rheological and engineering properties of orange pulp

Upload: nicolasjmunoz

Post on 07-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    1/39

    Rheological and Engineering Properties

    of Orange Pulp

    Elyse Payne

    Juan Fernando Muñoz

    José I. Reyes De Corcuera

    September 20, 2012

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    2/39

    2

    Industry

    Dr. Paul Winniczuk

    Mr. Thomas Fedderly

    Mr. Marcelo Bellarde

    Dr. Wilbur Widmer

    Acknowledgements

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    3/39

    Background

    Increased market demand for fresh-like

    pulpy-juices

    Orange pulp contributes to texture and other

    sensory properties of fruit juices and otherbeverages

    − Fresh-like, “natural” perception

    Worldwide increased demand for orange

    pulp, particularly in Asia  An estimate of 300,000 MT of orange pulp

    produced in the US (98 lb/ton)

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    4/39

    Finisher

    Citrus Pulp Recovery

    Pasteurizer

    Pulp ~ 500 g/L

    Finisher

    Extractor

    FinisherHydrocyclone

    Pulpy Juice+ Defects

    Defects

    Pulpy juice

    Juice

    Juice

    Pulp ~ 900 g/L

    To Frozen

    Storage

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    5/39

     Aseptic

    Filling

    Pasteurizer

    Pulp ~ 500 g/L

    Finisher

    Extractor

    FinisherHydrocyclone

    Pulpy Juice+ Defects

    Defects

    Pulpy juice

    Juice

    Juice

    Pulp

    ~ 900 g/L

    Finisher

    Citrus Pulp Recovery

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    6/39

    Overall Objectives

    To characterize the rheology

    • Studies 1 & 2

    To determine the thermal properties• Study 3

    To characterize heat transfer in a flowing

    system• Study 4

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    7/39

    Study 1

    Characterize the rheological properties

    orange pulp ~ 500 – 800 g/L at 4 – 80 ºC.

    (~ Industrial processing conditions)

    • Shear stress (  ) vs. Shear rate ().

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    8/39

    Basic Rheological Models

    •Newtonian Fluid

    •Non-Newtonian Fluid

    • Power Law

    • Herschel-Bulkleyn

    o   K  )(        

    n K 

      )(     

          

    Shear rate  (s-1)    S   h  e  a  r  s   t  r  e  s  s         (   P  a   )

       S   h  e  a  r  s   t  r  e

      s  s         (

       P  a   )

    Shear rate  (s-1) 

    Power Law

    n < 1

    Pseudoplastic

    n > 1

    Dilatant

    K = consistency coefficient

    n = flow behavior index

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    9/39

    Wall Slippage

    • Multiphase systems

    • Displacement of the dispersedphase away from the solidboundaries.

    • Low viscous liquid layer that actsas a lubricant

    Barnes 1995

    Shear rate  (s-1)    S   h  e

      a  r  s   t  r  e  s  s         (

       P  a

       )

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    10/39

    Solutions to Slippage

    Roughened surfaces

    Vane geometry

    http://www.viscometers.org/Brookfield-Accessories.html 

    http://www.viscometers.org/Brookfield-Accessories.htmlhttp://www.viscometers.org/Brookfield-Accessories.htmlhttp://www.viscometers.org/Brookfield-Accessories.htmlhttp://www.viscometers.org/Brookfield-Accessories.html

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    11/39

    050

    100

    150

    200

    250

    300

    0 20 40 60 80 100

      σ    (

       P  a   )

    γ (s-1)

    () 511 g·L-1

    , (■) 585 ·g·L-1

    , (▲) 649 g·L-1

     and (X) 775 g·L-1

     

    4 °C 80 °C

    050

    100

    150

    200

    250

    300

    0 20 40 60 80 100

      σ    (

       P  a   )

    γ (s-1)

    80 °C 500 g .L

    -1

    4 °C 900 g .L

    -1

    Effects of Temp. and Conc.

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    12/39

    Power Law Parameters

    Shear rate rangeof ~ 0-10 s-1

    Linear portion

    never exceededshear ratesabove 4 s-1

    Flow behavior

    index (n) Consistency

    coefficient (K)

    y = 0.26x + 4.59R² = 0.99

    4.2

    4.3

    4.4

    4.5

    4.6

    4.7

    4.8

    4.9

    5

    -2 -1 0 1 2 3 4 5

       l  n  σ  

    ln γ

        lnlnln n K  

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    13/39

    503 g∙L-1  597 g∙L-1  643 g∙L-1  795 g∙L-1 

    Temperature

    (K)

    nK

    (Pa.sn)n

    K

    (Pa.sn)n

    K

    (Pa.sn)n

    K

    (Pa.sn)

    RSD (%) RSD (%) RSD (%) RSD (%)

    277.15 0.42 70.0 0.41 123.5 0.36 137.2 0.39 233.6

    24.21 77.9 14.29 51.1 13.20 51.8 28.67 40.1

    292.93 0.32 50.5 0.29 91.3 0.40 109.7 0.33 180.1

    3.74 60.0 5.30 49.4 22.89 43.5 14.57 51.7

    310.60 0.37 50.9 0.34 83.6 0.30 88.9 0.30 146.7

    34.56 61.9 35.61 50.9 23.96 47.2 9.06 47.4

    330.55 0.37 43.0 0.25 61.5 0.29 78.3 0.23 115.1

    34.27 47.9 16.56 48.5 17.95 45.1 4.55 47.6

    353.15 0.18 33.0 0.22 59.9 0.22 74.9 0.21 112.6

    60.27 55.9 57.01 0.8 40.62 4.3 47.93 11.7

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    14/39

    Effect of Temperature

     Arrhenius-type approach

    2

    3

    4

    5

    6

    7

    8

    0.003 0.0032 0.0034 0.0036

       l  n   K

    1/T (K)

    )(lnln RT 

     E  A K  a

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    15/39

    Apparent E a  for K

    • Mango Pulp: 8.9-11.8 kJ.mol-1• Tahini (Slippage) 30.3 kJ.mol-1

    0.0

    4.0

    8.0

    12.0

    16.0

       E  a   (   k   J  ·  m  o   l  -   1   )

    Concentration (g∙L-1)

    500 497 511 600 606 585 637 644 649 793 817 775

    (■) Industry 1, (■) Industry 2, (■) CREC.

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    16/39

    (▲) CREC, and (■) Industry 1(♦) Industry 2

    Sources of Pulp Variability

    •Batch

    •Varieties

    •Biological material

    •Size/maturity•Mechanical

    •Type operation

    conditions

    •Extractor Finisher•Handling conditions

    •Time to pasteurization

    0

    20

    4060

    80

    100

    120

    0 20 40 60 80

      σ    (   P

      a   )

    γ (s-1

    )

    4 ºC, ~ 500 /L

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    17/39

    Effect of Pasteurization

    • PME

    () unpasteurized and (■) pasteurized

    0

    200

    400

    600

    800

    1000

    1200

    0 2 4 6 8 10

      σ    (

       P  a   )

    γ (s-1)

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    18/39

    Study 2

    Determine pressure drop by capillary viscometry

    • Slip coefficient 

    • Apparent friction factor( )

    =−

     

            

     

      

     

    c

    a  ff  

    c

    c  fc

    c

    a  fe

    ccc   g 

    v K 

     g 

    v K 

     g 

    v K 

     D g 

     Lv  f  

     g 

    vv

     g 

     Z  Z  g  P 

    222

    2

    2

    )()( 2222212

    212

     K 

    v D

    n

    n  nnn

    n

    n

     

     

     

     

    2

    3

    13

    2Re   

    Re

    16  f   For laminar flow

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    19/39

    Experimental Setup

    Diaphragm

    Pump 

    Recirculation

    Valve 

    Flow-

    meter 

    Pressure

    Transducer 

    PT01

    TT01

    FT01

    TT02

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    20/39

    Effects of T and Conc.

    200

    250

    300

    350

    400450

    0.E+00 2.E-04 4.E-04 6.E-04 8.E-04

       Δ   P   (   k   P  a   )

    Q with slippage (m3.s-1)

    0

    100

    200

    300

    400

    0.E+00 5.E-04 1.E-03

       Δ   P   (   k   P

      a   )

     

    Q with slippage (m3.s-1)

    50 ºC

    ■  870 ± 7 g∙L-1 ▲  760 ± 24 g∙L-1 

    ●  675 ± 13 g∙L-1 

    ♦  569 ± 11 g∙L-1 

    4 ºC

    ■  864 ± 39 g∙L-1

     ▲  729 ± 44 g∙L-1 

    ●  644 ± 35 g∙L-1 ♦  529 ± 3 g∙L-1 

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    21/39

    0

    1000

    2000

    3000

    4000

    5000

    6000

    200

    250

    300

    350

    400

    450

    500

    0.E+00 2.E-04 4.E-04 6.E-04 8.E-04

       Δ   P

      c  a   l  c  w   /  o  s   l   i  p  a  g  e

       (   k   P  a   )

       Δ   P   E

      x  p

       (   k   P  a   )

    Q (m3.s-1)

    871 g.L-1 (□) calculated (■) experimental

    761 g∙L-1 ( Δ) calculated (▲) experimental

    Experimental vs. Calculated

    675 g∙L-1 (○) calculated (●) experimental

    569 g∙L-1 (◊) calculated (♦) experimental

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    22/39

    0

    1000

    2000

    3000

    4000

    5000

    6000

    200

    250

    300

    350

    400

    450

    500

    0.E+00 2.E-04 4.E-04 6.E-04 8.E-04

       Δ   P

      c  a   l  c  w   /  o  s   l   i

      p  a  g  e

       (   k   P  a   )

       Δ   P   E

      x  p

       (   k   P  a   )

    Q (m3.s-1)

    871 g.L-1 (□) calculated (■) experimental

    761 g∙L-1 ( Δ) calculated (▲) experimental

    Experimental vs. Calculated

    675 g∙L-1 (○) calculated (●) experimental

    569 g∙L-1 (◊) calculated (♦) experimental

    1” Ø, 25 ft, ~ 6.3 GPM  ~ 35 psi < P < 65 psi

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    23/39

    Pumping Costs

    (watts)W;sJ

    skg

    kgJ ][W      pW 

    kg

    J 660 P W 

    3m

    kg 1,045 psi,100       P 

     A processor produces 1/20 of Florida’s pulp = 15,000 MT in 200 days 3 shifts

    GPM13min

    lb 115

    s

    kg52

    h

    kg 3,125W

    220,11$

    c/[email protected],000'h4,800inW375,3452660

    100  

     psiCost 

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    24/39

    Pumping Costs

    /gal0.06$or/kg0.015$oryr/000,225$

    0.5factorefficiency psi,1000PAssuming

    220,11$100

    Cost 

    Cost   psi

    Disclaimer: This is based on a hypothetical case and a number of non-explicit

    assumptions were made

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    25/39

    Data Variability

    Diaphragm pump

    • Fluctuating flow rates• Lower flow rates at higher concentrations

    Pulp variability

    • Two sample sources-biological material hasnatural variability

    • Industrial vs. non-Industrial (handling andstorage prior to pasteurization).

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    26/39

    Conclusions Studies 1 & 2

    Non-Newtonian pseudo-plastic fluid with slippageat  > 2-4 s-1

    T and Conc. have a small effect on n

    50 < K < 230 (Pa ∙sn)  as Conc.  or T   E a was moderately affected by concentration and

    pulp source

     c increaced with flow rate History of product handling (PME) has a huge

    impact on pulp rheology

    This impact needs to be fully characterized

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    27/39

    Study 3

    Determine the thermal properties of high

    concentration orange pulp:

    • Heat capacity ( ).

    • Thermal diffusivity (∝).

    • Thermal conductivity ( ).

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    28/39

    Heat Capacity ()

    = ∆

    = . +  . [  

    ∆∆

    . ]

    [ +∆∆

    . ] 

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    29/39

    Thermal Diffusivity (∝)

    Thermal Conductivity ( )  

    ∝ =

    2.405  

    = ∝ . .  

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    30/39

    Results

    Pulp

    Concentration

    (g L-1)

    Specific Heat

    Capacity

    (J kg-1K-1 )

    Thermal

    Diffusivity

    (m2 s-1) x 107

    Thermal

    Conductivity

    (W m-1 K-1)516 ± 6 4025.0 ± 37.1 1.50 ± 0.01 0.63

    617 ± 7 4051.2 ± 64.1 1.55 ± 0.02 0.66

    712 ± 12 4055.7 ± 32.1 1.56 ± 0.04 0.66

    801 ± 13 4068.4 ± 12.5 1.55 ± 0.07 0.65

    No significant differences (p > 0.05) between the mean values obtained for

    , ∝, and for the different pulp concentrations.

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    31/39

    Study 4

    Determine heat transfer characteristics of

    HCP pulp in tubular heat exchangers at

    selected concentrations and flow rates• Heat transfer coefficients of orange 

    • Radial temperature profiles (heating and

    cooling)

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    32/39

    Experimental Setup

    Section of Heat Exchanger

    ℎ =

    4ln

     

    TT03-07

    PT01

    TT02

    PT02

    T0…T 4 T

    TT01

    Tw T0…

    T 4

     

    FT01

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    33/39

    Heat Transfer Coefficients

    ∆= ( )

    ln [(  )/( )] 

    =

      ∆ 

    Distance from center of the inner pipe 

       T  e  m  p  e  r  a   t  u

      r  e

    Pulp

    inside

    the pipe 

    Metal Heating

    Media 

    Ti 

    Tw 

    T∞ 

    ℎ =

    4ln

     

    Local

    Overall

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    34/39

    Experimental setup

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    35/39

    Results h 

    Overall heat transfer coefficients as function of velocity and pulp concentration,

    in the heating section of heat exchanger.

    5 ft/s

    Warning! These numbers were calculating flow rates with slippage, hence they

    are artificially high, hence inaccurate!

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    36/39

     Temperature Profiles

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    37/39

    Conclusions

    Thermal properties (, ∝, and ) of orange pulp were

    not significantly different among different concentrations.

    Heat transfer coefficients were lower for highly

    concentrated pulp due to its “solid-like” flow that caused

    higher temperature gradients within the product.

    Heat in this fluid is mainly transferred by conduction with

    slight convection around the slippage region.

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    38/39

    Thank you

    Questions?

  • 8/20/2019 Rheological and Engineering Properties of Orange Pulp

    39/39

    Seeking Sponsors for Food Engineering Division Lecture and Social at Annual Meeting