rights / license: research collection in copyright - non … · 2020. 3. 26. · merci à mon...

127
Research Collection Doctoral Thesis Mass bias study of Cu and Zn using (LA)-MC-ICP-MS and isotope ratio determinations by atmospheric aerosol sampling Author(s): Dorta, Ladina Corsina Publication Date: 2013 Permanent Link: https://doi.org/10.3929/ethz-a-010030879 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection . For more information please consult the Terms of use . ETH Library

Upload: others

Post on 28-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Research Collection

    Doctoral Thesis

    Mass bias study of Cu and Zn using (LA)-MC-ICP-MS and isotoperatio determinations by atmospheric aerosol sampling

    Author(s): Dorta, Ladina Corsina

    Publication Date: 2013

    Permanent Link: https://doi.org/10.3929/ethz-a-010030879

    Rights / License: In Copyright - Non-Commercial Use Permitted

    This page was generated automatically upon download from the ETH Zurich Research Collection. For moreinformation please consult the Terms of use.

    ETH Library

    https://doi.org/10.3929/ethz-a-010030879http://rightsstatements.org/page/InC-NC/1.0/https://www.research-collection.ethz.chhttps://www.research-collection.ethz.ch/terms-of-use

  • DISS. ETH No. 21359

    MASS BIAS STUDY OF CU AND ZN USING (LA)-MC-ICP-MS AND ISOTOPE RATIO

    DETERMINATIONS BY ATMOSPHERIC AEROSOL SAMPLING

    A dissertation submitted to

    ETH Zurich

    for the degree of

    Doctor of Sciences

    presented by

    Ladina Corsina Dorta

    M. Sc. ETH Zurich

    born

    August 28th, 1985

    citizen of

    Scuol (GR) - Switzerland

    accepted on the recommendation of

    Prof. Dr. Detlef Günther, examiner

    Prof. Dr. Wendelin J. Stark, co-examiner

    Dr. Bodo Hattendorf, co-examiner

    2013

  • Dissertation

    2

  • Dissertation

    3

    Acknowledgements First I want to thank Detlef for the opportunity of receiving a master degree and then the PhD (which

    I only did because I met the Günther group) in his group.

    Thanks to Bodo for the help all along the PhD thesis and for always having an open ear when the

    Beast was not working properly, or not at all (which was not that seldom)! Thank you for the fruitful

    discussion about the happenings in the instrument! And for being my co-examiner!

    Thanks to Prof. Wendelin J. Stark for accepting to be co-examiner at my thesis defence.

    Thanks to Henry for the valuable corrections and comments!

    Nicole, for the perfect management of the group and the hours spend together in the fitness centre,

    sweating!

    Katrin for the discussion about golf, the weather and so many more… Beni for his cheerful (mostly)

    nature and Fandorin for letting me pet you (hoffe nur du verlürsch mal dini biisserlis)!

    Joachim for your help with the femto, whenever it was not working correctly and for being afraid to

    play against me at töggeli!

    Gisela, you were the first contact I had in the group during my master thesis. Thank you for showing

    me how to work with and take care of the Beast, even if sometimes nothing helped (not even the

    largest hammer in the lab)!

    Mattias and Bob for introducing me to the dark side and to the che cazzos! And for giving me the

    best nickname ever, at least I feel a bit bigger with it…

    Markus, Karin, Rokky, Giovanni, Mohamed, Tatiana, the “old” PhDs for making the group what it was

    when I first had a glimpsed of it. There were discussions around coffee, beer, and orange juice and of

    course the many töggeli games and tournaments (molten torch trophy)! And for giving me the

    opportunity to live out my creativity when making your PhD hats!

    Reto and DAF for the great time in the group but also during free time, for the many parties at your

    homes and for liking my säucelis!

    Tabasco for taking over Gisela’s place but not her outfits and for being che cazzo as well! And Luca

    for being Luca.

    Olga, Sabrina, Hao, Nataliya, Caro, Steffen, Abi, Kevin for funny discussions in the morning coffee,

    during lunch time and the paper beers! Keep the habits of the group, they make it so special! Niko

    for helping when the Beast was making strange noises!

    Merci à mon français préféré, Julien, pour l’occasion de pouvoir parler un peu de français, question

    de ne pas tout à fait l’oublier.

    Lukas Bregy and Bianca Gusmini for being my master students and working hard! The many students

    in the “pharma-praktikum”, to let me forget about the thesis for some time and for showing me that

    I really learned something in the 4 years of study!

  • Dissertation

    4

    You all made my time in the Günther Group special, thank you a lot!

    Tinu and Thea for sharing the flat for 3.5 years, it was a fun time (even if I wasn’t at home much, gäll

    Tinu ;-) )! I miss our grill evenings on the terrace!

    Judith and Gian, thank you for the opportunity I had to leave the house and go studying in another

    city, even if chemistry would also have been possible around the corner. Thank you for the support

    during all the years of study and PhD! Thank you so much!

    Natalia and Not for being the best siblings one can imagine, even if I was not always of this mind!

    And thank you Fanny and Guy for enlarging the family and for the fun during our “family reunion”!

    Thank you Andreas for cheering me up when I’m down and making me laugh, when I don’t feel like

    laughing. Thank you for your love, support and endless positive thinking (chunt scho guet)!

  • Dissertation

    5

    Contents Acknowledgements ...................................................................................................................... 3

    Contents ...................................................................................................................................... 5

    Abstract ....................................................................................................................................... 9

    Zusammenfassung ...................................................................................................................... 11

    Résumé ...................................................................................................................................... 15

    Glossar ....................................................................................................................................... 17

    1. Introduction........................................................................................................................ 19

    1.1 Mass Discrimination in Isotope Ratio Measurements .......................................................... 19

    1.1.1 Mass Discrimination ...................................................................................................... 20

    1.1.2 Correct for Mass Fractionation ..................................................................................... 23

    1.1.3 Mass Fractionation Correction for Cu and Zn ............................................................... 26

    1.2 Instruments ........................................................................................................................... 28

    1.2.1 Multi Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) ............. 28

    1.2.2 Sample Introduction Systems ........................................................................................ 33

    1.2.3 Measurement Routine .................................................................................................. 36

    1.3 Aim of the Project .................................................................................................................. 39

    2. Mass Bias of Cu and Zn ....................................................................................................... 41

    2.1 Introduction to the Cu and Zn Isotope Systems .................................................................... 41

    2.2 Samples ................................................................................................................................. 42

    2.2.1 Introduction ................................................................................................................... 42

    2.2.2 Experimental ................................................................................................................. 42

    2.2.3 Results ........................................................................................................................... 44

    2.2.4 Conclusion ..................................................................................................................... 46

    2.3 Dependency of Mass Bias of Cu and Zn on ICP Operating Conditions with Three Different

    Introduction Systems ........................................................................................................................ 47

    2.3.1 Background .................................................................................................................... 47

    2.3.2 Experimental ................................................................................................................. 47

    2.3.3 Results and Discussion................................................................................................... 49

    2.3.4 Summary and Discussion ............................................................................................... 60

    2.4 Mixing Conventional Nebulisation and Dry Aerosol: Effect on Mass Bias Stability .............. 63

    2.4.1 Introduction ................................................................................................................... 63

    2.4.2 Experimental ................................................................................................................. 64

    2.4.3 Results and Discussion................................................................................................... 64

  • Dissertation

    6

    2.4.4 Summary ........................................................................................................................ 74

    2.5 General Discussion and Conclusion ....................................................................................... 75

    2.6 Outlook .................................................................................................................................. 76

    3. LA-GED-MC-ICPMS .............................................................................................................. 77

    3.1 Introduction to GED/air ablation ........................................................................................... 77

    3.2 Experimental ......................................................................................................................... 78

    3.2.1 Samples ......................................................................................................................... 78

    3.2.2 Interferences ................................................................................................................. 79

    3.2.3 Instruments ................................................................................................................... 79

    3.2.4 Liquid Sample Measurements ....................................................................................... 80

    3.2.5 Visualization of the Sampling Process ........................................................................... 80

    3.3 Experiments ........................................................................................................................... 81

    3.3.1 Isotopic Determination of Liquid Samples .................................................................... 81

    3.3.2 Closed Cell and Atmospheric LA Sampling .................................................................... 82

    3.4 Results and Discussion .......................................................................................................... 82

    3.4.1 Solution Measurements ................................................................................................ 82

    3.4.1 Laser Ablation Measurements ...................................................................................... 82

    3.5 Conclusion ............................................................................................................................. 89

    4. Application of LA-MC-ICPMS ............................................................................................... 91

    4.1 Boron Isotope Ratio Determination in Boron Carbide Samples ............................................ 91

    4.1.1 Introduction ................................................................................................................... 91

    4.1.2 Samples ......................................................................................................................... 91

    4.1.3 Tuning ............................................................................................................................ 91

    4.1.4 Calibration ..................................................................................................................... 92

    4.1.5 Results and Discussion................................................................................................... 92

    4.1.1 Conclusion ..................................................................................................................... 95

    4.2 Copper Isotope Ratio Determination in Andesines ............................................................... 97

    4.2.1 Introduction ................................................................................................................... 97

    4.2.2 Experimental ................................................................................................................. 97

    4.2.3 Results and Discussion................................................................................................... 99

    4.2.4 Conclusion ................................................................................................................... 103

    4.3 Copper and Lead isotope Ratio Determination in Pb and Cu Minerals............................... 104

    4.3.1 Introduction ................................................................................................................. 104

    4.3.2 Experimental ............................................................................................................... 104

    4.3.3 Results and discussion ................................................................................................. 104

  • Dissertation

    7

    4.3.4 Conclusion ................................................................................................................... 115

    4.4 Outlook ................................................................................................................................ 115

    5. Overall Outlook ................................................................................................................. 117

    References ................................................................................................................................ 119

    Curriculum Vitae ....................................................................................................................... 125

  • Dissertation

    8

  • Dissertation

    9

    Abstract Mass Bias Study of Cu and Zn. Inductively coupled plasma mass spectrometry (ICPMS) is an efficient

    ionisation source for almost every element in the periodic table. The coupling to a multi collection

    (MC) detector array enables the precise measurement of isotope ratios. The direct coupling of this

    method to solution nebulisation and laser ablation enables a high sample throughput and the

    capability of in-situ measurements, respectively. The accuracy of the isotope ratio measurement is

    hampered by the mass bias induced in the instruments due to diffusion, collision and space charge

    effects. Different methods have been used for the correction of the mass bias; however they all

    require a stable mass bias during the measurement session. The correction methods can either be

    external or internal. For external methods, the stability of the mass bias is even more important as

    similar mass bias have to be measured for sample and standard to ensure accurate correction. For

    internal correction either isotopes of the same element or an element with similar mass, with known

    isotope ratios, are used for the correction. This type of correction is often applied for Cu and Zn,

    where the mass bias of Zn is used for the correction of the mass bias of Cu or vice versa.

    In this study, the isotope ratio variation of Cu and Zn was investigated as a function of the gas flow

    entering the ICP. The study was carried out on three different brass samples and two samples of

    almost pure Zn and Cu. The study was carried out using three different sample introduction systems:

    Solution nebulisation

    Desolvating nebulisation (DSN)

    Femtosecond laser ablation (fs-LA)

    For the solution nebulisation measurements, the nebuliser pressure was varied, for the DSN

    variations the membrane gas flow rate was changed and the additional Ar gas flow of the fs-LA setup

    was changed for the isotope ratio measurements. For solution nebulisation, the variation curve

    shows a plateau region for gas flows slightly higher than highest signal intensity, in which the mass

    bias is stable, and therefore fluctuation in the plasma are less or minimally affecting the isotope

    ratio. Measuring in this region gave the lowest relative standard deviation (RSD) for the isotope ratio.

    For DSN and fs-LA (dry aerosols), the shape of the variation curve was slightly different. Instead of a

    plateau region a broad maximum for the isotope ratios in the region of the maximum signal intensity

    was found. The RSDs in this region are lowest but increase again for higher gas flow rates. By plotting

    the logarithm of the 65Cu/63Cu ratio against the logarithm of the 68Zn/64Zn ratio a correlation over a

    large range of the measured gas flows was observed for solution nebulisation. For the dry aerosols,

    however, the correlation was divided into different branches. The correlation of the logarithm of the 66Zn/64Zn ratio and the logarithm of the 68Zn/64Zn ratio was good for solution nebulisation but was

    worse for dry aerosols. With these findings, a setup where dry aerosols were mixed with solution

    nebulisation was developed. The solution was desolvated in the DSN and mixed with the

    conventional nebulisation of a 1% HNO3 solution before the ICP by the means of a T-type piece. For

    the fs-LA generated aerosol, additional Ar was mixed through a laminar flow adapter to the He

    carrier gas flow as in the conventional setup and before the ICP conventional nebulisation aerosol of

    a 1% HNO3 solution was mixed using the T-type piece. With small amounts of moisture in the dry

    aerosol, a stabilisation of the isotope ratio in the high gas flow region was observed. The correlation

    in the Cu vs. Zn log plots is better than without conventional nebulisation mixing. The RSDs for DSN

    measurements were better for the coupling with conventional nebulisation, for fs-LA aerosol, the

    RSDs were not lowered for the high gas flow region. The intensity was however decreased by a factor

  • Dissertation

    10

    of two, when comparing the conventional nebulisation and dry aerosol coupling to the dry only setup

    with wet cones.

    For fs-LA, different matching of the intensities were investigated to check for mass bias

    dependencies. The Cu intensities, Zn intensities and total ion beam intensities were matched

    between the samples for testing the mass bias dependency on the intensity and the mass load in the

    plasma. No differences in the mass bias between the samples were found for the tests carried out.

    The only conclusive statement is to ensure high enough intensities of all elements analysed.

    LA-GED-MC-ICPMS. Isotope ratio determinations in solids sampled in air at atmospheric pressure

    using laser ablation with direct introduction into an ICPMS was investigated. The results obtained on

    the metal brass, and two minerals galena and zircon are reported. The samples were ablated in air

    and the laser-generated aerosol was aspirated into a gas exchange device (GED), where the air was

    replaced with Ar and transported into the MC-ICPMS. To demonstrate the capabilities of this

    sampling system, the results were compared to results obtained using conventional laser ablation

    (LA)-MC-ICPMS in helium in a sealed cell. Data show that comparable in-run (0.02-1.6%) and external

    (0.005-0.254%) precisions can be obtained. The accuracy (0.001-0.115%) of both methods was also

    comparable. However, the atmospheric sampling method gave lower intensities, by up to a factor of

    5. Visualization of the aerosol extraction indicates that some material was lost prior to the gas

    exchange. However, this method is suitable for isotopic determination of bulk materials for samples

    which are too large to fit into an ablation cell or too valuable to be cut into smaller pieces.

    Applications of LA-MC-ICPMS. Following three studies were carried out:

    1. The B isotope ratio homogeneity of 10B enriched boron carbide sticks was measured. Mass

    bias correction was carried out by sample standard bracketing. The enrichment of about

    0.7% on 10B was confirmed and no trends in the isotope ratios were observed.

    2. The Cu isotope ratio in andesines was determined and a relation between the isotope ratio

    and the authenticity of the red colour of the andesines was investigated. The isotope ratio

    alone was not able to differentiate true red andesines from treated ones.

    3. The capability of Cu and Pb isotope ratio determination for provenance determination was

    studied. Bronze and mineral samples from different regions in China were analysed. The

    isotope ratios did not cluster by region, which did not allow provenancing.

  • Dissertation

    11

    Zusammenfassung Massendiskriminierungsstudie von Cu und Zn. Die induktiv gekoppelte Plasmamassenspektrometrie

    (ICPMS) ist eine effiziente Ionisationsquelle für die Ionisierung aller Elemente im Periodensystem.

    Eine Kopplung mit einem Multi Kollektor (MC) Detektor ermöglicht die präzise Messung von

    Isotopenverhältnissen. Die direkte Kopplung dieser Methode mit Lösungzerstäubung erlaubt einen

    grossen Probendurchsatz oder mit Laserablation besteht die Möglichkeit in-situ Isotopenmessungen

    durchzuführen. Die Genauigkeit der Messung von Isotopenverhältnissen ist beeinflusst durch die

    Massendiskriminierung, welche durch Diffusion, Kollisionen und Raum-Ladungseffekte verursacht

    wird. Verschiedene Methoden werden für die Korrektur der Massendiskriminierung verwendet, die

    jedoch alle eine relativ stabile Massendiskriminierung über den gesamten Zeitraum eines Messzyklus

    erfordern. Die Korrekturmethoden können von interner oder externer Natur sein. Bei externen

    Korrekturmethoden ist die Stabilität der Massendiskriminierung noch wichtiger, da ähnliche

    Massendiskriminierung für die Probe und den Standard gemessen werden sollten, um eine genaue

    und präzise Korrektur zu gewährleisten. Bei der internen Korrekturmethode werden entweder

    Isotope des selben Elementes, wobei ein bekanntes Isotopenverhältnis im Isotopensystem vorliegt,

    oder ein Element mit ähnlicher Masse verwendet. Die interne Korrektur von Cu mit Zn wird häufig

    verwendet, wobei die Massendiskriminierung von Zn für die Korrektur der Massendiskriminierung

    von Cu benutzt wird.

    In dieser Arbeit wurden die Veränderungen des Isotopenverhältnisses von Cu und Zn in Abhängigkeit

    des Zerstäubergasflusses untersucht. Die Studie basiert auf drei unterschiedlichen Messingproben

    und zwei Proben aus annähernd reinem Zn und reinem Cu. Die Studie wurde mit drei verschiedenen

    Probeneinführungsystemen durchgeführt:

    Lösungzerstäubung

    Desolvatisierte Zerstäubung (DSN)

    Femtosekunde-Laserablation (fs-LA)

    Für die Lösungszerstäubungsmessungen wurde der Druck im Zerstäuber variiert und bei den DSN

    Messungen wurde der Membrangasfluss variiert. Bei der fs-LA wurde der zusätzliche Ar Gasfluss

    verändert und die Massendiskriminierung untersucht. Die Isotopenverhältnisse der

    Lösungszerstäubung zeigen eine Plateauregion für die Gasflüsse, die oberhalb der optimalen

    Gasflüsse für die maximale Intensität liegen. In dieser Region ist die Massendiskriminierung stabil

    und Fluktuationen im Plasma beeinflussen das Isotopenverhältnis nicht oder nur geringfügig. Bei

    diesen Parametern ist auch die relative Standardabweichung (RSD) der Isotopenverhältnisse am

    kleinsten. Für die DSN und fs-LA (trockene Aerosole) wurden leicht verschiedene Variationskurven

    gemessen. Statt eines Plateaus wurde ein breites Isotopenverhältnismaximum für die Region mit

    maximaler Signalintensität beobachtet. Die RSDs bei diesen Gasflüssen sind am tiefsten, steigen

    jedoch bei höheren Gasflüssen signifikant an. Wird das logarithmierte 65Cu/63Cu Verhältnis gegen das

    logarithmierte 68Zn/64Zn Verhältnis aufgetragen, erkennt man eine Korrelation über einen Grossenteil

    der Gasflüsse für die Lösungszerstäubung. Für die trockenen Aerosole ist die Korrelation in

    verschiedene Bereiche aufgeteilt. Die Korrelation des Logarithmus des 66Zn/64Zn Verhältnisses gegen

    den Logarithmus des 68Zn/64Zn Verhältnisses ist für die Lösungzerstäubung sehr gut, wird hingegen

    kleiner für die trockenen Aerosole. Diese Beobachtung führte zur Entwicklung von einem Aufbau für

    die Kopplung von trockenen und angefeuchteten Aerosolen. Die Lösung wurde mit dem DSN

    getrocknet und dann in einem T-Stück mit 1% HNO3 befeuchtetem Aerosol gemischt. Für die fs-LA

  • Dissertation

    12

    generierten Aerosole wurde ein zusätzlicher Ar Gasfluss mittels einem Laminarflussadapter zum

    Aerosolträgergas hinzugefügt. Dieses Aerosol wurde kurz vor dem ICP mittels 1% HNO3 Lösung

    angefeuchtet, wodurch feuchte Plasmabedindungen erreicht werden konnten. Mit dieser Studie

    konnte gezeigt werden, dass bereits kleine Mengen an befeuchteten Aerosol ausreichen, um eine

    Stabilisierung der Isotopenverhältnisse bei hohem Gasfluss zu beobachten. Die Korrelation von Cu

    gegen Zn wird signifikant grösser als es für trockene Aerosol erreicht werden kann und die RSDs für

    die DSN Messungen werden kleiner, wenn man angefeuchtete Aerosole ins Plasma einträgt.

    Allerdings ist dies nicht der Fall für die fs-LA, bei der keine Verringerung der RSDs bei hohem Gasfluss

    nachgewiesen werden konnte. Die Signalintensitäten verringern sich um einen Faktor zwei für

    Messungen mit befeuchtetem Aerosol, wenn man sie mit den Messungen von nur trockenem

    Aerosol vergleicht. Um den Einfluss von dem Probeneintrag auf die Massendiskriminierung zu

    bestimmen, wurden für die fs-LA verschiedene Abgleichungstechniken der Intensität untersucht.

    Dafür wurden die Cu Intensitäten, die Zn Intensitäten und der gesamte Ionenstrahl in den

    Intensitäten zwischen den Proben angeglichen. Diese Tests zeigten keinen Unterschied in der

    Massendiskriminierung zwischen den Proben.

    LA-GED-MC-ICPMS. Neben den Massendiskriminierungsstudien wurde die Genauigkeit und Präzision

    der Bestimmung von Isotopenverhältnissen fester Proben unter atmosphärischen Bedingungen

    untersucht, wofür mittels Laserablation generierte Aerosole direkt in ein ICPMS eingeführt wurden.

    Der Aufbau basiert auf einem Gasaustauschsystem, welches die vollständige Überführung von luft-

    basierten Aerosolen in Argon erlaubt. Isotopenverhältnisse in Messing als Metall und zwei Minerale

    (Bleierz und Zircon) wurden untersucht. Die Proben wurden unter Normalatmosphäre (Luft) ablatiert

    und das laser-generierte Aerosol wurde in ein Gasaustauschgerät (GED, engl. Gas Exchange Device)

    gesaugt, wo die Luft durch Ar ausgetauscht und anschliessend ins MC-ICPMS transportiert wurde.

    Um die Leistungsparameter dieser Methode als neue Probenahmestrategie zu bestimmen, wurden

    die resultierenden Messwerte mit den Resultaten aus konventionellen LA-MC-ICPMS Messungen in

    Helium mit geschlossener Zelle verglichen. Die Messdaten zeigen vergleichbare interne (0.02-1.6%)

    und externe (0.005-0.254%) Präzisionen. Die Genauigkeiten (0.001-0.115%) der beiden Methoden

    sind ebenfalls vergleichbar. Allerdings wurden bei der Laserablation in der Luft bis zu einem Faktor 5

    tiefere Intensitäten gemessen. Eine Visualisierung der Aerosolextraktion deutet darauf hin, dass ein

    Teil des ablatierten Materials schon vor dem Austauschprozess verloren geht. Trotz der

    Intensitätsverluste konnte nachgewiesen werden, dass sich diese Methode sehr gut für die

    Bestimmung von Isotopenverhältnissen eignet. Ein besonderer Vorteil bietet sich für die Analyse von

    grossen Proben, die nicht in einer Ablationszelle luftdicht eingeschlossen werden können, was zu

    einer wesentlichen Verbesserung der Probenahme führt.

    Anwendung von LA-MC-ICPMS. Anhand von drei anwendungsorientierten Studien wurde die

    Leistungsfähigkeit der LA-MC-ICPMS demonstriert:

    1. Es wurde die Homogenität vom B Isotopenverhältnisses in 10B angereicherten

    Borcarbidstäbchen untersucht. Die Anreicherung der Proben von etwa 0.7% in 10B wurde

    nachgewiesen. Eine lokale Variation der Isotopenverhältnisse innerhalb der Probe konnte

    nicht festgestellt werden.

    2. Es wurden die Cu Isotopenverhältnisse in Andesinen und dessen Zusammenhang mit der

    Echtheit der roten Farbe untersucht. Anhand der Cu Isotopenverhältnisse konnten die

    echten von den behandelten Andesinen nicht unterschieden werden.

  • Dissertation

    13

    3. Die Möglichkeit der Herkunftsbestimmung von Bronze- und Mineralproben von

    verschiedenen Regionen Chinas mit Hilfe von Cu und/oder Pb Isotopenverhältnissen wurde

    untersucht. Anhand der erhalten Messwerte und deren statistischer Bearbeitung konnte

    nachgewiesen werden, dass die Varation der Isotopenverhältnisse dieser Elemente nicht

    ausreichen, um Aussagen über die regionale Herkunft zu treffen.

  • Dissertation

    14

  • Dissertation

    15

    Résumé Etude de biais de masse sur les éléments Cu et Zn. La spectrométrie de masse couplée à un plasma

    par induction (ICPMS) est une source d’ionisation efficace capable d’ioniser tous les éléments du

    tableau périodique. La possibilité de la coupler à un système de mesure de type multi-collection (MC-

    ICPMS) permet de mesurer des rapports isotopique d’un même élément. Le couplage direct de cette

    méthode à la nébulisation de solution et/ou à l’ablation laser permet un grand débit d’échantillon et

    donne la possibilité d’analyse in situ à très petite échelle. Néanmoins l’exactitude de la mesure du

    rapport d’isotopes est détériorée par le biais de masse instrumental engendré par la diffusion, des

    collisions et des effets d’espace-charge. Différentes méthodes sont utilisées pour la correction de ce

    biais de masse, considérant que ce dernier doit être plus ou moins constant pendant la durée de la

    session de mesure pour une correction efficace. Les méthodes de correction peuvent être soit

    externes ou internes. Pour les méthodes externes, la stabilité temporelle du biais de masse est

    encore plus importante puisque le biais de masse doit être similaire entre l’échantillon et le standard

    pour garantir une correction exacte. Pour la correction interne soit les isotopes d’un même élément,

    avec un rapport d’isotope connu, ou d’un autre élément de masse similaire sont utilisés. Ce type de

    correction est souvent utilisé pour la correction par exemple du biais de masse du Cu avec le biais de

    masse du Zn.

    Dans cette étude, la variation du rapport d’isotopes du Cu et du Zn est analysée en dépendance de la

    quantité de gaz qui entre dans l’ICP. L’étude a été effectuée sur trois échantillons différents de laiton

    et deux échantillons Zn ou Cu presque purs. Trois différents systèmes d’introduction d’échantillon

    ont été appliqués:

    la nébulisation de solution

    la nébulisation désolvatisée (DSN)

    l’ablation laser femtoseconde (fs-LA)

    Pour les mesures avec la nébulisation de solution, la pression du nébuliser a fait l’objet de variation,

    pour les mesures avec DSN le flux de gaz de la membrane a été changé et pour la configuration fs-LA

    le flux additionnel d’Ar a été changé. La courbe de variation montre un plateau pour des flux de gaz

    légèrement supérieurs au flux nécessaire pour une intensité de signal maximale, ce qui indique en

    conséquence que les fluctuations dans le plasma affectent peu ou pas le rapport isotopique mesuré.

    Une mesure dans la région du plateau produit les plus bas écart-type relatifs (RSD, angl. relative

    standard deviation) pour le rapport d’isotope. Pour la DSN et la fs-LA (aérosols secs), la forme de la

    courbe de variation est légèrement différente. Au lieu du plateau, un large maximum pour les

    rapports isotopique est obtenu dans la région d’intensité maximale. Les RSDs dans cette région sont

    au plus bas, mais augmentent à nouveau pour des flux de gaz supérieurs. Un graphique du

    logarithme du rapport 65Cu/63Cu par rapport au logarithme du rapport 68Zn/64Zn montre une

    corrélation claire pour la majorité des flux de gaz mesurés avec la nébulisation de solution. Pour les

    aérosols secs, par contre, les corrélations sont divisées en différentes branches. La corrélation du

    logarithme du rapport 66Zn/64Zn avec le logarithme du rapport 68Zn/64Zn est bonne pour la

    nébulisation de solution mais se détériore pour les aérosols secs. Avec ces résultats, une

    configuration analytique a été développée pour coupler les aérosols secs avec la nébulisation de

    solution. La solution est désolvatisée dans le DSN et est mixée avec l’aérosol d’une solution de 1% de

    HNO3 devant l’ICP par les moyens d’une pièce en T. Pour l’aérosol généré avec fs-LA, le flux d’Ar

    additionnel est ajouté au gaz transporteur d’aérosol par un adaptateur de flux laminaire avant d’être

  • Dissertation

    16

    mixé avec l’aérosol de 1% de HNO3 par une pièce de T. Des petites quantités d’aérosol mouillé

    ajoutées à l’aérosol sec sont suffisantes pour obtenir une stabilisation du rapport isotopique dans la

    région de haut flux de gaz. Les corrélations dans les graphiques logarithmiques montrant Cu contre

    Zn sont meilleures que sans l’addition. Les RSDs pour les mesures avec DSN sont meilleures pour le

    couplage avec aérosol mouillé, et ne sont pas diminuées pour la région de haut flux de gaz pour les

    mesures avec la fs-LA. L’intensité du signal est réduite d’un facteur deux, si l’on compare le couplage

    d’aérosol mouillé et sec avec seulement l’aérosol sec.

    Pour la fs-LA, différents ajustages d’intensité sont étudiés pour contrôler la dépendance du biais de

    masse. Les intensités du Cu, du Zn et l’addition des intensités du Cu et Zn ont été ajustées entre les

    échantillons pour tester la dépendance de l’intensité mesurée sur biais de masse. Le biais de masse

    ne montre pas de différence entre les échantillons pour les tests effectués. La seule conclusion à tirer

    est de mesurer avec des hautes intensités sur tous les éléments analysés.

    LA-GED-MC-ICPMS. La détermination de rapport isotopique dans des solides analysés dans l’air (en

    l’absence de cellule d’ablation conventionnelle) par l’utilisation de l’ablation laser couplée à l’ICPMS

    a été étudiée. Les résultats obtenus sur du laiton (métal) et deux minéraux (galène et zircon) sont

    rapportés. Les échantillons sont ablatés dans l’air et l’aérosol généré par l’ablation laser est aspiré

    dans un appareil à échange de gaz (GED, angl. gas exchange device), où l’air est ensuite échangé par

    de l’Ar puis transporté dans le MC-ICPMS. Pour démontrer la capacité de la méthode, les résultats

    obtenus sont comparés aux résultats obtenus en utilisant l’ablation laser conventionnelle dans une

    cellule d’ablation hermétique et dans de l’hélium. Les valeurs mesurées montre des précisions

    internes (0.02-1.6%) et externes (0.005-0.254%) comparables. L’exactitude (0.001-0.115%) des deux

    méthodes est aussi comparable. Par contre, l’intensité de signal pour le prélèvement d’échantillon

    dans l’air est jusqu’à un facteur de 5 plus bas. Une visualisation de l’extraction de l’aérosol indique

    qu’une partie de l’aérosol est perdue avant l’échange de gaz. La méthode est appropriée pour la

    détermination du rapport isotopique d’échantillons trop grand pour être placés dans une cellule

    d’ablation ou trop précieux pour être coupés en plus petits morceaux adaptés aux cellules d’ablation.

    Application du LA-MC-ICPMS. Trois études ont été effectuées :

    1. L’homogénéité des rapports isotopique du B dans des bâtonnets de carbide de bore enrichis

    en 10B a été examinée. L’enrichissement en 10B de 0.7% a été détecté. Par contre, aucune

    tendance pour la variation des rapports isotopique ne fut constatée.

    2. Le rapport isotopique du Cu pour des andésines et sa relation avec l’authenticité de la

    couleur rouge de ce minéral a été examiné. Le rapport isotopique seul ne permet pas de

    différencier les vraies andésines des andésines traitées.

    3. La capacité de la détermination de provenance de certains matériaux par mesure de leurs

    rapports isotopique de Cu et de Pb fut examinée. Des échantillons de Bronze et de minéraux

    de différentes régions de Chine ont été analysés. Les rapports d’isotopes ne se groupent pas

    en fonction de la région d’origine de l’échantillon ce qui empêche une détermination claire et

    définitive de provenance des échantillons étudiés.

  • Dissertation

    17

    Glossar Ar Argon

    DSN Desolvating Nebulisation

    ESA Electrostatic Analyser

    FC Faraday Cup

    fs femtosecond

    GD Glow Discharge

    GED Gas Exchange Device

    He Helium

    IC Ion Counters

    ICP Inductively Coupled Plasma

    LA Laser Ablation

    MB Mass Bias

    MC Multi Collector

    MS Mass Spectrometry/Spectrometer

    ns nanosecond

    ps picosecond

    RF Radio Frequency

    RSD Relative Standard Deviation

    SD Standard Deviation

    SE Standard Error

    SF Sector Field

    SIMS Secondary Ion Mass Spectrometry

    SSB Sample Standard Bracketing

    TIMS Thermal Ionisation Mass Spectrometry

    TOF Time Of Flight

  • Dissertation

    18

  • Dissertation

    19

    1. Introduction

    1.1 Mass Discrimination in Isotope Ratio Measurements In analytical chemistry, one of the aims is to detect and determine the concentration of different

    elements and their isotopic composition present in a sample. The concentration of different

    elements can give information about the sample origin, its toxicity, and its authenticity. The isotope

    ratios of the elements can provide more information about the sample. When an ancient artefact is

    found, elemental analysis can tell what it is made of and which ores were used to manufacture it.

    Element fingerprints can give information on the region where the ore came from. Isotopic analysis

    however, can sometimes be used to determine from which mine the ore was collected or if mixing of

    different ores occurred. This in turn, can shed light on trade routes at the time the artefact was

    produced.1 Another application of isotopic analysis is isotope ratios determination in plants which

    can give information about the uptake and the transport mechanism within the plant.2

    Physical processes (such as diffusion, evaporation, absorption, precipitation, freezing, and boiling)

    and chemical reactions (redox and acid-base) can lead to fractionation or changes in the isotopic

    composition of an element. This fractionation is usually mass dependent.3 Some mass independent

    fractionation can occur (natural or induced),4-6 but is rather rare, and often occurs in conjunction

    with complex solution chemistry. The study of isotopic fractionation gives information on different

    biological, geological, and environmental processes occurring in nature. For radioactive elements

    additional isotope ratio changes occur.

    One of the very important fields for isotope ratio determination is geological dating (geochronology)

    of rocks, speleothems, and archaeological artefacts, using the radioactive decay of different

    elements: U-Th-Pb, K-Ar, Rb-Sr, Sm-Nd, Lu-Hf, La-Ba and 14C. As an example, one of the oldest dating

    method is the U-Pb method, where the decay of 238U to 206Pb (t1/2 = 4.47 x 109)7 and 235U to 207Pb (t1/2

    = 7.04 x 109)7 is measured. This dating method was used for age determination of the oldest zircons

    found in the earth crust, which have an age of 4.404 ± 8 Ga.8

    The isotopic composition of Pb is also an important pollutant marker, used to distinguish

    anthropologic and natural provenance9 or for provenance determination of archaeological artefacts

    or ores. The variation in Pb isotope composition in natural samples is caused by the U to Pb decay

    mentioned previously as well as the decay of 232Th to 208Pb.

  • Dissertation

    20

    Other fields are also interested in the analysis of isotope ratios, especially in the newer non-

    traditional isotope systems, which have developed because of the increased research and

    development of ICP-MS instruments. In radiological studies, quality control in the production of

    nuclear containment, control rod, which are enriched with a neutron absorbing isotope (10B) or the

    identification of depleted, or more potentially dangerous, enriched U are determined. In provenance

    studies, not only Pb, as mentioned, is analysed but also provenance determination of food based on

    Sr isotopes has been performed. Authenticity of gem stones with Cu or Ar isotopes can be

    monitored. Nutritional studies (Fe, Cu, Zn) are performed to shed light on biochemical mechanisms in

    the human body and in plants. Isotope ratio determination can also be used for the high quality

    determination of concentration in a sample by applying isotope dilution methods, methods which

    must be used when using TIMS instruments.10

    Isotope ratios can be measured by all mass spectrometers. When choosing an appropriate

    instruments and method for an isotopic analysis one of the main consideration is the precision with

    which the isotope ratio needs to be determined. Further the required sample preparation which is

    needed for the different instruments and samples should be considered, i.e., if the sample has to be

    dissolved and separated from interferences or if direct sample analysis can be performed. The

    sample throughput of an instrument can also be an issue for sample measurements as this has a

    direct relationship to costs. Thermal ionisation mass spectrometry (TIMS) is one of the highly precise

    methods for isotope ratio determination. Some limitations, such as not being able to analyses

    elements with ionisation potentials higher than 7.5 eV 3 and a usually tedious and time consuming

    sample preparation are needed, were reason enough for the development of techniques without

    these drawbacks. In 1990, VG Elemental introduced the first prototype of a sector field ICPMS with

    multi collection capabilities.11 Now TIMS and ICPMS are most often used for isotope ratio

    determination, yielding precision in the hundreds of ppm region and lower.12,13 Their advantages and

    drawback will be discussed in the following sections. However, isotope ratios do not always need to

    be acquired using highly precise methods. Single detector quadrupole or sector-field-ICPMS,

    secondary ion mass spectrometry (SIMS), glow discharge-time of flight-MS (GD-TOFMS) are all

    techniques with isotope ratio determination capabilities in the low per mil range,3,14 which are useful

    for many applications.

    1.1.1 Mass Discrimination When determining an isotope ratio using a mass spectrometer, the ratio measured in the sample

    almost always is not equal to the true isotope ratio. This systematic deviation of a measured value

    from the true value is caused by several phenomena. One is the mass fractionation occurring in TIMS

    measurements. This mass fractionation is time dependent (over the short time of the introduction of

    the total sample, which is not to be confused with drift) and occurs during the evaporation of the

    sample from the filament. Light isotopes are slightly more volatile compared to heavier isotopes and

    thus initially the vapour phase contains an excess of the low mass isotopes. Thus as evaporation

    proceeds, the material remaining on the filament acquires a “heavier” isotope ratio. As evaporation

    proceeds, more and more heavy isotope will be evaporated, ionised and measured. The isotope ratio

    measured thus shifts eventually to a heavier one than in the original sample.

    A second phenomenon is called mass discrimination or mass bias and can occur in all mass

    spectrometric techniques. The discrimination usually reduces light isotope’s intensities. Different

    effects are responsible for the mass bias and the contribution of each effect changes for different

  • Dissertation

    21

    operating parameters and conditions of the MS. The magnitude of these contributions of the

    different effects is not predictable from fundamental principles. In the MC-ICPMS, these effects are:15

    Diffusion in the plasma. The ions diffuse in the plasma. The mass discrimination for lighter elements

    in the plasma by diffusion was shown by Dziewatkoski et al.16 The diffusion is dependent on the ICP

    conditions (sampling depth, gas flow rates, RF power, spray chamber temperature, and sample

    uptake rate), the gas types, particle sizes when using LA, and also on the properties of the elements

    (ionisation potential and vaporisation energy).17 Diffusion not only affects elements but also the

    isotope of an element. Light isotopes are more affected by diffusion than heavy isotopes of the same

    element.18 Thus there is usually a loss of light isotopes in the region sampled into the high vacuum of

    the MS compared to heavier isotopes, giving a measured ratio which is biased to the heavier isotope.

    Collisions in the supersonic expansion. Collisions with Ar neutrals during the supersonic expansion

    after the sampler and skimmer cone occur.19 Because all ions gain the same velocity from the

    supersonic expansion, these collisions also affect the light isotopes more than heavy ones.20 A

    collision with a neutral atom leads to an energy loss and scattering, leading to less efficient collection

    of the ions to the entrance slit of the MS.

    Space charge effects in the high current ion beam. After the skimmer cone, electrons from the

    expanding plasma are preferentially lost leaving a positively charged ion beam with high ion currents.

    This high charge density leads to Coulomb-repulsion of the ions. The dispersion is mass21 and

    energy21,22 dependent leading to a larger loss from the beam axis for the lighter and the less

    energetic ions. As the space charge effect is dependent on the ion current, a variable matrix

    composition of the samples analysed can result in variation of the magnitude of the space charge

    effects,9 especially for a sample matrix of heavy elements. Space charge effects are also dependent

    on the operating conditions of the ICPMS.23 Space charge effects are observed for element as well as

    for the isotopes of elements.12

    Energy selective ion transmission. The expansion in the interface is dominated by the expansion of

    the hot argon gas from the ICP source. The terminal velocity is thus determined by the energy of the

    argon atoms. The isotopes’ kinetic energies are therefore lower for light ions than for heavy ones.

    The light ions are thus pushed to the perimeter of the beam and are lost at apertures where beam

    clipping occurs.24-26 The high acceleration voltages used for sector field instruments (4-10 kV) should

    reduce the energy spread.12

    For all those mass discriminating effects mentioned above the lighter isotopes are more strongly

    suppressed. Therefore the observed isotope ratio measured by sector field instruments is almost

    always heavier than the true ratio. Mass discrimination is dependent on matrix composition, analyte

    concentration, and on the operation conditions of the ICP. Total mass discrimination can reach 10%

    per mass unit for element with masses less than 10, 5% for masses between 20 and 120, and less

    than 1% per mass units for masses heavier than 120.12

    Mass fractionation can however also occur before the ICP. Sample preparation can introduce mass

    fractionation. When the analyte has been separated from the sample matrix using chromatography,

    the elution of the different isotopes occurs at different times; it is therefore important to achieve a

    100% yield.24 The isotopic composition of the drain of the spray chamber was found to be the same

    as found in the sample.18 The aerosol reaching the ICP is therefore likely to be representative for the

    sample solution.

  • Dissertation

    22

    Laser ablation (LA), used as introduction system for solid samples, may also induce fractionation

    occurring during the sampling process. Elemental and isotopic fractionation was shown to occur

    when laser aerosols were introduced into the ICP. Elemental fractionation can be induced by many

    factors:27

    Element dependent fractionation. The chemical and physical properties of an element can influence

    the way it is ablated. The (oxide) melting28,29 and boiling points are factors which influence the

    fractionation. However, also ionic radii, speciation, and vapour pressure dependencies of the

    fractionation have been reported.27

    Laser properties dependent fractionation. The properties of the laser, including wavelength, pulse

    duration, laser energy, and the crater aspect ratio also affect fractionation.

    As the element property dependent fractionation cannot be totally removed, fractionation can only

    be reduced by optimisation of the LA process.

    The wavelengths of the laser used in LA range from infrared (IR) through visible (Vis) and ultraviolet

    (UV) to vacuum-ultraviolet ((V)-UV), i.e. 1064 nm (fundamental Nd:YAG), 795 nm (fundamental

    Ti:Sapphire), 532 nm (doubled Nd:YAG), 266 nm (quadrupled Nd:YAG), 265nm (tripled Ti:Sapphire),

    213 nm (quintupled Nd:YAG), 193 nm (ArF) and 157 nm (F2). In case of non-metals, the particle size is

    significantly a function of the wavelength, the longer the wavelength, the larger the aerosol particles

    produced.30 The generation of small aerosol particles is an important factor for reducing elemental

    fractionation. The smaller the particle the more completely they are vaporised in the ICP. If however

    large and small particle with heterogeneous composition are transported to the ICP, fractionation in

    the ICP occurs due to less complete vaporisation and transport of larger particles.30 Therefore,

    elemental fractionation has been observed to be reduced when using shorter wavelengths.28,31 This

    wavelength dependency has not been observed for metals.32

    The laser energy and the crater depth to diameter ratio (aspect ratio) have also been found to

    influence fractionation. Liu et al.29 observed representative Pb/U measurements when laser energies

    above 0.6 GW/cm2 were used. The fractionation was found to increase when the aspect ratio

    increases. The volatile element signal was larger the deeper the crater.33

    The dependence of elemental fractionation on the melting point of the corresponding oxides in case

    of nanosecond LA of glasses showed that ablation is a thermal process. The energy of the

    nanosecond (ns) laser used to remove material from the sample can be converted to heat, as heat

    transfer occurs in the picosecond range. When lowering the pulse duration to a few hundreds of

    femtoseconds (fs), heat transfer between adjacent atoms does not occur. The morphology of ns- and

    fs-craters showed different features. While in ns-craters the rims were melted, the fs-craters showed

    well defined rims with no apparent melting.34 Different studies have shown that fs-LA is also more

    useful for non-matrix matched quantification on various materials (metals, glass, and minerals

    (dielectrics)).27,35-39 However, fluence dependencies of the fractionation for fs-LA were also

    observed.40 And recently, studies of non-uniform aerosols composition of fs-LA generated aerosol

    were reported.41,42 Nevertheless, when using fs-LA generated aerosols fractionation is usually

    reduced and a lower matrix dependency of the aerosol generation compared to ns-LA aerosols has

    been observed.43,44

  • Dissertation

    23

    Isotopic fractionation was found to occur when performing laser ablation of single holes in metallic

    copper.45 The smaller particles (< 200nm) were found to be enriched in lighter isotopes. The most

    significant fractionation was observed for ablation times between 30 and 60 seconds. The particles

    undergo partial vaporisation in the laser plume when using these ablation times, which favours the

    lighter isotopes. The vapour, from which the smaller particles are formed, is therefore enriched in

    lighter isotopes. As ablation proceeds, the longer residence time in the laser plume leads to more

    complete vaporisation and to an equilibration of the isotope ratio in the vapour phase. Low laser

    energy also results in fractionation, due to the preferential vaporisation of the lighter isotopes.46 The

    preferential accumulation of light isotopes in small particles (< 180nm) for fs-LA was recently shown

    for Fe isotopes.47 An additional isotopic fractionation source occurring in the ICP was observed,

    namely the preferential vaporisation of the lighter isotope from large particles. This fractionation can

    be reduced by filtering the aerosol to obtain only particles smaller than 0.5 µm. Using fs-LA for

    isotopic studies, the fractionation was observed to be essentially eliminated for Fe isotopes.48 As

    observed for elemental fractionation, the fs-LA is still fractionated, even if to a much lower extent

    than for ns-LA. A complete absence of isotopic fractionation is therefore not possible and an

    accumulation of lighter isotopes in the smaller particles was observed.47

    The carrier gas has also been shown to influence the particle size distribution of the laser generated

    aerosol and the aerosol transport to the ICP. Smaller particles are obtained when using He as the

    carrier gas.31,46 It was suggested that this was due to the higher thermal conductivity of He in the

    laser plume and therefore to the faster removal of particles from the ablation site, reducing the

    condensation of particles. The sample re-deposition around the crater was reduced when using He as

    the carrier gas compared to the use of Ar.27 The plasma temperature is also raised if it contains He,

    leading the better ionisation efficiencies.

    1.1.2 Correct for Mass Fractionation For accurate measurement of isotopic ratios, the mass fractionation must be corrected. Different

    mathematical approaches have been proposed for this correction. Three possible correction

    strategies have been proposed. In the external standardisation paradigm, an external standard with

    known isotope ratio is used to correct for mass fractionation. The internal normalisation used an

    isotope pair of the analyte element with known ratio to determine the degree of mass fractionation

    and uses the same mass fractionation factor for other analyte ratios. For this correction the elements

    of interest must have at least three isotopes, two of which must be “stable”. Another disadvantage

    of the internal normalisation is that natural (stable isotope) fractionation cannot be determined.49

    However for high precision isotope ratio analysis using TIMS, it is the only paradigm which can be

    used. When using ICP ion sources, for isotopes, a second type of inter-element normalisation can be

    used, when an element with similar mass is added to the sample or can be naturally present. A

    similar correction technique is then used as for internal normalisation. When using this correction,

    natural (stable isotope) fractionation can be measured.

    1.1.2.1 Intra- or inter-element normalisation for mass fractionation correction

    Three relationships were empirically suggested by Russell et al. for TIMS analyses.50 The use of these

    so-called “laws” is essentially to provide a means to extrapolate the mass fractionation factor from

    one isotope to another. The equations shown in the following are taken from Albarède et al.51 The

    transmission T(Mk) of an isotope with mass Mk is defined by ⁄ , where nk is the number of ions

    detected and Nk the total number of ions entering the ion source of the mass spectrometer. The first

    law is the linear law, in which T(M) is expanded in a Taylor series at mass Mk:

  • Dissertation

    24

    ( ) ( ) ( )

    ( ) [( )

    ] (1)

    where O stands for the higher order term. If equation (1) is calculated for and

    divide it by T(Mk), equation (2) follows:

    ( )

    ( )

    ( )

    ( ) [( )

    ] (2)

    If only considering the first order term:

    ( )

    ( ) ⁄

    ( ) (3)

    where ri is the measured isotope ratio and Ri the true value of the isotope ratio. And for:

    ( )

    (4)

    where δ is the linear mass bias factor. This law is not consistent, as the ratio of two isotope ratios

    fractionating according to the linear law, does not follow the linear fractionation law.

    The second law is the so-called “power law”, where the logarithm of the transmission is expanded as

    a function of the mass difference and reference mass Mk:

    ( ) ( ) ( )

    ( ) [( ) ] (5)

    The same simplifications are done as for the linear law giving:

    ( ) ( ) ⁄

    ( ) (6)

    The mass fractionation power law is defined as:

    ( )

    ( ) (7)

    where g is the mass bias constant.

    The exponential law of Russell et al.50 is defined by the expansion of the transmission as a function of

    ln M:

    ( ) ( ) ( )

    ( ) [( )

    ] (8)

    Keeping only the first order term:

    ( ) ( ) ⁄

    ( )

    (

    ) (9)

    And the mass bias factor is defined as:

    ( )

    (10)

    The measured isotope ratio is then:

    ( )

    (11)

  • Dissertation

    25

    A more general form of the power and exponential law is the generalized power law, where the

    logarithm of the transmission is expanding as a function of Mq, q being an adjustable arbitrary

    constant.

    ( ) ( ) ( )

    (

    ) [(

    ) ] (12)

    The measured isotope ratio is therefore defined as:

    (

    ) (13)

    With the fractionation coefficient:

    ( )

    (14)

    The generalized power law is transformed into the power law for and into the exponential law

    for .

    In 2003, Yang and Sturgeon compared the different correction laws for Hg isotope ratio

    determination. The exponential law and the power law resulted in very similar results and the linear

    law showed slightly less accurate results. The exponential law is however most commonly used for

    mass bias correction in ICPMS.23

    1.1.2.2 External standardisation for mass fractionation correction

    1.1.2.2.1 Sample standard bracketing (SSB) method

    The method of external standardisation is used in the sample-standard bracketing correction

    paradigm. This method uses a standard which is measured before and often after the sample, or

    using several samples between the standards to give a higher efficiency, with only a slight loss in

    precision. From the standard, with known isotope ratio(s), a mass fractionation factor is derived; a

    mass fractionation factor for the sample can then be interpolated from the standards bracketing it.

    ( ) ( ) ( )

    ( ) ( )

    (15)

    If the samples are measured alternatingly with the standards, θ will be 0.5. However, if more than

    one sample is measured between two standard runs, a time factor can be introduced to the θ value.

    The assumption is that the mass bias for standards and sample is the same i.e. not matrix dependent.

    For obtaining precise and accurate isotope ratio determination, it is thus important to matrix match

    the standard to the unknown sample. The correction factor is calculated for each isotope ratio of the

    standard and applied to the sample. It needs to be noted however that this approach also corrects

    for instrument drift in the mass bias correction.

    1.1.2.2.2 Delta values

    The corrected isotope ratios of a sample can either be reported as absolute value, which is possible

    when the standard used has known isotope ratios or as relative values. Relative values are often used

    in geology, where variations in the reported isotope ratios from a reference material are reported. By

    reporting the relative variation from a standard, no “true” value is used, therefore the results always

    remain correct even if the accepted isotope ratio of the standard changes. This relative value is

    indicated as the delta value (δ-value):52

  • Dissertation

    26

    (( ) ( )

    ) (( )

    ( )

    )

    (( ) ( )

    )

    (16)

    where K is the mass bias factor. For , the last term of the equation is unity and can

    easily be calculated. For mass bias factors to be equal, the standard and the sample should have the

    same matrix and similar concentration. Therefore either perfect matrix separation must be achieved

    for the sample or the standards can be spiked with the same amount of matrix contained in the

    sample. The δ in this equation is not the linear mass fractionation term used in equation (4). The

    need of matrix match of standard and sample is also important for this correction method, to yield

    accurate results.

    Further correction possibilities used are double or triple spike procedures, which can produce very

    precise concentration determinations of ultra-trace elements.52 For this technique, however, more

    than three, e.g., four isotopes must be available.

    The correction technique chosen depends upon the sample, the elements measured, the standard(s)

    available, and the instrumentation available, and the precision and accuracy requirements for the

    application.

    1.1.3 Mass Fractionation Correction for Cu and Zn Maréchal et al.24 were the first to determine Cu and Zn isotope ratios using MC-ICPMS. Their study

    aimed at identifying natural variation in the Cu and Zn isotope ratios, in order to better understand

    natural and anthropogenic processes of Cu and Zn. These variations are in a range of 1% or less. Prior

    to this study, only TIMS and single collector SF-ICPMS measurements had been reported. For the

    correction in TIMS, internal normalisation was previously used for Zn which has a multiple number of

    isotopes, which was then not able to detect natural (stable isotope) variations. For other methods,

    the precision was not sufficient.

    Making the measurements on a MC-ICPMS with an inter-element normalisation procedure (use of Zn

    to correct measured Cu or vice versa), the precision of the correction and thus the resulting isotope

    ratio which was determined for Cu and Zn could be improved to a level where natural variations

    were quantified.

    The expression of the external correction used was derived from the exponential law (11). The

    exponential law for the Cu isotope ratio, 65Cu/63Cu, is:

    (

    )

    (17)

    A similar expression is found for the Zn isotope ratio, 66Zn/64Zn:

    (

    )

    (18)

    By taking the logarithm and dividing (17) by (18), the following expression was derived:

    ( ⁄ )

    ( ⁄ )

    ( ⁄ )

    ( ⁄ ) (19)

  • Dissertation

    27

    This expression describes also the slope of the data in a graph where ( ⁄ ) is plotted against

    ( ⁄ ). Such an inter-element normalisation was first proposed for application to ICPMS by

    Longerich et al.53 They suggested that if f was the same for all elements, i.e. it would

    suggest that the mass fractionation line in the above mentioned plot is only depending on the

    respective masses of the isotopes analysed. They observed that the bias could be reduced by half of

    the bias observed in the data set. Later in a study by Ketterer et al.54 the mass bias correction with Tl

    for Pb was shown to be successful, as the biases obtained were less than 0.5% for the ratios with

    respect to 204Pb isotope, which made the technique suitable for routine analysis of environmental

    samples.

    Maréchal et al.24 in this high precision study found, as reported by Longerich et al., that equivalence

    of the fractionation factors was not true, but as long as ⁄ stays constant over the

    measurement time, the correction is not affected.

    In a plot where ( ⁄ ) is plotted against ( ⁄ ), the slope is:

    ( ⁄ )

    ( ⁄ ) (20)

    And the intercept is:

    (

    )

    (

    )

    (21)

    If standards and samples are measured alternatively, the standards should fall on a line in the

    ( ⁄ ) vs. ( ⁄ ) plot. A linear regression through the points of the standard provides

    the slope and intercept. The adjustment required to the intercept value to pass through the points of

    the samples in the same plot resembles the difference of the Cu isotope ratio between samples and

    standards.

    A drawback of this method is the need of a mass bias spread for achieving a reasonable correlation in

    the regression. If variation of mass bias is small during the measurements, the data will form a cluster

    instead of a line. The slope of the regression line will therefore have a lower confidence level and the

    accuracy of the correction will not be sufficient for the application.55 Several methods to increase the

    mass bias spread can be used. The addition of matrix elements at different concentrations into the

    standard solution will spread the mass bias.49,56-58 Archer et al.49 reported that care should be taken

    when choosing the dopant matrix. Fe and Sr were tested for Cu and Zn. While Sr extended the spread

    of the mass fractionation, while staying on a same regression line, Fe did not spread the mass

    fractionation, additionally; the points did not fall on the line, which resulted in a degradation of the

    correlation.

    An alternative method was proposed by Mason et al.55 where a combination of the SSB and an inter-

    element correction is used. In this approach, the mass bias for Cu was monitored internally by

    comparison to a Zn spike, which was added to both the sample and the standard solution. Delta

    values for both elements were calculated relative to the standard using equation (16). The delta

    value of Zn was then subtracted from the delta value of Cu. This method was found to deliver more

    accurate results, compared to a method which did not use this additional correction. Especially when

    considering the time dependency of the mass bias, which can change within a period of 5 minutes,55

    it is important to make use of internal standardisation which gives simultaneous monitoring of the

    changes in mass bias.

  • Dissertation

    28

    Additionally, they tested SSB and inter-element correction used for both dry and conventional

    nebulisation. They found that the stability was increased for dry aerosols compared to conventional

    nebulisation, which is favourable for SSB method, however less favourable for the inter-element

    correction. They therefore suggested the use of SSB for dry aerosols and inter-element correction for

    conventional nebulisation.

    1.2 Instruments

    1.2.1 Multi Collector Inductively Coupled Plasma Mass Spectrometry (MC-

    ICPMS) In 1953 Alfred O. Nier and Edgar Johnson published their theory about “Angular Aberrations in Sector

    Shaped Electromagnetic Lenses for Focusing Beams of Charged Particles”.59 With this publication, a

    new sector field (SF) geometry was discovered and the fundamental theory for the multi collector-

    IPCMS geometry used in this thesis was established. The instrument consists of a 90° electric sector

    followed by a magnetic sector with a 60° angle with the same direction of curvature.60 The double

    focusing property of this arrangement permits focusing of the energy and the mass to charge (m/z)

    ratio and focusing several m/z ratios on one focal plane.

    The ICP was first developed by Greenfield in 1964.60,61 While initially applied for optical spectrometry,

    it was used as ion source for elemental mass spectrometry starting in the 1980s.19 The first

    commercially available ICPMS with Nier-Johnson geometry was introduced in 1988 by VG Elemental

    (UK) and was called Plasmatrace. Several companies subsequently developed their own ICP-SFMS

    instruments. All those instruments had only one detector, which allowed single element analysis at

    higher mass resolution capability than traditional quadrupole based systems. In 1992, the first results

    for isotope ratio measurements with a multi collector (MC)-ICPMS were published by Walder et al.62

    In that study, a Plasma 54, also developed by VG Elemental, was employed. With this first

    commercial instrument several studies on a variety of elements (Hf, Mo, Te, Sn, W, Pb, Th, U)63-67

    were performed. With this instrument, the MC-ICPMS technology was born. Eighteen years after the

    introduction of this instrument, around 250 MC-ICPMS from 4 manufacturers were sold.60

    Until the introduction of MC-ICPMS in the early 1990s, thermal ionisation mass spectrometry (TIMS)

    was the method of choice for isotope ratio determination of heavier elements, meaning different

    from the “stable isotope”; H, C, N, O and S, which are traditionally measured on gas source

    instruments.68 However, for refractive elements and elements with high ionisation potentials,69

    precise isotope ratio measurements were challenging because of low signal intensities, which in turn

    resulted in large uncertainties. The high ionisation efficiency of ICPMS permits ionisation for these

    elements resulting in a better precision.70

    Comparing TIMS to MC-ICPMS, advantages and disadvantages are noteworthy. As mentioned

    previously, the plasma is a more efficient ion source compared to the filament in the TIMS

    instruments. This efficient ionisation has also drawbacks, as not only the first, but also the second

    ionisation potential for some elements is reached, and therefore, additional interferences can be

    present. TIMS needs a tedious and time-consuming matrix separation of a sample; which is not

    mandatory for ICPMS. However, the best achievable precision and accuracy for ICPMS are reached

    when matrix separation is carried out on the sample.71 The ease of coupling an ICPMS to an

    atmospheric direct aerosol introduction from a solution or from a laser enables a larger sample

    throughput, and in case of LA sampling, in situ analysis at high spatial resolution is important.5,70

  • Dissertation

    29

    The isotope fractionation is not time dependent for ICPMS, but it is for TIMS. However the

    fractionation is by about a factor of 10 lower for TIMS than for ICPMS and much better understood.71

    The best precision for both instruments is achieved using isotope dilution.52 Precision can also be

    improved if internal correction for the fractionation is used. The technique is less precise if no such

    correction was used and only an external correction must be used instead, which means measuring

    all samples under identical conditions.70,72 In ICPMS, the fractionation is mass dependent and

    fluctuates with instrumental settings which in turn change slightly with time.71 The correction can be

    done internally and externally as for TIMS and a third option is possible for ICPMS.70,72,73 The inter-

    element normalisation permits to correct for mass bias with the help of another element in the same

    solution or solid sample, as explained in chapter 1.24,53

    In other words, both techniques are complementary; the method of choice should be selected for

    each sample type.71 Criteria such as sample preparation, sample throughput, robustness, ease of

    operation, precision and accuracy are relevant for the consideration of the method choice.74

    The multi collector instrument used in these studies was a NuPlasma HR (Nu Instruments Ldt,

    Wrexham, U.K.) and was developed between 1996 and 1998,60 when the first results and the setup

    were published (Figure 1).73 This instrument has the Nier-Johnson geometry consisting of an electro

    static analyser (ESA) with a 70° angle followed by a magnet with a 70° angle. The interface is at high

    potential (6kV) and the analyser is grounded. A set of lenses is place after the interface and before

    the ESA to extract the ions from the plasma and to shape the circular beam to the defining slit.73 This

    slit is used for the selection of resolution and three different slits can be chosen. The alpha slits can

    further be narrowed to enhance the resolution. After the magnet, the ions beams are dispersed or

    compressed and focussed with a zoom lens into the detector array. The different components of MC-

    ICPMS will be discussed in the following subchapters.

    1.2.1.1 Inductively Coupled Plasma (ICP)

    The inductively coupled plasma was developed by Greenfield et al. in 196461 and the first coupling of

    an ICP with a quadrupole mass spectrometer was achieved by Houk et al.19 The ICP is used to

    generate the ions, which will be detected in the MS. The Ar plasma is generated by a high voltage

    discharge and sustained by an electromagnetic field generated by radio frequency (RF) power

    applied to a load coil. The temperature in the plasma is about between 6000 and 10’000K.75 The

    aerosol entering the plasma is first desolvated (if liquid), vaporised, atomised, and finally ionised. The

    ionisation is achieved by collisions of the analyte atoms with positive Ar ions and free electrons. The

    ions are then sampled by the sampler and skimmer cone through the vacuum interface and further

    through the ion optic into the mass spectrometer. The interface (approximately 1 mbar) is the first

    transfer stage between atmospheric pressure and high vacuum (5x10-9 mbar) in the mass analyser.

    Three further chambers with pressures between 5x10-4 and 9x10-8 mbar and in which the ion optic is

    located complete the vacuum system. The first extraction voltage is 6kV and is applied to the sampler

    and the skimmer cone.

  • Dissertation

    30

    Figure 1 An overview of the NuPlasma is shown. The main parts of the instrument are listed. The ICP is followed by the ESA, the magnet, the zoom lens and finally the detector block, where the ions are detected (adapted from instrument manual).

    1.2.1.2 Electrostatic Analyser (ESA)

    After ion formation and charge separation, the highly positive beam is directed into the mass

    analyser. To ensure that the dispersion in the magnet is only a function of mass, the energy of the

    ions must be the same. The ESA is used for the energy focussing. The force F of a charged particle in

    an electric filed is given by the charge q (=ze) and the electric field E:

    (22)

    combining the centripetal force and the equation (22) gives:

    (23)

    where m is the mass of the ion, v its velocity and rE the radius of the trajectory. This corresponds to

    the motion of a charged particle in an electric field, as in the ESA. The energy of the ions gained in

    the extraction optic is defined by:

    (24)

    where Uoptic is the potential of the ion optics. The velocity is therefore:

    (25)

    combining equation (23) and (25):

    (26)

  • Dissertation

    31

    resolving equation (26) for rE:

    (27)

    Equation (27) shows that the ESA does not separate ions by mass, but rather by energy. A slit placed

    behind the ESA ensures that only ions with nearly the same energies enter the magnetic field. This

    ensures a mass-only separation in the magnet.60

    Figure 2 The working principle of the ESA. The blue ions all have the same energy, while the red ions have a different energy. The beams with different energies are focused at different points after the ESA. With the slit, a energy filter is achieved and only the ions with the same energy are able to reach the magnet.

    1.2.1.3 Magnet

    After the ESA, the beam is separated according to the mass to charge (m/z) ratio in the magnetic

    field. The behaviour of a charged particle in the magnetic field is described by the Lorentz force:

    (28)

    Where q is the charge (=ze), v the velocity, m the mass and rB the radius. The particle follows a

    curved path perpendicular to the magnetic field with radius rB:

    (29)

    The radius is a function of the mass and the energy of the ions. The ions are separated by mass and

    energy on different curved paths in the magnetic field. The velocity is again described by equation

    (25), the radius can consequently be described by:

    (30)

    The radius of an ion at constant magnetic field is dependent on the mass to charge ratio and the

    energy (contained in Uoptic). The importance of the ESA is also shown in equation (30). The ESA is

    responsible for maintaining a constant energy and thus a constant Uoptic of a same ion mass. Figure 3

    shows the dispersion achieved by the magnet.60

  • Dissertation

    32

    Figure 3 The working principle of the magnet is shown. Dispersion is achieved separating mass to charge ratio and energies. In this case, the energy of the ions is assumed to be the same. The blue and red lines show different masses of ions. The blue ions (lighter) are all collected in one detector, while the red ions (heavier) are collected in another detector.

    1.2.1.4 Zoom lens

    The collector block of the NuPlasma is fixed; and the ions are directed into the separate detectors by

    means of a zoom lens. The zoom lens consists of two lens systems. Voltages applied on these 13 to

    15 lens elements create two individual electrostatic fields across the ion path. These fields can

    magnify or de-magnify the beam width to match the respective isotope foci with the detectors.

    Figure 4 shows the working principle of the zoom lenses, which can be compared to optical lenses. In

    the upper row, no voltages are applied on the lenses; the beams are not altered, while in the lower

    row, the voltages applied to the zoom lens 1 and 2 de-magnify the beam. The mass separation is the

    mass difference between two detectors, and it is defined by the separation of the detectors in the

    array, the dispersion of the instrument and the magnification of the zoom lens. The maximum mass

    difference between the lightest and heaviest isotopes to be measured in this detector array is 15% of

    the lower mass. The two Li isotopes can therefore be measured on the outermost detectors, while

    for Pb, 204Pb to 208Pb can be measured in 5 adjacent detectors.

    1.2.1.5 Faraday cup (FC)

    The detector block of the NuPlasma consists of 12 Faraday cup and 3 ion counting detectors. The

    Faraday detectors are small cups with an inner wall of graphite. When ions enter the cup and hit the

    wall, the net charge of the detector is changed. To neutralise the cup, the electric charge has to be

    equilibrated by electrons. This current causes a current to pass through a resistor, generating a

    voltage drop over this resistor. The potential over this resistor is measured and thus the number of

    ions can be calculated.76 Faraday cups are robust and have high efficiencies. The saturation limit is at

    10 V, on this system, corresponding to about 625 Million ion counts per second. At the lower end of

    the dynamic range, however, 1 mV corresponds to 62.5 kcps, which is an issue for low abundant

    isotopes. For such cases ion counters can be used.

    1.2.1.6 Ion counter (IC)

    Three ion counters are available in this instrument and they are placed at the low mass end of the

    detector block. When an ion impacts on a surface several secondary electrons are generated. With a

    voltage applied between this and an adjacent surface, the electrons are accelerated and will impact

    and release several electrons from the second surface, which in turn will be accelerated on a third

    one, and so on.77 By the impact of one ion, an avalanche of electrons is produced, which are then

    detected. Low noise levels and the high sensitivity make it the detector of choice, when low

  • Dissertation

    33

    abundant isotopes are measured. The efficiency is lower and they are less robust in comparison with

    FC.

    The entire detector block is shown in Figure 5.

    Figure 4 Working principle of the zoom lens. The upper row shows the ion beams leaving the magnet and entering the detectors without zoom lens. Two beams hit the wall of the collector block. In the lower row, the zoom lenses direct the beams into adjacent cups. The zoom lenses could direct the beams into the outer two cups, depending on the mass separation needed (adapted from instrument manual).

    Figure 5 Detector block in the NuPlasma HR MC-ICPMS. Twelve faraday cups and the three ion counters are shown (adapted from instrument manual).

  • Dissertation

    34

    1.2.2 Sample Introduction Systems The aim of a sample introduction system is to convert the sample into a fine and homogenous

    aerosol. Different systems are available for this purpose. The aerosol can be generated starting from

    a liquid or from a solid sample. The different sample introduction systems used in the following

    chapters will be described.

    1.2.2.1 Liquid introduction

    To generate a fine aerosol from a liquid, two main components are needed. The nebuliser is

    responsible for the aerosol generation, while the spray chamber is responsible for the droplet

    selection.78 Different designs of nebuliser and spray chambers are available. The aerosol can then

    either be introduced to the plasma directly or it can first be dried from its solvent in a desolvation

    unit.

    1.2.2.1.1 Wet nebulization

    For the direct, wet aerosol introduction, a micro-concentric nebuliser was used (Glass Expansion,

    Melbourne, Australia) in this study. In Figure 6, a picture of a micro-concentric nebuliser is shown.

    The nebuliser consists of an inner capillary and a concentric outer tube. Through the outer tube, Ar

    with a flow rate of about 1 L/min is supplied. At the capillary tip, reduced pressure is created, which

    can aspirate the solution. The gas speed is high enough the break the solution in a multitude of tiny

    droplets. The sample uptake rate is around 100 µl per minute. The spray chamber used was the

    cyclonic spray chamber (Glass Expansion, Melbourne, Australia). The aerosol enters the chamber

    perpendicular to the drain-output axis; large droplets collide with the wall, some condense and are

    collected at the drain. Only the small droplets (5-10 µm) exit the spray chamber and enter the tube

    leading to the ICP. In the system used, the spray chamber was Pelletier-cooled. Both, nebuliser and

    spray chamber, were made of borosilicate glass.

    Figure 6 A micro-concentric nebuliser77

    and a cyclonic spray chamber

    78 are shown.

    1.2.2.1.2 Desolvating nebulization (DSN)

    The aerosols can also be desolvated before entering the ICP. Enhanced sensitivity and lower oxide,

    hydroxide and hydride formation are the benefits of a dry aerosol. The desolvation system used in

    the following chapters was a membrane desolvator (DSN-100, Nu Instruments Ltd, Wrexham, U.K.).

    The DSN is equipped with a micro-concentric nebuliser and a Scott-type spray chamber. The working

    principle of the Scott spray chamber is the same as that of the cyclonic spray chamber. The larger

    droplets impact the wall, while the small droplets are evaporated by heating the spray chamber to

    105°C. The aerosol is then introduced into a heated (110°C) membrane d