rike oppgaver matematikkundervisning for alle elever

56
Rike oppgaver – matematikkundervisning for alle elever 06.11.17 Lisbet Karlsen 08.11.2017 Faktor-seminar Cappelen Damm 1

Upload: others

Post on 08-Feb-2022

14 views

Category:

Documents


0 download

TRANSCRIPT

Rike oppgaver –matematikkundervisning for alle elever

06.11.17

Lisbet Karlsen

08.11.2017 Faktor-seminar Cappelen Damm 1

Rike oppgaver

• Hva er rike oppgaver?

• Hvorfor skal vi bruke rike oppgaver?

• Hvordan kan vi lage rike oppgaver?

• Eksempler på rike oppgaver

08.11.2017 Faktor-seminar Cappelen Damm 2

Oppvarming: Hvem skal ut?

08.11.2017 Faktor-seminar Cappelen Damm 3

16 6427

8 32

Rike oppgaver(Stedøy 2005, Karlsen 2014)

• skal introdusere viktige matematiske idéer eller løsningsstrategier

• skal være lett å forstå og ha lav inngangsterskel samtidig som de skal oppleves som utfordringer

• Problemløsing

• skal kreve anstrengelse og tillates å ta tid

• skal kunne løses på ulike måter, med ulike strategier og representasjoner

• skal gi mulighet for matematiske diskusjoner

• skal kunne lede til at elever og lærere formulerer nye interessante problemer, ved f.eks. å spørre: “Hva hvis …?”, “Hvorfor er det ikke slik…?” eller liknende

08.11.2017 Faktor-seminar Cappelen Damm 4

Utforsking (Opheim og Simensen, 2017)

• «Nøkkelen til å utvikle en bredere kompetanse i matematikk i tråd med hva dagens samfunn behøver» (Opheim og Simonsen, 2017, s. 102)

• Matematikk, i følge matematikere, handler om noe langt mer enn å utføre beregninger. Handler om å se etter mønstre, sammenhenger, prøve og feile, korrigere, resonnere, argumentere osv

• Dybdelæring. Gir elevene verktøy til å bruke matematikken i nye sammenhenger for å løse nye problemer. Handler om å forstå matematikken

08.11.2017 Faktor-seminar Cappelen Damm 5

Kvikkbilder

08.11.2017 Faktor-seminar Cappelen Damm 6

Eksempel 1: Tall og tallregning

• Kompetansemål etter 10. trinn:

• Mål for opplæringa er at elevene skal kunne

– utvikle, bruke og gjere greie for ulike metodar i hovudrekning, overslagsrekning og skriftleg rekning med dei fire rekneartane

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 7

Eksempel 1: Tall og tallregning

• Arbeid med de fire regneartene

• Åpnere oppgaver (flere strategier og flere representasjoner mulig)

• Mer utforsking (her ved å finne flere strategier for økt forståelse og større dybdelæring)

• Motivasjon

• Bedre ferdighet i hoderegning

08.11.2017 Faktor-seminar Cappelen Damm 8

Eksempel 1: Subtraksjon

• Regn i hodet

• Fortell de rundt deg hvordan du har tenkt

• Skriv det du tenker (helst på en linje – pass på likhetstegnet)

• Vi deler resultatene

• 345 - 287

08.11.2017 Faktor-seminar Cappelen Damm 9

345 - 287

• = 358 – 300 = 58

• = 345 – 300 + 13 = 45 + 13 = 58

• = 3 + 10 + 45 = 58

• = (300 – 200) + (40 – 80) + (5 – 7) = 100 – 40 – 2 = 58

08.11.2017 Faktor-seminar Cappelen Damm 10

Utvide oppgaven for alle

• 345 – 287= 358 – 300 = 58

• = 345 – 300 + 13 = 45 + 13 = 58

• = 3 + 10 + 45 = 58

• = (300 – 200) + (40 – 80) + (5 – 7) = 100 – 40 – 2 = 58

• Ny oppgave: Løs den ved hjelp av en av de andre strategiene.

• Eller kanskje finner du en ny, bedre strategi?

• Denne gangen kan du skrive ned mellom-regningene

• 698 - 79

08.11.2017 Faktor-seminar Cappelen Damm 11

Ny oppgave

698 - 79

• = 700 – 81 = 619

• = 699 – 80 = 619

• = 1 + 18 + 600 = 619

• = 600 + 20 – 1 = 619

08.11.2017 Faktor-seminar Cappelen Damm 12

Utforskende problemløsing

• Undersøker ulike strategier for subtraksjon

• Utfordring for alle fordi dette er nye strategier for mange, og fordi de må lytte til andres forklaringer og prøve å sette seg inn i andres tenkemåter

• Lav inngangsterskel. Starter enkelt, slik at alle kan regne i hodet.

• Mulighet for samtale

• Utviding av oppgaven:

– Hva hvis det var to desimaltall?

– Hva hvis det var større tall involvert?

– Hva hvis det var brøker?

– Lag en treningsoppgave til en læringspartner

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 13

Litt multiplikasjon

Løsningen fra elev i ungdomsskolen:

4,44 ∙ 1,75 = 7 + 0,7 + 0,07 = 7,77

Hvordan har eleven tenkt?

Eksempel 2: algebra

Kompetansemål etter 10. trinn:

Mål for opplæringa er at elevene skal kunne

• behandle, faktorisere og forenkle algebrauttrykk, knyte uttrykka til praktiske situasjonar, reknemed formlar, parentesar og brøkuttrykk og bruke kvadratsetningane

• bruke tal og variablar i utforsking, eksperimentering og praktisk og teoretisk problemløysing og i prosjekt med teknologi og design

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 15

Kritiske faktorer knyttet til aktuelle kompetansemål?

• Tallregning

– Prioritet mellom regneoperasjoner

– Regler for regning med parenteser

– Positive og negative verdier

– Likhetstegnets betydning

– Potenser

• Variabelbegrepet

– Variabel står for et tall

– Hva er forskjellen på benevning og variabel?

– To like variabler i et uttrykk står for samme tall

– Innsetting av tall for variabler

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 16

Rammeproblemet (Boaler og Humphreys,

2005)

• Elev 1: 4∙10-4

• Elev 2: 10+10+8+8

• Elev 3: (10 ∙10)-(8 ∙8)

• Elev 4: 4∙9

• Elev 5: 10+9+9+8

• Elev 6: 4 ∙8+4

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 17

Rammeproblemet (Boaler og Humphreys,

2005)

• Fire ulike representasjoner for sammenhengen mellom lengden på siden og antall kvadrater i ramma:– Geometrisk

– Numerisk

– Verbalt

– Algebraisk

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 18

Rammeproblemet (Boaler og Humphreys,

2005)

Numerisk representasjon (Elev 2’s modell):

– 10x10: 10+10+8+8

– 6x6: 6+6+4+4

– 15x15: 15+15+13+13

– 233x233: 233+233+231+231

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 19

Geometrisk representasjon

Rammeproblemet (Boaler og Humphreys,

2005)

• Verbal representasjon:Forklare muntlig og skriftlig hvordan den enkelte metoden fungerer.

Hjelpe elevene til å bli så presise som mulig ved å stille spørsmål.

• Algebraisk representasjon:

• s + s+ (s-2) +(s-2)

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 20

Algebraiske representasjoner og likhet (Boaler og Humphreys, 2005)

• Elev 1: 4∙10-4

• Elev 2: 10+10+8+8

• Elev 3: (10 ∙10)-(8 ∙8)

• Elev 4: 4∙9

• Elev 5: 10+9+9+8

• Elev 6: 4 ∙8+4

• 4n – 4

• n + n +(n-2) + (n-2)

• n ∙ n – (n-2) ∙ (n-2) = 𝑛2 - (𝑛 − 2)2

• 4(n-1)

• n+ (n-1) + (n-1) + (n-2)

• 4(n-2) + 4

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 21

Utviding av oppgaven / differensiering

• Hva hvis …?

• Hva hvis rammen var 5 ∙ 5? Andre størrelser?

• Skriv antall ruter i ramma som en funksjon av sidelengden.

• Tegn grafen til denne funksjonen, gjerne i GeoGebra

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 22

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 23

Kommunikasjon og samtale

• Elevsamtaler, gjerne med læringspartner eller i en liten gruppe

• Klassesamtale

– Ulike samtaletrekk (Wæge, 2015)

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 24

08.11.2017 Profesjonsverksted høst-16 25

Utforskende

• Undersøke

• Kan være ren manipulering av tall, men ofte er det knyttet til tegning eller undersøkelser ved hjelp av et materiell

• Gir ofte anledning til kommunikasjon

– Presentere hypoteser

– Fortelle hva man gjør og lytte til andres forklaring

– Fortelle hva men finner ut og lytte til andre

– Diskutere ulike løsninger

– Begrunne forslag

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 26

Problemløsing

• En oppgave man ikke umiddelbart ser hvordan man kan løse.

• En oppgave der man ikke har klar en algoritme for å løse den

• Gjør at man gjerne må prøve seg fram, undersøke eller tegne

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 27

Åpen oppgave

• En åpen oppgaven har gjerne

– ulike løsninger og/eller

– ulike strategier og/eller

– ulike måter å representere løsningen på

• Svært åpen oppgave:

– Lag en oppgave selv

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 28

Hvordan lage rike oppgaver selv?

• Åpne oppgavene slik at de kan løses med ulike metoder, strategier og med ulike representasjoner

• Skap mulighet for inquiry (nye spørsmål, nysgjerrighet)

• Presenter et problem, inviter til utforsking, før metoden undervises

• Legg til en visuell komponent og be elevene vise hvordan de kan se matematikken

• Utvid oppgaven for å gi mulighet for «lower floor and higher ceiling»

• Be elevene overbevise og begrunne. Tren dem i å være skeptiske.

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 29

Oppsummering / refleksjon

• Se på målene igjen:

• Hva har du lært? Hva slags måloppnåelse har du?

• Læringsbillett

• Tommel opp

• Logg

• Mål-lapp for videre arbeid

• Oppgave: F.eks: Tenk på rammeoppgaven: Per og Kari har laget hver sin modell algebraisk:Per: R = 4 (n-1)Kari: R = 𝑛2 − (𝑛 − 2)2

Vis at begge uttrykkene fungerer ved å regne ut begge når sidelengden er 6.

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 30

«Min favorittfeil»

• Se video på YouTube: My favorite no

• Gjerne dagen etter for å se hvor elevene er, for å få elevene til å sette fokus på hva som er riktig, og for å analysere en feil som flere har

• Skaper en norm der det er greit å gjøre feil, greit å snakke om egne og andres feil

• Vurdering for læring

• Variasjonsteori

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 31

Eksempel 3: Algebra

• Hvordan ser de ulike bitene ut dersom vi kutter etter linjene?

• Hvilket algebraisk uttrykk viser volumet av den enkelte biten?

08.11.2017 Faktor-seminar Cappelen Damm 32

Eksamen 10. trinn 2015

Eksempel 3: Algebra• 1: a∙a∙b = a2b

• 2: a∙a∙a = a3

• 3: a∙b∙b = ab2

• 4: a ∙a ∙b = a2b

• 5: a∙b∙b = ab2

• 6: b∙b∙b = b3

• 7: a∙a∙b = a2b

• 8: a∙b∙b = ab2

08.11.2017 Faktor-seminar Cappelen Damm 33

1+2+3+4+5+6+7+8 = a3+ 3a2b + 3ab2 + b3

Eksempel 3: Algebra

• Hvordan regner vi volum av en kube?

• V = s∙s∙s = s3

• Volum av vår kube?

• V = (a + b)3 = (a + b) ∙ (a + b) ∙ (a + b)= a3+ 3a2b + 3ab2 + b3

08.11.2017 Faktor-seminar Cappelen Damm 34

Eksempel 3: Algebra

• V = (a + b)3 = (a + b) ∙ (a + b) ∙ (a + b)= a3+ 3a2b + 3ab2 + b3

• Hvor stort er volumet dersom a er 2 og b er 3?

• Hvor mye endrer volumet seg dersom vi dobler a og b, slik at a bli 4 og b blir 6?

08.11.2017 Faktor-seminar Cappelen Damm 35

Utforskende

• Undersøke

• Kan være ren manipulering av tall, men ofte er det knyttet til tegning eller undersøkelser ved hjelp av et materiell

• Gir ofte anledning til kommunikasjon

– Presentere hypoteser

– Fortelle hva man gjør og lytte til andres forklaring

– Fortelle hva men finner ut og lytte til andre

– Diskutere ulike løsninger

– Begrunne forslag

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 36

Problemløsing

• En oppgave man ikke umiddelbart ser hvordan man kan løse.

• En oppgave der man ikke har klar en algoritme for å løse den

• Gjør at man gjerne må prøve seg fram, undersøke eller tegne

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 37

Åpen oppgave

• En åpen oppgaven har gjerne

– ulike løsninger og/eller

– ulike strategier og/eller

– ulike måter å representere løsningen på

• Svært åpen oppgave:

– Lag en oppgave selv

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 38

Hvordan lage rike oppgaver selv?

• Åpne oppgavene slik at de kan løses med ulike metoder, strategier og med ulike representasjoner

• Skap mulighet for inquiry (nye spørsmål, nysgjerrighet)

• Presenter et problem, inviter til utforsking, før metoden undervises

• Legg til en visuell komponent og be elevene vise hvordan de kan se matematikken

• Utvid oppgaven for å gi mulighet for «lower floor and higher ceiling»

• Be elevene overbevise og begrunne. Tren dem i å være skeptiske.

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 39

Oppsummering / refleksjon

• Se på målene igjen:

• Hva har du lært? Hva slags måloppnåelse har du?

• Læringsbillett

• Tommel opp

• Logg

• Mål-lapp for videre arbeid

• Oppgave: F.eks: Tenk på rammeoppgaven: Per og Kari har laget hver sin modell algebraisk:Per: R = 4 (n-1)Kari: R = 𝑛2 − (𝑛 − 2)2

Vis at begge uttrykkene fungerer ved å regne ut begge når sidelengden er 6.

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 40

Eksempel 4: Arbeid med målestokk

• Starte med et praktisk arbeid

• Finne fram til hva vi skal med målestokk og hvordan det skrives

• Få et kart over skoleområdet. Mer praktisk arbeid

• Finne fram til målestokken i kartet

08.11.2017 Faktor-seminar Cappelen Damm 41

Eksempel 4: Arbeid med målestokk

• Velg en gjenstand på skoleområdet. Ta nødvendige mål for å kunne tegne den etterpå.

• Velg hvor mye hver cm på tegningen skal være verdt i virkeligheten, slik at gjenstanden får riktige proporsjoner.

• Hvordan kan vi skrive dette forholdet? Forholdet mellom hver cm på tegningen og lengde i virkeligheten?

08.11.2017 Faktor-seminar Cappelen Damm 42

Eksempel 4: Arbeid med målestokk

• Lengde: 2 m

• Bredde: 0,4 m

• Høyde: 0,8 m

• 1 cm skal tilsvare 20 cm i virkeligheten

• Målestokk: 1:20

• Samtale om at benevningene må være like for å skrive det uten benevning

08.11.2017 Faktor-seminar Cappelen Damm 43

Eksempel 4: Arbeid med målestokk

• Mål noen lengder i virkeligheten

• Mål de samme lengdene på kartet

• Finn målestokken!

• Gjør flere mål for å kontrollere

08.11.2017 Faktor-seminar Cappelen Damm 44

20 m

23,5 m

Eksempel 4: Arbeid med målestokk

• Tegn skolegården, huset ditt, drømmehuset ditt

• Velg målestokk

• Målestokk i kart – hva betyr det at målestokken er1:1000000?

08.11.2017 Faktor-seminar Cappelen Damm 45

Eksempel 5: Funksjoner

Kompetansemål etter 10. trinn:

Mål for opplæringa er at elevene skal kunne

• lage funksjonar som beskriv numeriske samanhengar og praktiske situasjonar, med og utan digitale verktøy, beskrive og tolke dei og omsetje mellom ulike representasjonar av funksjonar, som grafar, tabellar, formlar og tekstar

• identifisere og utnytte eigenskapane til proporsjonale, omvendt proporsjonale, lineære og kvadratiske funksjonar og gje døme på praktiske situasjonar som kan beskrivast med desse funksjonane

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 46

Kritiske faktorer

• Forstå sammenhengen mellom de to variablene i en funksjon

• Se forskjell på parametere og variable i en funksjon

• Manipulere formler som likninger

• Oversette et praktisk eksempel til et funksjonsuttrykk

• Variere mellom ulike representasjoner for en funksjon: praktisk situasjon, tabell, graf og uttrykk

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 47

Eksempel 5: Funksjoner

Praktisk oppgave:

• Alle får en hyssing som gir en omkrets på 1 m = 100 cm.

• Hvordan kan vi skrive et uttrykk for omkretsen, hvis vi kaller sidene l og b?

• O = 2l + 2b = 100

• Hvilke ulike rektangler kan du lage med denne omkretsen?

• Gjett først: Hvordan ser figuren ut dersom du vil ha størst mulig areal?

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 48

Eksempel 5: Funksjoner

• Hvordan endrer arealet seg når den ene siden i rektangelet varierer (vi kaller den siden lengde, l, selv om den siden ikke nødvendigvis er lengst hele tida)

• Vi bruker GeoGebra til å plotte punktene vi får , (l, A).

• Hvordan kan uttrykket se ut som passer til disse punktene?

• Vi prøver oss fram, og diskuterer de ulike forslagene, slik at vi til slutt kommer fram til

• A = - 𝑙2 + 50l ellerA = (50 – l) ∙ l

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 49

Eksempel 5: Funksjoner

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 50

Eksempel 5: Funksjoner

• Se sammenhengen mellom graf og hyssingrektangel

• Peke på et bestemt rektangel og spørre hvor vi finner igjen dette på grafen

• Peke på et punkt på grafen og be dem lage det rette rektangelet

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 51

Utforsking, problemløsing og rikt opplegg

• Utforsker

– sammenhengen mellom areal og lengde

– funksjonsuttrykk som passer til grafen

• Problem:

– Å omsette formlene for omkrets og areal til et funksjonsuttrykk der arealet er en funksjon av rektangelets lengde

– Å finne funksjonsuttrykket som passer til grafen

– Å se sammenhengen mellom grafen og rektangelet

• Rikt opplegg?

08.11.2017 HØGSKOLEN I BUSKERUD OG VESTFOLD – PROFESJONSHØGSKOLEN 52

Andre ideer?

• Lag en plakat om Pytagoras’ læresetning

• Lag en digital fortelling om arealberegninger

• Lag en video som viser arbeid med målestokk

08.11.2017 Faktor-seminar Cappelen Damm 53

Hvordan skape positive normer i matematikklasserommet? (Boaler, 2016)

Sju viktige meldinger til elevene:

Alle kan lære matematikk

Feil er verdifulle

Spørsmål er svært viktige

Matematikk handler om kreativitet og forståelse

Matematikk handler om sammenhenger og kommunikasjon

I matematikklasserommet er målet læring, ikke å gjøre mange oppgaver

Dybde er viktigere enn fart

08.11.2017 Høgskolen i Sørøst-Norge 54

Litteratur

• Boaler, J. (2016). Mathematical mindsets. Unleashing students' potensial through creative math, inspiring messages and innovative teaching. San Francisco: Jossey-Bass.

• Boaler, J., & Humphreys, C. (2005). Connecting mathematical ideas. Middle school video cases to support teaching and learning. Portsmouth, NH: Heinemann.

• Brekke, G., Grønmo, L. S., & Rosén, B. (2000). Veiledning til algebra. Oslo: Nasjonalt Læremiddelsenter.

• Hagland, K., Hedrén, R., & Taflin, E. (2005). Rika matematiska problem. Stockholm: Liber AB.

• Karlsen, L. (2014). Tenk det! Utforsking, forståelse og samarbeid - elever somtenker sjæl i matematikk. Oslo: Cappelen Damm.

• Kjøsnes, N. J. (1997). Divisjonsalgoritmen - gudeskapt eller skapt av mennesker? . Tangenten, 4, 4-9.

• Jensen, A.-M., & Wæge, K. (2010). Undersøkende matematikk - undervisning ivideregående skole. Kommunikasjon - motivasjon - forståelse. Trondheim: Matematikksenteret. http://matematikksenteret.no/content/1740/Unders%C3%B8kende%20matematikk%20-%20aktiviteter

08.11.2017 Faktor-seminar Cappelen Damm 55

Litteratur

• Nostrati, M., & Wæge, K. (2014). En oppsummering av status for forskning påhva som kjennetegner god læring og undervisning innenfor matematikk: Matematikksenteret.

• Opheim, L. G., & Simensen, A. M. (2017). Matematikk - utforsking av mønstre ogde store sammenhengene. In S. Bjørshol & R. Nolet (Eds.), Utforsking i alle fag(pp. 101-131). Oslo: Cappelen Damm Akademisk.

• Pettersson, E. and I. Wistedt (2013). Barns matematiske evner - og hvordan de kan utvikles. Oslo, Cappelen Damm Akademisk.

• Rockström, B. (2000). Skriftlig huvudräkning : metodbok. Stockholm: Bonnier Utbildning.

• Stedøy, I. M. (2005). La den matematiske fuglen få fly! Rikeproblemløsningsoppgaver i matematikkundervisningen. I G. Nortvedt (Red.), Matematikk med røtter og vinger. LAMIS. Sommerkursrapport 2005. Bergen: LAMIS.

• Wæge, K. (2015). Samtaletrekk - redskap i matematiske diskusjoner. Tangenten(2), 22-27.

• Film:Teaching channel: Youtube: My favourite n0: https://www.youtube.com/watch?v=srJWx7P6uLE

08.11.2017 Faktor-seminar Cappelen Damm 56