateloadsincurredbythehiponEartharebaseduponbodyweight;height,velocity,andorientationoffalls;anddampeningofforcebyfatpadding(Robinovitchetal.1991;Carpenteretal.2005;Riggsetal.2006).BothQCTandDXAdatacanstrengthentheestimationsbyincludingmeasurementsofsofttissuethicknessoverthehip(Riggsetal.2006;Ellmanetal.2010).Inaddition,thefactorofriskforexplorationmissionsonaplanetarysurfacerequiringintegratingtheeffectofpartialgravityonappliedloadsinfractionalgravityenvironment.Theseestimationsmaybeunderestimatedbecauseofthedifficultyinquantifyingthemulti-systemdeconditioningoftheastronauts,includingfactorssuchasvision

Page 15: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

15

impairment,muscleatrophy,reducedphysicalfitness,andpoorneuromuscularcoordination.EvenfactorssuchasrepetitivefallingduetoacumbersomeEVAsuitor“loping”toambulateinanEVAsuitwillincreasethehazardtofractures.Otherchallengesmayincludefractionalgravityinfluencingaproportionaldeclineinbonemass,(Ellmanetal.2013;Swiftetal.2013)ordeclinesinfallloadsbecauseofslowervelocitiesandlowerenergyoffallimpacts.Preliminarydata,includingestimationsofbonestrengthfromtheanalysisoffiniteelementmodels(Keyaketal.2009),supportthefractureriskandhavebeenpresentedinaseparateEvidenceBaseReportonEarlyOnsetOsteoporosis(Sibonga2017).Collectively,theriskforbonesbeingoverloadedinastronautsismorelikelyduetoanincreasedprobabilityofencounteringatraumaticloadbecauseofvisionimpairment,lossofneuromuscularcoordination,muscleatrophy,mobilityissuesandpossiblyreducedcognitionorpoorjudgment.Riskissimilarlyelevatedwithphysicalactivityinanunfamiliar,atypicalenvironment,suchasexplorationactivitiesonplanetarysurfaceswithpartialgravity,aswellasareturntotypicalpre-flightphysicalactivities,beforerestorationtopre-flightbonestrength,afterlandingonEarth.Tomanagethisriskofoverloadingbones,computermodelingisusedtoassesstheprobabilityofcrewmembersencounteringmechanicalloadsduringthelengthofanexplorationmissionwhileperformingmissiontasks(Nelsonetal.2009);suchmodelingmayalsobeusefulforassessingriskinastronautsafterreturntoEarth.

2.6 AnalysisofDatafromLong-DurationMissions(MirandISS)ThereisamedicalrequirementtoperformDXAmeasurementsofaBMDinthehip,lumbarspine,wholebody,forearm,andcalcaneusinlong-durationcrewmemberstoevaluatetheeffectsofspaceflight.DXAscanswereperformedwithin45dayspriortolaunchandwithinapproximately5daysoflanding.Recoveryofbonemass,asindexedbyaBMD,takesconsiderablylongerthanthetimetoincurtheloss(Vicoetal.2000;Sibongaetal.2007).Recoverycanbeinfluencedbymultiplefactorssuchasage,nutritionalintake,andpost-flightactivity,whichmayaccountfortherestorationofBMDtopre-flightstatusasearlyas6monthsafterreturn.Duetothecomplexityofbonetissueandthemulti-factorialnatureofboneloss,thereisrecognizedvariabilityinskeletalmeasurementsinEarth-basedpopulations.Likewise,itisnotunexpectedtoobservehighlyvariableresponsesbetweenskeletalsiteswithinonecrewmemberandbetweencrewmembers.Thisvariabilityisalsoevidentinassaysofboneturnovermarkerswhichareperformedinlong-durationcrewmembersatsimilartimepointsbeforeandafterspaceflightmissions.Biomarkersforboneresorptionarereportedtoincreaseearlyinflightwheretheyremainelevateduntiltheirrestorationtopre-flightlevelssoonafterreturn(Smithetal.2005).Biomarkersforboneformationarenotasprofoundlyinfluencedbyspaceflightandareeitherunchangedordecreasedduringspaceflight;circulatinglevels,however,areincreasedapproximately1monthafterlanding(Smithetal.2005).

Page 16: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

16

BasedupontheDXAmeasurementofaBMDandtheWorldHealthOrganizationGuidelinesforOsteoporosisDiagnosis(WHO1994),therearenodatatoindicateadiagnosisinastronautsafteralong-durationmission(Figure3).Inotherwords,nolong-durationastronauthasreturnedwitha“non-permissibleoutcome,”definedasaT-scoreof≤-2.0forthefemoralneck,trochanter,orspine(NASA2014).However,theseguidelinesweredevelopedforcliniciansconsideringinterventionsforperimenopausalandpostmenopausalwomenormenovertheageof50,atargetpopulationconsideredtobeatriskforage-relatedfractures.Althoughuseful,thecurrentaBMD-basedfracturestandardsforriskassessmentareprobablynotsufficientforassessingriskinastronautswhoarelosingbonemassbyadifferentimpactonboneremodeling(Orwolletal.2013).

Figure3.T-scoresbaseduponpre-flightandpost-flightmeasurementsofBMDandreferencesbacktoyoungwhitesex-matchedpopulation.Nolong-durationcrewmemberhasreturnedfromthetypical6-monthmissioninlowEarthorbitwithadiagnosisofosteoporosisaccordingto1994WorldHealthorganizationguidelines(WHO1994).Moreimportantly,asreportedintheEvidenceReportforEarlyOnsetOsteoporosis(Sibonga2017),theaveragemonthlyBMDloss(LeBlancetal.2000a,2007;Sibonga2017)increwmembersisalmostequivalenttotheannuallossofaBMDlossincomparablesitesofelderlypersons(Orwolletal.2013).ThiscomparisonofbonelossrateswasalsodemonstratedinTable2,whichdisplaysacomparisonbetweentheobservedlossesinBMDinlong-durationastronautstoapredictedlossbyamathematicalalgorithmdevelopedfromtheRochesterBoneHealthStudy(TheMayoClinic,Rochester).TheBMDdeclineinastronautswaspredictedbyaformuladerivedfromapopulationcohort(n~800)composedofsubjectsspanningtheage

Page 17: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

17

of19-97years(Aminetal.2010).Asmentionedabove,changesinaBMDovertimewerederivedfromserialBMDmeasurements,whichincludedmeasurementsin150menand150womenofagesthatspantheastronautagerange(20-50years),perhapstheonlypopulationstudyofbonehealththatincludesyounger-agedsubjects(Aminetal.2010,2011).Thegreater,calculatedmonthlyrateofBMDlossintheyounger-agedcrewmembersisreminiscentofaggressive,osteoclast-drivenboneresorptionobservedinpostmenopausalwomen.Ifresorptioncavitiesonthesurfaceofcancellous(trabecular)bonearetargetedtositesofincreasedstress,thencancellousbonestrengthandstiffnesscanbeinfluencedregardlessofthechangesinvBMDinthecancellousbonecompartment(Hernandezetal.2006).Thedepthandlocationofresorptioncavitiescannotbedeterminednon-invasively,butcouldbeconfirmedwithresearchintooptionssuchasinvitroanalyses,includinghistologyandmicro-CT,ofbonesamples.Table2.ComparisonbetweenobservedBMDchangesinmalelong-durationastronautsvs.predictedchanges,immediatelyandapproximately3yearsafterreturn(Aminetal.2010,2011).

Inadditiontotheriskofbonevolumeloss,clinicalriskfactorsthatinfluencethepropensityforfallinghavebeenobservedincrewmembersafterreturntoEarthfromlong-durationmissions.Lossesinposturalmusclemassareacontributingfactortoposturalinstability,whileassessmentsofhead-trunkcoordinationsuggestinstabilityduringstandingandambulation(LeBlancetal.2000b,a;CourtineandPozzo2004).Actualimpairmentsingait(BloombergandMulavara2003;Mulavaraetal.2010),jumping(Newmanetal.1997),anddecrementsindynamicvisualacuity(Petersetal.1996;Maderetal.2011)areevidentafterlong-durationmissionsinspace.

3. DataObtainedfromGround-BasedStudiesTherearenoground-basedspaceflightanalogsthathaveevaluatedFactorofRiskforbonefractureinhumansubjects.Therearenumerousanimalmodels(rodents,dogs,non-humanprimates)thatimmobilizeorskeletallyunloadlimbsorwholebodiesasameanstoinduce“disuseosteoporosis.”Theseanimalmodelsarevaluableresourceswithwhichtocharacterizethecellularandtissueeffectsofmechanicalunloadingunderwell-controlledexperimentalconditions(Turner2000).Thesemodelscanbefurtherappliedtoevaluatetheefficacyof

Page 18: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

18

pharmacologicalandmechanicalcountermeasuresusingmechanicalstrengthtesting(fracturingbonesunderdefinedloads)toquantifybonestrengthdirectly.However,aspreviouslydiscussed,therearemultiplephysiologicalandbiologicalmeasuresthatcaninfluencewholebonestrengthinhumans;asaresult,thehumanskeletaleffectsofdisusemightnotbecompletelymodeledbyanysinglespeciesmodel.Recently,HRPfundedthedevelopmentofananimalmodeltostudyfracturehealingandtotestarehabilitativeloadingprotocoltopromotehealinginthehypogravityenvironment.Aseriesofpublishedreportsdescribedanovine(sheep)modelforfracturehealingthatinducedtheskeletaleffectsofsimulatedmicrogravityonthetissueofthemetatarsal(Gadomskietal.2014a)displayeddelayedhealingundersimulatedmicrogravityonasurgicalexcision(osteotomy)ofthemetatarsal(Gadomskietal.2014b),andusedfiniteelementmodelstoassesstheinfluenceoflocalizedmechanicalloadingat0.25Gand1Gonfracturehealing(Gadomskietal.2016).Theinvestigations,conductedatColoradoStateUniversity,wereabletodescribestatisticallysignificanttissuedecrementsassociatedwithadaptationtomicrogravity,includingalossofbonemineraldensityof29.0%,areductioninbendingmodulusof25%,andadeclineinfailureloadof28%.Therewerealsodecrementsinparametersofbonehistomorphometry(bonevolume,trabecularthickness,trabecularnumber,formationratesandosteoblastnumberalldeclinedwhileosteoclastnumberincreased).Collectively,thesedatasubstantiatetheoverallfidelityofthesheepmodeltomimictheskeletaltissueeffectsofhumansinspaceaswellasdemonstratingtheutilityofanexternalfixationdevicetosimulateskeletalunloadingonthemetatarsal(Gadomskietal.2014a).Thesamemodelwasusedtoacquiredatathatsuggeststhatlocallyreducingmechanicalloadingbyvaryinghydrostaticpressureandstainpromotesintramembranousboneformation(asopposedtoendochondralossification),whichcouldaccountforthedelayedhealingandreducedintegrityofhealedfracturesinadisuseenvironment(Gadomskietal.2016).Thereisanaggressivepath-to-riskreductionforfuturemannedspaceflight;inthiscontext,modelsforprobabilisticriskassessments(PRA)mayberequiredinlieuofdatathatdirectlyquantifiesfractureoutcomes.OneNASAPRAtoolhastakenabiomechanicalapproachtoassessingfractureriskbyestimatingtheprobabilityofoverloadingtheskeletalbonesofanastronaut.ThisPRAmaybeindividualizedforaspecificbodyweightandheightandforcertainphysicalactivitiestypicalforthegivenastronaut.Tothisaim,theDigitalAstronautProject,conductedatNASAGlennResearchCenter,performsaserviceusingbiomechanicalalgorithmstoestimatethemechanicalloadstotheastronautduringpost-missionactivities.Inessence,thismodelingcouldbeusedtopredicttheabilityofadeconditionedbonetoresistloadsincurredduringperformanceofexplorationmissionobjectivesorafterreturntoEarth’sgravityenvironment.Anincreasedfractureriskdoesnotrequireabonewithosteoporosis;rather,anastronautmaybepredisposedtofracturebecauseoftheasymptomaticnatureofbonelossandasub-clinicalreductioninboneintegrity.The

Page 19: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

19

medicaltest,DXA2d-measurementofaBMDT-scores,doesnotquantifythisdeclineinstrength.

VI. Computer-BasedSimulationInformationAspreviouslydiscussed,theFactorofRiskforfractureistheratioofAppliedLoadstoFailureLoads,wherefractureislikelytooccurwhentheratiois>1.Theprobabilityoffracture,ontheotherhand,isdependentuponmultiplefactorsorvariables.TwoapproacheshavebeenusedtocalculatetheFactorofRiskforBoneFractureincrewmembersduringandafterlong-durationmissions.OnecalculationofFactorofRiskappliesfiniteelementanalysistofiniteelementmodelsdevelopedfromQCTscansofthehip(Keyaketal.2005).ThisapproachhasbeenusedtodeterminetheFailureLoadofbone(orBoneStrength)afterlong-durationspaceflight;forexample,estimatesforhipstrengthweredeterminedfortwoloadingorientationsanddeterminedfor11crewmembersscannedatthehipbyQCT(Keyaketal.2005;Lang2006).Inrecentyears,mergingdatafromterrestrialcohortsofagingpopulationsindicatethatfiniteelementmodelestimatesofhipstrengthmayberelatedtofracturerisk(Orwolletal.2009;Keavenyetal.2010;Keyaketal.2011),especiallyincombinationwithaBMD.Finiteelementmodelestimatesofhipfailureloadquantifytheabilityofthehiptoresistfractureforaspecificloadvector.Thisindexmaybethesinglebestexistingcompositeassessmentofbonestrengthbecauseofitsabilitytointegrateappliedloadswithgeometryanddistributionofmaterialproperties,suchasBMD,elasticmodulus,andyieldstrength,in3-Dbonestructure(Keyaketal.2005).WhilemodelestimationofstrengthonlymodestlypredictsfragilityfractureoveraBMD,thefinitemodeldoesintegratemultiplebonedeterminantsofbonestrength(Keyaketal.2005).This,inconjunctionwiththesingleaBMDsurrogateforbonestrength,mayenhancetheassessmentoffractureprobabilityineachastronautforindividualizedclinicaldecisions.ThisindividualizedapproachisdiscussedfurtherintheEvidenceReportforEarlyOnsetOsteoporosis(Sibonga2017).TheotherapproachwasdevelopedaspartoftheIntegratedMedicalModel(IMM),aMonteCarlosimulationapproachtospaceflightmissionsthatexplorestheeventspaceformedicalconcernsduringagivenreferencemission.TheIMMwasdesignedtobeaprobabilisticmodelsystemanddatabaseofsupportingmedicalconditionsusedtoprovidetherelativerisk,includinglikelihoodandseverityofoutcomes,forthelistofmedicalconditions.TheassociatedBoneFractureRiskModule(BFxRM)wasdevelopedattheNASAGlennResearchCenter(Nelsonetal.2009),designedtoestimatebonefractureprobabilitybyintegratingthefrequencyofevents,whereappliedloadsexceedsbonestrength,withphysicalactivitiesofhighorlowenergy.Specifically,themodulecanprovideadistributionofloadstothehipbaseduponafallwhileengaginginarangeofmostlikelyperformanceactivitiesoverthedurationofaspacemissionorintheimmediatepost-missiontimeperiod.Topredicttheprobabilityoffracture,theBFxRMtakesintoaccountthefollowingparameters:

Page 20: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

20

• Specificcrewmemberdata(forexample,age,height,bodymass,initialbonemass,jointandhipfatpadstiffness,anddampingcharacteristics)

• Thedurationoflow-gravityexposureatanygiventimeduringthemission,• TheattenuationcharacteristicsoftheEVAsuittoabsorbtheenergyof

impact(Sulkowskietal.2011)• Thedeflectivestrategiesoftheastronaut(forexample,armbracing)to

protectthemselvesbyenergyreductionandlimitingsubsequentinjuryfromafall

• Thespecificmissionparameters,includingdurationandtransittime,andmissiontasksthatwouldleadtohighlevelsofskeletalloading,

• Thenumberoftimesthatafracture-riskevent(suchasafallduringEVA,impactwithequipment)couldoccurduringamissionandthedetailsofsuchanevent,includingheightortranslationvelocity

• ThechangeinbonestrengthasafunctionofaBMDchange(LeBlancetal.2000a).

Todate,BFxRMestimatesadistributionofappliedloading,specifictothehip,perdesignreferencemissions;however,thismodelcouldbemodifiedtoassessoverloadingprobabilitiesforotherskeletalsites.Twoprimaryvariablesarecalculatedinthisriskanalysis,includingtheFactorofRiskforfracture(theratioofAppliedLoadtoBoneStrength)andtheprobabilitythattheFactorofRiskexceeds1(inotherwords,afractureoccurs)duringawiderangeofphysicalactivities.Toassesstheprobabilityoffracture,thefrequencyofoverloadingeventsandtheFactorofRisk(>1)arecombinedandconvertedtoaprobabilitythatistermedthe“FractureRiskIndex.”ThefrequencyandtypesofloadingeventsweregeneratedbyobservingApolloEVAfilmsthatdocumentedarangeofphysicalactivitiesaswellascross-referencingastronautreports.TheFactorofFractureRiskisconvertedtoaprobabilityoffracturefromalogisticregressionofactualfracturesandfromassumptionsfromtheliteraturegoverningtheFactorofRiskforfracturethreshold.Thisconversionisaccomplishedbyselectingrandomcombinationsofthefactorsandattributesdescribedabove,modelingviaMonteCarlosimulation,andgeneratingaprobabilisticdistributionformechanicalloads(kN)tothehipforISS,lunar,andMartianmissionsandduringpost-flightactivitiesonEarth(Nelsonetal.2009).IntheIMM,theprobabilisticmodelingapproachprovidesagroupmeanestimateoffractureprobabilitytothewrist,hipandlumbarspine;eachofthesesiteswaspreviouslyidentifiedbytheIMMtobeathigherriskthanotherbonylocationsforoverloadingandriskoffracture(Nelsonetal.2009).Equallyimportant,itprovidesboundariesoftheuncertaintyinthisPRAbyusingdataandprevailingassumptionsreportedintheliterature.Themodel’smetric,theprobabilityoffractureoccurrence,canbeusedindecision-makingandplanningforexploration-classmissionsandforcomparisonacrossalltheotherrisksinthemissioncontext.

Page 21: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

21

TheFactorofRisklevelsformaleastronautsduringaspecificEVAmissionscenarioonMarsandlunarmissionsaredisplayedinTable3.Forthisreport(Nelsonetal.2009),theFactorofRiskusedaBMDdataasthesurrogateforbonestrength.Table3.MissionaverageFactorofRisklevelsforseveraldifferentmissionscenariosforamaleastronautonExtravehicularActivities(Nelsonetal.2009).

Activityorevent Missionlocation

Missionduration

MeanFactorofRisk Std

FemoralNeckFractureFalltoside Moon Short 0.09 0.07Falltoside Moon Long 0.10 0.08Falltoside Mars Short 0.23 0.16Falltoside Mars Long 0.28 0.20LumbarSpineFracture45ºtrunkflexion,holdingaload Moon Short 0.12 0.0390ºtrunkflexion,holdingaload Moon Short 0.08 0.03Fallfrom1m,landingontwofeet Moon Short 0.30 0.05Fallfrom2m,landingontwofeet Moon Short 0.46 0.1045ºtrunkflexion,holdingaload Moon Long 0.12 0.0390ºtrunkflexion,holdingaload Moon Long 0.08 0.03Fallfrom1m,landingontwofeet Moon Long 0.31 0.06Fallfrom2m,landingontwofeet Moon Long 0.48 0.1045ºtrunkflexion,holdingaload Mars Short 0.29 0.0890ºtrunkflexion,holdingaload Mars Short 0.20 0.06Fallfrom1m,landingontwofeet Mars Short 0.56 0.12Fallfrom2m,landingontwofeet Mars Short 0.77 0.1645ºtrunkflexion,holdingaload Mars Long 0.34 0.1190ºtrunkflexion,holdingaload Mars Long 0.23 0.08Fallfrom1m,landingontwofeet Mars Long 0.64 0.17Fallfrom2m,landingontwofeet Mars Long 0.88 0.24

Page 22: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

22

Takingintoaccountavailabledatatodate,theFactorofRisklevelsatthefemoralneckareaveragedandprovidedforseveraldifferentactivitiesduringseveralspecificmissionscenarios.WhilenoFactorofRiskforfractureexceeds1(indicatingcertainriskoffracture)foranysingleevent,theprobabilityoffracturewillincreaseasthefrequencyofaneventincreases.NewspaceflightaBMDdatahavebecomeavailablesince2009withtheuseoftheAREDexercisecountermeasureontheISS.TheAREDprovidesweight-bearingexerciseswithupto600pound-forceresistancewhichmorecloselysimulatestheliftingoffreeweightsonEarth.Thiscapabilityprovidesthe2-3xbodyweightresistancetypicallyrequiredtomaintainbonemass(Kohrtetal.2004).PrevioustoARED,only300pound-forcewasprovidedbytheinterimResistiveExerciseDevice(iRED).Consequently,resistanceexercisewithAREDreducedthetotalchangeinaBMDinISSastronautsfollowingspaceflight.CalculatedratesofBMDloss(n=11astronautsasofsummer2012)aredisplayedinTable4.Table4.CalculatedmonthlylossinBMDbefore(LeBlancetal.2000a)andafterAREDuseonISS.Trochanter

RateofBMDLoss(%/mo)Pre-AREDUse

RateofBMDLoss(%/mo)WithAREDUse

Mean -1.56 -0.5StandardDeviation 0.99 0.4Minimum -0.01 -0.07Maximum -3.0 -1.34LumbarSpine

RateofBMDLoss(%/mo)Pre-AREDUse

RateofBMDLoss(%/mo)WithAREDUse

Mean -1.06 -0.32StandardDeviation 0.63 0.44Minimum 0 -0.16Maximum -2.0 -1.35VII. RiskinContextofExplorationMissionOperationsSpecificexplorationmissionscenariosaredefinedaccordingtothedurationofthetimeinspace(Table5).TheBFxRMwasappliedtoeachofthesemissionscenariostodeterminetheprobabilityofbonefractureduringtheperformanceofspecificmissionactivitiesandthedurationofthespecificmission(includinghabitationandtransittime).

Table5.DefinitionofExplorationMissionScenariosbyDuration

Duration Destination Transit Time to destination (days)

Length of Stay (days)

Transit Time to Earth (days)

Short Moon 3 8 3 Long Moon 5 170 5 Short Mars 162 40 162 Long Mars 189 540 189

Page 23: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

23

Figure4providesagraphicalillustrationoftheprobabilityofbonefractureoccurrenceformaleastronautsduringvariousactivitiesoreventsofalunarorMartianmission.Loadingeventsincludeafalltotheside,a45degreebendfromthewaist,a90degreebendfromthewaist,adropjumpfrom1meter,andadropjumpfrom2meters.Figure4showsthattheprobabilityoffractureisless(<0.2%)duringshort-durationmissionstothemoon,mostlikelyduetodecreasedexposuretimeinspace.Itispresumedthattheseverityofbonelossvariesasafunctionoftime,althoughitisunknownifbonelossisalinearoranexponentialdecline.GiventhattherecoveryofBMDafterreturntoEarthisasymptotic(Sibongaetal.2007),speculationisthatthedeclineinBMDfollowsasimilarpatternofdecline.Oftheactivitiesevaluated,theprobabilityoffractureisgreaterforfallstothesideandfordropsfrom2metersheight.Itcanbepresumedthatthelowergravitationallevel(roughlyone-sixthofEarthgravity)onthemoonwillmitigatebonelosslikelyproportionallywithfractionalgravity,asinarodentmodelforpartialweight-bearing(Ellmanetal.2013;Swiftetal.2013).Theprobabilityforfractureincreasesasthemissionsbecomelonger(0.02%moonto2.0%Mars)andinthehighergravityenvironmentoftheMartiansurface(roughlyone-thirdofEarthgravity).

Figure4.ProbabilityofbonefractureformaleastronautsduringreferencemissionstothemoonandMars(Nelsonetal.2009).Aspreviouslymentioned,aFactorofRiskhadbeencalculatedtoaddresstheimpactofaMarsmissionforfractureriskafterreturntoEarth(Sibonga2017).ThisestimationwasbasedupontheQCTscansofthehipperformedinISScrewmembers(Lang2006).Thepre-andpost-flightQCTdatafromelevenISSsubjectswereanalyzedbyfiniteelementmodelingtodeterminehipfractureloadsbeforeandafterspaceflight(Keyaketal.2009).ThesedatawereusedtocalculateaFactorofRiskforfractureatthetimeoflaunch(pre-flight)andafterreturntoEarth(post-flightMarsLongmission),asprovidedbelowinTable6.TheseestimationsindicatedthatcrewmembersthatreturnedbacktoEarthfromaMarsmissionwouldhaveacomparableriskoffractureonEarthtoanelderlypostmenopausalfemale,particularlyforaloadingconditionassociatedwithaposterolateralfallbutnotforforcesassociatedwithposturalstance(Sibonga2017).Again,theelderlyarelikely

Page 24: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

24

tohaveadditionalriskfactorsandskeletalchangesthatareassociatedwithadvancedagecontributingtotheirpropensitytofractureoverayounger-agedperson.Table6.EstimatedFactorofRisksbaseduponFiniteElementAnalysisofFractureLoad FactorofRisk:

EstimatedAppliedLoad/FractureLoadRatio*Astronautpre-flight 0.89+0.21AstronautonEarthafterMarsmission 1.07+0.30Women,70-80yearsofage 1.04+0.37AstronautsonMars(0.38G) 0.66+0.15*aratio>1indicatesthattheappliedloadexceedsthefractureload(strengthofthebone)andfracturewilloccurThefollowingassumptionsweremadeinthesecalculationsofFactorofRisk.First,theonlyappliedforceswerefromgravityfields.Notonlydoesthisassumptionunderestimatefracturerisk,butitalsodoesnotaddressapotentialprotectiveeffectofanexoskeleton(EVAsuit).Theappliedloadsonskeletonduetosuitdesign,EVAactivities,ortasksperformedonplanetarysurfacesarenotknown.Further,itwasassumedthattherewasaconsistentlossinbonemassduringspacetraveltoandfromMarsbaseduponanestimatedmonthlylossofBMD,whichpresumesaconstantloss,forweight-bearingsites.Theactualtimecourseofboneminerallossisnotknown.Further,themodelassumesthatnofurtherbonelossoccursduringexposureto1/6(lunar)or1/3(Martian)gravity.Wedonotcurrentlyknowtheextent,ifany,thatthesepartialgravityfieldswillmitigateboneatrophy.Rodentstudiesinground-basedmodelsofpartialweight-bearingsuggestthatpartialweight-bearingloadsdonotprevent(Swiftetal.2013),orproportionallyreduce(Ellmanetal.2013)musculoskeletaldeclines.SimilarcalculationsofFactorofRiskcanbeperformedforothermissionscenariosaspresentedinTable5.Calculationswillhavelessuncertaintyasmoredatareflectingchangestoadditionalboneparameters,suchasbonestructure,arebetterdefined.Bonedataacquiredbyothermodalitiesandanalysesmayimprovetheprobabilisticriskassessmentsforfracture(Codyetal.1999).WhentherateofBMDlosswaschangedwithintheBFxRMtoreflecttheaBMDdataofcrewmemberswithaccesstoARED,withallotherfactorswithintheBFxRMremainingthesame,therewasminimalchangeintheprobabilityofbonefractureforthesixreferencemissions.Thereasonfortheminimalchangemaybeduetothefollowing:

• TheBFxRMisnotsensitivetochangesinaBMD.aBMDbyDXAaccountsforonly50-70%ofactualbonestrength,soasmallchangeinaBMDtranslatestoasmallchangeinbonestrengthfollowingAREDaccess,evenoverthecourseoflongMartianmissions.USastronautshavesubstantialpre-flightbonemass,withaBMDT-scoresgreaterthanaverageBMDofyounghealthypersons,andthelossofbonemassduringspaceflight,thoughstillevidentevenwithresistiveexerciseonARED,issmallrelativetotheabsolutemass.

Page 25: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

25

• ThelowergravitationalenvironmentsonmoonandMarsreducethevelocityofafalland,subsequently,appliedloadstothehipduringafallonaplanetarysurface.

• ThereismuchvariabilitywithratesofaBMDlossrenderingtheBRxFMinsensitivetochangesinaBMDinducedbybisphosphonatesorAREDexercise.ThemostsensitiveparameterwithintheBFxRMis“thenumberoftimesduringamissionthataneventoccursthatcouldresultinafracture.”However,itischallengingtoestimatehowmanytimesanastronautmightaccidentlyfall.

Inaddition,theprobabilityofwristfractureremainsunchangedfrompre-AREDimplementationbecausethechangeinBMDatthewristduringthemissioniszeroandwasnotalteredbyuseoftheARED.Therefore,withallotherfactorsremainingthesame,thechangeinbonelossrateafterAREDbecameavailableon-orbithadverylittleeffectonthecalculated,overallbonefractureprobability.ThissuggeststhattheBRxFMusingaBMDforbonestrengthmaynotbeusefulasatoolbecauseitcannotevaluatetheeffectofacountermeasure.Tothisaim,finiteelementmodelingtoestimatechangesinBoneStrengthwillbeinvestigatedintheBFxRMtoimproveourabilitytoestimatefractureprobability.

VIII. GapsAtthetimeofwriting,3researchknowledgegapshavebeenidentifiedthataredirectlyrelatedtotheRiskofBoneFracture.Theseare:

• Fracture1:Wedon’tunderstandhowthespaceflightenvironmentaffectsbonefracturehealingin-flight.

• Fracture2:Weneedtocharacterizetheloadsappliedtoboneforstandardin-missionactivities.

• Fracture3:WeneedavalidatedmethodtoestimatetheRiskofFracturebyevaluatingtheratioofappliedloadstobonefractureloadsforexpectedmechanicallyloadedactivitiesduringamission.

IX. ConclusionsAhighriskforfractureisacharacteristicofosteoporosis,whichisaconsequenceofthelossesinbonemassandinstructuraldeterioration.ThedistinctionbetweentheincreasedbonefractureriskinpersonswithosteoporosisandtheincreasedriskforfracturesduringaspaceflightmissionisbaseduponaFactorofRisk.Osteoporoticpersonsfractureunderscenariosofminimalornoloadingduetothefragilityofboneitself.Fragilityfracturesarecharacteristicoffracturesoccurringundertheloadingofnormalactivities(forexample,standing,coughing,rollingoverinbed)orwithfallsfromastandingheight.Tothebestofourdata-miningcapabilities,thereisnoevidenceforincreasedriskoffragilityfracturesinlong-durationcrewmembers,noristhereadiagnosisofosteoporosisinthesecrewmembersbyclinicallyacceptedguidelines.However,thecurrentT-scorebasedcriteriaforriskassessment,

Page 26: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

26

originallydevelopedforolderwomen,areprobablynotsufficientforassessingriskinalownumberofastronautswhoarepredominantlyyoung,healthymalesexposedtoskeletalassaultthatisunlikeage-relatedboneloss.Parametersofbonemicro-andmacrostructurecontributetothestrengthofboneandcanbequantifiedbynon-invasivetechnologies.Uncertaintyrelatedtospaceflighteffectsonbonemorphologyandonbonestrengthexistbecausetechnologies,includingQCTscanningandFEA,toassesssuchchangeshavecurrentlybeenassessedonlyonalownumberofvolunteers.Changestothehumanskeletonwhenexposedtoamicrogravityorfractionalgravityenvironmentremainunknown.Lowsubjectnumbersanddelayedaccumulationofdataarelargeconstraintstoassessingfractureprobabilityfordecision-makingandmissionplanning.WithanincreasedunderstandingofspaceflighteffectsandimprovedmeasurementcapabilitiesbeyondDXAaBMD,wemaybeabletoprovideabetterassessmentoffracturerisktofuturecrew.Additionaldatacouldincludethetemporalpatternofbonelossformissionsgreaterthan6monthsandthemorphologicalchangesthataccompanyskeletaladaptationtospace,includingbothmicrogravityandpartialgravityenvironments.Documentedreductionsinbonemassandstructuralchangessuggestdeclinesinwholebonestrengthsuchthatadeconditionedpersonwithboneatrophyissusceptibletofractureatloadsthatmayhavebeentolerablebeforespaceflight.Amultifactorialanalysisofcross-disciplinaryriskfactorsforfractureisalsowarranted.Finally,modelingtheFactorofRiskforfractureduringaspaceflightmissionrequiresafullunderstandingofthechangesinbonemassandinbonequalityatspecificsitesaswellashowthesesiteswillbemechanicallyloadedbyactivitiesduringaspaceflightmission.

Page 27: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

27

X. ReferencesAminS,AchenbachSJ,AtkinsonE,etal(2010)BoneBoneDensityFollowingLong-

DurationSpaceflightandRecovery.

AminS,AchenbachSJ,AtkinsonE,SibongaJ(2011)BoneDensityFollowingThreeYearsofRecoveryfromLong-DurationSpaceFlight.

BeckTJ(2007)ExtendingDXAbeyondbonemineraldensity:understandinghipstructureanalysis.CurrOsteoporosRep5:49–55.

BischoffHA,StähelinHB,DickW,etal(2003)EffectsofvitaminDandcalciumsupplementationonfalls:arandomizedcontrolledtrial.JBoneMinerResOffJAmSocBoneMinerRes18:343–351.doi:10.1359/jbmr.2003.18.2.343

Bischoff-FerrariHA,Dawson-HughesB,WillettWC,etal(2004)EffectofVitaminDonfalls:ameta-analysis.JAMA291:1999–2006.doi:10.1001/jama.291.16.1999

BlackDM,BouxseinML,MarshallLM,etal(2008)ProximalFemoralStructureandthePredictionofHipFractureinMen:ALargeProspectiveStudyUsingQCT.JBoneMinerRes23:1326–1333.doi:10.1359/jbmr.080316

BloombergJJ,MulavaraAP(2003)Changesinwalkingstrategiesafterspaceflight.IEEEEngMedBiolMagQMagEngMedBiolSoc22:58–62.

BonnickSL(2007)HSA:beyondBMDwithDXA.Bone41:S9-12.doi:10.1016/j.bone.2007.03.007

BonnickSL,ShulmanL(2006)Monitoringosteoporosistherapy:bonemineraldensity,boneturnovermarkers,orboth?AmJMed119:S25-31.doi:10.1016/j.amjmed.2005.12.020

BoudreauxR,SibongaJD(2015)SimpleGeometricMeasurementsPredictHipFractureBeyondBoneMineralDensity.TexOrthopJ1:109–122.

CarpenterRD,BeaupréGS,LangTF,etal(2005)NewQCTanalysisapproachshowstheimportanceoffallorientationonfemoralneckstrength.JBoneMinerResOffJAmSocBoneMinerRes20:1533–1542.doi:10.1359/JBMR.050510

ChangG,HonigS,LiuY,etal(2015)7TeslaMRIofbonemicroarchitecturediscriminatesbetweenwomenwithoutandwithfragilityfractureswhodonotdifferbybonemineraldensity.JBoneMinerMetab33:285–293.doi:10.1007/s00774-014-0588-4

Page 28: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

28

ChesnutCH,MajumdarS,NewittDC,etal(2005)Effectsofsalmoncalcitoninontrabecularmicroarchitectureasdeterminedbymagneticresonanceimaging:resultsfromtheQUESTstudy.JBoneMinerResOffJAmSocBoneMinerRes20:1548–1561.doi:10.1359/JBMR.050411

CodyDD,GrossGJ,HouFJ,etal(1999)FemoralstrengthisbetterpredictedbyfiniteelementmodelsthanQCTandDXA.JBiomech32:1013–1020.

CourtineG,PozzoT(2004)Recoveryofthelocomotorfunctionafterprolongedmicrogravityexposure.I.Head-trunkmovementandlocomotorequilibriumduringvarioustasks.ExpBrainRes158:86–99.doi:10.1007/s00221-004-1877-2

CummingsSR,BlackDM,ThompsonDE,etal(1998)Effectofalendronateonriskoffractureinwomenwithlowbonedensitybutwithoutvertebralfractures:resultsfromtheFractureInterventionTrial.JAMA280:2077–2082.

CummingsSR,NevittMC,BrownerWS,etal(1995)Riskfactorsforhipfractureinwhitewomen.StudyofOsteoporoticFracturesResearchGroup.NEnglJMed332:767–773.doi:10.1056/NEJM199503233321202

DanaCarpenterR,LeBlancAD,EvansH,etal(2010)Long-termchangesinthedensityandstructureofthehumanhipandspineafterlong-durationspaceflight.ActaAstronaut67:71–81.doi:10.1016/j.actaastro.2010.01.022

DeLaetC,OdénA,JohanssonH,etal(2005)Theimpactoftheuseofmultipleriskindicatorsforfractureoncase-findingstrategies:amathematicalapproach.OsteoporosIntJEstablResultCoopEurFoundOsteoporosNatlOsteoporosFoundUSA16:313–318.doi:10.1007/s00198-004-1689-z

EllmanR,SibongaJ,BouxseinM(2010)Maleastronautshavegreaterbonelossandriskofhipfracturefollowinglongdurationspaceflightsthanfemales.[Abstract1142]PodiumpresentationattheAmericanSocietyofBoneandMineralResearchAnnualMeeting;Toronto,Ontario,Canada,October2010.

EllmanR,SpatzJ,CloutierA,etal(2013)Partialreductionsinmechanicalloadingyieldproportionalchangesinbonedensity,bonearchitecture,andmusclemass.JBoneMinerResOffJAmSocBoneMinerRes28:875–885.doi:10.1002/jbmr.1814

EspallarguesM,Sampietro-ColomL,EstradaMD,etal(2001)Identifyingbone-mass-relatedriskfactorsforfracturetoguidebonedensitometrymeasurements:asystematicreviewoftheliterature.OsteoporosIntJEstablResultCoopEurFoundOsteoporosNatlOsteoporosFoundUSA12:811–822.doi:10.1007/s001980170031

Page 29: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

29

GadomskiBC,LernerZF,BrowningRC,etal(2016)Computationalcharacterizationoffracturehealingunderreducedgravityloadingconditions.JOrthopResOffPublOrthopResSoc34:1206–1215.doi:10.1002/jor.23143

GadomskiBC,McGilvrayKC,EasleyJT,etal(2014a)Aninvivoovinemodelofbonetissuealterationsinsimulatedmicrogravityconditions.JBiomechEng136:21020.doi:10.1115/1.4025854

GadomskiBC,McGilvrayKC,EasleyJT,etal(2014b)Partialgravityunloadinginhibitsbonehealingresponsesinalargeanimalmodel.JBiomech47:2836–2842.doi:10.1016/j.jbiomech.2014.07.031

GarneroP,Sornay-RenduE,DuboeufF,DelmasPD(1999)Markersofboneturnoverpredictpostmenopausalforearmbonelossover4years:theOFELYstudy.JBoneMinerResOffJAmSocBoneMinerRes14:1614–1621.doi:10.1359/jbmr.1999.14.9.1614

GarrawayWM,StaufferRN,KurlandLT,O’FallonWM(1979)Limbfracturesinadefinedpopulation.I.Frequencyanddistribution.MayoClinProc54:701–707.

GutteridgeDH,StewartGO,PrinceRL,etal(2002)Arandomizedtrialofsodiumfluoride(60mg)+/-estrogeninpostmenopausalosteoporoticvertebralfractures:increasedvertebralfracturesandperipheralbonelosswithsodiumfluoride;concurrentestrogenpreventsperipheralloss,butnotvertebralfractures.OsteoporosIntJEstablResultCoopEurFoundOsteoporosNatlOsteoporosFoundUSA13:158–170.doi:10.1007/s001980200008

HansD,BartheN,BoutroyS,etal(2011)CorrelationsBetweenTrabecularBoneScore,MeasuredUsingAnteroposteriorDual-EnergyX-RayAbsorptiometryAcquisition,and3-DimensionalParametersofBoneMicroarchitecture:AnExperimentalStudyonHumanCadaverVertebrae.JClinDensitom14:302–312.doi:10.1016/j.jocd.2011.05.005

HernandezCJ,GuptaA,KeavenyTM(2006)Abiomechanicalanalysisoftheeffectsofresorptioncavitiesoncancellousbonestrength.JBoneMinerResOffJAmSocBoneMinerRes21:1248–1255.doi:10.1359/jbmr.060514

KanisJA,MeltonLJ,ChristiansenC,etal(1994)Thediagnosisofosteoporosis.JBoneMinerResOffJAmSocBoneMinerRes9:1137–1141.doi:10.1002/jbmr.5650090802

Page 30: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

30

KanisJA,OdenA,JohnellO,etal(2007)TheuseofclinicalriskfactorsenhancestheperformanceofBMDinthepredictionofhipandosteoporoticfracturesinmenandwomen.OsteoporosIntJEstablResultCoopEurFoundOsteoporosNatlOsteoporosFoundUSA18:1033–1046.doi:10.1007/s00198-007-0343-y

KeavenyTM,KopperdahlDL,MeltonLJ,etal(2010)Age-dependenceoffemoralstrengthinwhitewomenandmen.JBoneMinerResOffJAmSocBoneMinerRes25:994–1001.doi:10.1359/jbmr.091033

KeyakJH,KanekoTS,TehranzadehJ,SkinnerHB(2005)Predictingproximalfemoralstrengthusingstructuralengineeringmodels.ClinOrthop219–228.

KeyakJH,KoyamaAK,LeBlancA,etal(2009)Reductioninproximalfemoralstrengthduetolong-durationspaceflight.Bone44:449–453.doi:10.1016/j.bone.2008.11.014

KeyakJH,SigurdssonS,KarlsdottirG,etal(2011)Male-femaledifferencesintheassociationbetweenincidenthipfractureandproximalfemoralstrength:afiniteelementanalysisstudy.Bone48:1239–1245.doi:10.1016/j.bone.2011.03.682

KohrtWM,BloomfieldSA,LittleKD,etal(2004)AmericanCollegeofSportsMedicinePositionStand:physicalactivityandbonehealth.MedSciSportsExerc36:1985–1996.

LangT,LeBlancA,EvansH,etal(2004)CorticalandTrabecularBoneMineralLossFromtheSpineandHipinLong-DurationSpaceflight.JBoneMinerRes19:1006–1012.doi:10.1359/JBMR.040307

LangTF(2006)Whatdoweknowaboutfractureriskinlong-durationspaceflight?JMusculoskeletNeuronalInteract6:319–321.

LeBlancA,LinC,ShackelfordL,etal(2000a)Musclevolume,MRIrelaxationtimes(T2),andbodycompositionafterspaceflight.JApplPhysiolBethesdaMd198589:2158–2164.

LeBlancA,SchneiderV,ShackelfordL,etal(2000b)Bonemineralandleantissuelossafterlongdurationspaceflight.JMusculoskeletNeuronalInteract1:157–60.

LeBlancAD,SpectorER,EvansHJ,SibongaJD(2007)Skeletalresponsestospaceflightandthebedrestanalog:areview.JMusculoskeletNeuronalInteract7:33–47.

Page 31: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

31

MaderTH,GibsonCR,PassAF,etal(2011)Opticdiscedema,globeflattening,choroidalfolds,andhyperopicshiftsobservedinastronautsafterlong-durationspaceflight.Ophthalmology118:2058–2069.doi:10.1016/j.ophtha.2011.06.021

MedimapsGroup(2015)AdvancedDXAUsingTBSiNsight.

MulavaraAP,FeivesonAH,FiedlerJ,etal(2010)Locomotorfunctionafterlong-durationspaceflight:effectsandmotorlearningduringrecovery.ExpBrainRes202:649–659.doi:10.1007/s00221-010-2171-0

NASA(2014)NASASpaceflightHumanSystemStandards-NASAStandard3001.NationalAeronauticsandSpaceAdministration,NASAJohnsonSpaceCenter

NASAHumanResearchProgram(2016)HumanResearchProgramRoadmap.https://humanresearchroadmap.nasa.gov.

NelsonES,LewandowskiB,LicataA,MyersJG(2009)Developmentandvalidationofapredictivebonefractureriskmodelforastronauts.AnnBiomedEng37:2337–2359.doi:10.1007/s10439-009-9779-x

NewmanDJ,JacksonDK,BloombergJJ(1997)Alteredastronautlowerlimbandmasscenterkinematicsindownwardjumpingfollowingspaceflight.ExpBrainRes117:30–42.

NgAC,DrakeMT,ClarkeBL,etal(2012)Trendsinsubtrochanteric,diaphyseal,anddistalfemurfractures,1984-2007.OsteoporosIntJEstablResultCoopEurFoundOsteoporosNatlOsteoporosFoundUSA23:1721–1726.doi:10.1007/s00198-011-1777-9

NIHConsensusDevelopmentPanelonOsteoporosisPrevention,Diagnosis,andTherapy(2001)Osteoporosisprevention,diagnosis,andtherapy.JAMA285:785–795.

OrwollES,AdlerRA,AminS,etal(2013)Skeletalhealthinlong-durationastronauts:nature,assessment,andmanagementrecommendationsfromtheNASABoneSummit.JBoneMinerResOffJAmSocBoneMinerRes28:1243–1255.doi:10.1002/jbmr.1948

OrwollES,MarshallLM,NielsonCM,etal(2009)Finiteelementanalysisoftheproximalfemurandhipfractureriskinoldermen.JBoneMinerResOffJAmSocBoneMinerRes24:475–483.doi:10.1359/jbmr.081201

ParfittAM,DreznerMK,GlorieuxFH,etal(1987)Bonehistomorphometry:standardizationofnomenclature,symbols,andunits.ReportoftheASBMRHistomorphometryNomenclatureCommittee.JBoneMinerResOffJAmSocBoneMinerRes2:595–610.doi:10.1002/jbmr.5650020617

Page 32: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

32

PetersB,BloombergJ,LayneC,etal(1996)Eye,head,andtrunkphaserelationshipsduringtreadmilllocomotionwhileviewingvisualtargetsatdifferentdistances.Soc.Neurosci.Abstr.199622(3):1848.SocNeurosciAbstr22:1848.

PrevrhalS,MetaM,GenantHK(2004)TwonewregionsofinteresttoevaluateseparatelycorticalandtrabecularBMDintheproximalfemurusingDXA.OsteoporosIntJEstablResultCoopEurFoundOsteoporosNatlOsteoporosFoundUSA15:12–19.doi:10.1007/s00198-003-1500-6

RiggsBL,HodgsonSF,O’FallonWM,etal(1990)Effectoffluoridetreatmentonthefracturerateinpostmenopausalwomenwithosteoporosis.NEnglJMed322:802–809.doi:10.1056/NEJM199003223221203

RiggsBL,MeltonLJ,RobbRA,etal(2006)Population-basedanalysisoftherelationshipofwholebonestrengthindicesandfall-relatedloadstoage-andsex-specificpatternsofhipandwristfractures.JBoneMinerResOffJAmSocBoneMinerRes21:315–323.doi:10.1359/JBMR.051022

RobinovitchSN,HayesWC,McMahonTA(1991)Predictionoffemoralimpactforcesinfallsonthehip.JBiomechEng113:366–374.

SchuitSCE,vanderKliftM,WeelAEAM,etal(2004)Fractureincidenceandassociationwithbonemineraldensityinelderlymenandwomen:theRotterdamStudy.Bone34:195–202.doi:10.1016/j.bone.2003.10.001

SibongaJ(2017)RiskofAcceleratedOsteoporosis.NationalAeronauticsandSpaceAdministration,NASAJohnsonSpaceCenter.HumanResearchProgramEvidenceReportMay9,2017,availableat:https://humanresearchroadmap.nasa.gov/Evidence/

SibongaJD,EvansHJ,SungHG,etal(2007)Recoveryofspaceflight-inducedboneloss:bonemineraldensityafterlong-durationmissionsasfittedwithanexponentialfunction.Bone41:973–978.doi:10.1016/j.bone.2007.08.022

SmithSM,HeerM,ShackelfordLC,etal(2015)BonemetabolismandrenalstoneriskduringInternationalSpaceStationmissions.Bone81:712–720.doi:10.1016/j.bone.2015.10.002

SmithSM,HeerMA,ShackelfordLC,etal(2012)Benefitsforbonefromresistanceexerciseandnutritioninlong-durationspaceflight:Evidencefrombiochemistryanddensitometry.JBoneMinerResOffJAmSocBoneMinerRes27:1896–1906.doi:10.1002/jbmr.1647

SmithSM,WastneyME,MorukovBV,etal(1999)Calciummetabolismbefore,during,andaftera3-mospaceflight:kineticandbiochemicalchanges.AmJPhysiol277:R1-10.

Page 33: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

33

SmithSM,WastneyME,O’BrienKO,etal(2005)Bonemarkers,calciummetabolism,andcalciumkineticsduringextended-durationspaceflightonthemirspacestation.JBoneMinerResOffJAmSocBoneMinerRes20:208–218.doi:10.1359/JBMR.041105

Sornay-RenduE,MunozF,GarneroP,etal(2005)IdentificationofOsteopenicWomenatHighRiskofFracture:TheOFELYStudy.JBoneMinerRes20:1813–1819.doi:10.1359/JBMR.050609

SulkowskiCM,GilkeyKM,LewandowskiBE,etal(2011)Anextravehicularsuitimpactloadattenuationstudytoimproveastronautbonefractureprediction.AviatSpaceEnvironMed82:455–462.

SwiftJM,LimaF,MaciasBR,etal(2013)Partialweightbearingdoesnotpreventmusculoskeletallossesassociatedwithdisuse.MedSciSportsExerc45:2052–2060.doi:10.1249/MSS.0b013e318299c614

TurnerRT(2000)Invitedreview:whatdoweknowabouttheeffectsofspaceflightonbone?JApplPhysiolBethesdaMd198589:840–847.

vanderLindenJC,HommingaJ,VerhaarJA,WeinansH(2001)Mechanicalconsequencesofbonelossincancellousbone.JBoneMinerResOffJAmSocBoneMinerRes16:457–465.doi:10.1359/jbmr.2001.16.3.457

VicoL,ColletP,GuignandonA,etal(2000)Effectsoflong-termmicrogravityexposureoncancellousandcorticalweight-bearingbonesofcosmonauts.LancetLondEngl355:1607–1611.

WainwrightSA,MarshallLM,EnsrudKE,etal(2005)HipFractureinWomenwithoutOsteoporosis.JClinEndocrinolMetab90:2787–2793.doi:10.1210/jc.2004-1568

WorldHealthOrganization(2004)WHOScientificGroupontheAssessmentofOsteoporosisatPrimaryHealthCareLevel.SummaryMeetingReport.Brussels,Belgium,May5-7,2004.WorldHealthOrganization,Brussels,Belgium

WorldHealthOrganization(1994)Assessmentoffractureriskanditsapplicationtoscreeningforpostmenopausalosteoporosis.ReportofaWHOStudyGroup.WorldHealthOrganTechRepSer843:1–129.

Page 34: Risk of Bone Fracture due to Spaceflight- induced Changes ...€¦ · 12/05/2017  · lead to fracture, and NASA’s bone health standards ensure sufficient pre-flight bone mineral

34

XI. TeamNASAJohnsonSpaceCenter,Houston,TXJeanSibonga,Ph.D.HarlanJ.Evans,Ph.D.ElisabethSpector,B.S.ScottA.Smith,M.S.,(CBDT)GregYardley,M.S.NASAGlennResearchCenter,Cleveland,OHJerryG.Myers,Ph.D.BethE.Lewandowski,Ph.D.

XII. ListofAcronymsaBMD:arealbonemineraldensityBFxRM:BoneFractureRiskModelBMD:BonemineraldensityDXA:dual-energyX-rayabsorptiometryEVA:ExtravehicularactivityHRP:HumanResearchProgramIMM:IntegratedMedicalModeliRED:interimresistiveexercisedeviceISS:InternationalSpaceStationMRI:magneticresonanceimagingPRA:probabilisticriskassessmentQCT:quantitativecomputedtomographyvBMD:volumetricbonemineraldensity