rfid reader collision problem ( rcp)

47
RFID Reader Collision Problem ( RCP) Rana Abaalkhail Uottawa Instructor: Professor : ivan stojmenovic Fall 2010 CSI 5148

Upload: moses

Post on 22-Feb-2016

65 views

Category:

Documents


0 download

DESCRIPTION

Fall 2010 CSI 5148 . RFID Reader Collision Problem ( RCP) . Rana Abaalkhail Uottawa. Instructor: Professor : ivan stojmenovic. Outline : . Brief description ( RCP) . Reader collision types. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: RFID Reader Collision Problem  ( RCP)

RFID Reader Collision Problem ( RCP) Rana Abaalkhail

UottawaInstructor: Professor : ivan stojmenovic

Fall 2010 CSI 5148

Page 2: RFID Reader Collision Problem  ( RCP)

Outline: Brief description ( RCP) Reader collision types

Reader collision Algorithms: Classify the algorithms, explain some of the algorithms, how they work, disadvantages, some comparisons References Questions

Page 3: RFID Reader Collision Problem  ( RCP)

How Reader collision problem could happen?

•In many applications there are number of RFID readers deployed in the same area , and they form dense RFID Systems

•Readers have to work near to each other to read many tags •This means there will be interfere between RFID readers operations

Page 4: RFID Reader Collision Problem  ( RCP)

•As a result, there will be lack of communication between the readers and some tags

•This will lead to inefficient and incorrect operation of a RFID system

How Reader collision problem could happen? (cont.)

the RCP is considered to be the bottleneck of the system throughput and reading

efficiency. So we have to solve the problem as much as we can

Page 5: RFID Reader Collision Problem  ( RCP)

Reader collision types:

1- Reader- to – Reader : Occurs when two or more readers communicate on the same frequency at the same time. Even when the readers ranges do not overlap

Page 6: RFID Reader Collision Problem  ( RCP)

R1 lies in the interference region of reader R2, the reflected signal reaching reader R1 from tag T1 can easily get distorted by signal from R2.

1- Reader- to – Reader ( cont.) EXAMPLE

Page 7: RFID Reader Collision Problem  ( RCP)

2- Reader-to –tag :occurs when one tag is simultaneously located in the interrogation zones of multiple readers . Every reader attempts to communicate with the tag in the same time.

Reader –Reader collision types: (cont.)

Page 8: RFID Reader Collision Problem  ( RCP)

3- Tag Hidden Terminal ProblemSignal from R2 interferes with signal from R1 to a tag T1 but the signal from R2 does not reach R1, which is communicating with T1 and thus R1 does not recognize the collision that occurs at T1.

Reader –Reader collision types: (cont.)

Page 9: RFID Reader Collision Problem  ( RCP)

Reader collision Algorithms

Scheduling based approaches: The available system resources such as the frequencies and time are allocated among the readers to prevent them from transmitting simultaneously

Control Mechanism-Based Approachesreduce the problem of collisions between readers by transmitting notification control packets such as beacon signals. After receiving a beacon signal, the interfering readers interrupt their ongoing communication and wait for the next cycle

A central cooperator-based :A central device is used to communicate between the tags and the readers

Coverage-Based Approaches: a central node to calculate the distance between each pair of readers and adjust their reading ranges, to reduce the overlapped areas between adjacent readers. which increases the complexity and cost of the system

Page 10: RFID Reader Collision Problem  ( RCP)

1-DCS: Distributed Color SelectionIt is TDMA based( Time Division Multiple Access) :

The RFID reader and tags are allocated at different time slots in order to avoid simultaneous transmissionTDMA slots is relatively easier in the fixed RFID readers’ scenario. But, not in the mobile scenario.When new reader join the other readers ; there should be recalculation of the time assigning .

Page 11: RFID Reader Collision Problem  ( RCP)

DCS( cont.)

Frame structure of TDMA-based anti-collision algorithm

In the reader-to-reader communication period, each reader decides its time slot for transmission. The reader-to-tag period is used for reading the tags

Page 12: RFID Reader Collision Problem  ( RCP)

DCS scenario: ( cont.)

•The frame time which consist the time slots( max-color) is fixed •Each reader select a time slot( no two interfering readers has the same time slot) (color?!!)

•Each reader transmit in its time slot

•If the transmission collides with another reader, the transmission request is discarded and the reader chooses a new color and reserves it.

• Readers keep track of what is the current color ( time)

Page 13: RFID Reader Collision Problem  ( RCP)

If any of neighbouring readers has the same color, it has to choose another color.

DCS scenario: ( cont.)

Page 14: RFID Reader Collision Problem  ( RCP)

Subroutines for DCS: Manages transmit ion

Manages collision and the reservation for new time slot

Manages kick resolution

Page 15: RFID Reader Collision Problem  ( RCP)

Did you figure out why the algorithm called Distributed Color Selection ?This algorithm is similar to the coloring graph theory; where the adjacent nodes can not have the same color. In this algorithm , the readers that may have collision between them can not have the same time slot (color) .

Page 16: RFID Reader Collision Problem  ( RCP)

Disadvantages of DCS : DCS with the fixed max -color is simple BUT•If the number of the adjacent readers is much larger than the max- color, many readers may experience collisions.

•If the max_ colour size is greater than the number of readers, many colours may be wasted

•DCS is a “greedy” algorithm – a node’s chances of colliding immediately after experiencing a collision are minimized at the expense of its neighbours.

Page 17: RFID Reader Collision Problem  ( RCP)

DCS (cont.) Example

assume the following:There are 10 time slotsR7, R6 select time slot (1)What will happen based on the subroutines of the Algorithm?

Page 18: RFID Reader Collision Problem  ( RCP)

DCS (cont.)Example

1- R7, R6 will start the communication2- collision will happen between R7 , R6 3- R7 , R6 will select new time slot4- send messages for the neighboursR6 will send for R4R7 will send for R55- when the neighbours receive the kick message, they check if the time slot= their time, then they should select different time slot.

Page 19: RFID Reader Collision Problem  ( RCP)

Improvement of DCS (cont.) :

The Colorwave algorithm based on DCS but: Max-colors is increased if the collisions become more than certain thresholdMax-colors is decreased if the collisions fall below certain threshold

Page 20: RFID Reader Collision Problem  ( RCP)

2-HiQ: A Hierarchical Q-Learning Algorithm

HiQ: is a hierarchical, online learning algorithm that finds dynamic solutions to the Reader Collision Problem in RFID systems.

Q – learning Based on : Reinforcement Learning : a branch of Artificial Intelligence. It allows machines and software agents to automatically determine the ideal behaviour within a specific context, in order to maximize its performance

Page 21: RFID Reader Collision Problem  ( RCP)

HiQ attempts to minimize reader collisions by learning the collision patterns of the readers and by effectively assigning frequencies over time to ensure neighbouring readers do not experience collisions from one another.

HiQ(cont.)

Page 22: RFID Reader Collision Problem  ( RCP)

HiQ(cont.) Hierarchical : It is composed of three basic hierarchical layers: the reader, the reader-level server and the Q-learning server.Q- Server: The highest level; the most intelligent level. Has global knowledge of all available frequencies and time slot for the readers. R-server: receive request from readers to communicate. Assign frequencies and time slots that are reserved by Q-server for the readers that are capable to communicate.

Page 23: RFID Reader Collision Problem  ( RCP)

HiQ(cont.)

Readers: the lowest level, it has limit capabilities . Ask the R-server to communicate with its tags. When the reader receive the frequency and time slot it can start the communication. Readers are responsible to detect and inform the collision number and types to R-server

Page 24: RFID Reader Collision Problem  ( RCP)

HiQ structure Root Q-server: has Global knowledge for the constrains in the network to make resource allocation Q- server : each Q-server responsible for group of R-sever

R-server: : each R-server responsible for group of Readers

Page 25: RFID Reader Collision Problem  ( RCP)

HiQ(cont.) Example:By looking at the previous figure:readers R1, R2, R3 and R4 are within the interrogation range of reader R5 Whenever reader R5 has to read the tags, it sends the request for frequency and time for R-server.It starts reading after getting frequency and time. At the same time it also pings other readers in the same interrogation zone. After getting the ping, readers R1, R2, R3 and R4 send back the response with their current state, that is, whether they are reading or not and which frequency and time slot they are using.

Page 26: RFID Reader Collision Problem  ( RCP)

How The server determine if the algorithm good or bad ?That based on the Cost Function : The cost function is essential to the success of the Q learning agent. From the feedback of the current state the algorithm can learn the goodness or badness of the current state. The cost function is a function of the total number of resource requests, request rejections, request grants, experienced frequency collisions, possible tag collisions, the actual number of readers that experienced frequency interference, and the actual number of readers that experienced tag interference

HiQ ( cont.)

Page 27: RFID Reader Collision Problem  ( RCP)

HiQ ( cont.)

Disadvantages: •Additional management of the overall hierarchy is required for even a slight change in the lower layer ( new readers, remove readers)

•HiQ assumes collision detection for readers which are not in the sensing range of each others •If the number of readers are large, it may be hard to find the optimal solution due to large complexity. Thus, the HiQ algorithm may not be suitable for a network with mobile readers in which neighbouring readers are frequently changing.

Page 28: RFID Reader Collision Problem  ( RCP)

3-MCMAC: Multi-Channel MAC Protocol:

There are N Channels without overlap:N-1 Data Channels : deliver the data packets 1 Control Channel : to exchange the control packets

Reader that may have collision with other readers can talk in the control channel to inform them that it now communicate with the tags

Page 29: RFID Reader Collision Problem  ( RCP)

Since R1, R2and R3 interfere with each other on the data channel, they will be able to communicate on the control channel. when R2 prepare to read tags, it first informs R1, R3 or other readers in the R2 interference range that it will communicate with tags.

MCMAC (cont.) EXAMPLE:

Page 30: RFID Reader Collision Problem  ( RCP)

MC

MA

C w

orki

ng

prin

cipl

e

1- all readers in the network switch to the listening mode on the control channel, a reader has to listen in the state for a minimum time Tmin

12

3

2- If the reader receive a control message during T min then all of channels are busy, it resets its listening time to Tmin.

3- After Tmin time has elapsed and it did not receive any control message this means there are free data channel for the other readers reading tags, the reader concludes that there is channel resource for using.

4

5

4- the reader enter the contention phase waiting for control message to decide which data channel to use

5- If it now receives a control message, it analyzes the message which channel has been occupied and whether there is a idle channel to utilize

6

6- if there is any idle channel, it selects one of the idle channel and also sends out a control message to denote that the special channel has been occupied

7

7- if there is not any idle channel to be use, it lost this cycle and waits for the next cycle.8

8- If the reader did not receive any message, the reader assumes that there is no other reader competition and it sends a control message on the control channel and starts communicating with the tags on the data channel

9

9- Now it start the communication with the tags. It should send a CM every interval time and specify which data channel it is using . After finishing reading , It start over the cycle

Need to communicate with tags

Page 31: RFID Reader Collision Problem  ( RCP)

MCMAC (cont.) :

MCMAC is similar to Listen before talk protocol (LBT)

Listen Before Talk: a communication protocol that requires a reader to listen on a channel before transmitting to determine if that channel is being used by another device. If the channel is already in use, the reader will switch to a different channel.

Page 32: RFID Reader Collision Problem  ( RCP)

Disadvantages of MCMAC :

the reader to- tag problem still exists with this approach. Since passive RFID tags are unable to distinguish between two data channels, multiple data channels cannot be used directly in a passive tag environment.

Page 33: RFID Reader Collision Problem  ( RCP)

4-CC-RFID : Central Co-operator RFID Algorithm

IDEA: In RFID systems, the tags read by adjacent readers contain exactly the same information . If the same tags could be read by one reader and shared with others, the reading efficiency in RCP environment will be further increased.

Page 34: RFID Reader Collision Problem  ( RCP)

CC-RFID System Architecture

Central device is used to communicate between tags and readers.

Multiplex readers’ queries

Page 35: RFID Reader Collision Problem  ( RCP)

CC-RFID Working Scheme: First working Scheme: appropriate to apply in scenarios where tags have high mobility

Page 36: RFID Reader Collision Problem  ( RCP)

Second working Scheme: appropriate to apply in scenarios where tags change slowly

CC-RFID( cont.) CC Search: The CC receives readers’ requests and looks through the CC Storage Module for the corresponding tags’ ID requested by readers

Tags’ information

CC sends updating query to read tags and tags respond by sending their latest information to CC

Page 37: RFID Reader Collision Problem  ( RCP)

In CC-RFID system, with the introduction of the central operating device –Central Cooperator (CC), the present ‘multiple points to multiple points’ (MP2MP) collision problem is converted into two ‘multiple points to one point’ (MP2P) classical collision problems

The reading queries from several readers could be multiplexed by CC and the same tag information could be stored and shared among adjacent readers.

CC-RFID ( cont.)

Page 38: RFID Reader Collision Problem  ( RCP)

Disadvantages: This approach need to use an extra device, namely the central co-operator. It might have a scalability problem, because the central device is mounted in a specific place and has a fixed cooperation capacity.

CC-RFID ( cont.)

Advantages: It takes in consideration the tag side for collision because the central device communicate with the tags not the readers

Page 39: RFID Reader Collision Problem  ( RCP)

Compare between the CC-RFID Working Schemes

the first working scheme in CCRFID system consumes a little more time slots than the second one. This is due to the fact that, in the first working scheme, CC reads tags based on readers’ requests

Page 40: RFID Reader Collision Problem  ( RCP)

RCP solution Scheduling based

Coverage based Central co-operator based

Reduce the problem by assigning different time and frequency. however it requires the system to establish and maintain information over the network, which will be time and energy consuming.

The reading ranges of readers are adapted dynamically to reduce the overlapped area between adjacent readers as much as possible, but it usually needs a central node to calculate the distance between every two readers and adjust their reading ranges, which will increase the complexity of realization.

Take in consideration the redundant tags information between multiple readers , but it requited special Hardware , and the scalability problem.

Comparison between different

solutions of RCP

Page 41: RFID Reader Collision Problem  ( RCP)

Algorithm

Function Used

Major overhead

Dynamic Channel

Assignment

Carrier Sensing

Tag Side For

Collision Avoidanc

e DCS Color

numberTime

synchronization

Yes No No

HiQ Cost Management overhead

Yes No No

MCMAC LBT Additional channel

Yes Yes No

CC-RFID

MP2P Special hardware

No No Yes

Comparison of reader anti- collision Algorithms

Page 42: RFID Reader Collision Problem  ( RCP)

References: Book : RFID Systms Resarach trends and challenges ,2010 . RFID JOURNAL http://www.rfidjournal.com/A Multi-Channel MAC Protocol for RFID Reader Networks, Hongyue Dai, Shengli Lai, Hailong Zhu, Hongyue Dai, 2007. HiQ: A Hierarchical Q-Learning Algorithm to Solve the Reader Collision Problem, Junius Ho, Daniel W. Engels, Sanjay E. Sarma, 2005. A Novel Solution to the Reader Collision Problem in RFID System, Dong Wang,2006. Colorwave: An Anti-collision Algorithm for the Reader Collision Problem, James Waldrop,2003. Introducing Probability in RFID Reader-to-Reader Anti-collision, Filippo Gandino, Renato Ferrero, Bartolomeo Montrucchio, Maurizio Rebaudengo,2009. GENTLE: Reducing Reader Collision in Mobile RFID Networks , Jieun Yu and Wonjun Lee ,2008

Page 43: RFID Reader Collision Problem  ( RCP)

QUESTIONS: Q1: Based on the following figure. What is the type of the reader collision problem? Explain how the collision happened?

The type is Reader- to – Reader Interface. R1 lies in the interference region of reader R2, the reflected signal reaching reader R1 from tag T1 can easily get distorted by signal from R2.

Page 44: RFID Reader Collision Problem  ( RCP)

Q2: According to Distributed Color Selection algorithm, let assume the following:There are 10 time slotsR1, R4 select time slot (1) Trace the subroutines for R1,R4 and see What will happen ?

Page 45: RFID Reader Collision Problem  ( RCP)

Answer: 1- R1, R4 will start the communication2- collision will happen between R1 , R4 3- R1 , R4 will select new time slot4- send messages for the neighbours R1 will send for R2 R4 will send for R6, R55- when the neighbours receive the kick message, they check if the time slot= their time, then they should select different time slot.

Page 46: RFID Reader Collision Problem  ( RCP)

Q3: According to Multi-Channel MAC Protocol, after the reader listen to the control channel and concludes that the control channel is free, the reader enter the contention phase. What is the goal from this phase?

the reader enter the contention phase waiting for control message to decide which data channel to use to communicate with the tags .

Page 47: RFID Reader Collision Problem  ( RCP)

THANK YOU