rexroth indradyn l - bosch rexroth ag indradyn l synchronous linear motors r911293635 edition 02...

266
Rexroth IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Electric Drives and Controls Pneumatics Service Linear Motion and Assembly Technologies Hydraulics

Upload: phungtu

Post on 09-Mar-2018

234 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn LSynchronous Linear Motors

R911293635Edition 02

Project Planning Manual

Electric Drivesand Controls Pneumatics Service

Linear Motion and Assembly TechnologiesHydraulics

Page 2: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

About this documentation Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Rexroth IndraDyn L

Synchronous Linear Motors

Project Planning Manual

DOK-MOTOR*-MLF********-PR02-EN-P

• R91129363502_Book.doc

• Document Number, 120-1500-B319-02-EN

This documentation ....

• explains product features and applications, technical data as well as

conditions and limits for operation

• provides guidlines for product selection, application, handling andoperation.

Description ReleaseDate

Notes

DOK-MOTOR*-MLF********-PR01-EN-P June04 1st edition

DOK-MOTOR*-MLF********-PR02-EN-P July06 1st reprint

Bosch Rexroth AG, 2006

Copying this document, giving it to others and the use or communicationof the contents thereof without express authority, are forbidden. Offendersare liable for the payment of damages. All rights are reserved in the eventof the grand of a patent or the registration of a utility model or design (DIN34-1).

The specified data is for product description purposes only and may notbe deemed to be guaranteed unless expressly confirmed in the contract.All rights are reserved with respect to the content of this documentationand the availability of the product.

Bosch Rexroth Electric Drives and Controls GmbHBgm.-Dr.-Nebel-Str. 2 • 97816 Lohr a. Main, Germany

Tel +49 (0)93 52 / 40-0 • Fax +49 (0)93 52 / 40-48 85

http://www.boschrexroth.com/

Dept. BRC/EDM1 (FS)

This document has been printed on chlorine-free bleached paper.

Title

Type of Documentation

Document Typecode

Internal File Reference

Purpose of Documentation

Record of Revisions

Copyright

Validity

Published by

Note

Page 3: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Table of Contents I

DOK-MOTOR*-MLF********-PR02-EN-P

Table of Contents

1 Introduction to the Product 1-1

1.1 Application Range of Linear Direct Drives.................................................................................... 1-1

1.2 About this Documentation............................................................................................................. 1-3

Additional components ............................................................................................................ 1-4

Feedback ................................................................................................................................. 1-4

Standards ................................................................................................................................ 1-4

2 Important Instructions on Use 2-1

2.1 Appropriate Use............................................................................................................................ 2-1

Introduction .............................................................................................................................. 2-1

Areas of Use and Application .................................................................................................. 2-2

2.2 Inappropriate Use ......................................................................................................................... 2-2

3 Safety Instructions for Electric Drives and Controls 3-1

3.1 General Information ...................................................................................................................... 3-1

Using the Safety Instructions and Passing them on to Others................................................ 3-1

Instructions for Use.................................................................................................................. 3-1

Explanation of Warning Symbols and Degrees of Hazard Seriousness ................................. 3-3

Hazards by Improper Use........................................................................................................ 3-4

3.2 Instructions with Regard to Specific Dangers............................................................................... 3-5

Protection Against Contact with Electrical Parts ..................................................................... 3-5

Protection Against Electric Shock by Protective Low Voltage (PELV) .................................... 3-6

Protection Against Dangerous Movements ............................................................................. 3-7

Protection Against Magnetic and Electromagnetic Fields During Operation andMounting .................................................................................................................................. 3-9

Protection Against Contact with Hot Parts ............................................................................ 3-10

Protection During Handling and Mounting............................................................................. 3-11

Battery Safety ........................................................................................................................ 3-11

Protection Against Pressurized Systems .............................................................................. 3-12

4 Technical Data IndraDyn L 4-1

4.1 Explanation about Technical Data................................................................................................ 4-1

Operating Behavior.................................................................................................................. 4-1

Parameters .............................................................................................................................. 4-4

4.2 Technical Data – Size 040............................................................................................................ 4-6

4.3 Technical Data – Size 070............................................................................................................ 4-8

Size 070A ................................................................................................................................ 4-8

Technical Data - Size 070B................................................................................................... 4-10

Technical Data - Size 070C................................................................................................... 4-12

Page 4: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

II Table of Contents Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

4.4 Technical Data Size 100............................................................................................................. 4-14

Technical Data - Size 100A................................................................................................... 4-14

Technical Data - Size 100B and 100C .................................................................................. 4-16

4.5 Technical Data - Size 140........................................................................................................... 4-18

Size 140A and 140B.............................................................................................................. 4-18

Technical Data - Size 140C................................................................................................... 4-20

4.6 Technical Data - Size 200........................................................................................................... 4-22

Size 200A and 200B.............................................................................................................. 4-22

Technical Data - Size 200C and 200D .................................................................................. 4-24

4.7 Technical Data – Size 300.......................................................................................................... 4-26

5 Dimensions, Installation Dimension and - Tolerances 5-1

5.1 Installation Tolerances.................................................................................................................. 5-1

5.2 Mounting Sizes ............................................................................................................................. 5-3

Size 040, Primary with Standard Encapsulation ..................................................................... 5-3

Size 040, Primary with Thermal Encapsulation....................................................................... 5-4

Size 040, Secondary................................................................................................................ 5-5

Size 070, Primary with Standard Encapsulation ..................................................................... 5-6

Size 070, Primary with Thermal Encapsulation....................................................................... 5-7

Size 070, Secondary................................................................................................................ 5-8

Size 100, Primary with Standard Encapsulation ..................................................................... 5-9

Size 100, Primary with Thermal Encapsulation..................................................................... 5-10

Size 100, Secondary.............................................................................................................. 5-11

Size 140, Primary with Standard Encapsulation ................................................................... 5-12

Size 140, Primary with Thermal Encapsulation..................................................................... 5-13

Size 140, Secondary.............................................................................................................. 5-14

Size 200, Primary with Standard Encapsulation ................................................................... 5-15

Size 200, Primary with Thermal Encapsulation..................................................................... 5-16

Size 200, Secondary.............................................................................................................. 5-17

Size 300, Primary with Standard Encapsulation ................................................................... 5-18

Size 300, Primary with Thermal Encapsulation..................................................................... 5-19

Size 300, Secondary.............................................................................................................. 5-20

6 Type Codes IndraDyn L 6-1

6.1 Description.................................................................................................................................... 6-1

Type Code Primary MLP ......................................................................................................... 6-2

Type Code Secondary MLS .................................................................................................... 6-4

6.2 Type Codes IndraDyn L Size 040................................................................................................. 6-6

6.3 Type Codes IndraDyn L Size 070................................................................................................. 6-8

6.4 Type Codes IndraDyn L Size 100............................................................................................... 6-10

6.5 Type Codes IndraDyn L Size 140............................................................................................... 6-12

6.6 Type Codes IndraDyn L Size 200............................................................................................... 6-14

6.7 Type Codes IndraDyn L Size 300............................................................................................... 6-16

7 Accessories and Options 7-1

7.1 Hall Sensor Box ............................................................................................................................ 7-1

Page 5: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Table of Contents III

DOK-MOTOR*-MLF********-PR02-EN-P

Schematic Assembly ............................................................................................................... 7-2

8 Electrical Connection 8-1

8.1 Power Connection ........................................................................................................................ 8-1

Power cable on the primary part.............................................................................................. 8-1

Connection Power Supply ....................................................................................................... 8-3

Connection of Drive Controller IndraDrive............................................................................... 8-6

Connection Drive-Controller DIAX 04/ Ecodrive...................................................................... 8-8

8.2 Connection of Length Measurement System ............................................................................. 8-10

9 Notes Regarding Application and Construction 9-1

9.1 Functional Principle ...................................................................................................................... 9-1

9.2 Motor Design ................................................................................................................................ 9-2

Primary part standard encapsulation....................................................................................... 9-3

Primary part thermal encapsulation......................................................................................... 9-4

Design secondary part............................................................................................................. 9-5

Size.......................................................................................................................................... 9-6

9.3 Requirements on the Machine Design ......................................................................................... 9-7

Mass reduction ........................................................................................................................ 9-7

Mechanical rigidity ................................................................................................................... 9-7

9.4 Arrangement of Motor Components ............................................................................................. 9-9

Single arrangement ................................................................................................................. 9-9

Several motors per axis......................................................................................................... 9-10

Vertical axes .......................................................................................................................... 9-17

9.5 Feed and Attractive Forces......................................................................................................... 9-18

Attractive forces between primary and secondary part ......................................................... 9-18

Air-gap-related attractive forces between primary and secondary part................................. 9-19

Air-gap-related attractive forces vs. power supply ................................................................ 9-19

Air-gap-related feed force...................................................................................................... 9-20

Reduced overlapping between primary and secondary part................................................. 9-20

9.6 Motor Cooling System ................................................................................................................ 9-22

Thermal behavior of linear motors......................................................................................... 9-22

Cooling concept of IndraDyn L synchronous linear motors................................................... 9-24

Coolant .................................................................................................................................. 9-26

Operation of IndraDyn L synchronous linear motors without liquid cooling .......................... 9-29

Sizing the cooling circuit ........................................................................................................ 9-30

Liquid cooling system ............................................................................................................ 9-33

9.7 Motor Temperature Monitoring Circuit........................................................................................ 9-37

9.8 Setup Elevation and Ambient Conditions ................................................................................... 9-41

9.9 International Protection Class..................................................................................................... 9-42

9.10 Compatibility ............................................................................................................................... 9-42

9.11 Magnetic Fields........................................................................................................................... 9-43

9.12 Vibration and Shock.................................................................................................................... 9-44

9.13 Enclosure Surface ...................................................................................................................... 9-45

9.14 Noise Emission ........................................................................................................................... 9-45

9.15 Length Measuring System.......................................................................................................... 9-46

Page 6: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

IV Table of Contents Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Selection criteria for linear scales.......................................................................................... 9-46

Mounting Linear scales.......................................................................................................... 9-52

9.16 Linear Guides ............................................................................................................................. 9-53

9.17 Braking Systems and Holding Devices....................................................................................... 9-53

9.18 End Position Shock Absorber ..................................................................................................... 9-54

9.19 Axis Cover System ..................................................................................................................... 9-55

9.20 Wipers......................................................................................................................................... 9-56

9.21 Drive and Control of IndraDyn L motors ..................................................................................... 9-57

Drive controller and power supply modules .......................................................................... 9-57

Control systems..................................................................................................................... 9-57

9.22 Deactivation upon EMERGENCY STOP and in the Event of a Malfunction .............................. 9-58

Deactivation by the Drive....................................................................................................... 9-58

Deactivation by a master control ........................................................................................... 9-59

Deactivation via mechanical braking device.......................................................................... 9-59

Response to a mains failure .................................................................................................. 9-59

Short-circuit of DC bus .......................................................................................................... 9-60

9.23 Maximum Acceleration Changes (Jerk Limitation) ..................................................................... 9-60

9.24 Position and Velocity Resolution ................................................................................................ 9-63

9.25 Load Rigidity ............................................................................................................................... 9-64

Static load rigidity................................................................................................................... 9-65

Dynamic load rigidity.............................................................................................................. 9-65

10 Motor-Controller-Combinations 10-1

10.1 General Explanation ................................................................................................................... 10-1

Explanation of the stated sizes.............................................................................................. 10-2

10.2 Motor/Controller Combinations; separate arrangement of the primary part............................... 10-3

Controlled DC Bus Voltage, mains supply voltage - 3 x AC 400 V ....................................... 10-3

10.3 Motor/Controller Combinations; parallel arrangement of the primary part ................................. 10-9

Controlled DC Bus Voltage, mains supply voltage - 3 x AC 400 V ....................................... 10-9

11 Motor Sizing 11-1

11.1 General Procedure ..................................................................................................................... 11-1

11.2 Basic Formulae........................................................................................................................... 11-2

General Equations of Motion ................................................................................................. 11-2

Feed Forces........................................................................................................................... 11-3

Average Velocity.................................................................................................................... 11-5

Trapezoidal velocity............................................................................................................... 11-6

Triangular velocity.................................................................................................................. 11-9

Sinusoidal velocity ............................................................................................................... 11-10

11.3 Duty cycle and Feed Force....................................................................................................... 11-12

Determining the duty cycle .................................................................................................. 11-12

11.4 Determining the Drive Power.................................................................................................... 11-13

Continuous Output............................................................................................................... 11-13

Maximum Output ................................................................................................................. 11-15

Cooling Capacity.................................................................................................................. 11-16

Regeneration Energy........................................................................................................... 11-16

Page 7: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Table of Contents V

DOK-MOTOR*-MLF********-PR02-EN-P

11.5 Efficiency................................................................................................................................... 11-17

11.6 Sizing Examples ....................................................................................................................... 11-18

Handling Axis....................................................................................................................... 11-18

Machine Tool Feed Axis; Dimensioning via Duty Cycle...................................................... 11-26

12 Handling, Transport and Storage 12-1

12.1 Identifying the Motor components .............................................................................................. 12-1

Primary part ........................................................................................................................... 12-1

Secondary part ...................................................................................................................... 12-1

12.2 Delivery Status and Packaging................................................................................................... 12-2

12.3 Transport and Storage................................................................................................................ 12-3

12.4 Checking the motor components................................................................................................ 12-6

Factory checks ...................................................................................................................... 12-6

Incoming Inspection by the Customer ................................................................................... 12-6

13 Assembly 13-1

13.1 Basic Precondition ...................................................................................................................... 13-1

13.2 General Procedure at Mounting of the Motor Components........................................................ 13-1

Installation at Spanned Secondary Parts over the Entire Traverse Path.............................. 13-1

Installation at Whole Secondary Part over the Entire Traverse Path .................................... 13-2

13.3 Installation of Secondary Part Segments ................................................................................... 13-4

13.4 Installation of Primary Part.......................................................................................................... 13-6

13.5 Air-gap, Parallelism and Symmetry among the Motor Components .......................................... 13-6

13.6 Connection Liquid Cooling.......................................................................................................... 13-7

13.7 Screw Locking ............................................................................................................................ 13-8

14 Startup, Operation and Maintenance 14-1

14.1 General Information for Startup of IndraDyn L Motors ............................................................... 14-1

14.2 General Precondition .................................................................................................................. 14-1

Check of All Electrical and Mechanical Components ............................................................ 14-2

Implements ............................................................................................................................ 14-2

14.3 General Start-Up Procedure ....................................................................................................... 14-3

14.4 Parameterization......................................................................................................................... 14-4

Entering Motor Parameters ................................................................................................... 14-4

Motor Parameter at Parallel Arrangement............................................................................. 14-4

Operation of IndraDyn L Synchronous Linear Motors without Liquid Cooling ...................... 14-5

Input of Linear Scale Parameters.......................................................................................... 14-6

Input of Drive Limitations and Application-Related Parameters............................................ 14-6

14.5 Determining the Polarity of the Linear Scale .............................................................................. 14-6

14.6 Commutation Adjustment ........................................................................................................... 14-8

Method 1: Measuring the Reference between Primary and Secondary Part ...................... 14-10

Method 2: Current Flow Method manually activated ........................................................... 14-13

Method 3: Current Flow Method Automatically Activated.................................................... 14-13

14.7 Setting and Optimizing the Control Loop.................................................................................. 14-14

General Sequence............................................................................................................... 14-14

Parameter Value Assignments and Optimization of Gantry Axes....................................... 14-16

Page 8: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

VI Table of Contents Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Estimating the Moved Mass using a Velocity Ramp ........................................................... 14-18

14.8 Maintenance and check of Motor components......................................................................... 14-20

Check of Motor and Auxiliary Components ......................................................................... 14-20

Electrical Check of Motor Components ............................................................................... 14-20

15 Service & Support 15-1

15.1 Helpdesk..................................................................................................................................... 15-1

15.2 Service-Hotline ........................................................................................................................... 15-1

15.3 Internet........................................................................................................................................ 15-1

15.4 Vor der Kontaktaufnahme... - Before contacting us... ................................................................ 15-1

15.5 Kundenbetreuungsstellen - Sales & Service Facilities ............................................................... 15-2

16 Appendix 16-1

16.1 Recommended suppliers of additional components................................................................... 16-1

Length Measuring System..................................................................................................... 16-1

Linear Guide .......................................................................................................................... 16-1

Energy Chains ....................................................................................................................... 16-1

Heat-Exchanger Unit ............................................................................................................. 16-2

Coolant Additives................................................................................................................... 16-2

Coolant Tubes ....................................................................................................................... 16-2

Axis Cover System ................................................................................................................ 16-2

End Position Shock Absorbers .............................................................................................. 16-3

Clamping Elements for Linear Guideways ............................................................................ 16-3

External Mechanical Brakes .................................................................................................. 16-4

Weight Compensation Systems ............................................................................................ 16-4

Wipers.................................................................................................................................... 16-4

16.2 Enquiry form for Linear Drives.................................................................................................... 16-5

17 Index 17-1

Page 9: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Introduction to the Product 1-1

DOK-MOTOR*-MLF********-PR02-EN-P

1 Introduction to the Product

1.1 Application Range of Linear Direct Drives

New technologies with a high economic use, demand more and morenumeric driven movements with partly extreme standards on acceleration,speed and exactness.

Conventional NC-drives, consisting of a rotating electrical motor andmechanical transmission elements like gearboxes, belt transmissions orgear rack pinions, cannot fulfill these demands or with high effort only.

In many cases, the linear direct drive technology is an optimal alternativeproviding significant benefits:

• High velocity and acceleration

• Excellent control quality and positioning behavior

• Direct power transfer – no mechanical transmission elements like ballsrew, toothed belt, gear rack, etc.

• Maintenance-free drive (no wearing parts at the motor)

• Simplified machine structure

• High static and dynamic load rigidity

IndraDyn_L.jpg

Fig. 1-1: Illustration example IndraDyn L

Due to the direct installation into the machine, there are no wearingmechanical components, making a power train with no backlash orminimized backlash available. This permits very high control qualities witha gain in the position control loop (Kv factor) of more than 20 m/min/mm tobe reached.

In conventional electromagnetic systems, positioning tasks with high feedrates or highly accelerated short-stroke movements in quick successionlead to a premature deterioration of mechanical parts and thus to loss andsignificant costs. In these applications linear direct drives offer decisiveadvantages.

Page 10: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

1-2 Introduction to the Product Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Starting from the above-mentioned benefits, there are the followingapplication ranges for linear synchronous direct drives:

• High-speed cutting in transfer lines and machining centers

• Grinding, in particular camshaft and crankshaft machining

• Laser machining

• Precision and ultra-precision machining,

• Sheet-metal working,

• Handling, textile and packaging machines

• Free form surface machining

• Wood machining,

• Printed circuit board machining,

• ......

Due to a practice-oriented combination of motor technology with intelligentdigital drive controllers the linear direct drive technique offers newsolutions with significantly improved performance.

The development status of the synchronous linear technique of BoschRexroth permits a very high force density.

The spectrum of Bosch Rexroth synchronous linear drive technology,which is described below, permits feed drive systems of 250 N up to21.000 N per motor and speed over 600 m/min.

The following diagram gives an overview of the performance spectrum ofthe Bosch Rexroth motors type IndraDyn L.

Fig. 1-2: Performance spectrum IndraDyn L motors

Performance list

17750

5560

21500

6720

14250

4460

10000

3150

7150

23103800

1200

16300

5150

10900

3465

7650

2415

5600

17852600

820 1150370

11000

3520

7450

2415

5200

1680

3750

11802000

630 800 2500

5000

10000

15000

20000

25000

Vo

rsch

ub

kraf

t in

NF

eed

Fo

rces

in N

4070100140200300

AB

CD

Dauernennkraft FdN

Continuos Force F dN

Maximalkraft FMax

Maximum Force F Max

BaugrößeSize KRAFTSPEKTRUM MLF.XLS

Page 11: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Introduction to the Product 1-3

DOK-MOTOR*-MLF********-PR02-EN-P

1.2 About this Documentation

Document StructureThis documentation includes safety regulations, technical data andoperating instructions. The following table provides an overview of thecontents of this documentation.

Sect. Title Contents

1 Introduction Product description

2 Important Instructions on Use

3 SafetyImportant safety notes

4 Technical Data

5 Specifications

6 Type Codes

7 Accessories

8 Connection Techniques

9 Operating condition and applicationinstructions

10 Motor-Control-Combination

11 Motor dimensioning

Pro

du

ct d

escr

ipti

on

for

plan

ners

and

des

igne

rs

12 Handling, Transport and Storage

13 Installation

14 Startup, Operation and

15 Service and Support

Pra

xis

for

oper

atin

g an

d m

aint

enan

cepe

rson

nel

16 Appendix

17 IndexAdditional information

Fig. 1-3: Chapter structure

Additional documentationTo project planning the drive-systems of the IndraDyn L motor typeseries, you may need additional documentation depending on the devicesused in your case. Rexroth has made the entire product documentationavailable on DVD in PDF format or in the Internet underwww.boschrexroth.com/BrcDoku/ (one-time registration required). Toproject planning a system, you will not need all the documentationincluded on the DVD.

Note: All documentation on the DVD are also available in a printedversion. You can order the required product documentation viayour Rexroth sales office.

MNR Title / description

R911306531 -Product Documentation Electric Drives and Controls Version xx 1)

DOK-GENERL-DRIVE*CONTR-GNxx-DO-V04G7

1) The index (e.g. ..02-...) identifies the version of the DVD.

Fig. 1-4: Additional documentation

Page 12: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

1-4 Introduction to the Product Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Additional componentsDocumentation for external systems which are connected to BOSCHREXROTH components are not included in the scope of delivery andmust be ordered directly from the corresponding manufacturers.

For information about the manufacturers see chapter 16 “Appendix”

FeedbackYour experiences are an essential part of the process of improving boththe product and the documentation.

Please do not hesitate to inform us of any mistakes you detect in thisdocumentation or of any modifications you might desire. We wouldappreciate your feedback.

Please send your remarks to:

Bosch Rexroth Electric Drives and Controls GmbHDep. BRC/EDM1Bürgermeister-Dr.-Nebel-Straße 297816 Lohr, Germany

Fax +49 (0) 93 52 / 40-43 80

StandardsThis documentation refers to German, European and internationaltechnical standards. Documents and sheets on standards are subject tocopyright protection and may not be passed on to third parties by Rexroth.If necessary, please address the authorized sales outlets or, in Germany,directly to:

BEUTH Verlag GmbHBurggrafenstrasse 6D-10787 Berlin

Phone +49-(0)30-26 01-22 60, Fax +49-(0)30-26 01-12 60Internet: http://www.din.de/beuth [email protected]

Page 13: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Important Instructions on Use 2-1

DOK-MOTOR*-MLF********-PR02-EN-P

2 Important Instructions on Use

2.1 Appropriate Use

IntroductionBosch Rexroth products are designed and manufactured using state-of-the-art-technology. Before they are delivered, they are inspected toensure that they operate safely.

The products may only be used in the proper manner. If they areinappropriate used, situations may arise that result in damage to materialand personnel.

Note: Bosch Rexroth provides no warranty, assumes no liability andwill not pay for any damages resulting from damage caused byproducts not being used as intended. Any risks resulting fromthe products not being used as intended are the soleresponsibility of the user.

Before using Bosch Rexroth products, the following prerequisites must befulfilled to ensure that they are used as intended:

• Everyone who in any way deals with one of our products must readand understand the corresponding notes regarding safety andregarding proper use.

• If the products are hardware, they must be kept in their original state,i.e. no constructional modifications may be made. Software productsmay not be decompiled; their source codes may not be modified.

• Damaged or improperly working products must not be installed or putinto operation.

• It must be ensured that the products are installed according to theregulations mentioned in the documentation.

Page 14: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

2-2 Important Instructions on Use Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Areas of Use and ApplicationSynchronous linear motors of the IndraDyn L series of Bosch Rexroth aredesigned for use as linear servo drive motors.

Drive control units with different driving powers and different interfacesare available for an application-specific use of the motors.

To control and monitor the motors, it is necessary to connect additionalsensors, for example length measuring systems.

Note: The motors may only be used with the accessories specified inthe documentation. Components that are not explicitlymentioned may be neither attached nor connected. The sameis true for cables and lines.

Operation may be carried out only in the explicitly mentionedconfigurations and combinations of the component and withthe software and firmware specified in the correspondingdescription of functions.

Any connected drive controller must be programmed before startup inorder to ensure that the motor executes the functions specific to theparticular application.

The motors may only be operated under the assembly, mounting andinstallation conditions, in the normal position, and under theenvironmental conditions (temperature, degree of protection, humidity,EMC, and the like) specified in this documentation.

2.2 Inappropriate Use

Any use of the motors outside of the fields of application mentioned aboveor under operating conditions and technical data other than thosespecified in this documentation is considered to be ”inappropriate use”.

IndraDyn L motors may not be used if:

• they are subjected to operating conditions which do not comply withthe ambient conditions described above. (e.g. operation under water,under extreme variations in temperature or extreme maximumtemperatures is not permitted),

• the intended fields of application have not been expressly released forthe motors by Rexroth. Please be absolutely sure to also observe thestatements made in the general safety notes.

Note: IndraDyn L motors are not suited for direct operation on thepower system.

Page 15: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Safety Instructions for Electric Drives and Controls 3-1

DOK-MOTOR*-MLF********-PR02-EN-P

3 Safety Instructions for Electric Drives and Controls

3.1 General Information

Using the Safety Instructions and Passing them on to OthersDo not attempt to install or commission this device without first reading alldocumentation provided with the product. Read and understand thesesafety instructions and all user documentation prior to working with thedevice. If you do not have the user documentation for the device, contactyour responsible Bosch Rexroth sales representative. Ask for thesedocuments to be sent immediately to the person or persons responsiblefor the safe operation of the device.

If the device is resold, rented and/or passed on to others in any otherform, then these safety instructions must be delivered with the device.

WARNING

Improper use of these devices, failure to followthe safety instructions in this document ortampering with the product, including disablingof safety devices, may result in materialdamage, bodily harm, electric shock or evendeath!

Instructions for UseRead these instructions before the initial startup of the equipment in orderto eliminate the risk of bodily harm or material damage. Follow thesesafety instructions at all times.

• Bosch Rexroth AG is not liable for damages resulting from failure toobserve the warnings provided in this documentation.

• Read the operating, maintenance and safety instructions in yourlanguage before starting up the machine. If you find that you cannotcompletely understand the documentation for your product, please askyour supplier to clarify.

• Proper and correct transport, storage, assembly and installation aswell as care in operation and maintenance are prerequisites foroptimal and safe operation of this device.

• Only assign trained and qualified persons to work with electricalinstallations:

• Only persons who are trained and qualified for the use andoperation of the device may work on this device or within itsproximity. The persons are qualified if they have sufficientknowledge of the assembly, installation and operation of theequipment as well as an understanding of all warnings andprecautionary measures noted in these instructions.

• Furthermore, they must be trained, instructed and qualified toswitch electrical circuits and devices on and off in accordance withtechnical safety regulations, to ground them and to mark themaccording to the requirements of safe work practices. They musthave adequate safety equipment and be trained in first aid.

• Only use spare parts and accessories approved by the manufacturer.

• Follow all safety regulations and requirements for the specificapplication as practiced in the country of use.

Page 16: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

3-2 Safety Instructions for Electric Drives and Controls Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

• The devices have been designed for installation in industrialmachinery.

• The ambient conditions given in the product documentation must beobserved.

• Only use safety-relevant applications that are clearly and explicitlyapproved in the Project Planning Manual. If this is not the case, theyare excluded.Safety-relevant are all such applications which can cause danger topersons and material damage.

• The information given in the documentation of the product with regardto the use of the delivered components contains only examples ofapplications and suggestions.

The machine and installation manufacturer must

• make sure that the delivered components are suited for hisindividual application and check the information given in thisdocumentation with regard to the use of the components,

• make sure that his application complies with the applicable safetyregulations and standards and carry out the required measures,modifications and complements.

• Startup of the delivered components is only permitted once it is surethat the machine or installation in which they are installed complieswith the national regulations, safety specifications and standards of theapplication.

• Operation is only permitted if the national EMC regulations for theapplication are met.

• The instructions for installation in accordance with EMC requirementscan be found in the documentation "EMC in Drive and ControlSystems".

The machine or installation manufacturer is responsible forcompliance with the limiting values as prescribed in the nationalregulations.

• Technical data, connections and operational conditions are specified inthe product documentation and must be followed at all times.

Page 17: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Safety Instructions for Electric Drives and Controls 3-3

DOK-MOTOR*-MLF********-PR02-EN-P

Explanation of Warning Symbols and Degrees of Hazard SeriousnessThe safety instructions describe the following degrees of hazardseriousness. The degree of hazard seriousness informs about theconsequences resulting from non-compliance with the safety instructions:

Warning symbol with signalword

Degree of hazard seriousness accordingto ANSI Z 535

DANGER

Death or severe bodily harm will occur.

WARNING

Death or severe bodily harm may occur.

CAUTION

Bodily harm or material damage may occur.

Fig. 3-1: Hazard classification (according to ANSI Z 535)

Page 18: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

3-4 Safety Instructions for Electric Drives and Controls Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Hazards by Improper Use

DANGER

High electric voltage and high working current!Risk of death or severe bodily injury by electricshock!

DANGER

Dangerous movements! Danger to life, severebodily harm or material damage byunintentional motor movements!

WARNING

High electric voltage because of incorrectconnection! Risk of death or bodily injury byelectric shock!

WARNING

Health hazard for persons with heartpacemakers, metal implants and hearing aids inproximity to electrical equipment!

CAUTION

Hot surfaces on device housing! Danger ofinjury! Danger of burns!

CAUTION

Risk of injury by improper handling! Risk ofbodily injury by bruising, shearing, cutting,hitting, or improper handling of pressurizedlines!

CAUTION

Risk of injury by improper handling of batteries!

Page 19: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Safety Instructions for Electric Drives and Controls 3-5

DOK-MOTOR*-MLF********-PR02-EN-P

3.2 Instructions with Regard to Specific Dangers

Protection Against Contact with Electrical Parts

Note: This section only concerns devices and drive components withvoltages of more than 50 Volt.

Contact with parts conducting voltages above 50 Volts can causepersonal danger and electric shock. When operating electrical equipment,it is unavoidable that some parts of the devices conduct dangerousvoltage.

DANGER

High electrical voltage! Danger to life, electricshock and severe bodily injury!⇒ Only those trained and qualified to work with or on

electrical equipment are permitted to operate,maintain and repair this equipment.

⇒ Follow general construction and safety regulationswhen working on electrical power installations.

⇒ Before switching on the device, the equipmentgrounding conductor must have been non-detachably connected to all electrical equipment inaccordance with the connection diagram.

⇒ Do not operate electrical equipment at any time,even for brief measurements or tests, if theequipment grounding conductor is not permanentlyconnected to the mounting points of the componentsprovided for this purpose.

⇒ Before working with electrical parts with voltagepotentials higher than 50 V, the device must bedisconnected from the mains voltage or powersupply unit. Provide a safeguard to preventreconnection.

⇒ With electrical drive and filter components, observethe following:Wait 30 minutes after switching off power to allowcapacitors to discharge before beginning to work.Measure the voltage on the capacitors beforebeginning to work to make sure that the equipment issafe to touch.

⇒ Never touch the electrical connection points of acomponent while power is turned on.

⇒ Install the covers and guards provided with theequipment properly before switching the device on.Before switching the equipment on, cover andsafeguard live parts safely to prevent contact withthose parts.

⇒ A residual-current-operated circuit-breaker or r.c.d.cannot be used for electric drives! Indirect contactmust be prevented by other means, for example, byan overcurrent protective device according to therelevant standards.

⇒ Secure built-in devices from direct touching ofelectrical parts by providing an external housing, forexample a control cabinet.

Page 20: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

3-6 Safety Instructions for Electric Drives and Controls Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

European countries: according to EN 50178/ 1998,section 5.3.2.3.

USA: See National Electrical Code (NEC), NationalElectrical Manufacturers' Association (NEMA), as well aslocal engineering regulations. The operator must observeall the above regulations at any time.

With electrical drive and filter components, observe the following:

DANGER

High housing voltage and large leakage current!Risk of death or bodily injury by electric shock!⇒ Before switching on, the housings of all electrical

equipment and motors must be connected orgrounded with the equipment grounding conductor tothe grounding points. This is also applicable beforeshort tests.

⇒ The equipment grounding conductor of the electricalequipment and the units must be non-detachablyand permanently connected to the power supply unitat all times. The leakage current is greater than3.5 mA.

⇒ Over the total length, use copper wire of a crosssection of a minimum of 10 mm2 for this equipmentgrounding connection!

⇒ Before start-up, also in trial runs, always attach theequipment grounding conductor or connect with theground wire. Otherwise, high voltages may occur atthe housing causing electric shock.

Protection Against Electric Shock by Protective Low Voltage (PELV)All connections and terminals with voltages between 5 and 50 Volt atRexroth products are protective extra-low voltage systems which areprovided with touch guard according to the product standards.

WARNING

High electric voltage by incorrect connection!Risk of death or bodily injury by electric shock!⇒ To all connections and terminals with voltages

between 0 and 50 Volt, only devices, electricalcomponents, and conductors may be connectedwhich are equipped with a PELV (Protective Extra-Low Voltage) system.

⇒ Connect only voltages and circuits which are safelyisolated from dangerous voltages. Safe isolation isachieved for example by isolating transformers, safeoptocouplers or battery operation without mainsconnection.

Page 21: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Safety Instructions for Electric Drives and Controls 3-7

DOK-MOTOR*-MLF********-PR02-EN-P

Protection Against Dangerous MovementsDangerous movements can be caused by faulty control of connectedmotors. Some common examples are:

• improper or wrong wiring of cable connections

• incorrect operation of the equipment components

• wrong input of parameters before operation

• malfunction of sensors, encoders and monitoring devices

• defective components

• software or firmware errors

Dangerous movements can occur immediately after equipment isswitched on or even after an unspecified time of trouble-free operation.

The monitoring in the drive components will normally be sufficient to avoidfaulty operation in the connected drives. Regarding personal safety,especially the danger of bodily harm and material damage, this alonecannot be relied upon to ensure complete safety. Until the integratedmonitoring functions become effective, it must be assumed in any casethat faulty drive movements will occur. The extent of faulty drivemovements depends upon the type of control and the state of operation.

Page 22: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

3-8 Safety Instructions for Electric Drives and Controls Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

DANGER

Dangerous movements! Danger to life, risk ofinjury, severe bodily harm or material damage!⇒ For the above reasons, ensure personal safety by

means of qualified and tested higher-level monitoringdevices or measures integrated in the installation.They have to be provided for by the user accordingto the specific conditions within the installation and ahazard and fault analysis. The safety regulationsapplicable for the installation have to be taken intoconsideration. Unintended machine motion or othermalfunction is possible if safety devices are disabled,bypassed or not activated.

To avoid accidents, bodily harm and/or materialdamage:

⇒ Keep free and clear of the machine’s range ofmotion and moving parts. Possible measures toprevent people from accidentally entering themachine’s range of motion:- use safety fences

- use safety guards

- use protective coverings

- install light curtains or light barriers

⇒ Fences and coverings must be strong enough toresist maximum possible momentum.

⇒ Mount the emergency stop switch in the immediatereach of the operator. Verify that the emergency stopworks before startup. Don’t operate the device if theemergency stop is not working.

⇒ Isolate the drive power connection by means of anemergency stop circuit or use a safety relatedstarting lockout to prevent unintentional start.

⇒ Make sure that the drives are brought to a safestandstill before accessing or entering the dangerzone.

⇒ Additionally secure vertical axes against falling ordropping after switching off the motor power by, forexample:- mechanically securing the vertical axes,

- adding an external braking/ arrester/ clampingmechanism or

- ensuring sufficient equilibration of the verticalaxes.

The standard equipment motor brake or an externalbrake controlled directly by the drive controller arenot sufficient to guarantee personal safety!

Page 23: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Safety Instructions for Electric Drives and Controls 3-9

DOK-MOTOR*-MLF********-PR02-EN-P

⇒ Disconnect electrical power to the equipment using amaster switch and secure the switch againstreconnection for:- maintenance and repair work

- cleaning of equipment

- long periods of discontinued equipment use

⇒ Prevent the operation of high-frequency, remotecontrol and radio equipment near electronics circuitsand supply leads. If the use of such devices cannotbe avoided, verify the system and the installation forpossible malfunctions in all possible positions ofnormal use before initial startup. If necessary,perform a special electromagnetic compatibility(EMC) test on the installation.

Protection Against Magnetic and Electromagnetic Fields DuringOperation and Mounting

Magnetic and electromagnetic fields generated by current-carryingconductors and permanent magnets in motors represent a seriouspersonal danger to those with heart pacemakers, metal implants andhearing aids.

WARNING

Health hazard for persons with heartpacemakers, metal implants and hearing aids inproximity to electrical equipment!⇒ Persons with heart pacemakers and metal implants

are not permitted to enter following areas:- Areas in which electrical equipment and parts are

mounted, being operated or commissioned.

- Areas in which parts of motors with permanentmagnets are being stored, repaired or mounted.

⇒ If it is necessary for somebody with a pacemaker toenter such an area, a doctor must be consulted priorto doing so. The interference immunity of present orfuture implanted heart pacemakers differs greatly, sothat no general rules can be given.

⇒ Those with metal implants or metal pieces, as wellas with hearing aids must consult a doctor beforethey enter the areas described above. Otherwisehealth hazards may occur.

Page 24: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

3-10 Safety Instructions for Electric Drives and Controls Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Protection Against Contact with Hot Parts

CAUTION

Hot surfaces at motor housings, on drivecontrollers or chokes! Danger of injury! Dangerof burns!⇒ Do not touch surfaces of device housings and

chokes in the proximity of heat sources! Danger ofburns!

⇒ Do not touch housing surfaces of motors! Danger ofburns!

⇒ According to operating conditions, temperatures canbe higher than 60 °C, 140 °F during or afteroperation.

⇒ Before accessing motors after having switched themoff, let them cool down for a sufficiently long time.Cooling down can require up to 140 minutes!Roughly estimated, the time required for coolingdown is five times the thermal time constantspecified in the Technical Data.

⇒ After switching drive controllers or chokes off, wait15 minutes to allow them to cool down beforetouching them.

⇒ Wear safety gloves or do not work at hot surfaces.⇒ For certain applications, the manufacturer of the end

product, machine or installation, according to therespective safety regulations, has to take measuresto avoid injuries caused by burns in the endapplication. These measures can be, for example:warnings, guards (shielding or barrier), technicaldocumentation.

Page 25: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Safety Instructions for Electric Drives and Controls 3-11

DOK-MOTOR*-MLF********-PR02-EN-P

Protection During Handling and MountingIn unfavorable conditions, handling and assembling certain parts andcomponents in an improper way can cause injuries.

CAUTION

Risk of injury by improper handling! Bodilyinjury by bruising, shearing, cutting, hitting!⇒ Observe the general construction and safety

regulations on handling and assembly.⇒ Use suitable devices for assembly and transport.⇒ Avoid jamming and bruising by appropriate

measures.⇒ Always use suitable tools. Use special tools if

specified.⇒ Use lifting equipment and tools in the correct

manner.⇒ If necessary, use suitable protective equipment (for

example safety goggles, safety shoes, safetygloves).

⇒ Do not stand under hanging loads.⇒ Immediately clean up any spilled liquids because of

the danger of skidding.

Battery SafetyBatteries consist of active chemicals enclosed in a solid housing.Therefore, improper handling can cause injury or damages.

CAUTION

Risk of injury by improper handling!⇒ Do not attempt to reactivate low batteries by heating

or other methods (risk of explosion andcauterization).

⇒ Do not recharge the batteries as this may causeleakage or explosion.

⇒ Do not throw batteries into open flames.⇒ Do not dismantle batteries.⇒ Do not damage electrical parts installed in the

devices.

Note: Environmental protection and disposal! The batteries installedin the product are considered dangerous goods during land,air, and sea transport (risk of explosion) in the sense of thelegal regulations. Dispose of used batteries separate fromother waste. Observe the local regulations in the country ofassembly.

Page 26: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

3-12 Safety Instructions for Electric Drives and Controls Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Protection Against Pressurized SystemsAccording to the information given in the Project Planning Manuals,motors cooled with liquid and compressed air, as well as drive controllers,can be partially supplied with externally fed, pressurized media, such ascompressed air, hydraulics oil, cooling liquids, and cooling lubricatingagents. In these cases, improper handling of external supply systems,supply lines, or connections can cause injuries or damages.

CAUTION

Risk of injury by improper handling of pressurizedlines!⇒ Do not attempt to disconnect, open, or cut

pressurized lines (risk of explosion).⇒ Observe the respective manufacturer's operating

instructions.⇒ Before dismounting lines, relieve pressure and

empty medium.⇒ Use suitable protective equipment (for example

safety goggles, safety shoes, safety gloves).⇒ Immediately clean up any spilled liquids from the

floor.

Note: Environmental protection and disposal! The agents used tooperate the product might not be economically friendly.Dispose of ecologically harmful agents separate from otherwaste. Observe the local regulations in the country ofassembly.

Page 27: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-1

DOK-MOTOR*-MLF********-PR02-EN-P

4 Technical Data IndraDyn L

4.1 Explanation about Technical Data

All relevant technical motor data as well as the functional principle of thismotors are given on the following pages in terms of tables andcharacteristic curves. The following interdependence was noticed:

• Size and length of the primary part

• Winding mode primary part

• Available power supply or DC bus voltage

Note: All given data and characteristic curves relate on the followingconditions – unless otherwise noted:

• Motor-winding temperature 135°C

• Nominal air gap

• Cooling method water, supply temperature 30°C

Note: Resulting data from certain motor-controller combinations candiffer from the given data. See chapter 10 “Motor-Controller-Combinations”.

Measured inductance values are subject to fluctuations due to fringeeffects. The details within this documentation contain typical values,which are determined with a measuring current of 1mA at a measuringfrequency of 1kHz.

Operating BehaviorThe characteristic force over speed is given as a limiting curve. The pathand the basic data of this characteristic curves are defined by the level ofthe DC bus voltage and the appropriate motor-specific data as inductivity,resistor and the motor constant. By varying the DC bus voltage (differentcontrol devices, supply modules and connected loads) and different motorwindings result in different characteristic curves.

Winding inductance L12

Page 28: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-2 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

FVKENNLIN-MLF-EN.EPS

[1]: Modular drive controller HMS/HMD at power supply HMV or compactdrive controller HCS with power supply 3xAC 400V (medium DC busvoltage, unregulated UDC = 540V)

[2]: Modular drive controller HMS/HMD at power supply HMV or compactdrive controller HCS with power supply 3xAC 440V (medium DC busvoltage, unregulated UDC = 600V)

[3]: Modular drive controller HMS/HMD at power supply HMV or compactdrive controller HCS with power supply 3xAC 480V (medium DC busvoltage, unregulated UDC = 650V)

[4]: Modular drive controller HMS/HMD at power supply HMV with powersupply 3x AC 480V (DC bus voltage, regulated UDC =650V)

[5]: Modular drive controller HMS/HMD at power supply HMV with powersupply 3x AC 0.480V (DC bus voltage, regulated UDC =750V)

Fig. 4-1: Example motor characteristic curve

Note: The achievable torque depends on the drive controller used.The reference value for the detailed technical data and thedisplay of the motor characteristic curves is an irregular DCbus voltage of 540VDC.

The maximum force Fmax is available up to a velocity vFmax. When thevelocity rises, the available intermediate circuit voltage is reduced by thevelocity-dependent reverse voltage of the motor. This leads to a reductionof the maximum feed force at rising velocity. The characteristic curves arespecified up to the continuous nominal force. The velocity that belongs tothe continuous nominal force is known as nominal velocity vN.

The specified characteristic curves can be linearly extrapolated to theexisting voltages if the connection voltages or mains voltages differ.

Note: The specified characteristic curves can linearly be convertedaccording to the existing voltages if the connection voltages ormains voltages are different.

Where power supply modules with unregulated DC busvoltage are concerned, possible voltage drops must be takeninto account that can be caused by simultaneous accelerationof several axes.

Page 29: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-3

DOK-MOTOR*-MLF********-PR02-EN-P

Example:

( ) Nneu,DC

neu,U nV540

Un

DC⋅=

Fig. 4-2: Formula for conversion

NV750N

maxV750max

NV750N

maxV750max

nV540V750

n

nV540V750

n

ttanconsMM

ttanconsMM

⋅=

⋅=

====

Fig. 4-3: Conversion-example to DC bus voltage 750VDC

The following interrelations exist for the parallel connection of two primaryparts at one drive controller:

• Doubling of currents and feed forces(unless limited by the drive controller)

• Velocities vFmax and vN as in single arrangement

• Same motor and voltage constant (kiF, kE)

• Halved motor resistances and inductances.

FVKENNLIN1-MLF-EN.EPS

Fig. 4-4: Characteristic curve about force vs. velocity at for single and parallelconnection of primary parts to one drive controller

Note: To facilitate the commissioning of parallel connection of twoprimaries to one drive controller, this document hascorresponding selection data for motor – controllercombinations and the motor parameters (see chapter 10“Motor–Controller-Combinations” and Chapter 14“Commissioning”).

Conversion to intermediatecircuit voltage 750VDC

Parallel connection of twoprimary parts at one drive

controller

Page 30: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-4 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

ParametersAvailable maximum force at maximum current Imax. Unit Newton [N]. Theforce that can be attained depends on the drive control device used.

Available continuous force in operation mode S1 (in continuous operation)at standstill. Unit Newton [N].

Maximum current (root mean square) of the motor at Fmax. Unit = ampere(A).

Phase current (root-mean-square value) of the motor at nominal speedand load with with continuous nominal force. Unit = ampere (A).

From the manufacturer specified maximum velocity with maximum forceFmax. Unit [m/min]. The reachable velocity depends on the DC busvoltage of the used drive controller.

Reachable nominal velocity at continuous nominal force FdN. Unit [m/min].The reachable velocity depends on the DC bus voltage of the used drivecontroller.

Relation of force increase to increase a force-building current. Unit [N/A].Valid up to rated current IdN.

EMF = electromagnetic force. The induced motor voltage (root-mean-square value) depends on the travel velocity with regard to the speed 1m/s. Unit = [Vs/m].

Measured winding resistance between two strands. Unit Ohm [Ω].

Measured winding inductance between two strands. Unit [mH]. The statedvalues are based on fringe effects-variations. The data are typical values,which are determined with a measuring current of 1mA at a measuringfrequency of 1kHz.

Rated for cable assemblies with current carrying capacity according toVDE0298-4 (1992) and installation type B2according to EN 60204-1 (1993) at 40°C ambient temperature. Therefore,when selecting the appropriate power cable, pay attention to theinformation in Chapter 8 “Connection Techniques” and to thedocumentation “Rexroth Connection Cable” (MNR R911282688).

Power loss in operation mode S1 (continuous operation) at a nominalvelocity vN. Unit = watt [W].

Measurable nominal air gap among primary and secondary part, specifiedby the manufacturer. Unit = millimeter [mm].

Dimension of the distance from pole center to pole center of the magnetson the secondary part. Unit = millimeter [mm].

Maximum attractive force among primary and secondary part at a nominalair gap δ and de-energized primary part. Unit Newton [N]. Refer to thenotes in chapter 9.5 “Feed and Attractive Forces”.

Mass of the primary part with standard encapsulation. Unit = Kilogramm[kg].

Mass of the primary part with standard encapsulation. Unit = Kilogramm[kg].

Maximum force Fmax

Continuous nominal force FdN

Maximum current Imax

Continuous nominal current IdN

Maximum velocity vFmax

Nominal velocity vN

Force constant KiFN

Voltage constant at 20°C KEMF

Winding resistance at 20°C R12

Winding inductance L12

Necessary power wire cross-section APL

Rated power loss PVN

Nominal air gap δδδδ

Pole width

Attractive force FATT

Primary mass standardencapsulation mPS

Primary mass thermalencapsulation mPT

Page 31: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-5

DOK-MOTOR*-MLF********-PR02-EN-P

Mass of the secondary part with regard to a length of 1 m. Unit [kg/m].

Coolant flow to maintain the rated feed force Unit [l/min]. Please heed thenotes in chapter 9.6 “Motor Cooling System” to calculate the flow.

Constant to determine the pressure loss within the motor internal coolingsystem with coolant water. Please heed the notes in chapter 9.6 “MotorCooling System” to calculate the pressure loss.

Pressure loss within the internal cooling circuit of the motor. Please heedthe notes in chapter 9.6 “Motor Cooling” to calculate the pressure loss.

Maximum permissible input pressure of liquid cooling on the motor withcoolant water. Unit [bar].

Permitted coolant inlet temperatures. Unit [°C]. The coolant inlettemperature should be maximum 5°C lower than the current ambienttemperature Tum At a higher temperature difference, the danger ofcondensation occurs! Please heed the notes in chapter 9.6 “MotorCooling System” to calculate the coolant inlet temperature.

Temperature difference between coolant inlet and coolant outputtemperature within operation with liquid cooling (water as coolant) andrated power loss PvN. Unit Kelvin [K].

The time it takes for the motor temperature to rise to 63% of the finaltemperature with the winding loaded by the continuous nominal force inS1 operation and liquid cooling.

(1): Course of the winding temperature over timeΘmax: Max. winding temperatureTth: Thermal time constant

Fig. 4-5: Thermal time constant

Maximum permitted temperature of the secondary part. Unit [°C].

Permissible ambient temperature Unit [°C].

Permissible transport and storage temperatures. Unit [°C].

Protection class according to EN 60034-5.

Insulation class according to EN 60034-1.

Mass secondary part mS

Necessary coolant flow Qmin

Constant to determine thepressure loss kdp

Pressure loss ∆∆∆∆p bei QN

Permitted input pressure pmax

Coolant inlet temperature ϑϑϑϑin

Temperature increase ∆∆∆∆ϑϑϑϑN at PvN

Thermal time constant Tth

Permitted temperature of thesecondary part TSmax

Permitted ambient temperatureTum

Permissible transport andstorage temperatures TL

Protection class

Insulation class

Page 32: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-6 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

4.2 Technical Data – Size 040

Description Symbol Unit MLP040

Motor data 1)

Frame length A B

Winding code 0300 0150 0250 0300

Appropriate secondary parts MLS040S-3A-****-NNNN

Maximum force 2) Fmax N 800 1150

Continuous nominal force FdN N 250 370

Maximum current imax A 20 20 27 35

Continuous nominal current idN A 4.2 4.2 5.3 6

Maximum force with Fmax 3) vFmax m/min 300 150 250 300

Nominal velocity 3) vN m/min 500 300 400 500

Force constant KiFN N/A 60 88 70 62

Voltage constant KEMF Vs/m 38.14 57 43 34

Winding resistance at 20°C R12 Ohm 8.7 12.9 6.5 5

Winding inductance L12 mH 50 84 51 31

Min. cross-section connection cable 5) APL mm² 1

Rated power loss PvN W 400 550

Nominal air gap δ mm 1.0±0.4

Pole width τp mm 37.5

Attractive force 6) FATT N 1200 1700

Primary mass standard encapsulation mPS kg 4.7 6.1

Primary mass thermal encapsulation mPT kg 6.1 8.1

Secondary mass mS kg/m 5.4

Necessary coolant flow ∆ϑN 10) Qmin l/min 0.57 0.79

Standardencapsulation

0.16 0.16Constant to determinethe pressure loss kdp Thermal

encapsulation

kdp bar0.16 0.16

Standardencapsulation 0.06 0.10

Decompression at QNThermalencapsulation

∆p bar0.06 0.11

Permitted coolant inlet pressure pmax bar 10

Coolant inlet temperature 8) ϑin °C +15...+40

Temperature rise at PvN 9) ∆ϑN K 10

Thermal time constant Tth min i.p. i.p.

Permitted secondary temperature TSmax °C 70

Permissible ambient temperature Tum °C 0...+45

Perm. storage and transport temperature TL °C -10...+60

Protection class IP65

Insulation class acc. to DIN VDE 0530-1 F1) The determined values are rms-values according to IEC 60034-1, if not otherwise indicated. Reference value 540 VDC.2) The maximum force that can be attained depends on the drive control device used.3) The reachable velocity depends on the power supply voltage.4) EMF = electromagnetic force. Root-mean-square value with regard to 1 m/s.5) Rated according to EN60204-1 (1993), installation mode B2 and conversion factor for Bosch Rexroth cables at an ambient

temperature of 40°C. When using other cables, larger cross-sections may be necessary.For further notes about connection and power cables, refer to chapter 8.1

6) Between primary and secondary part at nominal air gab, currentless primary part (see chapter 9.5).7) Cooling agent water. Determination of the pressure loss, depending on the coolant flow, refer to chapter 9.6 “Motor Cooling”.8) The coolant inlet temperature should be maximum 5°C lower than the current ambient temperature Tum (Danger of condensation!)9) Operation with liquid cooling, water as a coolant, inlet temperature 30°C.

For further notes, please refer to chapter 9.6 “Motor Coolant/Flow rate”.i.p. = in preparation

Fig. 4-6: Data sheet motor size 040

Page 33: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-7

DOK-MOTOR*-MLF********-PR02-EN-P

MLP040A-0300

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500 550

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0036 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0036 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP040B-0150

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 50 100 150 200 250 300 350 400 450 500 550

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0036 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0036 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP040B-0250

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 50 100 150 200 250 300 350 400 450 500 550

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0036 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0036 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP040B-0300

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 50 100 150 200 250 300 350 400 450 500 550

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0036 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0036 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

Fig. 4-7: Characteristic curve of the motor size 040

Motor characteristic curvesframe size 040

Page 34: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-8 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

4.3 Technical Data – Size 070

Size 070ADescription Symbol Unit MLP070AMotor data 1)

Winding code 0150 0220 0300

Appropriate secondary parts MLS070S-3A-****-NNNN

Maximum force 2) Fmax N 2000

Continuous nominal force FdN N 550

Maximum current imax A 36 42 55

Continuous nominal current idN A 5.5 6.3 10.5

Maximum force with Fmax 3) vFmax m/min 150 220 300

Nominal velocity 3) vN m/min 200 360 450

Force constant KiFN N/A 100 87 52

Voltage constant KEMF Vs/m 79.5 47 20

Winding resistance at 20°C R12 Ohm 9 3.3 2.9

Winding inductance L12 mH 51 25.7 15

Min. cross-section connection cable 5) APL mm² 1

Rated power loss PvN W 780

Nominal air gap δ mm 1.0±0.4

Pole width τp mm 37.5

Attractive force 6) FATT N 2900

Primary mass standard encapsulation mPS kg 8.4

Primary mass thermal encapsulation mPT kg 10.9

Secondary mass mS kg/m 9.4

Necessary coolant flow ∆ϑN 10) Qmin l/min 1.12

Standard encapsulation 0.18Constant to determinethe pressure loss kdp Thermal encapsulation

kdp bar0.18

Standard encapsulation 0.22Decompression at QN

Thermal encapsulation∆p bar

0.22

Permitted coolant inlet pressure pmax bar 10

Coolant inlet temperature 8) ϑin °C +15...+40

Temperature rise at PvN 9) ∆ϑN K 10

Thermal time constant Tth min 6

Permitted secondary temperature TSmax °C 70

Permissible ambient temperature Tum °C 0...+45

Perm. storage and transport temperature TL °C -10...+60

Protection class IP65

Insulation class acc. to DIN VDE 0530-1 F

1) The determined values are rms-values according to IEC 60034-1, if not otherwise indicated. Reference value 540 VDC.2) The force that can be attained depends on the drive control device used.3) The reachable velocity depends on the power supply voltage.4) EMF = electromagnetic force. Root-mean-square value with regard to 1 m/s.5) Rated according to EN60204-1 (1993), installation mode B2 and conversion factor for Bosch Rexroth cables at an ambient

temperature of 40°C. When using other cables, larger cross-sections may be necessary.For further notes about connection and power cables, refer to chapter 8.1

6) Between primary and secondary part at nominal air gab, currentless primary part (see chapter 9.5).7) Cooling agent water. Determination of the pressure loss, depending on the coolant flow, refer to chapter 9.6 “Motor Cooling”.8) The coolant inlet temperature should be maximum 5°C lower than the current ambient temperature Tum (Danger of condensation!)9) Operation with liquid cooling, water as a coolant, inlet temperature 30°C.

For further notes, please refer to chapter 9.6 “Motor Cooling / Flow rate”.

Fig. 4-8: Data sheet size 070A

Page 35: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-9

DOK-MOTOR*-MLF********-PR02-EN-P

MLP070A-0150

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 50 100 150 200 250 300 350

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0054 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0054 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP070A-0220

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 50 100 150 200 250 300 350 400

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0054 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0054 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP070A-0300

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 50 100 150 200 250 300 350 400 450 500

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0070 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0070 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

Fig. 4-9: Characteristic curve of motor size 070A

Motor characteristic curvesframe size 070A

Page 36: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-10 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Technical Data - Size 070BDescription Symbol Unit MLP070BMotor data 1)

Winding code 0100 0120 0150 0250 0300

Appropriate secondary parts MLS070S-3A-****-NNNN

Maximum force 2) Fmax N 2600

Continuous nominal force FdN N 820

Maximum current imax A 28 42 48 55 70

Continuous nominal current idN A 5.5 5.8 6.2 10 12

Maximum force with Fmax 3) vFmax m/min 100 120 150 250 300

Nominal velocity 3) vN m/min 200 220 260 400 450

Force constant KiFN N/A 149 141 132 82 68

Voltage constant KEMF Vs/m 85 80 65 43 60

Winding resistance at 20°C R12 Ohm 15.1 9.2 6.1 3 2.4

Winding inductance L12 mH 90 55 38 17 13

Min. cross-section connection cable 5) APL mm² 1

Rated power loss PvN W 900

Nominal air gap δ mm 1.0±0.4

Pole width τp mm 37.5

Attractive force 6) FATT N 3750

Primary mass standard encapsulation mPS kg 10.4

Primary mass thermal encapsulation mPT kg 13.4

Secondary mass mS kg/m 9.4

Necessary coolant flow ∆ϑN 10) Qmin l/min 1.29

Standard encapsulation 0.18Constant to determinethe pressure loss kdp Thermal encapsulation

kdp bar0.18

Standard encapsulation 0.28Decompression at QN

Thermal encapsulation∆p bar

0.29

Permitted coolant inlet pressure pmax bar 10

Coolant inlet temperature 8) ϑin °C +15...+40

Temperature rise at PvN 9) ∆ϑN K 10

Thermal time constant Tth min 5.7

Permitted secondary temperature TSmax °C 70

Permissible ambient temperature Tum °C 0...+45

Perm. storage a. transport temperature TL °C -10...+60

Protection class IP65

Insulation class acc. to DIN VDE 0530-1 F

1) The determined values are rms-values according to IEC 60034-1, if not otherwise indicated. Reference value 540 VDC.2) The force that can be attained depends on the drive control device used.3) The reachable velocity depends on the power supply voltage.4) EMF = electromagnetic force. Root-mean-square value with regard to 1 m/s.5) Rated according to EN60204-1 (1993), installation mode B2 and conversion factor for Bosch Rexroth cables at an ambient

temperature of 40°C. When using other cables, larger cross-sections may be necessary.For further notes about connection and power cables, refer to chapter 8.1

6) Between primary and secondary part at nominal air gab, currentless primary part (see chapter 9.5).7) Cooling agent water. Determination of the pressure loss, depending on the coolant flow, refer to chapter 9.6 “Motor Cooling”.8) The coolant inlet temperature should be maximum 5°C lower than the current ambient temperature Tum (Danger of condensation!)9) Operation with liquid cooling, water as a coolant, inlet temperature 30°C.

For further notes, please refer to chapter 9.6 “Motor Cooling / Flow rate”.

Fig. 4-10: Data sheet size 070B

Page 37: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-11

DOK-MOTOR*-MLF********-PR02-EN-P

MLP070B-0100

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

0 50 100 150 200 250 300 350 400 450 500

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0036 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0036 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP070B-0120

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

0 50 100 150 200 250 300 350 400 450 500

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0054 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0054 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP070B-0150

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

0 50 100 150 200 250 300 350 400 450 500

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0054 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0054 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP070B-0250

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

0 50 100 150 200 250 300 350 400 450 500

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0070 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0070 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP070B-0300

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

0 50 100 150 200 250 300 350 400 450 500

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

Fig. 4-11: Characteristic curve of motor size 070B

Motor characteristic curvesframe size 070B

Page 38: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-12 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Technical Data - Size 070C

Description Symbol Unit MLP070C

Motor data 1)

Winding code 0120 0150 0240 0300

Appropriate secondary parts MLS070S-3A-****-NNNN

Maximum force 2) Fmax N 3800

Continuous nominal force FdN N 1200

Maximum current imax A 55 70 90 110

Continuous nominal current idN A 8.9 11.7 13 19

Maximum force with Fmax 3) vFmax m/min 120 150 240 300

Nominal velocity 3) vN m/min 180 250 350 450

Force constant KiFN N/A 135 98.3 92 63

Voltage constant KEMF Vs/m 78 91 49 38

Winding resistance at 20°C R12 Ohm 5.7 4.1 2 1.5

Winding inductance L12 mH 36 22 11 7.5

Min. cross-section connection cable 5) APL mm² 1 2.5

Rated power loss PvN W 1100

Nominal air gap δ mm 1.0±0.4

Pole width τp mm 37.5

Attractive force 6) FATT N 5500

Primary mass standard encapsulation mPS kg 14.3

Primary mass thermal encapsulation mPT kg 18.4

Secondary mass mS kg/m 9.4

Necessary coolant flow ∆ϑN 10) Qmin l/min 1.58

Standard encapsulation 0.19Constant to determinethe pressure loss kdp Thermal encapsulation

kdp bar0.19

Standard encapsulation 0.43Decompression at QN

Thermal encapsulation∆p bar

0.43

Permitted coolant inlet pressure pmax bar 10

Coolant inlet temperature 8) ϑin °C +15...+40

Temperature rise at PvN 9) ∆ϑN K 10

Thermal time constant Tth min 7.5

Permitted secondary temperature TSmax °C 70

Permissible ambient temperature Tum °C 0...+45

Zul. Perm. stor. a. transport temperature TL °C -10...+60

Protection class IP65

Insulation class acc. to DIN VDE 0530-1 F1) The determined values are rms-values according to IEC 60034-1, if not otherwise indicated. Reference value 540 VDC.2) The force that can be attained depends on the drive control device used.3) The reachable velocity depends on the power supply voltage.4) EMF = electromagnetic force. Root-mean-square value with regard to 1 m/s.5) Rated according to EN60204-1 (1993), installation mode B2 and conversion factor for Bosch Rexroth cables at an ambient

temperature of 40°C. When using other cables, larger cross-sections may be necessary.For further notes about connection and power cables, refer to chapter 8.1

6) Between primary and secondary part at nominal air gab, currentless primary part (see chapter 9.5).7) Cooling agent water. Determination of the pressure loss, depending on the coolant flow, refer to chapter 9.6 “Motor Cooling”.8) The coolant inlet temperature should be maximum 5°C lower than the current ambient temperature Tum (Danger of condensation!)9) Operation with liquid cooling, water as a coolant, inlet temperature 30°C.10) For further notes, please refer to chapter 9.6 “Motor Cooling / Flow rate”.

Fig. 4-12: Data sheet size 070C

Page 39: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-13

DOK-MOTOR*-MLF********-PR02-EN-P

MLP070C-0120

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

0 50 100 150 200 250 300 350 400 450 500

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0070 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0070 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP070C-0150

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

0 50 100 150 200 250 300 350 400 450 500

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP070C-0240

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

0 50 100 150 200 250 300 350 400 450 500

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP070C-0300

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

0 50 100 150 200 250 300 350 400 450 500

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

Fig. 4-13: Characteristic curve of motor size 070C

Motor characteristic curvesframe size 070C

Page 40: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-14 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

4.4 Technical Data Size 100

Technical Data - Size 100A

Description Symbol Unit MLP100A

Motor data 1)

Winding code 0090 0120 0150 0190

Appropriate secondary parts MLS100S-3A-****-NNNN

Maximum force 2) Fmax N 3750

Continuous nominal force FdN N 1180

Maximum current imax A 38 44 55 70

Continuous nominal current idN A 6.6 8 10 12

Maximum force with Fmax 3) vFmax m/min 90 120 150 190

Nominal velocity 3) vN m/min 150 190 220 290

Force constant KiFN N/A 186 148 118 98

Voltage constant KEMF Vs/m 162 89 77 59

Winding resistance at 20°C R12 Ohm 12.2 7.8 6.9 3.2

Winding inductance L12 mH 70 42 31 16

Min. cross-section connection cable 5) APL mm² 1

Rated power loss PvN W 1500

Nominal air gap δ mm 1.0±0.4

Pole width τp mm 37.5

Attractive force 6) FATT N 5400

Primary mass standard encapsulation mPS kg 13.5

Primary mass thermal encapsulation mPT kg 17

Secondary mass mS kg/m 13.4

Necessary coolant flow ∆ϑN 10) Qmin l/min 2

Standard encapsulation 0.19Constant to determinethe pressure loss kdp Thermal encapsulation

kdp bar0.19

Standard encapsulation 0.29Decompression at QN

Thermal encapsulation∆p bar

0.3

Permitted coolant inlet pressure pmax bar 10

Coolant inlet temperature 8) ϑin °C +15...+40

Temperature rise at PvN 9) ∆ϑN K 10

Thermal time constant Tth min 6.4

Permitted secondary temperature TSmax °C 70

Permissible ambient temperature Tum °C 0...+45

Perm. storage a. transport temperature TL °C -10...+60

Protection class IP65

Insulation class acc. to DIN VDE 0530-1 F1) The determined values are rms-values according to IEC 60034-1, if not otherwise indicated. Reference value 540 VDC.2) The force that can be attained depends on the drive control device used.3) The reachable velocity depends on the power supply voltage.4) EMF = electromagnetic force. Root-mean-square value with regard to 1 m/s.5) Rated according to EN60204-1 (1993), installation mode B2 and conversion factor for Bosch Rexroth cables at an ambient

temperature of 40°C. When using other cables, larger cross-sections may be necessary.For further notes about connection and power cables, refer to chapter 8.1

6) Between primary and secondary part at nominal air gab, currentless primary part (see chapter 9.5).7) Cooling agent water. Determination of the pressure loss, depending on the coolant flow, refer to chapter 9.6 “Motor Cooling”.8) The coolant inlet temperature should be maximum 5°C lower than the current ambient temperature Tum (Danger of condensation!)9) Operation with liquid cooling, water as a coolant, inlet temperature 30°C.

For further notes, please refer to chapter 9.6 “Motor Cooling / Flow rate”.

Fig. 4-14: Data sheet size 100A

Page 41: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-15

DOK-MOTOR*-MLF********-PR02-EN-P

MLP100A-0090

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

0 50 100 150 200 250 300

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0054 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0054 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP100A-0120

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

0 50 100 150 200 250 300

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0054 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0054 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP100A-0150

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

0 50 100 150 200 250 300

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0070 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0070 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP100A-0190

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

0 50 100 150 200 250 300

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

Fig. 4-15: Characteristic curves of motor size 100A

Motor characteristic curvesframe size 100A

Page 42: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-16 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Technical Data - Size 100B and 100C

Description Symbol Unit MLP100

Motor data 1)

Frame length B C

Winding code 0120 0250 0090 0120 0190

Appropriate secondary parts MLS100S-3A-****-NNNN

Maximum force 2) Fmax N 5600 7150

Continuous nominal force FdN N 1785 2310

Maximum current imax A 70 130 90 85 140

Continuous nominal current idN A 12 22 13 15 23

Maximum force with Fmax 3) vFmax m/min 120 250 90 120 190

Nominal velocity 3) vN m/min 190 350 170 190 290

Force constant KiFN N/A 149 81 178 154 100

Voltage constant KEMF Vs/m 87 49 100 89 59

Winding resistance at 20°C R12 Ohm 4.5 2 6 3.9 1.5

Winding inductance L12 mH 25 9 38 22 8

Min. cross-section connection cable 5) APL mm² 1 2.5 1 1.5 4

Rated power loss PvN W 1300 1600

Nominal air gap δ mm 1.0±0.4

Pole width τp mm 37.5

Attractive force 6) FATT N 8000 10400

Primary mass standard encapsulation mPS kg 18.7 24

Primary mass thermal encapsulation mPT kg 23.3 29.7

Secondary mass mS kg/m 13.4

Necessary coolant flow ∆ϑN 10) Qmin l/min 1.87 2.3

Standard encapsulation 0.18 0.19Constant to determinethe pressure loss kdp Thermal encapsulation

kdp0.18 0.19

Standard encapsulation 0.52 0.8Decompression at QN

Thermal encapsulation∆p bar

0.54 0.82

Permitted coolant inlet pressure pmax bar 10

Coolant inlet temperature 8) ϑin °C +15...+40

Temperature rise at PvN 9) ∆ϑN K 10

Thermal time constant Tth min 7 6.8

Permitted secondary temperature TSmax °C 70

Permissible ambient temperature Tum °C 0...+45

Perm. storage a. transport temperature TL °C -10...+60

Protection class IP65

Insulation class acc. to DIN VDE 0530-1 F1) The determined values are rms-values according to IEC 60034-1, if not otherwise indicated. Reference value 540 VDC.2) The force that can be attained depends on the drive control device used.3) The reachable velocity depends on the power supply voltage.4) EMF = electromagnetic force. Root-mean-square value with regard to 1 m/s.5) Rated according to EN60204-1 (1993), installation mode B2 and conversion factor for Bosch Rexroth cables at an ambient

temperature of 40°C. When using other cables, larger cross-sections may be necessary.For further notes about connection and power cables, refer to chapter 8.1

6) Between primary and secondary part at nominal air gab, currentless primary part (see chapter 9.5).7) Cooling agent water. Determination of the pressure loss, depending on the coolant flow, refer to chapter 9.6 “Motor Cooling”.8) The coolant inlet temperature should be maximum 5°C lower than the current ambient temperature Tum (Danger of condensation!)9) Operation with liquid cooling, water as a coolant, inlet temperature 30°C.

For further notes, please refer to chapter 9.6 “Motor Cooling / Flow rate”.

Fig. 4-16: Data sheet size 100B and 100C

Page 43: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-17

DOK-MOTOR*-MLF********-PR02-EN-P

MLP100B-0120

0

600

1200

1800

2400

3000

3600

4200

4800

5400

6000

0 50 100 150 200 250 300 350 400

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP100B-0250

0

600

1200

1800

2400

3000

3600

4200

4800

5400

6000

0 50 100 150 200 250 300 350 400

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP100C-0090

0

800

1600

2400

3200

4000

4800

5600

6400

7200

8000

0 50 100 150 200 250 300 350

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP100C-0120

0

800

1600

2400

3200

4000

4800

5600

6400

7200

8000

0 50 100 150 200 250 300 350

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP100C-0190

0

800

1600

2400

3200

4000

4800

5600

6400

7200

8000

0 50 100 150 200 250 300 350

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

Fig. 4-17: Characteristic curves of motor size 100B and 100C

Motor characteristic curvesframe size 100B and 100C

Page 44: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-18 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

4.5 Technical Data - Size 140

Size 140A and 140BDescription Symbol Unit MLP140

Motor data 1)

Frame length A B

Winding code 0120 0090 0120

Appropriate secondary parts MLS140S-3A-****-NNNN

Maximum force 2) Fmax N 5200 7650

Continuous nominal force FdN N 1680 2415

Maximum current imax A 70 85 105

Continuous nominal current idN A 12 15 18

Maximum force with Fmax 3) vFmax m/min 120 90 120

Nominal velocity 3) vN m/min 190 160 190

Force constant KiFN N/A 140 161 134

Voltage constant KEMF Vs/m 89 142 89

Winding resistance at 20°C R12 Ohm 4 4.3 2.6

Winding inductance L12 mH 23 20.6 16

Min. cross-section connection cable 5) APL mm² 1 2.5

Rated power loss PvN W 1300 2512

Nominal air gap δ mm 1.0±0.4

Pole width τp mm 37.5

Attractive force 6) FATT N 7500 11000

Primary mass standard encapsulation mPS kg 17 24.5

Primary mass thermal encapsulation mPT kg 21.2 30.1

Secondary mass mS kg/m 18.8

Necessary coolant flow ∆ϑN 10) Qmin l/min 1.87 3.6

Standardkapselung 0.18 0.18Constant to determinethe pressure loss kdp Thermokapselung

kdp bar0.19 0.19

Standardkapselung 0.54 0.87Decompression at QN

Thermokapselung∆p bar

0.56 0.89

Permitted coolant inlet pressure pmax bar 10

Coolant inlet temperature 8) ϑin °C +15...+40

Temperature rise at PvN 9) ∆ϑN K 10

Thermal time constant Tth min i.p. 6.8

Permitted secondray temperature TSmax °C 70

Permissible ambient temperature Tum °C 0...+45

Perm. storage a. transport temperature TL °C -10...+60

Protection class IP65

Insulation class acc. to DIN VDE 0530-1 F1) The determined values are rms-values according to IEC 60034-1, if not otherwise indicated. Reference value 540 VDC.2) The force that can be attained depends on the drive control device used.3) The reachable velocity depends on the power supply voltage.4) EMF = electromagnetic force. Root-mean-square value with regard to 1 m/s.5) Rated according to EN60204-1 (1993), installation mode B2 and conversion factor for Bosch Rexroth cables at an ambient

temperature of 40°C. When using other cables, larger cross-sections may be necessary.For further notes about connection and power cables, refer to chapter 8.1

6) Between primary and secondary part at nominal air gab, currentless primary part (see chapter 9.5).7) Cooling agent water. Determination of the pressure loss, depending on the coolant flow, refer to chapter 9.6 “Motor Cooling”.8) The coolant inlet temperature should be maximum 5°C lower than the current ambient temperature Tum (Danger of condensation!)9) Operation with liquid cooling, water as a coolant, inlet temperature 30°C.

For further notes, please refer to chapter 9.6 “Motor Cooling / Flow rate”.

Fig. 4-18: Data sheet size 140A and 140B

Page 45: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-19

DOK-MOTOR*-MLF********-PR02-EN-P

MLP140A-0120

0

600

1200

1800

2400

3000

3600

4200

4800

5400

6000

0 50 100 150 200 250 300

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP140B-0090

0

800

1600

2400

3200

4000

4800

5600

6400

7200

8000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP140B-0120

0

800

1600

2400

3200

4000

4800

5600

6400

7200

8000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

Fig. 4-19: Characteristic curves of motors size 140A and 140B

Motor characteristic curvesframe size 140A and 140B

Page 46: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-20 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Technical Data - Size 140C

Description Symbol Unit MLP140C

Motor data 1)

Winding code 0050 0120 0170 0350

Appropriate secondary parts MLS140S-3A-****-NNNN

Maximum force 2) Fmax N 10000

Continuous nominal force FdN N 3150

Maximum current imax A 70 125 140 260

Continuous nominal current idN A 13 21 29 53.5

Maximum force with Fmax 3) vFmax m/min 50 120 170 350

Nominal velocity 3) vN m/min 110 190 250 400

Force constant KiFN N/A 242 150 109 59

Voltage constant KEMF Vs/m 67 96 68 i.p.

Winding resistance at 20°C R12 Ohm 5.1 2.5 1.4 0.5

Winding inductance L12 mH 27 14 7 3

Min. cross-section connection cable 5) APL mm² 1 2.5 4 10

Rated power loss PvN W 2000

Nominal air gap δ mm 1.0±0.4

Pole width τp mm 37.5

Attractive force 6) FATT N 14400

Primary mass standard encapsulation mPS kg 32

Primary mass thermal encapsulation mPT kg 38.9

Secondary mass mS kg/m 18.8

Necessary coolant flow ∆ϑN 10) Qmin l/min 2.87

Standard encapsulation 0.18Constant to determinethe pressure loss kdp Thermal encapsulation

kdp bar0.19

Standard encapsulation 1.15Decompression at QN

Thermal encapsulation∆p bar

1.18

Permitted cooling inlet pressure pmax bar 10

Coolant inlet temperature 8) ϑin °C +15...+40

Temperature rise at PvN 9) ∆ϑN K 10

Thermal time constant Tth min i.p.

Permitted secondary temperature TSmax °C 70

Permissible ambient temperature Tum °C 0...+45

Perm. stor. a. transport temperature TL °C -10...+60

Protection class IP65

Insulation class acc. to DIN VDE 0530-1 F1) The determined values are rms-values according to IEC 60034-1, if not otherwise indicated. Reference value 540 VDC.2) The force that can be attained depends on the drive control device used.3) The reachable velocity depends on the power supply voltage.4) EMF = electromagnetic force. Root-mean-square value with regard to 1 m/s.5) Rated according to EN60204-1 (1993), installation mode B2 and conversion factor for Bosch Rexroth cables at an ambient

temperature of 40°C. When using other cables, larger cross-sections may be necessary.For further notes about connection and power cables, refer to chapter 8.1

6) Between primary and secondary part at nominal air gab, currentless primary part (see chapter 9.5).7) Cooling agent water. Determination of the pressure loss, depending on the coolant flow, refer to chapter 9.6 “Motor Cooling”.8) The coolant inlet temperature should be maximum 5°C lower than the current ambient temperature Tum (Danger of condensation!)9) Operation with liquid cooling, water as a coolant, inlet temperature 30°C.

For further notes, please refer to chapter 9.6 “Motor Coolant/Flow rate”.i.p. = in preparation

Fig. 4-20: Data sheet size 140C

Page 47: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-21

DOK-MOTOR*-MLF********-PR02-EN-P

MLP140C-0050

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 50 100 150 200 250 300

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-

MLP140C-0120

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 50 100 150 200 250 300

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-

MLP140C-0170

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 50 100 150 200 250 300

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-

MLP140C-0350

(in preparation)

Fig. 4-21: Characteristic curves of motor size 140C

Motor characteristic curvesframe size 140C

Page 48: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-22 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

4.6 Technical Data - Size 200

Size 200A and 200B

Description Symbol Unit MLP200

Motor data 1)

Frame length A B

Winding code 0090 0120 0040 0120

Appropriate secondary parts MLS200S-3A-****-NNNN

Maximum force 2) Fmax N 7450 10900

Continuous nominal force FdN N 2415 3465

Maximum current imax A 70 88 70 130

Continuous nominal current idN A 13 16 13 22

Maximum force with Fmax 3) vFmax m/min 90 120 40 120

Nominal velocity 3) vN m/min 170 190 100 190

Force constant KiFN N/A 186 151 267 158

Voltage constant KEMF Vs/m 100 89 170 89

Winding resistance at 20°C R12 Ohm 4.5 2.3 5.8 1.7

Winding inductance L12 mH 25 14 28 10

Min. cross-section connection cable 5) APL mm² 1 2.5 1 2.5

Rated power loss PvN W 1700 2200

Nominal air gap δ mm 1.0±0.4

Pole width τp mm 37.5

Attractive force 6) FATT N 10700 15600

Primary mass standard encapsulation mPS kg 23 33

Primary mass thermal encapsulation mPT kg 28.3 40

Secondary mass mS kg/m 26.9

Necessary coolant flow ∆ϑN 10) Qmin l/min 2.44 3.16

Standard encapsulation 0.18 0.18Constant to determinethe pressure loss kdp Thermal encapsulation

kdp bar0.19 0.19

Standard encapsulation 0.88 1.38Decompression at QN

Thermal encapsulation∆p bar

0.9 1.41

Permitted coolant inlet pressure pmax bar 10

Coolant inlet temperature 8) ϑin °C +15...+40

Temperature rise at PvN 9) ∆ϑN K 10

Thermal time constant Tth min i.p.

Permissible secondary temperature TSmax °C 70

Permissible ambient temperature Tum °C 0...+45

Perm. storage a. transport temperature TL °C -10...+60

Protection class IP65

Insulation class acc. to DIN VDE 0530-1 F1) The determined values are rms-values according to IEC 60034-1, if not otherwise indicated. Reference value 540 VDC.2) The force that can be attained depends on the drive control device used.3) The reachable velocity depends on the power supply voltage.4) EMF = electromagnetic force. Root-mean-square value with regard to 1 m/s.5) Rated according to EN60204-1 (1993), installation mode B2 and conversion factor for Bosch Rexroth cables at an ambient

temperature of 40°C. When using other cables, larger cross-sections may be necessary.For further notes about connection and power cables, refer to chapter 8.1

6) Between primary and secondary part at nominal air gab, currentless primary part (see chapter 9.5).7) Cooling agent water. Determination of the pressure loss, depending on the coolant flow, refer to chapter 9.6 “Motor Cooling”.8) The coolant inlet temperature should be maximum 5°C lower than the current ambient temperature Tum (Danger of condensation!)9) Operation with liquid cooling, water as a coolant, inlet temperature 30°C.

For further notes, please refer to chapter 9.6 “Motor Coolant/Flow rate”.i.p. = in preparation

Page 49: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-23

DOK-MOTOR*-MLF********-PR02-EN-P

Fig. 4-22: Data sheet size 200A and 200B

MLP200A-0090

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP200A-0120

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP200B-0040

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP200B-0120

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

Fig. 4-23: Characteristic curves of motors size 200A and 200B

Motor characteristic curvesframe size 200A and 200B

Page 50: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-24 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Technical Data - Size 200C and 200D

Description Symbol Unit MLP200

Motor data 1)

Frame length C D

Winding code 0090 0120 0170 0060 0100 0120

Appropriate secondary parts MLS200S-3A-****-NNNN

Maximum force 2) Fmax N 14250 17750

Continuous nominal force FdN N 4460 5560

Maximum current imax A 120 175 210 140 210 225

Continuous nominal current idN A 23.3 30 46 28 46 53

Maximum force with Fmax 3) vFmax m/min 90 120 170 60 100 120

Nominal velocity 3) vN m/min 170 190 220 140 180 190

Force constant KiFN N/A 191 149 97 220 121 105

Voltage constant KEMF Vs/m 114 89 77 216 94 89

Winding resistance at 20°C R12 Ohm 2.7 1.7 1.1 2.8 1.6 1.3

Winding inductance L12 mH 13 8 5 15 8.1 6

Min. cross-section connection cable 5) APL mm² 4 6 10 4 10 10

Rated power loss PvN W 2700 4970

Nominal air gap δ mm 1.0±0.4

Pole width τp mm 37.5

Attractive force 6) FATT N 20500 25400

Primary mass standard encapsulation mPS kg 42 51

Primary mass thermal encapsulation mPT kg 50.7 61.3

Secondary mass mS kg/m 26.9

Necessary coolant flow ∆ϑN 10) Qmin l/min 3.88 8

Standard encapsulation 0.19 0.19Constant to determinethe pressure loss kdp Thermal encapsulation

kdp bar0.19 0.19

Standard encapsulation 1.99 2.4Decompression at QN

Thermal encapsulation∆p bar

2.04 2.45

Permitted coolant inlet pressure pmax bar 10

Coolant inlet temperature 8) ϑin °C +15...+40

Temperature rise at PvN 9) ∆ϑN K 10

Thermal time constant Tth min 6.6 5.5

Permitted secondary temperature TSmax °C 70

Permissible ambient temperature Tum °C 0...+45

Perm. storage a. transport temperature TL °C -10...+60

Protection class IP65

Insulation class acc. to DIN VDE 0530-1 F1) The determined values are rms-values according to IEC 60034-1, if not otherwise indicated. Reference value 540 VDC.2) The force that can be attained depends on the drive control device used.3) The reachable velocity depends on the power supply voltage.4) EMF = electromagnetic force. Root-mean-square value with regard to 1 m/s.5) Rated according to EN60204-1 (1993), installation mode B2 and conversion factor for Bosch Rexroth cables at an ambient

temperature of 40°C. When using other cables, larger cross-sections may be necessary.For further notes about connection and power cables, refer to chapter 8.1

6) Between primary and secondary part at nominal air gab, currentless primary part (see chapter 9.5).7) Cooling agent water. Determination of the pressure loss, depending on the coolant flow, refer to chapter 9.6 “Motor Cooling”.8) The coolant inlet temperature should be maximum 5°C lower than the current ambient temperature Tum (Danger of condensation!)9) Operation with liquid cooling, water as a coolant, inlet temperature 30°C.

For further notes, please refer to chapter 9.6 “Motor Cooling / Flow rate”.

Fig. 4-24: Data Sheet size 200C and 200D

Page 51: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-25

DOK-MOTOR*-MLF********-PR02-EN-P

MLP200C-0090

0

2500

5000

7500

10000

12500

15000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP200C-0120

0

2500

5000

7500

10000

12500

15000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0210 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0210 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP200C-0170

0

2500

5000

7500

10000

12500

15000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0210 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0210 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP200D-0060

0

3000

6000

9000

12000

15000

18000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP200D-0100

0

3000

6000

9000

12000

15000

18000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0210 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0210 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP200D-0120

0

3000

6000

9000

12000

15000

18000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0210 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0210 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

Fig. 4-25: Characteristic curves of motors size 200C and 200D

Motor characteristic curvesframe size 200C and 200D

Page 52: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-26 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

4.7 Technical Data – Size 300

Description Symbol Unit MLP300

Motor data 1)

Frame length A B C

Winding code 0090 0120 0070 0120 0060 0090

Appropriate secondary parts MLS300S-3A-****-NNNN

Maximum force 2) Fmax N 11000 16300 21500

Continuous nominal force FdN N 3350 5150 6720

Maximum current imax A 110 138 140 205 140 212

Continuous nominal current idN A 19 23 28 35 29 37

Maximum force with Fmax 3) vFmax m/min 90 120 70 120 60 90

Nominal velocity 3) vN m/min 160 190 140 190 110 150

Force constant KiFN N/A 176 146 184 147 232 182

Voltage constant KEMF Vs/m 106 89 121 89 155 113

Winding resistance at 20°C R12 Ohm 3.1 2 2.7 1.3 1.4 1.6

Winding inductance L12 mH 15 9.3 14 6.7 12.2 8

Min. cross-section connection cable 5) APL mm² 2.5 4 4 6 4 6

Rated power loss PvN W 2200 2900 3200

Nominal air gap δ mm 0,60,21,0 +

Pole width τp mm 37.5

Attractive force 6) FATT N 16000 23400 30700

Primary mass standard encapsulation mPS kg 33 48 62

Primary mass thermal encapsulation mPT kg 40.8 58.3 74.9

Secondary mass mS kg/m 45.4

Necessary coolant flow ∆ϑN 10) Qmin l/min 3.16 4.17 4.6

Standard encapsulation 0.19 0.19 0.19Constant to determinethe pressure loss kdp Thermal encapsulation

kdp bar0.19 0.19 0.19

Standard encapsulation 1.41 2.29 2.72Decompression at QN

Thermal encapsulation∆p bar

1.44 2.34 2.78

Permitted coolant inlet pressure pmax bar 10

Coolant inlet temperature 8) ϑin °C +15...+40

Temperature rise at PvN 9) ∆ϑN K 10

Thermal time constant Tth min i.p. i.p. i.p

Permitted secondary temperature TSmax °C 70

Permissible ambient temperature Tum °C 0...+45

Perm. storage a. transport temperature TL °C -10...+60

Protection class IP65

Insulation class acc. to DIN VDE 0530-1 F1) The determined values are rms-values according to IEC 60034-1, if not otherwise indicated. Reference value 540 VDC.2) The force that can be attained depends on the drive control device used.3) The reachable velocity depends on the power supply voltage.4) EMF = electromagnetic force. Root-mean-square value with regard to 1 m/s.5) Rated according to EN60204-1 (1993), installation mode B2 and conversion factor for Bosch Rexroth cables at an ambient

temperature of 40°C. When using other cables, larger cross-sections may be necessary.For further notes about connection and power cables, refer to chapter 8.1

6) Between primary and secondary part at nominal air gab, currentless primary part (see chapter 9.5).7) Cooling agent water. Determination of the pressure loss, depending on the coolant flow, refer to chapter 9.6 “Motor Cooling”.8) The coolant inlet temperature should be maximum 5°C lower than the current ambient temperature Tum (Danger of condensation!)9) Operation with liquid cooling, water as a coolant, inlet temperature 30°C.

For further notes, please refer to chapter 9.6 “Motor Coolant/Flow rate”.i.p. = in preparation

Fig. 4-26: Data sheet:size 300

Page 53: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Technical Data IndraDyn L 4-27

DOK-MOTOR*-MLF********-PR02-EN-P

MLP300A-0090

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP300A-0120

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP300B-0070

0

3000

6000

9000

12000

15000

18000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP300B-0120

0

3000

6000

9000

12000

15000

18000

0 50 100 150 200 250

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0210 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0210 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP300C-0060

0

2200

4400

6600

8800

11000

13200

15400

17600

19800

22000

0 50 100 150 200

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0150 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0150 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

MLP300C-0090

0

2200

4400

6600

8800

11000

13200

15400

17600

19800

22000

0 50 100 150 200

Geschwindigkeit / Speed [m/min]

Kra

ft / P

ower

[N]

Mit Regelgerät HMS01.1N-W0210 an Versorger HMV01.1E-W0120 an 3x AC400V (-5%) With Drive Controller HMS01.1N-W0210 at HMV01.1E-W0120 and main connection 3x AC400V (-5%)

Fig. 4-27: Motor characteristic curves: frame size 300

Motor characteristic curvesframe size 300

Page 54: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

4-28 Technical Data IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Page 55: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Dimensions, Installation Dimension and - Tolerances 5-1

DOK-MOTOR*-MLF********-PR02-EN-P

5 Dimensions, Installation Dimension and -Tolerances

5.1 Installation Tolerances

In order to ensure a constant force along the entire travel length, adefined air gap height must be guaranteed. For this purpose, theindividual parts of the motor (primary and secondary) are toleratedaccordingly. The distance of the mounting surface, the parallelism and thesymmetry of the primary and secondary part of the linear motor in themachine must be within a certain tolerance above the entire travel length.Any deformations that result from weight, attractive forces and processforces must be taken into account. A deviation of the specified nominal airgap may lead

• to a reduction or modification of the specified performance data

• to a contact between the primary part and the secondary part andthus to damaged and destroyed motor components.

For the installation of the motors into the machine structure, BoschRexroth specifies a defined installation height including tolerances (seeinstallation size L1 in Fig. 5-1). Thus, the specified size and tolerances ofthe air gap are maintained automatically – even if individual motorcomponents are replaced.

Size Primary Design Primary DesignSecondary

InstallationHeight

L1

MeasurableAir Gap L2

40, 070, 100, 140, 200 Standardencapsulation

0,161,4 + 1,0 0,4±

300 Standardencapsulation

0,30,263,4 +

+0,60,21,0 +

040, 070, 100, 140, 200 Thermalencapsulation

0,173,9 + 1,0 0,4±

300 Thermalencapsulation

MLSxxxS-*

0,30,277,9 +

+0,60,21,0 +

Fig. 5-1: Mounting Sizes and Tolerances

Installation height

Page 56: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

5-2 Dimensions, Installation Dimension and - Tolerances Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Note: The specified installation height with the correspondingtolerances has to be observed absolutely.

Before the primary and secondary part can be mounted, some parts ofthe machine have to be arranged to each other. Especially, the machineslide must be brought in a defined position to the machine base. Furthertolerances regarding parallelism and symmetry must be kept whenarranging the mounting dimensions.

The fastening holes for the primary part and the threaded holes for thesecondary part within the machine must be done strictly according to thedetails in the particular dimension sheets to keep the tolerances.

If this is done correctly, the center lines of the fastening or threaded holescan serve as reference for aligning the parts.

PARALSYSM-MLF-DE_NEU.EPS

(1): Drilling pattern (fastening threads) for the secondary part(2): Drilling pattern (fastening holes) for the primary part

Fig. 5-2: Parallelism and symmetry between the fastening holes for theprimary part and the fastening threads for the secondary part

When moving primary and secondary parts, the stated tolerancesregarding parallelism and symmetry according to Fig. 5-2 must be keptduring the total moving process.

You will find further notes regarding assembly of primary and secondaryparts in the chapter 13 “Assembly”.

Parallelism and symmetry ofmachinery parts

Page 57: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Dimensions, Installation Dimension and - Tolerances 5-3

DOK-MOTOR*-MLF********-PR02-EN-P

5.2 Mounting Sizes

Size 040, Primary with Standard Encapsulation

106-0435-2001-02.tif

Fig. 5-3: Size 040, Primary with standard encapsulation

Page 58: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

5-4 Dimensions, Installation Dimension and - Tolerances Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Size 040, Primary with Thermal Encapsulation

106-0435-3002-02.tif

Fig. 5-4: Size 040, Primary with thermal encapsulation

Page 59: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Dimensions, Installation Dimension and - Tolerances 5-5

DOK-MOTOR*-MLF********-PR02-EN-P

Size 040, Secondary

mls040.tif

Fig. 5-5: Size 040, Secondary

Page 60: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

5-6 Dimensions, Installation Dimension and - Tolerances Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Size 070, Primary with Standard Encapsulation

106-0455-2001-01.tif

Fig. 5-6: Size 070, Primary with standard encapsulation

Page 61: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Dimensions, Installation Dimension and - Tolerances 5-7

DOK-MOTOR*-MLF********-PR02-EN-P

Size 070, Primary with Thermal Encapsulation

106-0394-3002-03.tif

Fig. 5-7: Size 070, Primary with thermal encapsulation

Page 62: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

5-8 Dimensions, Installation Dimension and - Tolerances Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Size 070, Secondary

mls070.tif

Fig. 5-8: Size 070, Secondary

Page 63: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Dimensions, Installation Dimension and - Tolerances 5-9

DOK-MOTOR*-MLF********-PR02-EN-P

Size 100, Primary with Standard Encapsulation

106-0432-2001-02.tif

Fig. 5-9: Size 100, Primary with Standard Encapsulation

Page 64: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

5-10 Dimensions, Installation Dimension and - Tolerances Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Size 100, Primary with Thermal Encapsulation

106-0455-3002-04.tif

Fig. 5-10: Size 100, Primary with thermal encapsulation

Page 65: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Dimensions, Installation Dimension and - Tolerances 5-11

DOK-MOTOR*-MLF********-PR02-EN-P

Size 100, Secondary

mls100.tif

Fig. 5-11: Size 100, Secondary

Page 66: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

5-12 Dimensions, Installation Dimension and - Tolerances Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Size 140, Primary with Standard Encapsulation

106-0262-2001-03.tif

Fig. 5-12: Size 140, Primary with Standard Encapsulation

Page 67: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Dimensions, Installation Dimension and - Tolerances 5-13

DOK-MOTOR*-MLF********-PR02-EN-P

Size 140, Primary with Thermal Encapsulation

106-0393-3002-03.tif

Fig. 5-13: Size 140, Primary with thermal encapsulation

Page 68: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

5-14 Dimensions, Installation Dimension and - Tolerances Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Size 140, Secondary

mls140.tif

Fig. 5-14: Size 140, Secondary

Page 69: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Dimensions, Installation Dimension and - Tolerances 5-15

DOK-MOTOR*-MLF********-PR02-EN-P

Size 200, Primary with Standard Encapsulation

106-0435-2001-02.tif

Fig. 5-15: Size 200, Primary with Standard Encapsulation

Page 70: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

5-16 Dimensions, Installation Dimension and - Tolerances Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Size 200, Primary with Thermal Encapsulation

106-0455-3002-04.tif

Fig. 5-16: Size 200, Primary with thermal encapsulation

Page 71: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Dimensions, Installation Dimension and - Tolerances 5-17

DOK-MOTOR*-MLF********-PR02-EN-P

Size 200, Secondary

mls200.tif

Fig. 5-17: Size 200, Secondary

Page 72: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

5-18 Dimensions, Installation Dimension and - Tolerances Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Size 300, Primary with Standard Encapsulation

106-0435-2001-01.tif

Fig. 5-18: Size 300, Primary with Standard Encapsulation

Page 73: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Dimensions, Installation Dimension and - Tolerances 5-19

DOK-MOTOR*-MLF********-PR02-EN-P

Size 300, Primary with Thermal Encapsulation

106-0435-3002-04.tif

Fig. 5-19: Size 300, Primary with Thermal Encapsulation

Page 74: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

5-20 Dimensions, Installation Dimension and - Tolerances Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Size 300, Secondary

mls300.tif

Fig. 5-20: Size 300, Secondary

Page 75: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Type Codes IndraDyn L 6-1

DOK-MOTOR*-MLF********-PR02-EN-P

6 Type Codes IndraDyn L

6.1 Description

The type codes describe the motor variants that are supplied; it is thebasis for selecting and ordering products from Bosch Rexroth. Thisapplies to both new products as well as spare parts and repairs.

The overall product designation “IndraDyn L” stands for synchronouslinear motors. This designation describes the total system which consistsof a primary and a secondary part. As linear motors are kit motors, theprimary and secondary part obtain an additional, defined short term.

!"#$%

% !"#$%

&!%%#$ %%

!%&

"&

IndraDynL_Bausatz_EN.EPS

Fig. 6-1: Short term for IndraDyn L

The following figures give an example of a motor type code for primaryand secondary parts, by which an exact specification of the single parts(e.g. for orders) is possible.

The following description gives an overview over the separate columns ofthe type code (”abbrev. column”) and its meaning.

Note: When selecting a product, always consider the detailedspecifications in the chapter 4 “Technical Data” and chapter 9“Notes Regarding Application”.

Page 76: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

6-2 Type Codes IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Type Code Primary MLP

'()*

!""#"$" ! %#&'"$" %

( )# *

+ ,## -#-$#&"#.$"# *

! " ****

# $%

( + ( +

( +

( +

/0"&$1

&''(

' ' ! ' * * ' * * * *

)

&

*

!"#.$"#!#&"#.$"#2!""#"$"#%#&'"$"3/#"!#)& 2-#&"453

)&

*

/0"&$1

INN-41-43-Muster2.EPS

Fig. 6-2: Example for a type code primary MLP100

Page 77: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Type Codes IndraDyn L 6-3

DOK-MOTOR*-MLF********-PR02-EN-P

Component MLP

MLP is the designation of the primary part of an IndraDyn L motor.

2. Motor Frame SizeThe motor frame size is derived from the active magnet width of thesecondary part and representatives different power ranges.

3. Motor Frame LengthWithin a series, the graduation of increasing motor frame length isindicated by ID letters in alphabetic order.

Frame lengths are, for example, A, B, or C.

4. Winding CodeThe numbers of the winding code do also describe the reachablemaximum speed Fmax in m/min.

5. CoolingIn general, the primary parts of the IndraDyn L motors are provided withliquid cooling for operation and thus only available with liquid cooling.

6. Encapsulation• S= standard encapsulation stainless steel encapsulation with a liquid

cooling integrated into the back of the motor to dissipate the lost heat.

• T = thermal encapsulation: stainless steel encapsulation with anadditional liquid cooling on the back of the motor and heat conductiveplates for optimum thermal decoupling to the machine construction.

7. Motor EncoderThe necessary length measuring system is not in the scope of delivery ofBosch Rexroth and has to be provided and mounted from the machinemanufacturer himself.

8. Electrical ConnectionPrimary parts of synchronous linear motors IndraDyn L are fitted with ahigh-flexible and shielded cable. The connection cable is brought out ofthe front of the primary part and is fixed with it.

9. Other designsThose fields are not reserved.

Abbrev. column 1 2 3

Abbrev. column 4 5 6

Abbrev. column 7

Abbrev. column 9 10 11 12

Abbrev. column 14

Abbrev. column 15

Abbrev. columns 17 18

Abbrev. columns 19 20

Abbrev. column 22 23 24 25

Page 78: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

6-4 Type Codes IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Type Code Secondary MLS

'()*

!"!"

# !$"

% & # #% & # #% & % %

! "'

#$%

% ' ( )# % ' ( )

# % ' ( )

# % ' ( )

#

*&+

&''(

, , # ,

-".&/,".&0!!. -12$0

%#

&+

RNC-41431-Muster1.EPS

Fig. 6-3: Example for a type code secondary MLS100

Page 79: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Type Codes IndraDyn L 6-5

DOK-MOTOR*-MLF********-PR02-EN-P

Component MLS

MLS is the designation of the secondary part of an IndraDyn L motor.

2. Motor Frame SizeThe motor frame size is derived from the active magnet width of thesecondary part and representatives different power ranges.

3. TypeS = secondary part

4. Mechanical designThe number 3 stands for the fastening of the secondary part with screwsby fixing holes along the outer edge.

5. Mechanical protectionTo ensure the utmost operation reliability, the permanent magnets of thesecondary part are always protected against corrosion, action of outerinfluences (e.g. coolants and oil) and against mechanical damage, due toan integrated rustless cover plate.

6. Segment lengthSecondary parts or secondary segments are available in 150mm, 450mmor 600mm length.

7. Other DesignsThose fields are not reserved.

Abbrev. column 1 2 3

Abbrev. column 4 5 6

Abbrev. column 7

Abbrev. column 9

Abbrev. column 10

Abbrev. column 12 13 14 15

Abbrev. column 17 18 19 20

Page 80: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

6-6 Type Codes IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

6.2 Type Codes IndraDyn L Size 040

+ , - + , -

+ , -

+ , -

*"$ .

) ( ' / 0 / / / / /

)( 1)(

1

) 2 1'34

! " )(' 1 )(4 133

# )5#!%%$2 1

$ %& !"#$% 1 % !"#$% 1

' + 6%# !% 1/

( %, 7 !%#! %#2%%"&" 10/

) * - % 1////

+&,)(

-

!%&")(&")(8 !"#$%% % !"#$%9*$ !!$!% !%! 6%#28%:% 9

-

RNC-41430-401_NOR_E_D0_2003-08-062.EPS

Fig. 6-4: Type code unit primary part 040

Page 81: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Type Codes IndraDyn L 6-7

DOK-MOTOR*-MLF********-PR02-EN-P

) 1)

1

.& !%&" 1

! 26! 6 1

# & 6!% 1'

$ !%&"$ 2 1 !%&"$ 2 1 !%&"$ 2 1

' * + % 1////

+&,)

+ , - + , -

+ , -

+ , -

*"$ .

) ' / / / /

!%&")(&")(8 !"#$%% % !"#$%9(%6 !% !%! 6%#28%:% 9

!

!

RNC-41430-402_NOR_N_D0_2004-06-162.EPS

Fig. 6-5: Type code unit secondary part 040

Page 82: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

6-8 Type Codes IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

6.3 Type Codes IndraDyn L Size 070

)( 1)(

+ 1+

) 2 1'3430

! " )(+' 133 )(+4 13333 )(+0 1333

# )5#!%%$2 1

$ %& !"#$% 1 % !"#$% 1

' + 6%# !% 1/

( %, 7 !%#! %#2%%"&" 10/

) * - % 1////

+&,)(+

( + ( +

( +

( +

/0"&$1

&''(

( ' ' % ' * * ' * * * *

!%&")(&")(8 !"#$%% % !"#$%9*$ !!$!% !%! 6%#28%:% 9

-

-

INN-41-43-T07-01-M06-MLP2.EPS

Fig. 6-6: Type code unit primary part 070

Page 83: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Type Codes IndraDyn L 6-9

DOK-MOTOR*-MLF********-PR02-EN-P

) 1)

+ 1+

.& !%&" 1

! 26! 6 1

# & 6!% 1'

$ !%&"$ 2 1 !%&"$ 2 1 !%&"$ 2 1

' * + % 1////

+&,)+

+ , - + , -

+ , -

+ , -

*"$ .

) + ' / / / /

!%&")(&")(8 !"#$%% % !"#$%9(%6 !% !%! 6%#28%:% 9

!

!

RNC-41430-702_NOR_N_D0_2004-06-162.EPS

Fig. 6-7: Type code unit secondary part 070

Page 84: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

6-10 Type Codes IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

6.4 Type Codes IndraDyn L Size 100

)( 1)(

1

) 2 1'3430

! " )(' 1-333- )(4 13 )(0 1-33-

# )5#!%%$2 1

$ %& !"#$% 1 % !"#$% 1

' + 6%# !% 1/

( %, 7 !%#! %#2%%"&" 10/

) * - % 1////

+&,)(

( + ( +

( +

( +

/0"&$1

&''(

' ' ! ' * * ' * * * *

-

!%&")(&")(8 !"#$%% % !"#$%9*$ !!$!% !%! 6%#28%:% 9

-

INN-41-43-T10-01-M07-MLP2.EPS

Fig. 6-8: Type code unit primary part 100

Page 85: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Type Codes IndraDyn L 6-11

DOK-MOTOR*-MLF********-PR02-EN-P

) 1)

1

.& !%&" 1

! 26! 6 1

# & 6!% 1'

$ !%&"$ 2 1 !%&"$ 2 1 !%&"$ 2 1

' * + % 1////

+&,)

+ , - + , -

+ , -

+ , -

*"$ .

) ' / / / /

!%&")(&")(8 !"#$%% % !"#$%9(%6 !% !%! 6%#28%:% 9

!

!

RNC-41431-602_NOR_N_D0_2004-06-122.EPS

Fig. 6-9: Type code unit secondary part 100

Page 86: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

6-12 Type Codes IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

6.5 Type Codes IndraDyn L Size 140

+ , - + , -

+ , -

+ , -

*"$ .

) ( 0 / 0 / / / / /

)( 1)(

1

) 2 1'3430

! " )(' 1 )(4 1-3 )(0 133+3

# )5#!%%$2 1

$ %& !"#$% 1 % !"#$% 1

' %+ 6%# !% 1/

( %, 6 !%#! %#2%%"&" 10/

) * - % 1////

+&,)(

-

!%&")(&")(8 !"#$%% % !"#$%9*$ !!$!% !%! 6%#28%:% 9

-

RNC-41431-401_NOR_N_D0_2004-06-132.EPS

Fig. 6-10: Type code unit primary part 140

Page 87: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Type Codes IndraDyn L 6-13

DOK-MOTOR*-MLF********-PR02-EN-P

) 1)

1

.& !%&" 1

! 26! 6 1

# & 6!% 1'

$ !%&"$ 2 1 !%&"$ 2 1 !%&"$ 2 1

' * + % 1////

+&,)

+ , - + , -

+ , -

+ , -

*"$ .

) ' / / / /

!%&")(&")(8 !"#$%% % !"#$%9(%6 !% !%! 6%#28%:% 9

!

!

RNC-41431-402_NOR_N_D0_2004-06-122.EPS

Fig. 6-11: Type code unit secondary part 140

Page 88: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

6-14 Type Codes IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

6.6 Type Codes IndraDyn L Size 200

)( 1)(

1

) 2 1'34303;

! " )(' 1-3 )(4 13 )(0 1-33+ )(; 133

# )5#!%%$2 1

$ %& !"#$% 1 % !"#$% 1

' + 6%# !% 1/

( %, 7 !%#! %#2%%"&" 10/

) * - % 1////

+&,)(

( + ( +

( +

( +

/0"&$1

&''(

' ' ! ' * * ' * * * *

-

!%&")(&")(8 !"#$%% % !"#$%9*$ !!$!% !%! 6%#28%:% 9

-

INN-41-43-T20-01-M05-MLP2.EPS

Fig. 6-12: Type code unit primary part 200

Page 89: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Type Codes IndraDyn L 6-15

DOK-MOTOR*-MLF********-PR02-EN-P

) 1)

1

.& !%&" 1

! 26! 6 1

# & 6!% 1'

$ !%&"$ 2 1 !%&"$ 2 1 !%&"$ 2 1

' * + % 1////

+&,)

+ , - + , -

+ , -

+ , -

*"$ .

) ' / / / /

!%&")(&")(8 !"#$%% % !"#$%9(%6 !% !%! 6%#28%:% 9

!

!

RNC-41432-402_NOR_N_D0_2004-06-122.EPS

Fig. 6-13: Type code unit secondary part 200

Page 90: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

6-16 Type Codes IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

6.7 Type Codes IndraDyn L Size 300

)( 1)(

1

) 2 1'3430

! " )(' 1-3 )(4 1+3 )(0 13-

# )5#!%%$2 1

$ %& % !"#$% 1

' + 6%# !% 1/

( %, 0:$ !%#! %#2%% "&" 10/

) * - % 1////

+&,)(

( + ( +

( +

( +

/0"&$1

&''(

' ' % ' * * ' * * * *

-

!%&")(&")(8 !"#$%% % !"#$%9*$ !!$!% !%! 6%#28%:% 9

-

INN-41-43-T30-01-M03-MLP2.EPS

Fig. 6-14: Type code unit primary part 300

Page 91: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Type Codes IndraDyn L 6-17

DOK-MOTOR*-MLF********-PR02-EN-P

) 1)

1

.& !%&" 1

! 2" ! 6 1

# & 6!% 1'

$ !%&"$ 2 1 !%&"$ 2 1 !%&"$ 2 1

' * + % 1////

+&,)

% ' ( )# % ' ( )

# % ' ( )

# % ' ( )

#

*&+

&''(

, , # ,

!%&")(&")(8 !"#$%% % !"#$%9(%6 !% !%! 6%#28%:% 9

!

!

RNC-41433-402_NOR_N_D0_2004-06-122.EPS

Fig. 6-15: Type code unit secondary part 300

Page 92: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

6-18 Type Codes IndraDyn L Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Page 93: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Accessories and Options 7-1

DOK-MOTOR*-MLF********-PR02-EN-P

7 Accessories and Options

7.1 Hall Sensor Box

The hall sensor box SHL01.1 is an optional component for drivecontrollers with incremental measuring systems and IndraDyn L motors ofBosch Rexroth.

When using an incremental length measuring system a commutation ofthe axes has to result from every step up of the phases of the drivedevice. This results from an drive-internal procedure. After this, a forceprocessing of the motor is possible.

Note: The commutation is determined automatically during thephase step up by the SHL-Box. Therefore, no power switch-on is necessary.

Possible applications are, for example

• Commutation of motor on vertically axes,

• Commutation of motors which should not move for safety reasonsduring the commutation process .

• Gantry-arrangement of the motors.

Delivery of the SHL-boxes as accessory can be made alternatively

• ex works, as accessory of an IndraDyn L motor,

• as single part for retrofitting of existing machines with IndraDyn orEcodrive drive controllers and IndraDyn L motors.

Note: With the appropriate firmware are also control units of the typeDiax compatible with the hall sensor boxes of type SHL.

Hallbox10.EPS

Fig. 7-1: Accessory SHL01.1

Page 94: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

7-2 Accessories and Options Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Schematic Assembly

+,

-

+,

-

<

+,

-

+,

+,

+,

#! $

=+

/

>

Hallbox1.EPS

1: Control unit 4: Secondary part2: Control unit 5: Primary part3: Linear scale 6: Hall sensor box with cable

Fig. 7-2: Schematic assembly IndraDyn L - SHL

Note: Heed the notes within the “SHL01.1, Functional description”documentation, MNR. R911292537.

Page 95: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Electrical Connection 8-1

DOK-MOTOR*-MLF********-PR02-EN-P

8 Electrical Connection

8.1 Power Connection

Power cable on the primary partPrimary parts of IndraDyn L motors are fitted with a flexible and shieldedpower cable. This power cable is connected with the primary part and is2m long.

.0#1211

? ?

)

)'

*+*,*- **!*.*/01/2

.2.3(!41

ANSCHLKAB_MLF-EN.EPS

Fig. 8-1: Design of power cable for primary part MLP

The following overview shows the technical data of the power cables forevery single frame size.

Motor Frame Size PowerCable onPrimary

Part

Cross-section

Power Wire

Control Wirecross-section

Cross-section Bending radiusstatically

MLP040x-xxxx INK653 1,0mm² 0,75 mm² 12 mm 72 mm

MLP070x-xxxx INK603 4,0 mm² 16,3 mm 100 mm

MLP100x-xxxxMLP140x-xxxxMLP200A-xxxxMLP200B-xxxxMLP200C-0090MLP200C-0120MLP200D-0060

INK604 6,0 mm² 18,5 mm 110 mm

MLP200C-0170MLP200D-0100MLP200D-0120MLP300x-xxxx

INK605 10,0 mm²

1,0 or. 1,5 mm²

22,2 mm 130 mm

Fig. 8-2: Data of the used power cables on the primary parts of IndraDyn Lseries.

Page 96: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

8-2 Electrical Connection Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

The power cable, which is connected to the primary part, ends with openwire end, provided with wire end ferrules (Fig. 8-1) and might never beabandoned to dynamic bending forces. Do not route the primary partcable in a moving drag chain.

We recommend to assemble this cable in a fixed passing to

• a flange socket,

• a coupling or

• a terminal box (not in the scope of delivery of Rexroth)

From this junction, the power supply with the connection cable can be laidthrough a drag chain or the machine construction. Ready-madeconnection cables are available from Rexroth.

$&&

,1& "3,.& ,&2

'

)'

MOTORANSCHL_MLF_EN.EPS

Fig. 8-3: Passing the connection cable of the primary part

WARNING

Damage of the connection cable and thus of themotor by dynamic bending forces!⇒ Do not pass the primary part-cable into a moved

drag chain.⇒ Pass the connection cable after the junction into a

drag chain.

Note: The power cables of the primary part are designed for thehighest voltage of a motor frame size. In any circumstances,the cross-section of the supplementary power or connectioncable can be smaller.

Passing the power cable

Page 97: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Electrical Connection 8-3

DOK-MOTOR*-MLF********-PR02-EN-P

Connection Power Supply

7

@

A

(

(

(89

(8?9

-

$

#

503%

6

%

-

6

%

/

$

#

503%

(748

'798

5

:

5

:

(748

'798

.

.

0#12;;;

2.3(!41

ELCON01-MLF1.EPS

1: MLP motor ...2: Flange socket INS04863: Coupling INS0481

Fig. 8-4: Example of a connection with flange socket and coupling

(

(

(89

(8?9

$

#

503%

7

@

A

/

$

#

503%

(748

'798

(748

'798

.

.

7

@

A

0#12;;;

2.3(!41

ELCON02-MLF.EPS

1: MLP motor ...2: Terminal box

Fig. 8-5: Example of a connection with terminal box

Passing types and cable cross-sectionsWhen connecting a motor parallel to a drive controller, the followingpossibilities exist to assemble the connection cable.

• Passing a collective cable with a higher cross-section (Fig. 8-8)

• Passing of two separated parallel cables (Fig. 8-7)

The latter possibility gives maybe the advance of lower bending radius.The entire cross-section of the parallel passed cables must correspond tothe higher cross-section for parallel motor connection.

Connection of flange socket andcoupling

Connection over terminal box

Parallel motor connection

Page 98: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

8-4 Electrical Connection Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

$&&

MOTORANSCHL01-MLF-EN.EPS

Fig. 8-6: Separately arranged power connection

$&&

MOTORANSCHL02-MLF-EN.EPS

Fig. 8-7: Power connection at parallel arrangement, separate connectioncable

$&&

MOTORANSCHL03-MLF-EN.EPS

Fig. 8-8: Power connection at parallel arrangement, collective connectioncable with higher cross-section

The selection of the exact cable cross-section depends on the passingtype and is to be made according to the table below.

Power connection at separatearrangement

Power connection at parallelarrangement, separate

connection cable

Power connection at parallelarrangement, collective

connection cable with highercross-section

Connection Cable

Page 99: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Electrical Connection 8-5

DOK-MOTOR*-MLF********-PR02-EN-P

Motor type MLP... Motor phase-current

in A (effectivevalue)

Connection cable acc. toFig. 8-6 and Fig. 8-7

Connection cable acc. to.Fig. 8-8

040A-0300 4,2

040B-0150 4,2

040B-0250 5,3

040B-0300 6

070A-0150 5,5

070A-0220 6,3

1,0 mm² (INK653)

070A-0300 10,5 2,5 mm² (INK602)

070B-0100 5,5

070B-0120 5,8

070B-0150 6,2

1,0 mm² (INK653)

070B-0250 10 2,5 mm² (INK602)

070B-0300 12 4 mm² (INK603)

070C-0120 8,9

070C-0150 11,72,5 mm² (INK602)

070C-0240 13

1,0 mm² (INK653)

4 mm² (INK603)

070C-0300 19 2,5 mm² (INK602) 6 mm² (INK604)

100A-0090 6,6 1,5 mm² (INK650)

100A-0120 8

100A-0150 102,5 mm² (INK602)

100A-0190 12

100B-0120 12

1,0 mm² (INK653)

4 mm² (INK603)

100B-0250 22 2,5 mm² (INK602) 10 mm² (INK605)

100C-0090 13 1,0 mm² (INK653) 4 mm² (INK603)

100C-0120 15 1,5 mm² (INK650) 6 mm² (INK604)

100C-0190 23 4 mm² (INK603) 10 mm² (INK605)

140A-0120 12 1,0 mm² (INK653) 4 mm² (INK603)

140B-0090 15 1,5 mm² (INK650)

140B-0120 18 2,5 mm² (INK602)6 mm² (INK604)

140C-0050 13 1,0 mm² (INK653) 4 mm² (INK603)

140C-0120 21 2,5 mm² (INK602) 10 mm² (INK605)

140C-0170 29 4 mm² (INK603) 16 mm² (INK606)

140C-0350 53,5 16 mm² (INK606) ----

200A-0090 13 1,0 mm² (INK653) 4 mm² (INK603)

200A-0120 16 2,5 mm² (INK602) 6 mm² (INK604)

200B-0040 13 1,0 mm² (INK653) 4 mm² (INK603)

200B-0120 22 2,5 mm² (INK602)

200C-0090 23,3 4 mm² (INK603)10 mm² (INK605)

200C-0120 30 6 mm² (INK604) 16 mm² (INK606)

200C-0170 46 10 mm² (INK605) 25 mm² (INK607)

200D-0060 28 4 mm² (INK603) 10 mm² (INK605)

200D-0100 46 25 mm² (INK607)

200D-0120 5310 mm² (INK605)

-----

300A-0090 19 2,5 mm² (INK602) 6 mm² (INK604)

300A-0120 23 10 mm² (INK605)

300B-0070 284 mm² (INK603)

300B-0120 35 6 mm² (INK604)

300C-0060 29 4 mm² (INK603)

16 mm² (INK606)

300C-0090 37 6 mm² (INK604) 25 mm² (INK607)

Fig. 8-9: Necessary cross-section of the connection wires depending on themotor type, passing, and connection type

Page 100: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

8-6 Electrical Connection Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Note: For additional description about power cables on primary partsand connection cables see documentation “Connection cable”Selection data, MNR. R911282688.

Connection of Drive Controller IndraDriveThe following overview shows the connection and clamp designations forpower connection and the motor temperature monitoring.

Note: For additional information to motor temperature monitoringsee Chapter 9-7.

Drive device Terminal blockpower connection

Clamp designationpower connection

Terminal blockdesignation motor

temperaturemonitoring

Clamp designationmotor temperature

monitoring

HMS0x.x

HMD0x.x X5 A1, A2, A3 X6 1 (MotTemp+)2 (MotTemp-)

Fig. 8-10: Clamp designations drive-controller

+ , !%%$$

%%

'' '

B/C*

<$

?@

4

@4

%%!:$ ! !% !%

% "?

% "

<#

( 0/;D

( 0 C,

" # %

ELCON06-MLF-EN.EPS

Fig. 8-11: Connection on the drive-controller – separate arrangement primarypart

Separate arrangement

Page 101: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Electrical Connection 8-7

DOK-MOTOR*-MLF********-PR02-EN-P

+ , + ,

( 0/;D

( 0 C,

" # %

( 0/;D

( 0 C,

" # %

!%%$$

%%

'' '

B/C*

<$

?@

4

@4

%%!:$ ! !% !%

% "?

% "

<#

%%

B/C*

ELCON07-MLF-EN.EPS

Fig. 8-12: Connection on the drive-controller – parallel arrangement primarypart

The connection of the power wires of the connection cable on the drivecontroller at parallel arrangement of the primary parts with cable output inthe cross-direction depends on the direction of the cable output.

Connection at arrangement acc. to Fig. 9-16Cable output in the same direction

Drive-controller X5 1 2 3

Primary part 1 1 2 3

Primary part 2 1 2 3

Connection at arrangement acc. to Fig. 9-20 and Fig. 9-23Cable output in the opposite direction

Drive-controller X5 1 2 3

Primary part 1 1 2 3

Primary part 2 1 3 2

Fig. 8-13: Connection of the power wires at parallel arrangement of primaryparts on a drive-controller

Parallel arrangement

Connection power wire forprimary part at parallel

arrangement

Page 102: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

8-8 Electrical Connection Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Connection Drive-Controller DIAX 04/ EcodriveSubsequent, the connection of the power supply and the temperaturemonitoring of the drive-controller are described.

The following overview shows the connection and clamp designations forpower connection and the motor temperature monitoring.

Note: For additional information to motor temperature monitoringsee Chapter 9-7.

Drive device Terminal blockpower connection

Clamp designationpower connection

Terminal blockdesignation motor

temperaturemonitoring

Clamp designationmotor temperature

monitoring

HDS0x.x

DKCxx.x X5 A1, A2, A3 X6 1 (TM+)2 (TM-)

Fig. 8-14: Clamp designations drive-controller

%%

'''

B/C*

<$

?

4E?

4E

A4

@4

" # %

!%%$$

+>

%%!:$ ! !% !%

<#

/;D C,

ELCON03-MLF-EN.EPS

Fig. 8-15: Connection on drive-controller – separate arrangement of primarypart

Separate arrangement

Page 103: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Electrical Connection 8-9

DOK-MOTOR*-MLF********-PR02-EN-P

'''

<$

?

4E?

4E

A4

@4

!%%$$

+

>%%!:$

! !% !%

%%

B/C*

" # %

%%

B/C*

" # %

<#

+ ,

/;D C,/;D C,

+ ,

ELCON04-MLF-EN.EPS

Fig. 8-16: Connection on the drive-controller – parallel arrangement of primarypart

The connection of the power wires of the connection cable on the drivecontroller at parallel arrangement of the primary parts with cable output inthe cross-direction depends on the direction of the cable output.

Connection at arrangement acc. to Fig. 9-16Cable output in the same direction

Drive-controller X5 A1 A2 A3

Primary part 1 1 2 3

Primary part 2 1 2 3

Connection at arrangement acc. to Fig. 9-20 and Fig. 9-23Cable output in the opposite direction

Drive-controller X5 A1 A2 A3

Primary part 1 1 2 3

Primary part 2 1 3 2

Fig. 8-17: Connection of the power wires at parallel arrangement of primaryparts on a drive-controller

Parallel arrangement

Connection power wire forprimary part at parallel

arrangement

Page 104: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

8-10 Electrical Connection Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

8.2 Connection of Length Measurement System

The connection of the length measurement system is made via a ready-made cable.

8$:$ %4%!E %9

$ # !

= 8"% $ 2 #2& 3#""$ :& #2& #!# 9

!% !%%!%#"$2

!%%$$

ELCON05-MLF-EN.EPS

Fig. 8-18: Connection example length measurement system

The following table shows an overview of the ready-made cable to theconnection of the length measurement system.

Measuring system type Absolute, ENDAT Incremental

Output variable Voltage Voltage

Signal flow line Sine Sine

Signal amplitude 1VSS 1VSS

Position interface DAG DLF

Ready-made cable of Rexroth – designed with

Connector for Diax 04

Connector for DKCxx.3

Connector forIndraDrive

RKG 4142

RKG 4001

RKG 4038

RKG 4384

RKG 4002

RKG 4041

Coupling for Diax 04

Coupling for DKCxx.3

Coupling for IndraDrive

-

-

-

RKG 4383

RKG 4389

RKG 4040

Fig. 8-19: Connection components length measurement system

Note: For additional description see documentation “ConnectionCable Selection Data, MNR. R911282688.

Page 105: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-1

DOK-MOTOR*-MLF********-PR02-EN-P

9 Notes Regarding Application and Construction

9.1 Functional Principle

The following figure shows the principal design of IndraDyn L motors.

3 3 3

)

)*)

)

AUFBAU-MLF-EN.EPS

Fig. 9-1: General construction of an IndraDyn L motor

The force generation of the IndraDyn L motor, a synchronous-linearmotor, is the same as the torque generation at rotative synchronousmotors. The primary part (active part) has a three-phase winding; thesecondary part (passive part) has permanent magnets (see Fig. 9-1).

Both, the primary part and the secondary part can be moved.

Realization of any traverse path length can be done by stringing togetherseveral secondary part segments.

The IndraDyn L motor is a kit motor. The components primary andsecondary part(s) are delivered separately and completed by the user vialinear guide and the linear measuring system.

The construction of an axis fitted with an IndraDyn L motor (see Fig. 9-2)normally consists of

• Primary part with three-phase winding,

• One or more secondary parts with permanent magnets,

• Linear scale

• Linear guide,

• Energy flow as well as

• Slide or machine construction

Axis installation

Page 106: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-2 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

1

)'4

ACHSAUFBAU-MLF-EN.EPS

Fig. 9-2: General construction of an axis with an IndraDyn L

For force multiplication can be two or more primary parts mechanicallycoupled, arranged parallel or in-line. For additional information refer tochapter 9.4 “Arrangement of Motor Components”.

Note: Only the primary and the secondary part(s) belong to thescope of delivery of the motor.

Linear guide and length scale as well as further additionalcomponents have to be made available by the user. Forrecommendations to tested additional components seechapter 16 “Recommended suppliers of additionalcomponents”

9.2 Motor Design

IndraDyn L motors of Bosch Rexroth are tested drive components. Theyhave the following characters:

• Modular system with different motor sizes and lengths for feed forcesup to 21.500 N per motor and speeds over 600 m/min

• Different winding constructions at any motor size for optimumadjustment to different speed demands.

• All motor components are completely encapsulated, i.e. crack initiationwithin casting compounds, damage or corrosion of magnets a.s.o. areexcluded.

• Different designs regarding cooling and encapsulation of the primarypart (see below: “standard and thermal encapsulation”) Standard andthermal encapsulation

• Protection class IP65 (all motor components)

• High operation safety for DC bus voltage up to 750V.

• No mechanical deterioration

• Protection of the motor winding against thermal overstress byintegrated temperature sensors

• Flexible, shielded and strain-bearing power lead wire

Page 107: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-3

DOK-MOTOR*-MLF********-PR02-EN-P

To make the optimum motor for the different uses, regarding technicaldemands and costs available, are primary parts in different designs incooling and encapsulation available.

• Standard encapsulation: stainless steel encapsulation with a liquidcooling integrated into the back of the motor to dissipate the lost heat.

• Thermal encapsulation: stainless steel encapsulation with anadditional liquid cooling on the back of the motor and heat conductiveplates for optimum thermal decoupling to the machine construction.

Primary part standard encapsulationAt use with less thermal demands on the machine accuracy, primary partsin standard encapsulation present an economy solution. Primary partswith standard encapsulation are mainly used in the general automationsector. There, the electrical motor components are protected by astainless steel encapsulation. The cooling system of this motor design isintegrated into the motor and can only be used to discharge lost heat orkeeping the specified continuous feedrate. It offers no additional thermaldecoupling on the motor side to the machine.

1 &

& -450

"

!

&

STANDARDKAPSELUNG-MLP-EN.EPS

Fig. 9-3: Primary part with standard encapsulation (see fig. with secondarypart)

Note: For further information to liquid cooling see Chapter 9.6 “Motorcooling”.

The main application areas of this design of the primary part can be foundin the sectors:

• General automation

• Handling

Design of cooling andencapsulation

Main application area

Page 108: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-4 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Primary part thermal encapsulationPrimary parts in thermal encapsulation reach an high constanttemperature on the mounting surface due to an additional – into theencapsulation integrated liquid coolant for thermal encapsulation to themachine construction. At design “Thermal encapsulation”, a maximumtemperature rise on the screw-on surface in opposite to the coolant inlettemperature of 2 K can be reached.

1

&& "

& -450

"

!

&

&

THERMOKAPSELUNG-MLP-EN.EPS

Fig. 9-4: Primary part with thermal encapsulation (see fig. with secondarypart)

The primary part is not completely connected with the mounting surfaceon the machine side, but only lays on increased bearing points. Thisoffers the following advantages:

• Additional thermal encapsulation and therewith further minimization ofthe possible heat-flow into the machine

• Processing of the screw-on surface on the machine side makes iteasier to keep the necessary mounting tolerances.

Note: For further information to liquid cooling see Chapter 9.6 “Motorcooling”.

Main application areas of this primary part design are, e.g.

• Machine tools

• Precision applications

Main application area

Page 109: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-5

DOK-MOTOR*-MLF********-PR02-EN-P

Design secondary partThe secondary part or a secondary part segment consists of a steel baseplate with fitted permanent magnets. The fastening holes are located onthe outer edge along the secondary part.

To ensure the utmost operation reliability, the permanent magnets of thesecondary part are always protected against corrosion, action of outerinfluences (e.g. coolants and oil) and against mechanical damage, due toan integrated rustless cover plate.

It is possible to use a scraper direct on the secondary part (see alsoChapter 9.20 “Scraper”).

MLS.tif

Fig. 9-5: Secondary part MLS

Note: The design of the secondary part is independent from thedesign of the primary part.

Secondary parts or secondary part segments are available in the followinglengths (see also Chapter 6 “Type Codes”)

• 150mm

• 450mm

• 600mm

The required length L of the secondary part can be defined as follows:

partimaryPrpathTraversepartSecondary LLL +≥

Fig. 9-6: Defining the required length of the secondary part

Available length of secondaryparts

Required length of thesecondary parts

Page 110: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-6 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

SizeFor adjusting on different feed force requirements, Bosch Rexroth offersIndraDyn L motors in a modular system with different sizes and lengths.

The active breadth of primary and secondary parts at linear motors serveto define the size. A linear motor with e.g. size 100 has a laminated coreand magnet breadth of 100 mm. The IndraDyn L modular systemcontains the following motor sizes:

'

Baugrösse_Breite_MLF.EPS

Fig. 9-7: Sizes of IndraDyn L synchronous linear motors

Every primary part is graduated in different motor lengths. Thedesignation of the length of the primary part is done by the letters A, B, C,D.

67 8

Baugrösse_Länge_MLF.EPS

Fig. 9-8: Different lengths of primary parts

Note: For detailed information to sizes and length see Chapter 5“Specification”.

Sizes

Page 111: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-7

DOK-MOTOR*-MLF********-PR02-EN-P

9.3 Requirements on the Machine Design

Derived from design and properties of linear direct drives, the machinedesign must meet various requirements. For example, the moved massesshould be minimized whilst the rigidity is kept at a high level.

Mass reductionTo ensure a high acceleration capability, the mass of the moved machineelements must be reduced to a minimum. This can be done by usingmaterials of a low specific weight (e.g. aluminum or compound materials)and by design measures (e.g. skeleton structures).

If there are no requirements for extreme acceleration, masses up toseveral tons can be moved without any problems. There is no control-engineering correlation between the moved slide mass and the motor´smass, as this is the case with rotary drives.

Precondition therefore is, a very rigid coupling of the motor to the weight.

Mechanical rigidityIn conjunction with the mass and the resulting resonant frequency, therigidity of the individual mechanical components within a machine chieflydetermines the quality a machine can reach. The rigidity of a motion axisis determined by the overall mechanical structure. The goal of theconstruction must be to obtain an axis structure that is as compact aspossible.

The increased loop bandwidth of linear drives required higher mechanicalnatural frequencies of the machine structure in order to avoid theexcitation of vibrations.

To ensure a sufficient control quality, the lowest natural frequency thatoccurs inside the axis should not be less than approximately 200 Hz. Thenatural frequencies of axes with masses that are not constantly moving(e.g. due to workpieces that must be machined differently) change, sothat the natural frequency is reduced with m/1f ≈ as the massincreases.

The elasticity´s of the axes (both, the mechanical and the control-engineering component) add up. This must be taken into account withrespect to the rigidity of cinematically coupled axes.

If several axes must cinematically be coupled in order to produce pathmotions (e.g. cross-table or gantry structure), the mutual effects of theindividual axes on each other should be minimized. Thus, cinematicchains should be avoided in machines with several axes. Axisconfigurations with long projections that change during operation areparticularly critical.

Initiated by acceleration, deceleration or process forces of the movedaxis, reactive forces can deform the stationary machine base or cause itto vibrate.

Natural frequencies

Mechanically linked axes

Reactive forces

Page 112: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-8 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

"

STEIFIGKEIT01-MLF-EN.EPS

Fig. 9-9: Deformation of the machine base caused by the reactive forceduring the acceleration process

m 5mN/ 1000m/s² 10kg500

cam

splate base

µµ

=⋅=⋅=∆

∆s: Deformation of displacement of the machine base in µmm: Mass in kga: Acceleration in m/s²c: Rigidity of the machine base in N/µm

Fig. 9-10: Typical calculation of the machine base deformation

The rigidity of the length measuring system integration is particularlyimportant. Please refer to Chapter 9.15 “Length measuring system” forexplanations.

Integrating the linear scale

Page 113: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-9

DOK-MOTOR*-MLF********-PR02-EN-P

9.4 Arrangement of Motor Components

Single arrangementThe single arrangement of the primary part is the most commonarrangement.

Fig. 9-11: Single arrangement of primary parts

The independent operation of two or more primary parts on a secondarypart is possible too (see Fig. 9-11 right-hand sight). In such anarrangement, the length measuring system can also be equipped with twoor more scanning heads.

Note: Due to the higher sealing lip friction, the quantity of scanningheads in encapsulated linear scales is usually limited to two.Please contact the scale manufacturer for details.

5

EINZELANORDNUNG01-MLF-EN.EPS

Fig. 9-12: Controlling a linear motor with single arrangement of the motorcomponents

Page 114: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-10 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Several motors per axisThe arrangement of several motors per axis provides the followingbenefits:

• Multiplied feed forces

• With corresponding arrangement, compensation of the attractiveforces “outwards”

Fig. 9-13: Arrangement of several motors per axis

Depending on the application, the motors can be controlled in twodifferent ways:

• Two motors at one drive controller and one linear scale (parallelarrangement)

• Two motors at two drive controllers and two linear scales (Gantryarrangement)

Parallel arrangementThe arrangement of two or more primary parts on one drive controller inconjunction with a linear scale is known as parallel arrangement. Parallelarrangement is possible if the coupling between the motors can be veryrigid.

5

PARALLELANORDNUNG01-MLF-EN.EPS

Fig. 9-14: Parallel arrangement of two primary parts on one drive controller inconjunction with a length measuring system

Page 115: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-11

DOK-MOTOR*-MLF********-PR02-EN-P

To ensure successful operation, the axis must fulfill the followingrequirements in parallel arrangement:

• Identical primary and secondary parts

• Very rigid coupling of the motors within the axis

• Position offset between the primary parts <1 mm in feed direction

• Position offset between the secondary parts <1 mm in feed direction

• Same pole sequence of the secondary parts

• If possible, load stationary and arranged symmetrically with respect tothe motors

"&11"""-"&"9.0

"11"2!"+

"11"2!""

)

3

3

PARALLELANORDNUNG02-MLF-EN.EPS

Fig. 9-15: Alignment of motor components in parallel arrangement

Note: The mounting holes of the primary parts are used for definingthe correct position of the paralleled motors. In the grid, youmust always use the same hole in either primary part (see Fig.9-15). An offset of the hole grid between the primary parts isonly permitted in the structures shown in Fig. 9-17 or Fig. 9-21.

The face ends of the primary parts may alternatively be used if themounting holes cannot be employed as position reference. The motorparts have the corresponding tolerances.

Parallel arrangement: Double comb arrangementIn a parallel arrangment – within a Gantry arrangement, too – the primaryparts in feed direction can mechanically be coupled and be arranged inthe form of a “double comb arrangement” (see Fig. 9-13 right-hand side).In addition to the force multiplication, the attractive forces betweenprimary and secondary part are compensated towards the outside. Withthe corresponding arrangement, the linear guides are not stressedadditionally, and may even be sized smaller.

Note: Double comb arrangement (to Fig. 9-13 right-hand side) doesnot require a minimum distance to be kept between the twosecondary part mounting surfaces.

Page 116: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-12 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Parallel arrangement: Arrangement of primary parts insuccessionIn a parallel arrangement – within a Gantry arrangement, too – theprimary parts in feed direction can mechanically be coupled and bearranged in succession (see Fig. 9-13 center).

To ensure successful operation, the primary parts must be arranged in aspecific grid. The determination of the grid sizes that must be adhered todepends on the direction of the cable entry and the permissible bendingradius of the power cable.

If the primary parts are arranged behind each other with the cable outputin the same direction (see Fig. 9-9), an integer multiple of twice theelectrical pole pitch must be adhered to:

3

PARALLELANORDNUNG03-MLF-EN.EPS

Fig. 9-16: Arrangement of the primary parts in a row at cable output into thesame direction.

Note: When you determine the correct primary part distance withcable output in the same direction acc. to Fig. 9-16, you mustalways use the same reference point for both primary parts(e.g. the same mounting hole).

pP 2nx τ∆ ⋅⋅=

∆xP: Required grid spacing between the primary parts in mmτP: Electrical pole pitch in IndraDyn L motors in mm (all sizes 37.5 mm)n: Integer factor (depends on mounting distance)

Fig. 9-17: Determining the grid distance between the primary parts with cableentries in the same direction

Cable output in the samedirection

Page 117: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-13

DOK-MOTOR*-MLF********-PR02-EN-P

For a motor arrangement with cable output at opposite directions, thefollowing size-related minimum distances between primary parts resultfrom (see Fig. 9-16 and Fig. 9-17):

Motor version Xpmin in mm

Standard encapsulationsizes (all) p2nmm 15 τ⋅⋅+

Thermal encapsulationsizes (all) p2nmm 65 τ⋅⋅+

n: The integer factor n must be chosen in that way, so that the followingconditions can be kept.

τP: Electrical pole pitch in IndraDyn L motors in mm (all sizes 37.5 mm)Fig. 9-18: Distance xpmin to be kept between the two primary parts with cable

output in the same direction

cablemotorradiusbendingepermissiblx minp >Fig. 9-19: Distance xpmin to be kept between the two primary parts with cable

output in the same direction

Option 1:

If the primary parts are arranged behind each other and with cable outputin opposite directions to Fig. 9-20 a defined distance must be keptbetween the primary parts according to Fig. 9-21 and Fig. 9-22.

3

PARALLELANORDNUNG04-MLF-EN.EPS

Fig. 9-20: Option 1: Arrangement of primary parts behind each other with cableentries in opposite directions

Note: When you determine the correct primary part distance withcable output in opposite directions according to Fig. 9-20, youcan use the distance between the primary part end faces xp asreference point.

minppP x2nx +⋅⋅= τxP: Required grid spacing between the primary parts in mmτP: Electrical pole pitch in IndraDyn L motors in mm (all sizes 37.5 mm)n: Integer factor (depends on mounting distance)

Fig. 9-21: Determining the grid distance between primary parts with cableentries in opposite directions

Minimum distances betweenprimary parts

Requirement

Cable entry in opposite direction

Page 118: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-14 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

For a motor arrangement with cable output at opposite directions, thefollowing size-related minimum distances between primary parts resultfrom:

Motor version Xpmin in mm

Standard encapsulationsizes (all) mm65

Thermal encapsulationsizes (all) mm59

Fig. 9-22: Distance xpmin to be kept between the two primary parts with cableoutput in opposite direction

Option 2:

If the primary parts are arranged behind each other and with cable outputin opposite directions to Fig. 9-23 a defined distance must be keptbetween the primary parts according to Fig. 9-24 and Fig. 9-25.

3

3

PARALLELANORDNUNG05-MLF-EN.EPS

Fig. 9-23: Option 2: Arrangement of primary parts behind each other with cableentries in opposite directions

Note: When you determine the correct primary part distance withcable output in opposite directions according to Fig. 9-20 andFig. 9-23, you can use the distance between the primary partend faces xp as reference point.

minppP x2nx +⋅⋅= τxP: Required grid spacing between the primary parts in mmτP: Electrical pole pitch in IndraDyn L motors in mm (all sizes 37.5 mm)n: Integer factor (depends on mounting distance)

Fig. 9-24: Determining the grid distance between primary parts with cableentries in opposite directions

Minimum distance between theprimary parts (option 1)

Cable entry in opposite direction

Page 119: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-15

DOK-MOTOR*-MLF********-PR02-EN-P

For a motor arrangement with cable output at opposite directions, thefollowing size-related minimum distances between primary parts resultfrom:

Motor version Xpmin in mm

Standard encapsulationsizes (all) p2nmm40 τ⋅⋅+

Thermal encapsulationsizes (all) p2nmm71 τ⋅⋅+

n: The integer factor n must be chosen in that way, so that the followingconditions can be kept.

τP: Electrical pole pitch in IndraDyn L motors in mm (all sizes 37.5 mm)Fig. 9-25: Distance xpmin to be kept between the two primary parts with cable

output in opposite direction

cablemotorradiusbendingepermissiblx minp >

Fig. 9-26: Distance xpmin to be kept between the two primary parts with cableoutput in opposite direction

The connection of the power wires of the connection cable on the drivecontroller at parallel arrangement of the primary parts with cable output inthe cross-direction depends on the direction of the cable output. Heed thedetails in chapter 8 “Connection Techniques”, especially Fig. 8-13!

Connection at arrangement acc. to Fig. 9-16Cable output in the same direction

Drive-controller X5 1 2 3

Primary part 1 1 2 3

Primary part 2 1 2 3

Connection at arrangement acc. to Fig. 9-20, Abb. 9-23Cable output in opposite direction

Drive-controller X5 1 2 3

Primary part 1 1 2 3

Primary part 2 1 3 2

Fig. 9-27: Connection of the power wires at parallel arrangement of primaryparts on a drive-controller

Note: The reference motor for determining the encoder polarity andfor commutation adjustment acc. to Fig. 9-20 and 9-23 isalways the primary part 1. Refer to Chapter 14 “Startup” aswell. Ensure that the secondary part is correctly aligned.

You can find additional information about electrical connectionin the Chapter 8 “Connection Techniques”.

Minimum distance between theprimary parts (option 2)

Requirement

Power cable connection

Page 120: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-16 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Gantry ArrangementOperation with two linear scales and drive controllers (Gantryarrangement) should be planned if there are load conditions that aredifferent with respect to place and time, and sufficient rigidity between themotors cannot be ensured. This is frequently the case with axis in aGantry structure, for example.

Note: Parallel motors may also be used with a Gantry arrangement.

5

GANTRYANORDNUNG01-MLF-EN.EPS

Fig. 9-28: Gantry arrangement

With Gantry arrangements it must be remembered that the motors maybe stressed unsymmetrically, although the position offset is minimized.As a consequence, this permanently existing bas load may lead to agenerally higher stress than in a single arrangement. This must be takeninto account when the drive is selected.

Note: The asymmetric capacity can be reduced to a minimum byexactly aligning the length measuring system and the primaryand secondary parts to each other, and by a drive-internal axiserror compensation.

Page 121: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-17

DOK-MOTOR*-MLF********-PR02-EN-P

Vertical axes

WARNING

Uncontrolled movements⇒ When linear motors are used in vertical axes, it must

be taken into account that the motor is not self-locking when power is switched off. Sinking the axiscan only be secured by an appropriate holding brake(see also Chapter 9.17 Braking Systems and HoldingDevices).

Suitable holding devices must be used for preventing the axis fromsinking after the power has been switched off. These holding devices canbe actuated electrically, pneumatically or hydraulically.

Note:

• Adequate holding devices are integrated in most of today´sweight compensation systems.

• On vertical axis, the use of an absolute measuring systemis recommended. Alternatively, also an incrementalmeasuring system, in connection with a hall sensor box(see Chapter 7 Accessories) can be used.

An additionally used weight compensation ensures that the motor is notexposed to an unnecessary thermal stress that is caused by the holdingforces and the acceleration capability of the axis is independent of themotion direction. The weight compensation can be pneumatic orhydraulic.

Weight compensation with a counterweight is not suitable since thecounterweight must also be accelerated.

Weight compensation

Page 122: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-18 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

9.5 Feed and Attractive Forces

Attractive forces between primary and secondary partWhen it is installed, a synchronous linear motor has a permanentlyeffective attractive force between primary and secondary part that resultsfrom its principle. With synchronous linear motors, this attractive forcealso exists when the motor is switched off.

$16

ANZKRAFT01-MLF-EN.EPS

Fig. 9-29: Attractive force between primary and secondary part

These attractive forced must always be taken into account in themechanical design of the system.

Depending on the motor arrangement, the attractive forces must beaccommodated by linear guides and the slide and machine structure.

With an unfavorable arrangement of the motors, the attractive forces cancause deformations (deflection) in the machine structure andunacceptable transverse stress on the linear guides. The following pointsshould therefore be taken into account during the design integration of themotors:

• Arrange the linear guides as close to the motor as possible.

• To compensate the attractive forces, you can use the parallelarrangement shown at the right-hand side in Fig. 9-13.

Notes:

• When installed, the attractive force must not reduce the airgap between primary and secondary part. The mechanicaldesign must provide sufficient rigidity.

• The attractive forces at the nominal air gap are specified ineach data sheet of a motor in Chapter 4 “Technical Data”.

Considering the attractive forcein motor installation

Page 123: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-19

DOK-MOTOR*-MLF********-PR02-EN-P

Air-gap-related attractive forces between primary and secondary partThe attractive force rises as the distance between primary and secondarypart is reduce.

When lowering the primary part on the secondary part, result by reducingthe air gap increasing attractive forces.

The path in the following diagram shows the attractive force as a functionof the air gap.

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 mm 5 mm 10 mm 15 mm 20 mm 25 mm 30 mm

measurable air gap

attr

acti

re f

orc

e re

l. to

no

rmin

al a

ir g

ap

nominal air gap

ANZIEHUNGSKRAFT.XLS

Fig. 9-30: Attractive force vs. distance between primary and secondary part

Air-gap-related attractive forces vs. power supplyThe attractive force decreases with rising power supply of the primarypart.

The path in the following diagram shows the attractive force vs. the powersupply.

//

,%':

ANZIEH_BESTROM-MLF.EPS

FATT: Attractive forceimax: Maximum current

Fig. 9-31: Attractive force vs. power supply

Page 124: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-20 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Air-gap-related feed force

The feed force detailed in the specifications are related to the specifiedrated air gap. The tolerances permissible for the measurable air gap havea slight effect on the feed forces that can be achieved. The followingdiagram shows this relationship:

97%

98%

99%

100%

101%

102%

103%

0,7 mm 0,8 mm 0,9 mm 1,0 mm 1,1 mm 1,2 mm 1,3 mm

measurable air gap

feed

fo

rce,

rel

. to

no

min

al a

ir g

ap

nominal air gap

LUFTSPALTABHÄNGIGE VORSCHUBKRAFT MLF_EN.XL

Fig. 9-32: Feed force within the air gap tolerance of synchronous linear motorsIndraDyn L.

Note: Sizes in Fig. 9-32 are only valid for IndraDyn L synchronouslinear motors; there is no general correlation for other motortypes.

Reduced overlapping between primary and secondary partWhen moving in the end position range of an axis, it can be necessarythat the primary part moves beyond the end of the secondary part. Thisresults in a partial coverage between primary and secondary part.

If primary and secondary part are only partially covered, follows a reducedfeed force and attractive force.

The force reduction does not start immediately. It differs according to theencapsulation types and the installation position of the primary part.

Outside the beginning and end areas, the force is reduced linearly as afunction of the reduced coverage area.

The following diagram illustrates the correlation between the coveragebetween primary and secondary part and the resulting force reduction.

Air gap tolerances

Inception of the force reduction

Page 125: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-21

DOK-MOTOR*-MLF********-PR02-EN-P

:

:

:

:

:

#:

%:

':

(:

):

:

$&&& 1

1$1"1.

1$ 12!

"

";

";

PRIMPARTOVSEC02-MLF-EN.EPS

Fig. 9-33: Force reduction with partial coverage of primary and secondary part

;

"

"+3#3/" ##"3

;

"

"+3#3/" ##"3

;

"

;

"

PRIMPARTOVSEC04-MLF-EN.EPS

Fig. 9-34: Presentation of force reduction with regard to Fig. 9-33

Installation position 1Motor version

SR1 [mm] SR2 [mm]

Standard encapsulation 30 5

Thermal encapsulation 52 8

Installation position 2

Standard encapsulation 5 30

Thermal encapsulation 8 52

Fig. 9-35: Partial coverage vs. installation position

The partial coverage of primary and secondary parts must not be used incontinuous operation since there is an increased current consumption ofthe motor. Instabilities in the control loop can be expected from a certainreduction of the degree of coverage onwards.

WARNING

Malfunctions and uncontrolled motormovements due to partial coverage of primaryand secondary part!⇒ Partial coverage of primary and secondary part only

when moving to the end position during a drive error⇒ Minimum coverage factor 75%

Page 126: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-22 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

9.6 Motor Cooling System

Thermal behavior of linear motorsThe rated feed force of a synchronous linear motor can be achieved ismainly determined by the power loss PV that is produced during theenergy conversion process. The power loss fully dissipates in form ofheat. Due to the limited permissible winding temperature it must notexceed a specific value.

Note: The maximum winding temperature of IndraDyn L motors is155°C. This corresponds to insulation class F.

The total losses of synchronous linear motors are chiefly determined bythe direct load loss of the primary part due to the low relative velocitiesbetween primary and secondary part:

T122

ViV fRi43

P P ⋅⋅⋅=≈

PV: Total loss in WPVi: Direct load losses in Wi: Current in motor cable in AR12: Electrical resistance of the motor at 20°C in Ohm

(see Chapter 5 “Technical Data)fT: Factor temperature-related resistance raise

Fig. 9-36: Power loss of synchronous linear motors

Note: When you determine the power loss according to Figure 9-36,you must take the temperature-related rise of the electricalresistance into account. At a temperature rise of 115 K (from20°C up to 135°C), for example, the electrical resistance goesup by the factor fT = 1.45.

The temperature variation vs. the time is determined by the producedpower loss and the heat-dissipation and –storage capability of the motor.The heat-dissipation and –storage capability of an electrical machine is(combined in one variable) specified as the thermal time constant.

Note: With liquid cooling systems, the thermal time constant isbetween 5...10 min (depending on size).

The following Figure 9-37 shows a typical heating and cooling process ofan electrical machine. The thermal time constant is the period withinwhich 63% of the final over temperature is reached. With liquid cooling,the cooling time constant corresponds to the heating time constant. Thus,the heating process and the cooling process can both be specified withthe specified thermal time constant (heating time constant) of the motor.

In conjunction with the duty cycle, the correlation to Fig. 9-38 and Fig. 9-40 are used for defining the duty type, e.g. acc. to DIN VDE 0530.

Power loss

Thermal time constant

Page 127: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-23

DOK-MOTOR*-MLF********-PR02-EN-P

Time

Ove

rtem

per

atu

re

heating up with final overtemperature = 0

heating up with initial overtemperature > 0

cooling

ERWAERMUNG MLF_EN.XLS

final overtemperture

tth

63 %

Fig. 9-37: Heating up and cooling down of an electrical machine

thth tt

att

e ee1)t(−−

⋅+

−⋅= ϑϑϑ

ϑe: Final over temperature in Kϑa: Initial over temperature in Kt: Time in mintth: Thermal time constant in min (see Chapter 4 “Technical Data)

Fig. 9-38: Heating up (over temperature) of an electrical machine comparedwith coolant

Since the final over temperature is proportional to the power loss, theexpected final over temperature ϑe can be estimated according to Fig. 9-39:

maxe2dN

2eff

maxevN

cee

F

F

PP ϑϑϑ ⋅=⋅=

Pce: Permanent power loss or average power loss vs. duty cycle time inW (see Chapter 11.4 “Determining the Drive Power)

PVN: Nominal power loss of the motor in Wϑemax: Maximum final over temperature of the motor in KFeff: Effective force in N (from application)FdN: Rated force of the motor in N (see Chapter 4 “Technical data”)tth: Thermal time constant in min (see Chapter 4 “Technical Data)

Fig. 9-39: Expected final over temperature of the motor

thtt

e e)t(−

⋅= ϑϑϑe: Final over temperature or shutdown temperature in Kt: Time in mintth: Thermal time constant in min (see Chapter 4 “Technical Data)

Fig. 9-40: Cooling down of an electrical machine

Heating up

Final over temperature

Cooling

Page 128: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-24 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Cooling concept of IndraDyn L synchronous linear motorsThe request for highest feed forces and minimum installation volumeusually requires linear motors to be equipped with a liquid cooling. Theliquid cooling ensures:

• that the power loss is removed and, consequently, rated feed forcesare maintained;

• that a certain temperature level is maintained at the machine

The cooling and encapsulation concept of IndraDyn L motors containstwo different solutions:

Primary parts with standard encapsulation are mainly used in the generalautomation sector. The cooling system of this motor design is integratedinto the motor and can only be used to discharge lost heat or keeping thespecified continuous feedrate. It offers no additional thermal decouplingon the motor side to the machine. The maximum temperature of thecontact surface can locally rise up to 60°C. These maximum temperaturegradients can occur independently of the coolant inlet temperature.

For an optimum thermal decoupling between the motor and the machinestructure, the primary parts of the thermal encapsulation version have anadditional liquid cooling system at the back of the motor and atlongitudinal and frond ends. The constant temperature that can easily beattained and the minimum heat transfer into the machine make theprimary parts of the thermal encapsulation version particularly suitable forthe utilization in machine tools and in other precision applications. Insidethe motor there is already an optimum connection between the internalcooling circulation used for removing the power loss and the cooling ductsof the thermal encapsulation.

The primary part is not completely connected with the mounting surfaceon the machine side, but only lays on increased bearing points. Thisprovides an additional thermal decoupling and, consequently, furtherminimization of the possible heat transfer into the machine (see Fig. 9-41).

Note: Using the thermal encapsulation does not provide anyimproved performance date, e.g. for the continuous feed force.The power ratings are identical for both versions.

Standard encapsulation

Thermal encapsulation

Page 129: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-25

DOK-MOTOR*-MLF********-PR02-EN-P

7

-0

89-&&.& 0

."1".1 "&&.

THERMOKAPSELUNG03-MLF-EN.EPS

Fig. 9-41: Cooling concept for thermal encapsulation

The secondary version is identical for both primary part versions. Thesecondary part does not develop any power loss. With inadvertentconditions (extended deactivation or slow velocity of the primary parttogether with a simultaneously acting high continuous force), there can bea heat transfer by the primary part due to radiation or convection.

Note: The secondary part does not develop any power loss. Themaximum heat infiltration possible of the primary part atdeactivation and continuous nominal force is approximately3% of the motor´s nominal power loss.

The heat transfer depends on the ambient temperature and on theinstallation conditions in the machine.

To maintain a constant temperature level in the machine, cooling can bedone at the machine side (e.g. via two cooling pipes). See Fig. 9-41.

Secondary parts

Page 130: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-26 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

CoolantThe specified motor data and the characteristics of the motor coolingsystem (e.g. continuous feed forces, pressure losses, and flowcharacteristics), and all the other specifications in this Chapter are relatedto liquid cooling with coolant water. Most cooling devices use water, too.

The following coolants can be used:

• Water

• Oil

• Air

Note: The specified motor data and the characteristics of the motorcooling system (e.g. continuous feed forces, pressure losses,and flow characteristics), and all the other specifications in thisChapter are related to liquid cooling with coolant water.

This data is no longer valid and must again be calculated or determinedempirically if coolants with different material characteristics are used.

An impairment of the thermal decoupling may also have to be taken intoaccount, if necessary.

WARNING

Impairing the cooling effect of damaging thecooling system!⇒ Adjust coolant and flow to the required motor

performance data⇒ With coolant water use anticorrosion agent and

observe the specified mixture and the pH-value.⇒ Use approved anticorrosion agents, only⇒ Do not use cooling lubricants from machining

process⇒ Filter the coolant⇒ Do not use flowing water⇒ Use a closed cooling circuit⇒ Adhere to the specified inlet temperatures⇒ Do not exceed the maximum pressure⇒ Motor operation not without liquid cooling

Coolant additivesCorrosion protection and chemical stabilization required a suitableadditive to be added to the cooling water. The corrosion protection agentmust be suitable for a mixed installation (steel or iron, aluminum, copperand brass). The required mix (acc. to the manufacturer´s specifications)must be adhered to and/or verified. Larger deviations can lead tochanges in the stability of the emulsion, the behavior towards sealant, andthe corrosion protection capability.

Page 131: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-27

DOK-MOTOR*-MLF********-PR02-EN-P

Watery solutions ensure a reliable corrosion protection without significantchanges of the physical property of the water. The recommendedadditives do not contain any water-endangering substances, according tothe water endangering classes (WGK).

Corrosion protection oils for coolant systems contain emulsifiers whichensure a fine distribution of the oil in the water. The oily components ofthe emulsion protect the metal surfaces of the coolant duct againstcorrosion and cavitation. Herewith, an oil content of 0.5 – 2 volumepercent has proved itself. Does the corrosion protection oil compared withthe corrosion protection has also the coolant pumping lubricant, then theoil content of 5 volume percent is necessary. (observe the requirementsof the pump manufacturers!)

Description Manufacturer

1%...3%-Solutions

Aquaplus 22 Petrofer, Hildesheim

Varidos 1+1 Schilling Chemie, Freiburg

33%-Solutions

Glycoshell Deutsche Shell Chemie GmbH, Eschborn

Tyfocor L Tyforop Chemie GmbH, Hamburg

OZO antifreeze Deutsche Total GmbH, Düsseldorf

Aral cooler antifreeze A ARAL AG, Bochum

BP antifrost X 2270 A Deutsche BP AG, Hamburg

mineral grease concentrate emulsive

Shell Donax CC (WGK: 3) Shell, Hamburg

Fig. 9-42: Recommended coolant additives

Note: The specified coolant additives are only a recommendation ofBOSCH REXROTH. Please contact your responsible salesrepresentative when using another coolant additive.

Not only the mixture, but also the pH-value of the used coolant must bechecked in suitable distances. The coolant should be chemically neutral.Larger deviations can lead to changes in the stability of the emulsion, thebehavior towards sealant, and the corrosion protection capability.

Note: Keep the pH-value of the used coolant controlled in 6-8 pH!

Watery solutions

Emulsion with corrosionprotection oil

pH-value coolant

Page 132: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-28 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Coolant temperatureThe recommended temperature range of the coolant is 15...40°C. Thecoolant temperature must never be outside this range. The adjustedcoolant inlet temperature must be chosen with regard to the actualexisting environmental temperature and should be max. 5°C lower thanthe measured environmental temperature.

An overstepping of the recommended temperature range leads to astronger reduction of the continuous feed force.

Note: The coolant inlet temperature should be maximum 5k lowerthan the actual existing room temperature to avoidcondensation.

WARNING

Reduction of the continuous feed force ofdestruction of the motor!⇒ Keep coolant within permissible temperature range

The specification of the rated feed force in the technical motorspecifications is related to a coolant inlet temperature of 30°C.

If the inlet temperature is different, there is a minor change of thecontinuous feed force according to Fig. 9-43:

95%

100%

105%

15 °C 20 °C 25 °C 30 °C 35 °C 40 °C

Cooling water inlet temperature

Co

nfi

nu

ou

s fe

ed f

orc

e

KMTEMPERATUR LSF.XLS

Fig. 9-43: Continuous feed force vs. coolant flow temperature

Maximum pressureWith all motor versions, the maximum system pressure via the internalsystem circulation of the motor is 10 bar.

Pressure fluctuations within the cooling circuit should not exceed ± 1 barduring motor operation. Beyond pressure fluctuations or pressure peaksare not permitted!

WARNING

Motor destruction!⇒ Keep coolant within permissible inlet pressure.⇒ Incorrect pressure fluctuations and pressure peaks

have to be excluded via constructive measures.

Temperature range

Continuous feed force vs.coolant temperature

Page 133: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-29

DOK-MOTOR*-MLF********-PR02-EN-P

Operation of IndraDyn L synchronous linear motors without liquidcooling

Theoretically, operation of IndraDyn L motors without any liquid coolant ispossible.

Therefore, please heed the following notes and restrictions:

• Without liquid coolant only reduced power data are available. Theseare listed in this documentation.

• The stated values in the data sheets regarding rated force and ratedcurrent of the motors must be lowered depending on the coupling ofthe motors to ~40% of the stated value.

• A higher temperature load of the machine can be expected. Thisresults in an extension of the nominal air gap, which is stated in theparticular data sheets of the motors. It must be extended by 0.2 mm.

It does not reduce the maximum force of the motors.

Depending on the load, the temperature at the contact surface of theprimary part may rise up to 140%C without liquid cooling. The power lossof the motors is dissipated over the screw-surface and the machineconstruction on the customer side.

WARNING

Drastic reduction of the rated feed force andsignificant heating and stress of the machinestructure if synchronous linear motors are usedwithout liquid cooling!⇒ Provide liquid cooling⇒ The reduction of the rated force and the heating of

the machine structure (stress due to expansion)must be included in the sizing and design of axesthat are used without liquid cooling.

⇒ Reduce the current over the parameter S-0-0111 onthe non-water cooled motor when start-up. Without areduction of the rated current, the motor heats up sofast that the thermal contacts cannot switch off themotor in every case on time. An overheated windingis the consequence. Due to the overheated winding,the winding insulation is weak or in an extreme casedestroyed.

Note: Therefore, note the details about parameterization withinChapter 14.4 about operating an IndraDyn L synchronouslinear motor without liquid cooling.

Page 134: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-30 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Sizing the cooling circuit

F

/< / <

(

KUEHLUNG01-MLF-EN.EPS

Q: Flow quantityT1: Coolant inlet temperatureT2: Coolant outlet temperaturep1: Inlet pressurep2: Outlet pressure

Fig. 9-44: Liquid-cooled component

12 TTT −=∆T1: Coolant inlet temperature in KT2: Coolant outlet temperature in K∆T: Coolant temperature rise in K

Fig. 9-45: Coolant temperature rise in K

21 ppp −=∆p1: Inlet pressurep2: Outlet pressure∆p: Pressure drop

Fig. 9-46: Pressure drop across traversed component

Related to the motor, two basic application-related requirements must bedistinguished when the cooling circuit of synchronous linear motors issized.

1. Liquid cooling is only used for removing the power loss and thus formaintaining the specified rated forces (e.g. for standard encapsulationmotor version)

2. At the same time, liquid cooling shall ensure a defined temperaturelevel at the contact surface (e.g. for the thermal encapsulation motorversion).

Flow quantityRexroth recommends to dimension the coolant flow for motors up to size070 to ~ 5l/min, for size 100 to ~ 6l/min.

The minimum coolant flow required to maintain the rated feed force isdefined in Chapter 4 “Technical Data”.

The specification of this value is based on a rise of the coolanttemperature by 10 K.

Figures 9-47 and 9-48 are used to determine the necessary coolant flowat different temperature rises and / or different coolants:

Coolant temperature rise

Pressure drop

Design criteria

Coolant flow to maintain therated feed force

Page 135: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-31

DOK-MOTOR*-MLF********-PR02-EN-P

Tc60000P

Q co

∆ρ ⋅⋅⋅=

Q: Rated coolant flow in l/minPro: Removed power loss in Wc: Specific heat capacity of the coolant in J / kg - Kρ: Density of the coolant in kg/m³∆T: Coolant temperature rise in K

Fig. 9-47: Coolant flow required for removing a given power loss.

Coolant Specific heat capacity cin J / kg - K

Density ρρρρ in kg/m³

Water 4183 998,3

Thermal oil(example) 1000 887

Air 1007 1,188

Fig. 9-48: Substance values of different coolants at 20°C

If you want to ensure a defined temperature level at the contact surface ofthe primary part of the thermal encapsulation motor version, you must usethe formula acc. to Fig. 9-49 to determine the coolant flow that isnecessary for maintaining a maximum coolant temperature rise. It is to betaken into account that only a part of the power loss remains to beremoved via the thermal encapsulation. ∆Tm is the temperature at thecontact surface of the primary part.

Note: A defined temperature level at the contact surface can only bemaintained with the thermal encapsulation motor version.

m

co

Tc25200P

Q∆ρ ⋅⋅

⋅=

Q: Rated coolant flow in l/minPco: Removed power loss in Wc: Specific heat capacity of the coolant in J / kg - Kρ: Density of the coolant in kg/m³∆Tm: Temperature rise on contact surface in K

Fig. 9-49: Coolant flow required for maintaining a constant temperature level atthe motor contact surface in the case of thermal encapsulation

Prerequisites: Q ≥ Qmin (see chapter 4 “Technical Data”)

Pressure dropThe flow resistance at the pipe walls, curves, and changes of the cross-section produces a pressure drop along the traversed components (seeFig. 9-44).

The pressure drop ∆p rises as the flow quantity rises (see Fig. 9-50).

Maintaining a constanttemperature level at thermal

encapsulation

Page 136: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-32 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

" # %"

"

$%65#&FKUEHLUNG02-MLF-EN.EPS

Fig. 9-50: Pressure drop vs. flow quantity; general representation

On the basis of the constant for determining the pressure drop kdp that isexplained in Chapter 4 “Technical Data”, the pressure drop across theinternal motor cooling circuit can be determined as follows:

75.1dpm Qkp ⋅=∆

∆pm: Pressure drop across the internal motor cooling circuit in barQ: Flow quantity in l/minkdp: Constant for determining the pressure drop (see Chapter 4

“Technical data”)Fig. 9-51: Determining the pressure drop vs. the flow quantity

The pressure drop across the total system is determined by the sum of aseries of partial pressure drop (see Fig. 9-52). Usually, the pressure dropacross the internal motor cooling system is relatively small.

%$ !

#"

!%%$

!2

!%%$"#"

!%

!%%$$

!% !%

%% "

"""

"6

""

F

KUEHLUNG03-MLF-EN.EPS

Fig. 9-52: General arrangement of a liquid cooled motor with heat removalfacility

Note: The overall pressure drop of the cooling system is determinedby various partial pressure drops (motor, feeders, connectors,etc.). This must be taken into account when the cooling circuitis sized.

Pressure drop across the motorcooling system

Overall pressure drop

Page 137: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-33

DOK-MOTOR*-MLF********-PR02-EN-P

Liquid cooling systemMachines and systems can require liquid cooling for one or more workingcomponents. If several liquid-cooled drive components exist, they areconnected to the heat removal device via a distribution unit.

%%

%%

%%

%%

%%

%$ !

%#"#

%#"#

#"

!%%$

%$ !

:#%

!%%$!: !%%$

!%%$ " # !%%$$

!%%$

!%%$$

:#%

!:

KUEHLUNG04-MLF-EN.EPS

Fig. 9-53: General arrangement of cooling systems with one and more drivecomponents

The heat removal device carries off the total heat that was fed into theliquid into a superordinate coolant. It provides a temperature-controlledcoolant and thus maintains a required temperature level at thecomponents that are to be cooled.

A heat removal device includes a heat exchanger, a coolant pumpcontainer and a coolant container.

There are three different types of heat removal devices (see Fig. 9-54).They are identified by the type of the heat exchanger between thedifferent media:

1. Air-to liquid cooling unit

2. Liquid-to-liquid cooling unit

3. Cooling unit

Heat removal device

Page 138: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-34 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

$5#$5# !2

!%%$ !%

!%" %

+

$5#!%%$2# $5#$5#!%%$2#

!%%$2#

!%%$"#"

!%%$!%

$5# !2

+"%G

KUEHLUNG05-MLF-EN.EPS

Fig. 9-54: Heat removal devices

Air-to liquidcooling unit

Liquid-to-liquid coolingunit

Cooling unit

Coolant temperature control accuracy Low (±5 K) Low (±5 K) Good (±1 K)

Superordinated coolant circuit required No Yes No

Heating of ambient air Yes No Yes

Power loss recovery No Yes No

Size of the cooling unit Small Small Large

Dependent of ambient temperature Yes No No

Environment-damaging coolant No No Yes

Notes on utilization criteria Particularlysuitable forstand-alonemachines thatdo not have ansuperordinated coolantcircuitavailable anddo not have tofulfill highrequirementson the stabilityof the coolanttemperature.

This cooling type isparticularly suitable forsystems with existingcentral feedback cooler. Iddoes fulfill highrequirements on the stabilityof the coolant temperature.

Particularly suitable for highrequirements on the thermalstability (high-precisionapplications, for example).

Fig. 9-55: Overview of the heat removal devices according to utilization criteria

Coolant linesThe coolant lines are a major part of the cooling system. They have agreat influence on the system´s operational safety and pressure drop. Thelines can be made up as hoses or pipes.

Page 139: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-35

DOK-MOTOR*-MLF********-PR02-EN-P

The coolant lines of linear motor drives with moved primary parts must belaid within a flexible energy chain.

The continuous bending strain of the coolant lines must always be takeninto account when they are sized and selected.

Further optional components• Distributions

• Coolant temperature controller

• Flow monitorA message is output when the flow drops below a selectable minimumflow quantity.

• Level monitorChiefly minimum-maximum level monitor to check the coolant level inthe coolant container

• Overflow valve

• Safety valveOpens a connection between the coolant inlet and the contained whena certain pressure is reached

• Coolant filter (100 µm)

• Coolant heatingsTo provide coolant of a correct temperature, in particular for coolanttemperature control

• Restrictor and shut-off valves

Circuit typesThe two possible ways of connecting hydraulic components(series/parallel connection) show significant differences with respect to:

• Pressure drop of the entire cooling system

• Capacity of the coolant pump

• Temperature level and controllability of the individual components thatare to be cooled

F

F

F F

F

"

(@

(@

(@

KUEHLUNG06-MLF-EN.EPS

Fig. 9-56: Parallel connection of liquid-cooled drive components

The parallel connection is characterized by nodes in the hydraulic system.The sum of the coolant streams flowing into a node is equal to the sum ofthe coolant streams flowing out of this node. Between two nodes, the

Laying flexible coolant lineswithin the energy chain

Parallel connection

Page 140: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-36 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

pressure difference (pressure drop) is the same for all intermediatecooling system branches.

n21

n21

pppp

Q... QQQ

∆∆∆∆ ===

++=

∆p: Pressure dropQ: Flow quantity

Fig. 9-57: Pressure drop and flow quantity in the parallel connection ofhydraulic components

When several working components are cooled, a parallel connection isadvantageous for the following reasons:

• The individual components that are to be cooled can be cooled at theindividual required flow quantity. This means a high thermaloperational reliability.

• Same temperature level at the coolant entry of all components (equalmachine heating) (constant heat up of the machine)

• Same pressure difference between coolant entry and outlet of allcomponents (no high overall pressure required)

F3

"3 "3 "3

"

HHH

(@ (@ (@

KUEHLUNG07-MLF-EN.EPS

Fig. 9-58: Series connection of liquid-cooled drive components

In series connection, the same coolant stream flows through allcomponents that are to be cooled. Each component has a pressure dropbetween coolant inlet and coolant outlet. The individual pressure dropsadd up to the overall pressure drop of the drive components.

Series connection does not permit any individual selection of the flowquantity required for the individual components to be made. It is onlyexpedient if the individual components that are to be cooled needapproximately the same flow quantity and bring about only a smallpressure drop or if they are installed very far away from the heat removaldevice.

n21

n21

p ... ppp

QQQQ

∆∆∆∆ ++=

===

∆p: Pressure dropQ: Flow quantity

Fig. 9-59: Pressure drop and flow quantity in the parallel connection ofhydraulic components

Series connection

Page 141: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-37

DOK-MOTOR*-MLF********-PR02-EN-P

The following disadvantages of series connection must always be takeninto account:

• The required system pressure corresponds to the sum of all pressuredrops of the individual components. This means a reduced hydraulicoperational safety due to a high system pressure.

• The temperature level of the coolant rises from one component to thenext. Each power loss contribution to the coolant rises its temperature(inhomogeneous machine heating)

• Some components may not be cooled as required since the flowquantity cannot be selected individually.

Combining series and parallel connections of the drive components thatare to be cooled permits the benefits of both connection types to be used.

F

F

F F

F

"

F

(@

(@

(@

(@(@ (@

KUEHLUNG08-MLF-EN.EPS

Fig. 9-60: Combination of series and parallel connection

9.7 Motor Temperature Monitoring Circuit

In their standard configuration, primary parts of IndraDyn L motors areequipped with built-in motor protection temperature sensors. Every motorphase contains of one out of three switched in a row ceramic PTC´s, sothat a sure thermical control of the motor in every operation phase ispossible. These thermistors (furthermore: thermistor motor protection)have a switching character (see Fig. 9-64) and become evaluated on allBosch Rexroth control devices.

Furthermore all primary parts are fitted with an additional thermistor forexternal temperature measurement. This sensor (furthermore: sensortemperature measurement) has nearly a linear characteristic curve (seeFig. 9-65).

Combination of series andparallel connection

Page 142: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-38 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

5

/3:0

.8*9

!8;9

(

(

( 3 <=7>>>.""$&&

!

&1

7:.*<""&.".$&&

TEMPSENS01-MLF-EN.EPS

Fig. 9-61: Arrangement of temperature sensors at IndraDyn L motors

Type PTC SNM.150.DK.***

Rated response temperature ϑNAT 150 °C

Resistor at 25°C ≈ 100-250 Ohm

Fig. 9-62: Temperature sensor motor protection

Note: For the parallel arrangement of two or more primary parts, themotor protection temperature sensors of all primary parts areconnected in series. For further details, please see Chapter 8“Electrical Connection”.

Type KTY84-130

Resistor at 25°C 577 Ohm

Resistor at 100°C 1000 Ohm

Continuous current at 100°C 2 mA

Fig. 9-63: Temperature measurement sensor

Note: Notice the correct polarity when using the sensor fortemperature measurement external.

Temperature sensor motorprotection

Sensors temperaturemeasurement external

Page 143: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-39

DOK-MOTOR*-MLF********-PR02-EN-P

Motor protection temperature sensorsconnecting cores 5 and 6

norminal responce temperature 150°C

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

motor winding temperature in °C

tem

per

atu

re s

enso

r re

sist

ance

in o

hm

s

1 temperature sensor (1 primary)

2 primaries in series

4 primaries in series

TEMPERATURSENSOREN LSF.XLS

Fig. 9-64: Characteristic of motor protection temperature sensors (PTC)

temperature measuring sensor KTY84-130connecting cores 7 (+) und 8 (-)

500

600

700

800

900

1000

1100

1200

1300

1400

1500

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

motor winding temperature in °C

tem

per

atu

re s

enso

r re

sist

ance

in o

hm

s

Fig. 9-65: Characteristic of temperature measurement sensor KTY84-130(PTC)

A polynomial of degree 3 is sufficient for describing the resistancecharacteristic of the sensor used for temperature measurement (KTY84-130). In the following, this is specified for determining a temperature froma given resistance and vice-versa.

Page 144: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-40 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

DRCRBRAT KTY2

KTY3

KTYw +⋅+⋅+⋅=Tw: Winding temperature of the motor in °CRKTY: Resistance of the temperature sensor in OhmsA: 3.039 ·10-8

B: -1.44 ·10-4

C: 0.358D: -143.78

Fig. 9-66: Polynomial used for determining the temperature with a knownsensor resistance (KTY84)

DTCTBTAR w2

w3

wKTY +⋅+⋅+⋅=Tw: Winding temperature of the motor in °CRKTY: Resistance of the temperature sensor in OhmsA: 1.065 ·10-6

B: 0.011C: 3.93D: 492.78

Fig. 9-67: Polynomial used for determining the sensor resistance (KTY84) witha known temperature

Temperature depending onresistance

Resistance depending ontemperature

Page 145: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-41

DOK-MOTOR*-MLF********-PR02-EN-P

9.8 Setup Elevation and Ambient Conditions

The performance data specified for the motors apply in the followingconditions:

• Ambient temperature + 0 bis + 40° C

• Setup heights of 0 m up to 1000 m above MSL.

Different conditions lead to a departing of the data according to thefollowing diagrams. Do occur deviating ambient temperatures and highersetup elevations at the same time, both utilization factors must bemultiplied.

'IJ0K

3

3,

<

IK

3

3

3,

3

UMGEBHOE-MLF-DE.EPS

(1): Utilization depending on the ambient temperature(2): Utilization depending on the setup elevationfT: Temperature utilization factortA: Ambient temperature in degrees CelsiusfH: Height utilization factorh: Setup elevation in meters

Fig. 9-68: IndraDyn L utilization factors

If either the ambient temperature or the setup height exceeds thenominal data:

1. Multiply the motor data provided in the selection data with thecalculated utilization factor.

2. Ensure that the reduced torque data are not exceeded by yourapplication.

If both the ambient temperature and the site altitude exceed the nominaldata:

1. Multiply the determined utilization factors fT and fH by each other.2. Multiply the value obtained by the motor data specified in the

selection data.Ensure that the reduced motor data are not exceeded by your application.

Note: The details for the utilization against the setup elevation andenvironmental temperature do not apply to the defined liquidcoolant on the motor, but on the whole drive system,consisting of motor, drive controller and mains supply.

Page 146: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-42 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

9.9 International Protection Class

The design of the IndraDyn L synchronous linear motors complies withthe following degrees of protection according to DIN VDE 0470, Part 1,ed. 11/1992 (EN 60 529):

Motor components Protection class

Standard encapsulation primary part

Thermal encapsulation primary part

Secondary part segmentIP 65

Fig. 9-69: Protection class of IndraDyn L motors

The type of protection is defined by the identification symbol IP(International Protection) and two reference numbers specifying thedegree of protection.

The first code number defines the degree of protection against contactand penetration of foreign particles. The second code number definesthe degree of protection against water.

1st code number Degree of protection

6 Protection against penetration of dust (dust-proof);complete contact protection

2nd code number Degree of protection

5 Protection against a water jet from a nozzle directedagainst the housing from all directions (jet water)

Fig. 9-70: IP degrees of protection

Note: The inspections for the second ID number are executed withfresh water. If cleaning is effected using high pressure and/orsolvents, coolants, or penetrating oils, it might be necessary toselect a higher degree of protection.

WARNING

Personal injuries, damaging or destroyingmotor components!⇒ Use IndraDyn L synchronous linear motors only in

environments for which the specified class ofprotection proves sufficient.

9.10 Compatibility

All Rexroth controls and drives are developed and tested according to thestate of the art.

However, since it is impossible to follow the continuing furtherdevelopment of every material with which our controls and drives couldcome into contact (e.g. lubricants on tool machines), reactions with thematerials that we use cannot be ruled out in every case.

For this reason, you must execute a compatibility test between newlubricants, cleansers, etc. and our housings and device materials beforeusing these products.

Page 147: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-43

DOK-MOTOR*-MLF********-PR02-EN-P

9.11 Magnetic Fields

The secondary parts of synchronous linear motors are equipped withpermanent magnets, which are not magnetically shielded.

To be able to assess EMC problems (e.g. the influence on inductiveswitches or inductive measuring systems), chip attraction, and forpersonal protection, the values of the magnetic induction as a function ofthe distance to the secondary part are specified below.

The representation distinguishes between ferromagnetic materials (e.g.steel) and non-ferromagnetic materials (e.g. air), and between differentdirections.

0,0 T

0,1 T

0,2 T

0,3 T

0,4 T

0,5 T

0,6 T

0,7 T

0,8 T

0 mm 10 mm 20 mm 30 mm 40 mm 50 mm 60 mm 70 mm 80 mm 90 mm

distance to secondary part

ind

uct

ion

B

1: direction 1, ferromagnetic material2: direction 1, non-ferromagnetic material3: direction 2 and 3, areas of both materials

1

2

INDUKTIONSVERTEILUNG LS

0 0

0

direction 3

dire

ctio

n 1

Fig. 9-71: Magnetic induction in ferromagnetic and non-ferromagnetic materialsvs. the distance to the secondary part

Note: Secondary parts of IndraDyn L motors generate a staticmagnetic field.

Ferromagnetic chips are not attracted at a distance of approximately 100mm from the surface of the secondary part.

Note: It must be ensured that the secondary part is not located in theimmediate chip area of the machine. Suitable covers must beprovided.

Chip attraction

Page 148: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-44 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

9.12 Vibration and Shock

According to IEC 721-3-3 edition 1987 or EN 60721-3-3 edition 06/1994,IndraDyn L motors are approved for the utilization in areas that areexposed to vibration and/or shock as given in Fig. 9-72 and 9-73.IndraDyn L motors may be used in stationary weather-proof operationcorresponding to class 3M5.

Influencing quantity Unit Maximum value

Amplitude of the excursion at 2 to 9 Hz mm 0,3

Amplitude of the acceleration at 9 to 200 Hz m/s² 1

Fig. 9-72: Limit data for sinusoidal vibrations

Influencing quantity Unit Maximum value

Total shock-response spectrum (accordingto IEC721-1, :1990; Table 1, Section 6) Type II

Reference acceleration,in IEC 721: Peak acceleration m/s² 250

Duration ms 6

Fig. 9-73: Limits for shock load

WARNING

Motor damage and loss of warranty!⇒ A motor, used outside of specified operating

conditions can be damaged. In addition, anywarranty claim will expire.

⇒ Ensure that the maximum values specified in Fig. 9-72: Limit data for sinusoidal vibrations

for storage, transport, and operation of the motors are notexceeded.

Page 149: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-45

DOK-MOTOR*-MLF********-PR02-EN-P

9.13 Enclosure Surface

The following table shows the condition of the enclosure surface whendelivered.

Motor component Housing surface Remarks

Standard encapsulation primary part Stainless steel V4Ablack printing (RAL 9005)

Varnish resistant to weather,yellowing, chalking, thinned acidsand thinned lyes

Thermal encapsulation primary part Stainless steel V4Afront side aluminum, blank

Secondary part segments Cover plate stainless steel V4Amagnet base carrier C45, chromatic

Fig. 9-74: Layout of enclosure surface

Note: It is permitted to provide the surface of the motor componentswith additional painting (coat thickness no more than 40 µm).Check the adhesion and resistance of the new paint coatbefore applying it.

9.14 Noise Emission

The noise emission of synchronous linear drives can be compared withconventional inverter-operated feed drives.

Experience has shown that the noise generation chiefly depends on

• the employed linear guides (velocity-related travel noise),

• The mechanical design (following cover, etc.), and

• the settings of drive and controller (e.g. switching frequency)

A generally valid specification is therefore not possible.

Page 150: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-46 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

9.15 Length Measuring System

A linear scale is required for measuring the position and the velocity.Particularly high requirements are placed upon the linear scale and itsmechanical connection. The linear scale serves for high-resolutionposition sensing and to determine the current speed.

Note: The necessary length measuring system is not in the scope ofdelivery of Bosch Rexroth and has to be provided andmounted from the machine manufacturer himself. (see Fig. 9-80).

model

open systemsensapsulated

systems

measuringprinciple

incrementalincremental,

distance-encodedreference marks

absolutelinear scale

integrated intolinear guides

Fig. 9-75: Classification of linear scales

It is necessary at synchronous linear motors to receive the position of theprimary part relating on the secondary part by return after start or after amalfunction (pole position recognition). Using an absolute linear scale isthe optimum solution here.

Selection criteria for linear scalesDepending on the operating conditions, open or encapsulated linearscales with different measuring principles and signal periods can be used.The selection of a suitable linear scales mainly depends on:

• the maximum feed rate (model, signal period)

• the maximum travel (measuring length, model)

• if applicable, utilization of coolant lubricants (model)

• produced dirt, chips etc. (model)

• the accuracy requirements (signal period)

Peculiarities of synchronouslinear motors

Page 151: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-47

DOK-MOTOR*-MLF********-PR02-EN-P

Models

Open model Encapsulated model Measuring system,integrated in rail guides

Advantages:

- High traverse rates

– No friction

– High accuracy

- Easy installation

– High protection rating

– Incremental and absolute

measurement available

- Combined guidance and

measurement

– No additional installation required

– Highest protection rating

– High traverse rates

– Little space required

Disadvantage:

- Low protection mode

- Currently no absolute measurement

systems available

– More complicated mounting and

adjustment

- Maximum velocity

currently 120m/min

- No absolute measurement systems

available

Fig. 9-76: Advantages and disadvantages of different linear scales models

If there are no dirt, chips, etc. in a machine or system and if coolantlubricants will never be used, employing an open linear scale isrecommended. Thus open linear scale are frequently used for handlingaxes, precision and measuring machines, and in the semiconductorindustry.

Encapsulated systems should be employed if chips are produced and/orcoolant lubricants are used. To achieve highest operational reliability, anencapsulated system can have additional sealing air. Encapsulated linearscales are chiefly used at chip-producing machine tools.

The ball and roller rail guides from Rexroth are available with anintegrated inductive linear scales. The system consists of a separatescanner (read head) and a material measure that is integrated into therail. The material measure is accommodated in a groove of the guide rail,and is protected by a tightly welded stainless steel type. The read head isattached directly to the guide carriage.

The system is insensitive against soiling (e.g. dust, chips, coolant, etc.)and magnetic fields. Due to the little space required, the compact androbust device (measuring system and guides) permits simplifiedstructures compared with an externally attached measuring system.There are no costs for material and installation of external systems.

Open model

Encapsulated model

Measuring system,integrated in rail guides

Page 152: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-48 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Measuring principle

The advantages of an absolute linear scale result from the fact that a highavailability and operational reliability of the axis of motion and,consequently, of the entire system is guaranteed.

Advantages

• Monitoring and diagnosis functions of the electronic drive system arepossible without any additional wiring

• No axis travel limit switches required

• The maximum available motor force is available at any point of thetravel immediately after power-up.

• No referencing required

• Easy commissioning of horizontal and vertical axes

• pole position recognition only required for initial commissioning

Disadvantage:

• Maximum measuring length is limited (3040mm)

• Only encapsulated systems available

Note: An ENDAT interface is required if absolute linear scales areused.

Using an absolute linear scales makes it possible that the pole positionrecognition of the motor need only be performed once for iniialcommissioning. This drive-internal procedure is possible withoutactivating the power. This provides advantages when commissioningvertical axes, in particular.

Rexroth recommends the absolute linear scale LS181 and LC481 fromHeidenhain. Both systems are equipped with an ENDAT interface.

LC181_1.TIF

Fig. 9-77: Absolute encapsulated length measuring system LC181

Absolute scales

Page 153: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-49

DOK-MOTOR*-MLF********-PR02-EN-P

When an incremental linear scale is used together with a synchronouslinear motor, the pole position must be measured upon each power-up.This is done, using a drive-internal procedure that must be executedwhenever the axis is switched on. After this, a force processing of themotor is possible.

Note: With incremental linear scales, the drive-internal pole positionrecognition procedure must be executed upon each power-up.Pole position recognition required the primary part to bemoved!

Advantages

• Depending on the model, travels up to 30 m (or unlimited distance)possible

• high feed rate possible

• Different signal periods and, consequently, different positionresolutions possible.

Disadvantage:

• Pole position must be measured upon each power-up.

• Pole position recognition required the primary part to be moved

• Pole position recognition is not possible for vertical axes

• Pole position recognition is not possible for securely braked axes or foraxes at the hard stop

• Pole position recognition of Gantry axes may cause problems

• Reference point interpretation and homing switch are required

• Safety limit switch is required

Incremental linear scales with distance-encoded reference marks offerthe benefit of a simplified and, even more important, shortenedreferencing. With such a system, referencing requires the axis merely tobe moved by several centimeters (depends on the model).

Note: Distance-encoded scales do not perform absolutemeasurement. Pole position recognition must also beperformed upon each power-up (like incremental systems thatare not distance encoded).

lida185.tif

Fig. 9-78: Open incremental linear scales LIDA185C with distance-encodedreference marks

Incremental scales

Incremental linear scales withdistance-encoded reference

marks

Page 154: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-50 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Maximum permissible velocity and accelerationOne limitation factor of the maximum permissible feed rate of a lengthmeasuring system are the sealing lips and the guides of the scan carriageon the glass rule. Currently, the velocity of an encapsulated system islimited to 120 m/min.

The other limitation factor of the maximum permissible feed rate is thefrequency limit of the output signals (manufacturer´s specifications) or themaximum permissible input frequency of subsequent circuits (drivecontroller).

60periodSignalfv maxmax ⋅⋅=vmax: Maximum feed rate in m/minSignalperiode: Signal period of linear scale in mmfMAX: Maximum input frequency of scale interface

DAG 1 VSS: 500kHzDLF 1 VSS: 500kHz

Fig. 9-79: Maximum traverse rate of linear scale related to the maximum inputfrequency of the scale interface

The very rigid internal structure of open linear scales permits maximumacceleration values in the measuring direction of up to 200m/s². To permitrelatively high attachment tolerances, the scan carriage of encapsulatedlinear scales cannot rigidly be connected with the mounting foot.Encapsulated linear scales systems for linear motors, however, arecomparatively rigid and may be used for maximum accelerations in themeasuring direction between 50 m/s² and 100 m/s² (depending on thelength measuring system employed).

Note: Please refer to the documents from the correspondingmanufacturer for detailed and updated information.

Position resolution and positioning accuracyTo reach a high resolution of the linear scale, an interpolation of thesinusoidal input signal of the linear scale is performed in the drivecontroller. Depending on the maximum travel range and on the signalperiod, a drive-internal position resolution of less than 1 mm is possible.

Note: The drive-internal position resolution does not correspond tothe positioning accuracy! The absolute positioning accuracy isdepending on the entire drive system, including mechanicalsystems.

Measuring system cablesReady-made cables of Rexroth are available for the electrical connectionbetween the output of the linear scale and the input of the scale interface.To ensure maximum transmission and scale interference safety, youshould preferably use these ready-made cables.

Maximum permissible feed rate

Maximum permissibleacceleration in the measuring

direction

Page 155: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-51

DOK-MOTOR*-MLF********-PR02-EN-P

Recommended linear scales for linear motorsManufacturer

typeSignal period

in mm(S-0-0116)

Model Outputsignals

Measuringprinciple

Maximummeasuring

length in mm

Maximumvelocity in

m/min

P-0-0074 Reference marks

HeidenhainLC 181

0,016 Encapsulated Sinus 1Vss

AbsoluteENDAT

3040 120 8 No(absolute)

HeidenhainLC 481

0,02 Encapsulated Sinus 1Vss

AbsoluteENDAT

2040 120 8 No(absolute)

HeidenhainLS 486

0,02 Encapsulated Sinus 1Vss

incremental 2040 120 2 One (Middle measuringlength )

HeidenhainLS 486C

0,02 Encapsulated Sinus 1Vss

incremental 2040 120 2 Distance coding

HeidenhainLS 186

0,02 Encapsulated Sinus 1Vss

incremental 3040 120 2 One (Middle measuringlength )

HeidenhainLS 186C

0,02 Encapsulated Sinus 1Vss

incremental 3040 120 2 Distance coding

HeidenhainLB 382

0,04 Encapsulated Sinus 1Vss

incremental 30040 120 2 Selectable by blinds

HeidenhainLB 382C

0,04 Encapsulated Sinus 1Vss

incremental 30040 120 2 Distance coding

HeidenhainLF 183

0,004 Encapsulated Sinus 1Vss

incremental 3040 60 2 Selectable by magnets

HeidenhainLF 183C

0,004 Encapsulated Sinus 1Vss

incremental 3040 60 2 Distance coding

HeidenhainLF 481

0,004 Encapsulated Sinus 1Vss

incremental 1220 60 2 One (Middle measuringlength )

HeidenhainLF 481C

0,004 Encapsulated Sinus 1Vss

incremental 1220 60 2 Distance coding

HeidenhainLIDA 185

0,04 Open Sinus 1Vss

incremental 30040 480 2 Selectable by magnets

HeidenhainLIDA 185C

0,04 Open Sinus 1Vss

incremental 30040 480 2 Distance coding

HeidenhainLIDA 187

0,04 Open Sinus 1Vss

incremental 6040 480 2 Selectable by magnets

HeidenhainLIDA 187C

0,04 Open Sinus 1Vss

incremental 6040 480 2 Distance coding

RenishawRGH22

0,02 Open Sinus 1Vss

incremental 50000 500 2 Selectable by magnets

RenishawRGH24

0,02 Open Sinus 1Vss

incremental 50000 500 2 Selectable by magnets

RenishawRGH25

0,02 Open Sinus 1Vss

incremental 50000 500 2 Selectable by magnets

RenishawRGH41

0,04 Open Sinus 1Vss

incremental 50000 640 2 Selectable by magnets

HeidenhainLIF 181R

0,004 Open Sinus 1Vss

incremental 3040 120 2 One (Middle measuringlength )

HeidenhainLIF 181C

0,004 Open Sinus 1Vss

incremental 3040 120 2 Distance coding

Heidenhain LIP481R

0,002 Open Sinus 1Vss

incremental 420 60 2 One (Middle measuringlength )

RexrothIntegratedMeasuring

1,000 Integrated into slidemounting

Sinus 1Vss

incremental 4000 600 2 Single reference ordistance coding

P-0-0074: Drive parameter “Encoder type 1”S-0-0116: Drive parameter “Encoder 1 resolution”

Fig. 9-80: Recommended linear scales for linear motors

Note:

• To ensure maximum interference immunity, Rexrothrecommends the voltage interface with 1Vpp.

• Please refer to the documents from the correspondingmanufacturer for detailed and possibly updatedinformation.

Page 156: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-52 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Mounting Linear scales

With linear drives, the mounting of the measuring system to the machinecan limit the bandwidth of the position control loop. As a consequence forthe design, this means that the coupling between the scan unit and therule of an open linear scale, or between the rule enclosure of anencapsulated linear scale, and the machine – with respect to the naturalfrequency – must be significantly higher than the one of the linear scale.The natural frequencies of today´s encapsulated linear scales are 2kHzand higher.

It must also be ensured that the linear scales is not attached to vibratingmachine components. In particular, attaching the system in the vicinity ofvibration maximal must be avoided.

In order to minimize the moved masses and to obtain the highest rigidityin the measuring direction, the scanner unit should always be moved ifpossible.

The user should provide an encapsulation if an open linear scale isemployed despite adverse conditions (chips, dust, etc.). It must also benoted that the scanning head must be adjusted when the open linearscale is installed. Corresponding adjustment possibilities must beprovided in the design (please heed the specifications of themanufacturer).

To obtain relatively high installation tolerances, the scan carriage ofencapsulated linear scale is connected with the mounting base viacoupling that is very rigid in the measuring direction and slightly flexibleperpendicularly to the measuring direction. If the rigidity of this coupling inthe measuring direction is too weak, there are low natural frequencies inthe feedback of the position and velocity control loop that can limit thebandwidth. The encapsulated linear scales that are recommended forlinear motors usually possess a natural frequency in the measuringdirection that is above 2 kHz. Thus, the natural frequency of the linearscale in the measuring direction can be neglected with respect to themechanical natural frequencies of the machine.

If several motors on an axis are used with a single linear scale, themotors should be positioned as symmetrically as possible.

With a Gantry axis, where each motor of pair of motors is assigned to alinear scale system, the distance between motor and linear scale shouldbe as small as possible. The accuracy of the linear scale as such and withrespect to each other should be less than 5 µm/m. Drive-internal axiserror compensations can minimize remaining misalignments between thelinear scales.

Elasticity of the coupling to themachine

Mounting method

Open linear scales systems

Encapsulated linear scalessystems

Parallel arrangement of motorswith one linear scale system

Gantry axes

Page 157: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-53

DOK-MOTOR*-MLF********-PR02-EN-P

9.16 Linear Guides

Depending on the motor arrangement, the attractive, feed and processforces and the velocities of more than 600 m/min that can be reachedtoday stress the linear guides. The employed linear guides must the ableto handle

• Attractive force between primary and secondary part and

• Machining and acceleration forces

Depending on the application, the following linear guides are employed:

• Ball or roll rail guides

• Slideways

• Hydrostatic guides

• Aerostatic guides

The following requirements should be taken into account when a suitablelinear guide system is selected:

• High accuracy and no backlash

• Low friction and no stick-slip effect

• High rigidity

• Steady run, even at high velocities

• Easy mounting and adjustment

9.17 Braking Systems and Holding Devices

The following systems can be used as braking systems and/or holdingdevices for linear motors:

• External braking devices

• Clamping elements for linear guides

• Holding brakes integrated in the weight compensation

See also Chapter 16.1 “Recommended suppliers of additionalcomponents”.

Note: Other designs for stand-still of a linear motor are described inChapter 9.18 Final position attenuator and Fig. 9.22Deactivation as well as in the appropriate functionaldescription of the controller.

Page 158: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-54 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

9.18 End Position Shock Absorber

Where linear drives with frequently high traverse rates and accelerationsare concerned, uncontrolled movements (such as coasting after a mainsfailure) cannot always safely be avoided.Suitable energy-absorbing end position shock absorber must be providedin order to protect the machine during uncontrolled coasting of an axis.

WARNING

Damage on machine or motor componentswhen driving against hard stop!⇒ Use suitable energy-absorbing end position shock

absorber⇒ Adhere to the specified maximum decelerations

Note: The necessary spring excursion of the shock absorbers mustbe taken into account when the end position shock absorberare integrated into the machine (in particular when the totaltravel path is determined).

Given by the type of attachment and by the type of the primary part(quantity of mounting screws, attractive force, mass, etc.), there is amaximum deceleration in the movement onto an end stop.If this maximum deceleration is exceeded, this can lead to loosening theprimary part and to damaging of motor components.The maximum permissible deceleration upon moving against end stop is300 m/s².

Note: Using a suitable end stop shock absorber, the maximumpermissible deceleration for moving against an end stop mustbe limited to 300 m/s².

With the known maximum deceleration of 300 m/s² and the maximumpossible velocity, the minimum spring excursion can be calculated asfollwos:

2158v

s2max

min =

smin : Minimum braking distance in mmvmax: Maximum possible velocity in m/min

Fig. 9-81: Braking distance to be kept when driving against end stop

Maximum deceleration whendriving against end stop

Braking distance to be keptwhen driving against end stop

Page 159: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-55

DOK-MOTOR*-MLF********-PR02-EN-P

9.19 Axis Cover System

Depending on the application, design, operational principle and featuresof synchronous linear motors the following requirements on axis coversystems apply:

• High dynamic properties (no overshoot, little masses)

• Accuracy and smooth run

• Protection of motor components against chips, dust and contamination(in particular ferromagnetic parts),

• Resistance to oil and coolant lubricants

• Robustness and wear resistance

The following axis cover systems can be used:

• Bellow covers

• Telescopic covers

• Roller covers

A suitable axis cover system should be configured, if possible, during theearly development process of the machine or system – supportet by thecorresponding specialized supplier (see Chapter 16.1 “Recommendedsuppliers of additional components”).

Page 160: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-56 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

9.20 Wipers

It is generally possible, to use a wiper for removing chips directly on thesecondary part. The following points must be taken into account when asuitable wiper system is selected and used.

If possible, a wiper should be used on whole secondary part segments. Ifmore than one secondary part segment is used, joints between thesecondary part segment must be taken into account (destruction of wiperor of secondary parts). In these cases, a defined distance – smaller thanthe air gap among primary and secondary part – between wiper andsecondary part or a wiper in the form of a hard brush can help.

The secondary part attracts ferromagnetic chips at a distance of approx.100 mm. These attractive forces must be taken into account whenferromagnetic chips are removed.

If the utilization of the wiper causes a significant rise of the temperatureon the secondary part surface, it must be ensured that this temperaturedoes not exceed the limit of 70°C.

The wiper should be mounted to the superordinated machineconstruction. Mounting the wiper in additional holes directly on the primarypart is not permitted.

WARNING

Damage or destruction of motor components byinappropriate utilization of a wiper on thesecondary part!⇒ If possible, utilization only on whole secondary part

segments⇒ Take slightly height differences of the secondary part

segments into account⇒ Take temperature rises due to friction into account⇒ Mounting the wiper in additional holes directly on the

primary part is not permitted

Secondary part segments

Ferromagnetic chips

Temperature produced byfriction

Mounting the wiper

Page 161: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-57

DOK-MOTOR*-MLF********-PR02-EN-P

9.21 Drive and Control of IndraDyn L motors

The following figures shows a complete linear direct drive, consisting of asynchronous linear motor, length scale system, drive controller andsuperordinate control.

=

"$&."<.

!<""" &"

2"&.*6/&",

.&$&&"&1&

ANTRSYST01-MLF-EN.EPS

Fig. 9-82: Linear direct drive

Drive controller and power supply modulesTo control IndraDyn L motors, different digital drive controllers and powersupply modules are available. These drive systems are configurable andof a modular or compact structure.

Note: The drive controllers and the related firmware for the IndraDynL motors are the same as for the rotary drives from BoschRexroth.

Control systemsA master control is required for generating defined movements.Depending on the functionality of the whole machine and the used controlsystems, Bosch Rexroth offers different control systems.

Page 162: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-58 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

9.22 Deactivation upon EMERGENCY STOP and in the Event ofa Malfunction

The deactivation of an axis, equipped with an IndraDyn L motor, can beinitiated by

• EMERGENCY STOP,

• drive fault (e.g. response of the encoder monitoring function) or

• mains failure

For the options of deactivation an IndraDyn L motor in the event of amalfunction, distinction must be made between

• Deactivation by the drive,

• Deactivation by a master control and

• Deactivation by a mechanical braking device.

Deactivation by the DriveAs long as there is no fault or malfunction in the drive system, shutdownby the drive is possible. The shutdown possibilities depend on theoccurred drive error and on the selected error response of the drive.Certain faults (interface faults or fatal faults) lead to a force disconnectionof the drive.

WARNING

Death, serious injuries or damage to equipmentmay result from an uncontrolled coasting of aswitched-off linear drive!⇒ Construction and design according to the safety

standards⇒ Protection of people by suitable barriers and

enclosures⇒ Using external mechanical braking facilities⇒ Use suitable energy-absorbing end position shock

absorber

The parameter values of the drive response to interface faults and non-fatal faults can be selected. The drive switches off at the end of each faultresponse.

The following fault responses can be selected:

0 – Setting velocity command value to zero

Setting force command value to zero

Setting velocity command value to zero with command value ramp andfilter

3 - Retraction

Note: Please refer to the corresponding firmware functiondescription for additional information about the reaction tofaults and the related parameter value assignments.

Page 163: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-59

DOK-MOTOR*-MLF********-PR02-EN-P

Deactivation by a master control

Deactivation by control functionsDeactivation by the master control should be performed in the followingsteps:

1. The machine PLC or the machine I/O level reports the fault to theCNC control

2. The CNC control deactivate the drives via a ramp in the fastestpossible way

3. The CNC control causes the power at the power supply module to beshut down.

Drive initiated by the control shutdownDeactivation by the master control should be performed in the followingsteps:

4. The machine I/O level reports the fault to the CNC control and SPS

5. The CNC control or the PLC resets the controller enabling signal ofthe drives. If SERCOS interface is used, it deactivates the “E-STOP”input at the SERCOS interface module.

6. The drive responds with the selected error response.

7. The power at the power supply module must be switched off 500 msafter the controller enabling signal has been reset or the “E-STOP”input has been deactivated.

Note: The delayed power shutdown ensures the safe shutdown ofthe drive by the drive controller. With an undelayed powershutdown, the drive coasts in an uncontrolled way once theDC bus energy has been used up.

Deactivation via mechanical braking deviceShutdown by mechanical braking devices should be activatedsimultaneously with switching off the power at the power supply module.Integration into the holding brake control of the drive controllers ispossible, too. The following must be observed:

• Braking devices with electrical 24V DC control (electrically un-locking)and currents < 2 A can directly be triggered.

• Braking devices with electrical 24V DC control and currents > 2 A canbe triggered via a suitable contractor.

Once the controller enabling signal has been removed, the holding brakecontrol has the following effect:

• Fault reaction “0”, “1” and “3”.The holding brake control drops to 0 V once the velocity is less than 10mm/min or a time of 400 ms has elapsed.

• Fault reaction “2”The holding brake control drops to 0 V immediately after the driveenabling signal has been removed.

Response to a mains failureIn order to be able to shut down the linear drive as fast as possible in theevent of a mains failure,

• either an uninterruptible power supply or

• additional DC bus capacities (condensers), and /or

Page 164: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-60 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

• mechanical braking facilities

must be provided.

Additional capacities in the DC bus represent an additional energy storethat can supply the brake energy required in the event of a mains failure.

Note: The control voltage must be available even at a power failurefor the time of braking! If needed, buffer the control voltagesupply or feed the control voltage from the DC intermediatecircuit if possible!

The additional capacity required for a deactivation upon a mains failurecan be determined as follows:

+⋅−⋅⋅⋅

⋅= 3.0FF

vRk

F5,3

UU

vmC

max

Rmax122

iF

max2

minDC

2

maxDC

maxadd

Cadd: Required additional DC bus capacitor in mFm: Moved mass in kgvmax: Maximum velocity in m/sUDCmax: Maximum DC bus voltage in VUDCmin: Minimum DC bus voltage in VFMAX: Maximum braking force of the motor in NkiF: Motor constant (force constant) in N/AR12: Winding resistance at 20°CFR: Frictional force in N

Fig. 9-83: Determining the required additional DC bus capacitor

Prerequisites: - final velocity = 0- velocity-independent friction –constant deceleration – winding temperature 135°C

Note: The maximum possible DC bus capacity of the employedpower supply module must be taken into account whenadditional capacities are used in the DC bus. Do not initiate aDC voltage short-circuit when additional capacitors areemployed.

Short-circuit of DC busMost of the power supply modules of Bosch Rexroth permit the DC bus tobe shortened when the power is switched off, which also establishes ashort-circuit between the motor phases. When the motor moves, thiscauses a braking effect according to the principle of the induction; therebythe motor phases are shorted. The reachable braking force is not veryhigh and velocity-dependend. The DC bus short-circuit can therefore onlybe used to support existing mechanical braking devices.

9.23 Maximum Acceleration Changes (Jerk Limitation)

The maximum rate of current and force rise is determined by the availableDC bus voltage and the motor inductance. As shown in Fig. 9-84, withhighly dynamic movements and short strokes, the motor inductanceshould be low and the DC bus voltage as high as possible.

Determining the requiredadditional DC bus capacitor

Rate of current and force rise

Page 165: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-61

DOK-MOTOR*-MLF********-PR02-EN-P

iF12

DC

12

DC

kLU

dtdF

LU

dtdi

⋅=

=

UDC: DC bus voltage in VL12: Winding inductance in HkiF: Motor constant (force constant) in N/Ai: Current in At: Time in s

Fig. 9-84: Maximum rate of current and force rise

The acceleration change per time unit (derivative of the acceleration) isknown as jerk (see Fig. 9-87).

?

RUCKBEGR01-MLF-EN.EPS

Fig. 9-85: Acceleration and velocity without jerk limitation

Note: The drive controller or the master control must delimit themaximum jerk when direct drives are employed. (accelerationramp with da/dt ≠ ∞, Fig. 9-86)

RUCKBEGR02-MLF-EN.EPS

Fig. 9-86: Acceleration and velocity with jerk limitation

Page 166: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-62 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

The maximum jerk is determined by the maximum rate of current rise, bythe moved mass and by the motor constant:

mLkU

dtda

r12

iFDCmax ⋅

⋅==

m: Moved mass in kgUDC: DC bus voltage in VkiF: Motor constant (force constant) in N/AL12: Winding inductance in Ha: Acceleration in m/s²t: Time in s

Fig. 9-87: Maximum jerk (acceleration change)

Maximum jerk

Page 167: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-63

DOK-MOTOR*-MLF********-PR02-EN-P

9.24 Position and Velocity Resolution

Drive-internal position resolution and positioningaccuracyIn linear direct drives, a linear scale is used for measuring the position.The linear scale for linear motors supply sinusoidal output signals. Thelength of such a sine signal is known as the signal period. It is mainlyspecified in mm or µm.

With the drive controllers from Bosch Rexroth, the sine signals areamplified again in the drive (see Fig. 9-89). The drive-internalamplification also depends on the maximum travel area and the signalperiod of the length measuring system. It always employs 2n vertices (e.g.2048 or 4096).

n

max

31int 2 torounding 2

x

sf p⋅=

fint: Multiplication factor (S-0-0256, Multiplication 1)sp: Linear scale system signal period in mm (S-0-0116 resolution of

encoder 1)xmax: Maximum travel (S-0-0278, maximum travel)

Fig. 9-88: Multiplication factor

" &

INTPOLSIN-MLF-EN.EPS

Fig. 9-89: Drive-internal multiplication and/or interpolation of the measuringsystem signals

With a known signal period and a drive-internal multiplication, the drive-internal position resolution results as:

int

pd f

sx =∆

∆xd: Drive-internal position resolutionsp: Linear scale system signal period (S-0-0116 resolution of encoder 1)fint: Multiplication factor (S-0-0256, Multiplication 1)

Fig. 9-90: Drive-internal position resolution

Note: The drive-internal position resolution is not identical to thereachable positioning accuracy.

Page 168: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-64 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

The reachable position accuracy depends on the mechanical and control-engineering total system and is not identical to the drive-internal positionresolution. .

The reachable position accuracy can be estimated as follows (usingempirical values):

50...30xx dabs ⋅= ∆∆∆xd: Drive-internal position resolution∆xabs: Position accuracy

Fig. 9-91: Estimating the reachable position accuracy

Prerequisites: Optimum controller setting

Note: The expected position accuracy cannot be better than thesmallest position command increment of the superordinatecontrol.

Velocity resolutionThe resolution of the velocity (velocity quantization) is proportional to theposition resolution (see Fig. 9-88) and inversely proportional to thesample time tAD from:

AD

dd t

xv

∆∆ =

∆vd: Velocity resolution in m/s∆xd: Drive-internal position resolution (see Fig. 9-90)tAD: Sample time in s (DIAX04: 250µs, ECODRIVE03: 500µs, IndraDrive:

Standard Performance 250µs / High Performance 125µs)Fig. 9-92: Velocity resolution

9.25 Load Rigidity

The elastic deformability resistance of a structure against an externalforce is known as rigidity (usually specified in N/µm). The reciprocal valueof the rigidity is known as elasticity.

Influence of disturbing factors on a controlled electric drive is called loadrigidity. It is distinguished between static and dynamic load rigidity.

Reachable positioning accuracy

Page 169: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Notes Regarding Application and Construction 9-65

DOK-MOTOR*-MLF********-PR02-EN-P

Static load rigidityThe static load rigidity of a linear direct drive only depends on themaximum motor force and the drive-internal position resolution:

D

maxstat x

Fc

∆=

cstat: Static load rigidity in N/µmFMAX: Maximum force of the motor in N∆xD: Drive-internal position resolution in µm (see Fig. 9-90)

Fig. 9-93: Static load rigidity of linear direct drives

Note: The rigidity of the machine structure must be taken intoaccount when the static load rigidity of a linear direct drive israted.

max

Dstat F

xd

∆=

dstat: Static elasticity in N/µmFMAX: Maximum force of the motor in N∆xD: Drive-internal position resolution in µm (see Fig. 9-90)

Fig. 9-94: Static elasticity of linear direct drives

Dynamic load rigidityDynamic load rigidity and elasticity are frequency-dependent variables.The dynamic load rigidity of a linear direct drive only depends on thecontroller settings (current, velocity and position controller) and on themoved masses (see Fig. 9-96). The maximum elasticity (or the minimumrigidity) is in the area of the natural frequency of the control loop.

In a simplified form, the following figure shows a typical elasticityfrequency response.

1 10 100 1 .1031 .10 4

1 .10 3

0.01

0.1

G S ω( )

µm

N

ω2 π.

.

Fig. 9-95: Example elasticity frequency response of a linear direct drive

Page 170: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

9-66 Notes Regarding Application and Construction Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Despite the frequency sensitivity, a sufficiently exact estimate of thedynamic rigidity can be made for the area below the natural frequency ofthe control loop:

( )

( )nv

niFp

2

D1D

n

nviFpdyn

Tk0167.01m

Tkk06.0

21

D

mit

D1

e1T

Tk0167.01kk06.0c

2

⋅⋅+⋅⋅⋅⋅

⋅=

−+⋅

⋅⋅+⋅⋅⋅=

−⋅−

π

cdyn: Dynamic load rigidity in N/µmD: AttenuationkiF: Motor constant (force constant) in N/Akp: Proportional gain of velocity controller in A min/mkv: Proportional gain of position controller (Kv-factor) in m/min mmTn: Integral time of velocity controller in msm: Moved mass in kg

Fig. 9-96: Estimating the dynamic load rigidity

dyndyn c

1d =

cdyn: Dynamic load rigidity in N/µmddyn: Dynamic elasticity in N/µm

Fig. 9-97: Determining of the dynamic elasticity

( )n

nviFp0 Tm

Tk60kk1000

21

⋅⋅+⋅⋅⋅

⋅⋅

ω

ω0: Natural frequency in HzkiF: Motor constant (force constant) in N/Akp: Proportional gain of velocity controller in A min/mkv: Proportional gain of position controller (Kv-factor) in m/min mmTn: Integral time of velocity controller in msm: Moved mass in kg

Fig. 9-98: Determining the controller´s natural frequency

Estimating the dynamic loadrigidity

Page 171: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor-Controller-Combinations 10-1

DOK-MOTOR*-MLF********-PR02-EN-P

10 Motor-Controller-Combinations

10.1 General Explanation

This chapter contains selection data of different motor/controllercombinations using the IndraDrive familiy of motor controllers:

• IndraDrive

The structure of the selection data for the IndraDyn L synchronous-linearmotors depend on:

• The motor controller used

• The power supply used and the corresponding supply voltage

• The physical arrangement of the primary part (individual or parallel)

The sort of the selection data dependss on

1. Motor type

2. Maximum feedrate force Fmax

3. Maximum speed with maximum feedrate force vFmax

For the standard and thermal encapsulation at same size obtain the samedata. The specification of the motor-control-combination result concurrentfor both constructions.

Note: The specification of the data for motor-control-combinationresult concurrent for standard and thermal encapsulation.

Motor-control-combinations are also specified for parallel motorarrangement on a drive controller.

Note: The specification of the data for parallel motor arrangementresult for parallel arrangement on one drive controller.Dimensioning and selection for separate motors results fromthe Gantry-arrangement.

The PWM-Frequency of the drive controller affects the resulting motordata. All data in this documentation refer to a PWM-Frequency of 4 kHz.

Structure of the selection data

Sorting the lists

Design Primary Part

Parallel motor arrangement

PWM-Frequency drive-controller

Page 172: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

10-2 Motor-Controller-Combinations Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Explanation of the stated sizes

Maximum feedrate force of the motor, available for maximum 400 ms(see Fig. 4-1).

Maximum speed with maximum force Fmax. Speed up to the maximumfeedrate of the motor is available.

Electrical maximum loss of the motor, referring to the stated maximumcurrent at a motor winding temperature of 135°C.

Continuous feed force of the motor depending on:

- liquid cooling, coolant-water inlet temperature 30°C

- Motor-winding temperature 135°C.

- Motor stillstand

Rated velocity

Force, which is available at a constant nominal force FdN of the motor.

Nominal power loss of the motor at FdN

Duty ratio ED in %, referring to the specified maximum and continuousforce.

Short-time operation force

The potential short-time operation force result from the rate betweenmotor continuous nominal voltage and the continuous nominal voltage ofthe drive-controller and can be used in intermittent duty S6 with the dutyratio EDFKB. The maximum duty cycle time corresponds to the thermaltime constant of the motor (see chapter 4 “Technical Data”).

%100FF

ED2

KB

dNFKB

FdN: Continuous nominal force of the motor in NFKB: Potential short-time operation force in N

Fig. 10-1: Calculation of the potential operation time, relating on FKB

A short-time operation force higher than the continuous nominal force ofthe motor is only then available, when the nominal current of the drive-controller is higher than the continuous nominal voltage of the motor.

Continuous nominal voltage of the motor at continuous nominal force FdN

Maximum current of the motor at Fmax.

Note: The specification of the current is always given in peak valuesunless otherwise noted.

Fmax

vFmax

PVmax

FdN

VN

PvN

EDFmax

FKB

idN

imax

Page 173: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor-Controller-Combinations 10-3

DOK-MOTOR*-MLF********-PR02-EN-P

10.2 Motor/Controller Combinations; separate arrangement ofthe primary part

Controlled DC Bus Voltage, mains supply voltage - 3 x AC 400 V

[N]vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

800 300 6,8 250 500 0,33 5 346 HMS01.1N-W0020800 300 6,8 250 500 0,33 5 375 HMS01.1N-W0036505 407 2,3 161 533 0,14 6 161 HCS02.1E-W0012800 300 6,8 250 500 0,33 5 375 HCS02.1E-W0028800 300 6,8 250 500 0,33 5 375

4,2 20 040A-0300

HCS03.1E-W00701150 150 10,1 370 300 0,39 5 506 HMS01.1N-W00201150 150 10,1 370 300 0,39 5 555 HMS01.1N-W0036732 231 3,3 238 326 0,2 6 238 HCS02.1E-W0012

1150 150 10,1 370 300 0,49 5 555 HCS02.1E-W00281150 150 10,1 370 300 0,49 5 555

4,2 20 040B-0150

HCS03.1E-W0070898 299 5,1 370 400 0,4 8 428 HMS01.1N-W0020

1150 250 9,2 370 400 0,4 4 555 HMS01.1N-W00361150 250 9,2 370 400 0,4 4 454 HCS02.1E-W00281150 250 9,2 370 400 0,4 4 555 HCS02.1E-W00541150 250 9,2 370 400 0,4 4 555

5,3 27 040B-0250

HCS03.1E-W0070747 404 3,9 370 500 0,4 10 395 HMS01.1N-W0020

1150 300 11,9 370 500 0,4 3 555 HMS01.1N-W0036969 347 7,8 370 500 0,4 5 404 HCS02.1E-W0028

1150 300 11,9 370 500 0,4 3 555 HCS02.1E-W00541150 300 11,9 370 500 0,4 3 555

6 35 040B-0300

HCS03.1E-W00701240 176 7 550 200 0,6 8 617 HMS01.1N-W00202000 150 22,7 550 200 0,6 3 825 HMS01.1N-W00362000 150 22,7 550 200 0,6 3 825 HMS01.1N-W00541633 163 14 550 200 0,6 4 634 HCS02.1E-W00282000 150 22,7 550 200 0,6 3 825 HCS02.1E-W00542000 150 22,7 550 200 0,6 3 825

5,5 36 070A-0150

HCS03.1E-W01501107 306 2,6 550 360 0,28 11 576 HMS01.1N-W00201756 244 8,3 550 360 0,28 3 817 HMS01.1N-W00362000 220 11,4 550 360 0,28 3 825 HMS01.1N-W00541443 274 5,1 550 360 0,28 6 590 HCS02.1E-W00282000 220 11,4 550 360 0,28 3 825 HCS02.1E-W00542000 220 11,4 550 360 0,28 3 825

6,3 42 070A-0220

HCS03.1E-W00701381 364 7,3 550 450 0,69 9 628 HMS01.1N-W00361968 304 16,5 550 450 0,69 4 825 HMS01.1N-W00542000 300 17,1 550 450 0,69 4 825 HMS01.1N-W00701130 390 4,5 383 468 0,33 7 383 HCS02.1E-W00281968 304 16,5 550 450 0,69 4 601 HCS02.1E-W00542000 300 17,1 550 450 0,69 4 825 HCS02.1E-W00702000 300 17,1 550 450 0,69 4 825

10,5 55 070A-0300

HCS03.1E-W00701967 136 11,8 820 200 1 8 932 HMS01.1N-W00202600 100 23,1 820 200 1 4 1230 HMS01.1N-W00362600 100 23,1 820 200 1 4 966 HCS02.1E-W00282600 100 23,1 820 200 1 4 1230 HCS02.1E-W00542600 100 23,1 820 200 1 4 1230

5,5 28 070B-0100

HCS03.1E-W01001519 181 7,2 820 220 0,67 9 876 HMS01.1N-W00202304 137 23,2 820 220 0,67 3 1168 HMS01.1N-W00362600 120 31,6 820 220 0,67 2 1230 HMS01.1N-W00541926 158 14,4 820 220 0,67 5 893 HCS02.1E-W00282600 120 31,6 820 220 0,67 2 1230 HCS02.1E-W00542600 120 31,6 820 220 0,67 2 1230

5,8 42 070B-0120

HCS03.1E-W0070

Page 174: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

10-4 Motor-Controller-Combinations Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

1407 224 4,8 820 260 0,51 11 850 HMS01.1N-W00202088 182 15,4 820 260 0,51 3 1103 HMS01.1N-W00362600 150 27,4 820 260 0,51 2 1230 HMS01.1N-W00541760 202 9,5 820 260 0,51 5 865 HCS02.1E-W00282600 150 27,4 820 260 0,51 2 1132 HCS02.1E-W00542600 150 27,4 820 260 0,51 2 1230 HCS02.1E-W00702600 150 27,4 820 260 0,51 2 1230

6,2 48 070B-0150

HCS03.1E-W00701848 314 7,6 820 400 0,65 9 935 HMS01.1N-W00362561 253 17,1 820 400 0,65 4 1230 HMS01.1N-W00542600 250 17,1 820 400 0,65 4 1230 HMS01.1N-W00701544 339 4,7 559 419 0,35 7 599 HCS02.1E-W00282004 300 17,1 820 400 0,65 4 901 HCS02.1E-W00542600 250 17,1 820 400 0,65 4 1181 HCS02.1E-W00702600 250 17,7 820 400 0,65 4 1230

10 55 070B-0250

HCS03.1E-W00701556 388 6,1 820 450 0,75 12 846 HMS01.1N-W00362109 342 13,7 820 450 0,75 6 1230 HMS01.1N-W00542600 300 22,9 820 450 0,75 3 1193 HMS01.1N-W00702600 300 32,5 820 450 0,75 3 1230 HMS01.1N-W01101319 408 3,7 497 478 0,28 7 497 HCS02.1E-W00282109 342 13,7 820 450 0,75 6 820 HCS02.1E-W00542600 300 22,9 820 450 0,75 3 886 HCS02.1E-W00702600 300 22,9 820 450 0,75 3 1230 HCS03.1E-W00702600 300 22,9 820 450 0,75 3 1230

12 70 070B-0300

HCS03.1E-W01002727 145 14,4 1200 180 0,98 7 1423 HMS01.1N-W00363744 121 32,4 1200 180 0,98 3 1800 HMS01.1N-W00543800 120 33,6 1200 180 0,98 3 1800 HMS01.1N-W00702293 155 8,9 981 185 0,66 7 981 HCS02.1E-W00283744 121 32,4 1200 180 0,98 3 1375 HCS02.1E-W00543800 120 33,6 1200 180 0,98 3 1375 HCS02.1E-W00703800 120 33,6 1200 180 0,98 3 1800

8,9 55 070C-0120

HCS03.1E-W00702284 208 10,4 1200 250 1,21 12 1254 HMS01.1N-W00363088 178 23,3 1200 250 1,21 5 1800 HMS01.1N-W00543800 150 39,2 1200 250 1,21 3 1758 HMS01.1N-W00703800 150 39,2 1200 250 1,21 3 1800 HMS01.1N-W01101941 222 6,4 749 268 0,47 7 749 HCS02.1E-W00283088 178 23,3 1200 250 1,21 5 1216 HCS02.1E-W00543800 150 39,2 1200 250 1,21 3 1312 HCS02.1E-W00703800 150 39,2 1200 250 1,21 3 1800

11,7 70 070C-0150

HCS03.1E-W00701976 317 5,1 1187 351 0,72 14 1187 HMS01.1N-W00362585 292 11,4 1200 350 0,74 6 1642 HMS01.1N-W00543124 269 19,1 1200 350 0,74 4 1577 HMS01.1N-W00703800 240 31,6 1200 350 0,74 2 1800 HMS01.1N-W01102585 292 11,4 1109 354 0,63 6 1109 HCS02.1E-W00543161 268 19,5 1200 350 0,74 4 1231 HCS02.1E-W00703124 269 19,1 1200 350 0,74 4 1800 HCS03.1E-W00703800 240 31,6 1200 350 0,74 2 1800

13 90 070C-0240

HCS03.1E-W01002200 393 8,5 1200 450 1,18 14 1402 HMS01.1N-W00542657 366 14,3 1200 450 1,18 8 1347 HMS01.1N-W00703800 300 35,4 1200 450 1,18 3 1786 HMS01.1N-W01103800 300 35,4 1200 450 1,18 3 1800 HMS01.1N-W01502200 393 8,5 758 476 0,47 6 758 HCS02.1E-W00542679 365 14,7 879 469 0,63 4 879 HCS02.1E-W00702657 366 14,3 1200 450 1,18 8 1673 HCS03.1E-W00703513 317 29,2 1200 450 1,18 4 1800 HCS03.1E-W01003800 300 35,4 1200 450 1,18 3 1800

19 110 070C-0300

HCS03.1E-W01502280 124 9,5 1180 150 1,15 12 1209 HMS01.1N-W00203588 94 30,8 1180 150 1,15 4 1695 HMS01.1N-W00363750 90 34,3 1180 150 1,15 3 1770 HMS01.1N-W00542957 109 19 1180 150 1,15 6 1238 HCS02.1E-W00283750 90 34,3 1180 150 1,15 3 1770 HCS02.1E-W00543750 90 34,3 1180 150 1,15 3 1770

6,6 38 100A-0090

HCS03.1E-W0070

Page 175: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor-Controller-Combinations 10-5

DOK-MOTOR*-MLF********-PR02-EN-P

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

2038 167 6,1 1023 194 0,81 13 1023 HMS01.1N-W00203179 135 19,7 1180 190 1,08 5 1528 HMS01.1N-W00363750 120 29,4 1180 190 1,08 4 1770 HMS01.1N-W00542629 151 12,2 1076 193 0,9 7 1076 HCS02.1E-W00283750 120 29,4 1180 190 1,08 4 1651 HCS02.1E-W00543750 120 29,4 1180 190 1,08 4 1770 HCS02.1E-W00703750 120 29,4 1180 190 1,08 4 1770

8 44 100A-0120

HCS03.1E-W00702665 180 17,4 1180 220 1,49 9 1345 HMS01.1N-W00363694 152 39,3 1180 220 1,49 4 1770 HMS01.1N-W00543750 150 40,7 1180 220 1,49 4 1770 HMS01.1N-W00702225 192 10,8 862 229 0,8 7 862 HCS02.1E-W00283694 152 39,3 1180 220 1,49 4 1297 HCS02.1E-W00543750 150 40,7 1180 220 1,49 4 1702 HCS02.1E-W00703750 150 40,7 1180 220 1,49 4 1770

10 55 100A-0150

HCS03.1E-W01502242 249 8,1 1180 290 1,01 12 1218 HMS01.1N-W00363042 218 18,2 1180 290 1,01 6 1770 HMS01.1N-W00543750 190 30,6 1180 290 1,01 3 1719 HMS01.1N-W00703750 190 30,6 1180 290 1,01 3 1770 HMS01.1N-W01101901 262 5 715 308 0,37 7 715 HCS02.1E-W00283042 218 18,2 1180 290 1,01 6 1180 HCS02.1E-W00543750 190 30,6 1180 290 1,01 3 1276 HCS02.1E-W00703750 190 30,6 1180 290 1,01 3 1770

12 70 100A-0190

HCS03.1E-W00703362 161 11,4 1785 190 1,4 12 1841 HMS01.1N-W00364549 139 25,6 1785 190 1,4 6 2678 HMS01.1N-W00545600 120 43 1785 190 1,4 3 2585 HMS01.1N-W00705600 120 43 1785 190 1,4 3 2678 HMS01.1N-W01102855 170 7 1082 203 0,52 7 1082 HCS02.1E-W00284549 139 25,6 1785 190 1,4 6 1785 HCS02.1E-W00545600 120 43 1785 190 1,4 3 1927 HCS02.1E-W00705600 120 43 1785 190 1,4 3 2678 HCS03.1E-W00705600 120 43 1785 190 1,4 3 2678

12 70 100B-0120

HCS03.1E-W01002917 321 11,4 1785 350 2,1 18 1930 HMS01.1N-W00543481 306 19,1 1785 350 2,1 11 1862 HMS01.1N-W00704895 269 47,2 1785 350 2,1 4 2405 HMS01.1N-W01105600 250 65,9 1785 350 2,1 3 2678 HMS01.1N-W01502917 321 11,4 976 371 0,63 6 976 HCS02.1E-W00543509 305 19,5 1131 367 0,84 4 1131 HCS02.1E-W00703481 306 19,1 1785 350 2,1 11 2265 HCS03.1E-W00704541 278 39 1785 350 2,1 5 2678 HCS03.1E-W01005600 250 65,9 1785 350 2,1 3 2678

22 130 100B-0250

HCS03.1E-W01503754 146 15,2 2285 171 2,16 14 2285 HMS01.1N-W00364888 127 34,1 2310 170 2,21 6 3132 HMS01.1N-W00545892 111 57,3 2310 170 2,21 4 3012 HMS01.1N-W00707150 90 94,8 2310 170 2,21 2 3465 HMS01.1N-W01104888 127 34,1 2134 173 1,89 6 2134 HCS02.1E-W00545941 110 58,6 2310 170 2,21 4 2368 HCS02.1E-W00705892 111 57,3 2310 170 2,21 4 3465 HCS03.1E-W00707150 90 94,8 2310 170 2,21 2 3465

13 90 100C-0090

HCS03.1E-W01003765 169 9,9 1983 195 1,4 14 1983 HMS01.1N-W00365014 151 22,2 2310 190 1,91 9 3079 HMS01.1N-W00546121 135 37,3 2310 190 1,91 5 2947 HMS01.1N-W00707150 120 54,9 2310 190 1,91 3 3465 HMS01.1N-W01105009 151 22,2 1852 197 1,23 6 1852 HCS02.1E-W00546167 134 38,1 2147 192 1,65 4 2147 HCS02.1E-W00706114 135 37,3 2310 190 1,91 5 3465 HCS03.1E-W00707150 120 54,9 2310 190 1,91 3 3465

15 85 100C-0120

HCS03.1E-W01003594 264 8,5 2310 290 1,72 20 2439 HMS01.1N-W00544255 250 14,3 2310 290 1,72 12 2360 HMS01.1N-W00705910 216 35,4 2310 290 1,72 5 2994 HMS01.1N-W01107150 190 57,3 2310 290 1,72 3 3465 HMS01.1N-W01503594 264 8,5 1208 313 0,47 6 1208 HCS02.1E-W00544287 249 14,7 1400 309 0,63 4 1400 HCS02.1E-W00704255 250 14,3 2310 290 1,72 12 2831 HCS03.1E-W00705495 224 29,2 2310 290 1,72 6 3465 HCS03.1E-W01007150 190 57,3 2310 290 1,72 3 3465

23 140 100C-0190

HCS03.1E-W0150

Page 176: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

10-6 Motor-Controller-Combinations Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

3135 161 10,1 1680 190 1,26 12 1732 HMS01.1N-W00364230 139 22,8 1680 190 1,26 6 2520 HMS01.1N-W00545200 120 38,2 1680 190 1,26 3 2418 HMS01.1N-W00705200 120 38,2 1680 190 1,26 3 2520 HMS01.1N-W01102667 170 6,2 1018 203 0,46 7 1018 HCS02.1E-W00284230 139 22,8 1680 190 1,26 6 1680 HCS02.1E-W00545200 120 38,2 1680 190 1,26 3 1811 HCS02.1E-W00705200 120 38,2 1680 190 1,26 3 2520

12 70 140A-0120

HCS03.1E-W00703986 139 10,9 2073 165 1,55 14 2073 HMS01.1N-W00365334 121 24,5 2415 160 2,1 9 3245 HMS01.1N-W00546529 105 41,1 2415 160 2,1 5 3102 HMS01.1N-W00707650 90 60,6 2415 160 2,1 3 3622 HMS01.1N-W01105334 121 24,5 1937 167 1,35 6 1937 HCS02.1E-W00546587 104 42 2244 162 1,81 4 2244 HCS02.1E-W00706529 105 41,1 2415 160 2,1 5 3622 HCS03.1E-W00707650 90 60,6 2415 160 2,1 3 3622

15 85 140B-0090

HCS03.1E-W01004581 161 14,8 2415 190 1,84 12 2900 HMS01.1N-W00545543 148 24,8 2415 190 1,84 7 2785 HMS01.1N-W00707650 120 55,9 2415 190 1,84 3 3622 HMS01.1N-W01104581 161 14,8 1610 201 0,82 6 1610 HCS02.1E-W00545590 148 25,4 1866 197 1,1 4 1866 HCS02.1E-W00705543 148 24,8 2415 190 1,84 7 3471 HCS03.1E-W00707348 124 50,7 2415 190 1,84 4 3622 HCS03.1E-W01007650 120 55,9 2415 190 1,84 3 3622

18 105 140B-0120

HCS03.1E-W01505912 86 12,9 3116 110 1,84 14 3116 HMS01.1N-W00368079 67 29 3150 110 1,88 6 4722 HMS01.1N-W005410000 50 48,7 3150 110 1,88 4 4493 HMS01.1N-W007010000 50 48,7 3150 110 1,88 4 4725 HMS01.1N-W01108097 67 29 2910 112 1,6 6 2910 HCS02.1E-W005410000 50 48,7 3150 110 1,88 4 3291 HCS02.1E-W007010000 50 48,7 3150 110 1,88 4 4725 HCS03.1E-W007010000 50 48,7 3150 110 1,88 4 4725

13 70 140C-0050

HCS03.1E-W01005325 168 14,2 3150 190 2,4 17 3485 HMS01.1N-W00546377 157 23,9 3150 190 2,4 10 3360 HMS01.1N-W00709013 130 59 3150 190 2,4 4 4370 HMS01.1N-W011010000 120 76,2 3150 190 2,4 3 4725 HMS01.1N-W01505325 168 14,2 1803 204 0,79 6 1803 HCS02.1E-W00546428 157 24,4 2089 201 1,06 4 2089 HCS02.1E-W00706377 157 23,9 3150 190 2,4 10 4109 HCS03.1E-W00708352 137 48,7 3150 190 2,4 5 4725 HCS03.1E-W010010000 120 76,2 3150 190 2,4 3 4725

21 125 140C-0120

HCS03.1E-W01505681 221 13,4 2628 256 1,78 13 2628 HMS01.1N-W00708150 192 33 3150 250 2,56 8 3800 HMS01.1N-W011010000 170 53,3 3150 250 2,56 5 4725 HMS01.1N-W01505729 220 13,7 1514 269 0,59 4 1514 HCS02.1E-W00705681 221 13,4 3150 250 2,56 19 3556 HCS03.1E-W00707531 199 27,3 3150 250 2,56 9 4708 HCS03.1E-W010010000 170 53,3 3150 250 2,56 5 4725

29 140 140C-0170

HCS03.1E-W01506350 377 21,9 3150 400 3,12 14 3530 HMS01.1N-W01508341 362 43 3150 400 3,12 7 4725 HMS01.1N-W02106350 377 21,9 3150 400 3,12 14 3793 HMS03.1N-W01508341 362 43 3150 400 3,12 7 4725

53,5 260 140C-0350

HMS03.1N-W02104445 138 11,4 2389 171 1,62 14 2389 HMS01.1N-W00366038 113 25,6 2415 170 1,66 6 3571 HMS01.1N-W00547450 90 43 2415 170 1,66 4 3402 HMS01.1N-W00707450 90 43 2415 170 1,66 4 3622 HMS01.1N-W01106038 113 25,6 2231 173 1,41 6 2231 HCS02.1E-W00547450 90 43 2415 170 1,66 4 2519 HCS02.1E-W00707450 90 43 2415 170 1,66 4 3622

13 70 200A-0090

HCS03.1E-W0070

Page 177: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor-Controller-Combinations 10-7

DOK-MOTOR*-MLF********-PR02-EN-P

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

5073 153 13,1 2415 190 1,28 10 3122 HMS01.1N-W00546190 138 22 2415 190 1,28 6 2988 HMS01.1N-W00707450 120 34,8 2415 190 1,28 4 3622 HMS01.1N-W01105073 153 13,1 1817 198 0,72 6 1817 HCS02.1E-W00546244 137 22,5 2105 194 0,97 4 2105 HCS02.1E-W00706190 138 22 2415 190 1,28 6 3622 HCS03.1E-W00707450 120 34,8 2415 190 1,28 4 3622

16 88 200A-0120

HCS03.1E-W01006463 76 14,7 3427 100 2,09 14 3427 HMS01.1N-W00368815 57 33 3465 100 2,14 6 5172 HMS01.1N-W005410900 40 55,4 3465 100 2,14 4 4922 HMS01.1N-W007010900 40 55,4 3465 100 2,14 4 5198 HMS01.1N-W01108815 57 33 3201 102 1,82 6 3201 HCS02.1E-W005410900 40 55,4 3465 100 2,14 4 3618 HCS02.1E-W007010900 40 55,4 3465 100 2,14 4 5198 HCS03.1E-W007010900 40 55,4 3465 100 2,14 4 5198

13 70 200B-0040

HCS03.1E-W01005671 169 9,7 3465 190 1,79 18 3747 HMS01.1N-W00546771 159 16,2 3465 190 1,79 11 3616 HMS01.1N-W00709527 133 40,1 3465 190 1,79 4 4673 HMS01.1N-W011010900 120 56 3465 190 1,79 3 5198 HMS01.1N-W01505671 169 9,7 1894 205 0,53 6 1894 HCS02.1E-W00546825 158 16,6 2195 202 0,72 4 2195 HCS02.1E-W00706771 159 16,2 3465 190 1,79 11 4400 HCS03.1E-W00708836 140 33,1 3465 190 1,79 5 5198 HCS03.1E-W010010900 120 56 3465 190 1,79 3 5198

22 130 200B-0120

HCS03.1E-W01509179 132 25,8 4460 170 3,24 13 4532 HMS01.1N-W007013239 98 63,7 4460 170 3,24 5 6088 HMS01.1N-W011014250 90 75,8 4460 170 3,24 4 6690 HMS01.1N-W01509258 131 26,4 2646 185 1,14 4 2646 HCS02.1E-W00709179 132 25,8 4460 170 3,24 13 5686 HCS03.1E-W007012220 107 52,6 4460 170 3,24 6 6690 HCS03.1E-W010014250 90 75,8 4460 170 3,24 4 6690

23 120 200C-0090

HCS03.1E-W01509863 151 40,1 4460 190 3,32 8 5104 HMS01.1N-W011012560 132 74,6 4460 190 3,32 4 6690 HMS01.1N-W015014250 120 101,5 4460 190 3,32 3 6690 HMS01.1N-W02107214 170 16,6 2072 207 0,72 4 2072 HCS02.1E-W00709186 156 33,1 4460 190 3,32 10 6097 HCS03.1E-W010012560 132 74,6 4460 190 3,32 4 6690 HCS03.1E-W015014250 120 101,5 4460 190 3,32 3 6690

30 175 200C-0120

HCS03.1E-W02108281 201 26 3830 223 3,74 14 3830 HMS01.1N-W011010666 188 48,2 4460 220 5,07 11 5591 HMS01.1N-W015014250 170 94,6 4460 220 5,07 5 6690 HMS01.1N-W021010666 188 48,2 4460 220 5,07 11 6064 HCS03.1E-W015014250 170 94,6 4460 220 5,07 5 6690

46 210 200C-0170

HCS03.1E-W021010131 110 26,8 4802 145 3,56 13 4802 HMS01.1N-W007014487 81 66,1 5560 140 4,78 7 6814 HMS01.1N-W011017750 60 107 5560 140 4,78 4 8340 HMS01.1N-W015010216 110 27,4 2766 158 1,18 4 2766 HCS02.1E-W007010131 110 26,8 5560 140 4,78 18 6383 HCS03.1E-W007013394 89 54,6 5560 140 4,78 9 8340 HCS03.1E-W010017750 60 107 5560 140 4,78 4 8340

28 140 200D-0060

HCS03.1E-W015010317 149 37,8 4774 185 5,44 14 4774 HMS01.1N-W011013287 129 70,2 5560 180 7,37 11 6969 HMS01.1N-W015017750 100 137,6 5560 180 7,37 5 8340 HMS01.1N-W021013287 129 70,2 5560 180 7,37 11 7557 HCS03.1E-W015017750 100 137,6 5560 180 7,37 5 8340

46 210 200D-0100

HCS03.1E-W021012432 151 57 5560 190 7,95 14 6408 HMS01.1N-W015016687 126 111,8 5560 190 7,95 7 8340 HMS01.1N-W021012432 151 57 5560 190 7,95 14 6968 HCS03.1E-W015016687 126 111,8 5560 190 7,95 7 8340

53 225 200D-0120

HCS03.1E-W0210

Page 178: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

10-8 Motor-Controller-Combinations Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

6292 133 17,6 3350 160 2,44 14 3944 HMS01.1N-W00547636 121 29,6 3350 160 2,44 8 3784 HMS01.1N-W007011000 90 73,2 3350 160 2,44 3 5025 HMS01.1N-W011011000 90 73,2 3350 160 2,44 3 5025 HMS01.1N-W01506292 133 17,6 2117 171 0,97 6 2117 HCS02.1E-W00547701 120 30,3 2453 168 1,31 4 2453 HCS02.1E-W00707636 121 29,6 3350 160 2,44 8 4741 HCS03.1E-W007010156 98 60,4 3350 160 2,44 4 5025 HCS03.1E-W010011000 90 73,2 3350 160 2,44 3 5025

19 110 300A-0090

HCS03.1E-W01505414 171 11,4 3350 190 2,3 20 3557 HMS01.1N-W00546477 161 19,1 3350 190 2,3 12 3430 HMS01.1N-W00709138 137 47,2 3350 190 2,3 5 4450 HMS01.1N-W011011000 120 74,3 3350 190 2,3 3 5025 HMS01.1N-W01505414 171 11,4 1752 205 0,63 6 1752 HCS02.1E-W00546528 161 19,5 2031 202 0,84 4 2031 HCS02.1E-W00706477 161 19,1 3350 190 2,3 12 4187 HCS03.1E-W00708470 143 39 3350 190 2,3 6 5025 HCS03.1E-W010011000 120 74,3 3350 190 2,3 3 5025

23 138 300A-0120

HCS03.1E-W01509331 114 25,8 4448 144 3,43 13 4448 HMS01.1N-W007013315 89 63,7 5150 140 4,6 7 6297 HMS01.1N-W011016300 70 103,2 5150 140 4,6 4 7725 HMS01.1N-W01509409 113 26,4 2562 156 1,14 4 2562 HCS02.1E-W00709331 114 25,8 5150 140 4,6 18 5903 HCS03.1E-W007012316 95 52,6 5150 140 4,6 9 7725 HCS03.1E-W010016300 70 103,2 5150 140 4,6 4 7725

28 140 300B-0070

HCS03.1E-W015010071 159 30,7 5150 190 3,46 11 5447 HMS01.1N-W011012692 143 57 5150 190 3,46 6 7117 HMS01.1N-W015016300 120 106,5 5150 190 3,46 3 7725 HMS01.1N-W02109412 163 25,3 5150 190 3,46 14 6411 HCS03.1E-W010012692 143 57 5150 190 3,46 6 7636 HCS03.1E-W015016300 120 106,6 5150 190 3,46 3 7725

35 205 300B-0120

HCS03.1E-W021012180 92 13,4 5605 114 1,78 13 5605 HMS01.1N-W007017508 74 33 6720 110 2,56 5 8123 HMS01.1N-W011021500 60 53,5 6720 110 2,56 5 10080 HMS01.1N-W015012284 91 13,7 3229 122 0,59 4 3229 HCS02.1E-W007012180 92 13,4 6720 110 2,56 19 7596 HCS03.1E-W007016172 78 27,3 6720 110 2,56 9 10080 HCS03.1E-W010021500 60 53,5 6720 110 2,56 5 10080

29 140 300C-0060

HCS03.1E-W015012889 125 37,8 6720 150 4,76 13 6935 HMS01.1N-W011016263 111 70,2 6720 150 4,76 7 9085 HMS01.1N-W015021333 91 137,6 6720 150 4,76 3 10080 HMS01.1N-W021012041 128 31,2 6720 150 4,76 15 8176 HCS03.1E-W010016263 111 70,2 6720 150 4,76 7 9754 HCS03.1E-W015021333 91 137,6 6720 150 4,76 3 10080

37 212 300C-0090

HCS03.1E-W0210

Fig. 10-2: Possible combination at separate arrangement

Page 179: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor-Controller-Combinations 10-9

DOK-MOTOR*-MLF********-PR02-EN-P

10.3 Motor/Controller Combinations; parallel arrangement ofthe primary part

Controlled DC Bus Voltage, mains supply voltage - 3 x AC 400 V

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

905 427 3,4 415 516 0,45 13 415 HMS01.1N-W00201460 326 11 500 500 0,66 6 657 HMS01.1N-W00361600 300 13,6 500 500 0,66 5 750 HMS01.1N-W0054610 480 1,1 562 520 0,07 6 161 HCS02.1E-W0012

1192 374 6,8 512 500 0,5 7 436 HCS02.1E-W00281600 300 13,1 500 500 0,66 5 750 HCS02.1E-W00541600 300 13,6 500 500 0,66 5 750

4,2 20 040A-0300

HCS03.1E-W00701315 245 5 615 312 0,67 13 615 HMS01.1N-W00202102 169 16,3 740 300 0,98 6 963 HMS01.1N-W00362300 150 20,1 740 300 0,98 5 1110 HMS01.1N-W0054897 285 1,7 238 348 0,1 6 238 HCS02.1E-W0012

1722 206 10,1 646 309 0,74 7 646 HCS02.1E-W00282300 150 20,1 740 300 0,98 5 1097 HCS02.1E-W00542300 150 20,1 740 300 0,98 5 1110 HCS02.1E-W00702300 150 20,1 740 300 0,98 5 1110

4,2 20 040B-0150

HCS03.1E-W00701078 368 2,5 483 425 0,34 13 483 HMS01.1N-W00201652 312 8,2 740 400 0,8 10 822 HMS01.1N-W00362300 250 18,5 740 400 0,8 4 1110 HMS01.1N-W00542300 250 18,5 740 400 0,8 4 1110 HMS01.1N-W00701375 339 5,1 508 423 0,37 7 508 HCS02.1E-W00282300 250 18,5 740 400 0,8 4 791 HCS02.1E-W00542300 250 18,5 740 400 0,8 4 1057 HCS02.1E-W00702300 250 18,5 740 400 0,8 4 1110

5,3 27 040B-0250

HCS03.1E-W0070955 473 2 427 541 0,26 13 427 HMS01.1N-W0020

1385 418 6,3 740 500 0,79 12 763 HMS01.1N-W00361870 355 14,2 740 500 0,79 6 1110 HMS01.1N-W00542300 300 23,9 740 500 0,79 3 1067 HMS01.1N-W00702300 300 23,9 740 500 0,79 3 1110 HMS01.1N-W01101178 444 3,9 448 538 0,29 7 448 HCS02.1E-W00281870 355 14,2 740 500 0,79 6 740 HCS02.1E-W00542300 300 23,9 740 500 0,79 3 798 HCS02.1E-W00702300 300 23,9 740 500 0,79 3 1110

6 35 040B-0300

HCS03.1E-W00701527 193 3,5 691 207 0,47 13 691 HMS01.1N-W00202288 180 11,4 1100 200 1,19 10 1187 HMS01.1N-W00363145 165 25,6 1100 200 1,19 5 1650 HMS01.1N-W00543906 152 43 1100 200 1,19 3 1650 HMS01.1N-W00704000 150 45,5 1100 200 1,19 3 1650 HMS01.1N-W01101921 186 7 726 207 0,52 7 726 HCS02.1E-W00283145 165 25,6 1100 200 1,19 5 1147 HCS02.1E-W00543943 151 44 1100 200 1,19 3 1238 HCS02.1E-W00703906 152 43 1100 200 1,19 3 1650 HCS03.1E-W00704000 150 45,5 1100 200 1,19 3 1650

5,5 36 070A-0150

HCS03.1E-W01001401 346 1,3 606 384 0,17 13 606 HMS01.1N-W00202050 314 4,2 1100 360 0,57 14 1111 HMS01.1N-W00362783 279 9,4 1100 360 0,57 6 1648 HMS01.1N-W00543431 248 15,8 1100 360 0,57 4 1571 HMS01.1N-W00704000 220 22,7 1100 360 0,57 3 1650 HMS01.1N-W01101737 329 2,6 637 383 0,19 7 637 HCS02.1E-W00282783 279 9,4 1051 363 0,52 6 1051 HCS02.1E-W00543463 246 16,1 1100 360 0,57 4 1155 HCS02.1E-W00703431 248 15,8 1100 360 0,57 4 1650 HCS03.1E-W00704000 220 22,7 1100 360 0,57 3 1650

6,3 42 070A-0220

HCS03.1E-W0100

Page 180: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

10-10 Motor-Controller-Combinations Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

1590 425 3,7 676 472 0,52 14 676 HMS01.1N-W00362177 395 8,3 1100 450 1,38 17 1268 HMS01.1N-W00542697 368 13,9 1100 450 1,38 10 1206 HMS01.1N-W00704000 300 34,2 1100 450 1,38 4 1650 HMS01.1N-W01101339 438 2,3 383 487 0,17 7 383 HCS02.1E-W00282177 395 8,3 632 475 0,46 6 632 HCS02.1E-W00542723 366 14,2 732 469 0,61 4 732 HCS02.1E-W00702697 368 13,9 1100 450 1,38 10 1576 HCS03.1E-W00703673 317 28,3 1100 450 1,38 5 1650 HCS03.1E-W01004000 300 34,2 1100 450 1,38 4 1650

10,5 55 070A-0300

HCS03.1E-W01502351 180 5,9 1030 217 0,79 13 1030 HMS01.1N-W00203616 145 19,1 1640 200 2 10 1786 HMS01.1N-W00365043 104 43 1640 200 2 5 2460 HMS01.1N-W00545200 100 46,2 1640 200 2 4 2460 HMS01.1N-W00703006 162 11,8 1083 216 0,87 7 1083 HCS02.1E-W00285043 104 43 1640 200 2 5 1718 HCS02.1E-W00545200 100 46,2 1640 200 2 4 2254 HCS02.1E-W00705200 100 46,2 1640 200 2 4 2460

5,5 28 070B-0100

HCS03.1E-W00702054 209 3,6 980 239 0,48 13 980 HMS01.1N-W00202839 186 11,6 1640 220 1,35 12 1703 HMS01.1N-W00363726 162 26,2 1640 220 1,35 5 2353 HMS01.1N-W00544512 139 44 1640 220 1,35 3 2259 HMS01.1N-W00705200 120 63,3 1640 220 1,35 2 2460 HMS01.1N-W01102460 197 7,2 1030 237 0,53 7 1030 HCS02.1E-W00283726 162 26,2 1640 220 1,35 5 1661 HCS02.1E-W00544550 138 44,9 1640 220 1,35 3 1755 HCS02.1E-W00704512 139 44 1640 220 1,35 3 2460 HCS03.1E-W00705200 120 63,3 1640 220 1,35 2 2460

5,8 42 070B-0120

HCS03.1E-W01001962 250 2,4 913 283 0,32 13 913 HMS01.1N-W00202643 229 7,7 1640 260 1,03 13 1658 HMS01.1N-W00363411 205 17,4 1640 260 1,03 6 2221 HMS01.1N-W00544092 184 29,1 1640 260 1,03 4 2140 HMS01.1N-W00705200 150 54,8 1640 260 1,03 2 2460 HMS01.1N-W01102315 239 4,8 960 281 0,35 7 960 HCS02.1E-W00283411 205 17,4 1584 262 0,96 6 1584 HCS02.1E-W00544125 183 29,8 1640 260 1,03 3 1703 HCS02.1E-W00704092 184 29,1 1640 260 1,03 4 2460 HCS03.1E-W00705200 150 54,8 1640 260 1,03 2 2460

6,2 48 070B-0150

HCS03.1E-W01002274 374 3,8 1058 425 0,54 14 1058 HMS01.1N-W00362987 343 8,5 1640 400 1,3 15 1883 HMS01.1N-W00543618 317 14,3 1640 400 1,3 9 1808 HMS01.1N-W00705200 250 35,4 1640 400 1,3 4 2414 HMS01.1N-W01105200 250 35,4 1640 400 1,3 4 2460 HMS01.1N-W01501970 386 2,3 599 444 0,17 7 599 HCS02.1E-W00282987 343 8,5 989 428 0,47 6 989 HCS02.1E-W00543649 316 14,7 1146 421 0,63 4 1146 HCS02.1E-W00703618 317 14,3 1640 400 1,3 9 2258 HCS03.1E-W00704803 267 29,2 1640 400 1,3 4 2460 HCS03.1E-W01005200 250 35,4 1640 400 1,3 4 2460

10 55 070B-0250

HCS03.1E-W01502007 435 3 878 482 0,43 14 878 HMS01.1N-W00362560 411 6,8 1640 450 1,51 22 1703 HMS01.1N-W00543051 391 11,5 1640 450 1,51 13 1644 HMS01.1N-W00704280 339 28,3 1640 450 1,51 5 2115 HMS01.1N-W01105200 300 45,9 1640 450 1,51 3 2460 HMS01.1N-W01501770 445 1,9 497 498 0,14 7 497 HCS02.1E-W00282560 411 6,8 820 485 0,38 6 820 HCS02.1E-W00543075 390 11,7 950 479 0,51 4 950 HCS02.1E-W00703051 391 11,5 1640 450 1,51 13 1994 HCS03.1E-W00703971 352 23,4 1640 450 1,51 6 2460 HCS03.1E-W01005200 300 45,9 1640 450 1,51 3 2460

12 70 070B-0300

HCS03.1E-W0150

Page 181: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor-Controller-Combinations 10-11

DOK-MOTOR*-MLF********-PR02-EN-P

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

3425 168 7,2 1733 188 1,03 14 1733 HMS01.1N-W00364442 157 16,2 2400 180 1,97 12 2867 HMS01.1N-W00545343 146 27,2 2400 180 1,97 7 2759 HMS01.1N-W00707600 120 67,6 2400 180 1,97 3 3600 HMS01.1N-W01107600 120 67,6 2400 180 1,97 3 3600 HMS01.1N-W01502990 173 4,4 981 196 0,33 7 981 HCS02.1E-W00284442 157 16,2 1619 189 0,9 6 1619 HCS02.1E-W00545387 146 27,8 1876 186 1,2 4 1876 HCS02.1E-W00705343 146 27,2 2400 180 1,97 7 3401 HCS03.1E-W00707034 127 55,6 2400 180 1,97 4 3600 HCS03.1E-W01007600 120 67,6 2400 180 1,97 3 3600

8,9 55 070C-0120

HCS03.1E-W01502964 239 5,2 1324 271 0,74 14 1324 HMS01.1N-W00363768 224 11,7 2400 250 2,43 21 2523 HMS01.1N-W00544480 210 19,6 2400 250 2,43 12 2438 HMS01.1N-W00706264 176 48,4 2400 250 2,43 5 3122 HMS01.1N-W01107600 150 78,4 2400 250 2,43 3 3600 HMS01.1N-W01502621 246 3,2 749 282 0,24 7 749 HCS02.1E-W00283768 224 11,7 1236 273 0,64 6 1236 HCS02.1E-W00544515 209 20 1433 269 0,87 4 1433 HCS02.1E-W00704480 210 19,6 2400 250 2,43 12 2945 HCS03.1E-W00705816 184 40 2400 250 2,43 6 3600 HCS03.1E-W01007600 150 78,4 2400 250 2,43 3 3600

11,7 70 070C-0150

HCS03.1E-W01502737 343 2,5 1187 376 0,36 14 1187 HMS01.1N-W00363345 330 5,7 2400 350 1,47 26 2402 HMS01.1N-W00543885 319 9,6 2230 354 1,27 13 2230 HMS01.1N-W00705236 290 23,6 2400 350 1,47 6 2856 HMS01.1N-W01106585 262 43,9 2400 350 1,47 3 3600 HMS01.1N-W01507600 240 63,2 2400 350 1,47 2 3600 HMS01.1N-W02103345 330 5,7 1109 378 0,31 6 1109 HCS02.1E-W00543911 318 9,8 1285 374 0,42 4 1285 HCS02.1E-W00703885 319 9,6 2400 350 1,47 15 2722 HCS03.1E-W00704897 297 19,5 2400 350 1,47 8 3353 HCS03.1E-W01006585 262 43,9 2400 350 1,47 3 3600 HCS03.1E-W01507600 240 63,2 2400 350 1,47 2 3600

13 90 070C-0240

HCS03.1E-W02102857 437 4,3 1646 472 1,11 26 1646 HMS01.1N-W00543313 424 7,2 1526 476 0,95 13 1526 HMS01.1N-W00704457 391 17,7 2400 450 2,36 13 2442 HMS01.1N-W01105598 358 32,9 2400 450 2,36 7 3170 HMS01.1N-W01507313 308 64,5 2400 450 2,36 4 3600 HMS01.1N-W02102857 437 4,3 758 498 0,24 6 758 HCS02.1E-W00543335 423 7,3 879 494 0,32 4 879 HCS02.1E-W00703313 424 7,2 2244 455 2,06 29 2244 HCS03.1E-W00704170 399 14,6 2400 450 2,36 16 2863 HCS03.1E-W01005598 358 32,9 2400 450 2,36 7 3396 HCS03.1E-W01507313 308 64,5 2400 450 2,36 4 3600

19 110 070C-0300

HCS03.1E-W02102921 144 4,8 1243 163 0,64 13 1243 HMS01.1N-W00204230 128 15,4 2309 151 2,2 14 2309 HMS01.1N-W00365706 111 34,7 2360 150 2,3 7 3419 HMS01.1N-W00547014 96 58,3 2360 150 2,3 4 3263 HMS01.1N-W00707500 90 68,6 2360 150 2,3 3 3540 HMS01.1N-W01103599 136 9,5 1307 162 0,7 7 1307 HCS02.1E-W00285706 111 34,7 2157 152 1,92 6 2157 HCS02.1E-W00547077 95 59,6 2360 150 2,3 4 2424 HCS02.1E-W00707014 96 58,3 2360 150 2,3 4 3540 HCS03.1E-W00707500 90 68,6 2360 150 2,3 3 3540

6,6 38 100A-0090

HCS03.1E-W01002648 186 3 1023 208 0,41 13 1023 HMS01.1N-W00203789 171 9,9 1901 196 1,4 14 1901 HMS01.1N-W00365076 153 22,8 2360 190 2,17 10 3082 HMS01.1N-W00546218 138 37,3 2360 190 2,17 6 2948 HMS01.1N-W00707500 120 58,8 2360 190 2,17 4 3540 HMS01.1N-W01103239 178 6,1 1076 208 0,45 7 1076 HCS02.1E-W00285076 153 22,2 1775 198 1,23 6 1775 HCS02.1E-W00546273 137 38,1 2057 194 1,65 4 2057 HCS02.1E-W00706218 138 37,3 2360 190 2,17 6 3540 HCS03.1E-W00707500 120 58,8 2360 190 2,17 4 3540

8 44 100A-0120

HCS03.1E-W0100

Page 182: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

10-12 Motor-Controller-Combinations Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

3276 208 8,7 1523 232 1,24 14 1523 HMS01.1N-W00364305 194 19,6 2360 220 2,98 15 2711 HMS01.1N-W00545216 181 33 2360 220 2,98 9 2601 HMS01.1N-W00707500 150 81,4 2360 220 2,98 4 3478 HMS01.1N-W01107500 150 81,4 2360 220 2,98 4 3540 HMS01.1N-W01502836 214 5,4 862 241 0,4 7 862 HCS02.1E-W00284305 194 19,6 1423 233 1,08 6 1423 HCS02.1E-W00545261 181 33,7 1649 230 1,46 4 1649 HCS02.1E-W00705216 181 33 2360 220 2,98 9 3252 HCS03.1E-W00706927 158 67,3 2360 220 2,98 4 3540 HCS03.1E-W01007500 150 81,4 2360 220 2,98 4 3540

10 55 100A-0150

HCS03.1E-W01502890 280 4 1263 312 0,58 14 1263 HMS01.1N-W00363689 264 9,1 2360 290 2,01 22 2451 HMS01.1N-W00544397 251 15,3 2360 290 2,01 13 2366 HMS01.1N-W00706171 216 37,8 2360 290 2,01 5 3046 HMS01.1N-W01107500 190 61,2 2360 290 2,01 3 3540 HMS01.1N-W01502548 287 2,5 715 322 0,18 7 715 HCS02.1E-W00283689 264 9,1 1180 313 0,5 6 1180 HCS02.1E-W00544432 250 15,6 1367 310 0,68 4 1367 HCS02.1E-W00704397 251 15,3 2360 290 2,01 13 2871 HCS03.1E-W00705726 225 31,2 2360 290 2,01 6 3540 HCS03.1E-W01007500 190 61,2 2360 290 2,01 3 3540

12 70 100A-0190

HCS03.1E-W01504356 183 5,7 1911 205 0,81 14 1911 HMS01.1N-W00365543 172 12,7 3570 190 2,83 22 3705 HMS01.1N-W00546594 162 21,5 3570 190 2,83 13 3579 HMS01.1N-W00709227 138 53,1 3570 190 2,83 5 4589 HMS01.1N-W011011200 120 86 3570 190 2,83 3 5355 HMS01.1N-W01503849 188 3,5 1082 213 0,26 7 1082 HCS02.1E-W00285543 172 12,8 1785 207 0,71 6 1785 HCS02.1E-W00546645 162 22 2068 204 0,95 4 2068 HCS02.1E-W00706594 162 21,5 3570 190 2,83 13 4328 HCS03.1E-W00708567 144 43,9 3570 190 2,83 6 5355 HCS03.1E-W010011200 120 86 3570 190 2,83 3 5355

12 70 100B-0120

HCS03.1E-W01503925 346 5,7 2118 369 1,48 26 2118 HMS01.1N-W00544489 338 9,6 1963 371 1,27 13 1963 HMS01.1N-W00705903 320 23,6 3208 355 3,4 14 3208 HMS01.1N-W01107315 301 43,9 3570 350 4,21 10 4312 HMS01.1N-W01509436 273 86 3570 350 4,21 5 5355 HMS01.1N-W02103925 346 5,7 976 384 0,31 6 976 HCS02.1E-W00544517 338 9,8 1131 382 0,42 4 1131 HCS02.1E-W00704489 338 9,6 2887 359 2,75 29 2887 HCS03.1E-W00705549 324 19,5 3570 350 4,21 22 3932 HCS03.1E-W01007315 301 43,9 3570 350 4,21 10 4592 HCS03.1E-W01509436 273 86 3570 350 4,21 5 5355

22 130 100B-0250

HCS03.1E-W02105247 165 7,6 2285 189 1,08 14 2285 HMS01.1N-W00366380 156 17,1 4620 170 4,42 26 4624 HMS01.1N-W00547384 147 28,7 4294 173 3,82 13 4294 HMS01.1N-W00709900 126 70,8 4620 170 4,42 6 5469 HMS01.1N-W011012411 106 131,6 4620 170 4,42 3 6930 HMS01.1N-W015014300 90 189,6 4620 170 4,42 2 6930 HMS01.1N-W02106380 156 17,1 2134 191 0,94 6 2134 HCS02.1E-W00547433 147 29,3 2473 188 1,27 4 2473 HCS02.1E-W00707384 147 28,7 4620 170 4,42 15 5220 HCS03.1E-W00709269 132 58,5 4620 170 4,42 8 6393 HCS03.1E-W010012411 106 131,6 4620 170 4,42 3 6930 HCS03.1E-W015014300 90 189,6 4620 170 4,42 2 6930

13 90 100C-0090

HCS03.1E-W0210

Page 183: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor-Controller-Combinations 10-13

DOK-MOTOR*-MLF********-PR02-EN-P

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

5036 187 4,9 1983 209 0,7 14 1983 HMS01.1N-W00366282 178 11,1 4021 194 2,89 26 4021 HMS01.1N-W00547387 170 18,6 3727 197 2,48 13 3727 HMS01.1N-W007010154 150 46 4620 190 3,81 8 5280 HMS01.1N-W011012916 130 85,5 4620 190 3,81 4 6930 HMS01.1N-W015014300 120 109,9 4620 190 3,81 3 6930 HMS01.1N-W02106282 178 11,1 1852 210 0,61 6 1852 HCS02.1E-W00547441 170 19,1 2147 208 0,82 4 2147 HCS02.1E-W00707387 170 18,6 4620 190 3,81 20 5006 HCS03.1E-W00709470 155 38 4620 190 3,81 10 6297 HCS03.1E-W010012916 130 85,5 4620 190 3,81 4 6930 HCS03.1E-W015014300 120 109,9 4620 190 3,81 3 6930

15 85 100C-0120

HCS03.1E-W02104953 287 4,3 2623 311 1,11 26 2623 HMS01.1N-W00545614 280 7,2 2431 313 0,95 13 2431 HMS01.1N-W00707270 263 17,7 3973 297 2,55 14 3973 HMS01.1N-W01108922 246 32,9 4620 290 3,45 10 5407 HMS01.1N-W015011405 220 64,5 4620 290 3,45 5 6930 HMS01.1N-W02104953 287 4,3 1208 325 0,24 6 1208 HCS02.1E-W00545646 280 7,3 1400 323 0,32 4 1400 HCS02.1E-W00705614 280 7,2 3575 301 2,06 29 3575 HCS03.1E-W00706854 267 14,6 4620 290 3,45 24 4962 HCS03.1E-W01008922 246 32,9 4620 290 3,45 10 5734 HCS03.1E-W015011405 220 64,5 4620 290 3,45 5 6930

23 140 100C-0190

HCS03.1E-W02104085 183 5,1 1799 206 0,72 14 1799 HMS01.1N-W00365180 172 11,4 3360 190 2,51 22 3484 HMS01.1N-W00546150 162 19,1 3360 190 2,51 13 3369 HMS01.1N-W00708580 138 47,2 3360 190 2,51 5 4300 HMS01.1N-W011010400 120 76,4 3360 190 2,51 3 5040 HMS01.1N-W01503618 188 3,1 1018 213 0,23 7 1018 HCS02.1E-W00285180 172 11,4 1680 207 0,63 6 1680 HCS02.1E-W00546197 162 19,5 1947 204 0,84 4 1947 HCS02.1E-W00706150 162 19,1 3360 190 2,51 13 4060 HCS03.1E-W00707970 144 39 3360 190 2,51 6 5040 HCS03.1E-W010010400 120 76,4 3360 190 2,51 3 5040

12 70 140A-0120

HCS03.1E-W01505279 157 5,4 2073 179 0,77 14 2073 HMS01.1N-W00366628 148 12,2 4203 164 3,18 26 4203 HMS01.1N-W00547823 140 20,5 3896 166 2,73 13 3896 HMS01.1N-W007010816 120 50,8 4830 160 4,2 8 5544 HMS01.1N-W011013804 100 94,3 4830 160 4,2 4 7245 HMS01.1N-W015015300 90 121,1 4830 160 4,2 3 7245 HMS01.1N-W02106628 148 12,2 1937 179 0,68 6 1937 HCS02.1E-W00547881 140 21 2244 177 0,91 4 2244 HCS02.1E-W00707823 140 20,5 4830 160 4,2 20 5248 HCS03.1E-W007010065 125 41,9 4830 160 4,2 10 6644 HCS03.1E-W010013804 100 94,3 4830 160 4,2 4 7245 HCS03.1E-W015015300 90 121,1 4830 160 4,2 3 7245

15 85 140B-0090

HCS03.1E-W02105911 183 7,4 3495 199 1,92 26 3495 HMS01.1N-W00546873 176 12,4 3239 201 1,65 13 3239 HMS01.1N-W00709282 160 30,7 4830 190 3,68 12 5039 HMS01.1N-W011011687 144 57 4830 190 3,68 6 6571 HMS01.1N-W015015300 120 111,1 4830 190 3,68 3 7245 HMS01.1N-W02105911 183 7,4 1610 212 0,41 6 1610 HCS02.1E-W00546920 176 12,7 1866 210 0,55 4 1866 HCS02.1E-W00706873 176 12,4 4764 191 3,58 29 4764 HCS03.1E-W00708678 164 25,3 4830 190 3,68 15 5924 HCS03.1E-W010011687 144 57 4830 190 3,68 6 7047 HCS03.1E-W015015300 120 111,8 4830 190 3,68 3 7245

18 105 140B-0120

HCS03.1E-W0210

Page 184: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

10-14 Motor-Controller-Combinations Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

7498 105 6,4 3116 124 0,92 14 3116 HMS01.1N-W00369666 95 14,5 6300 110 3,76 26 6308 HMS01.1N-W005411586 87 24,4 5855 112 3,24 13 5855 HMS01.1N-W007016397 66 60,2 6300 110 3,76 6 7923 HMS01.1N-W011020000 50 91,5 6300 110 3,76 4 9450 HMS01.1N-W01509666 95 14,5 2910 125 0,8 6 2910 HCS02.1E-W005411680 86 24,9 3373 123 1,08 4 3373 HCS02.1E-W007011586 87 24,4 6300 110 3,76 15 7447 HCS03.1E-W007015190 71 49,7 6300 110 3,76 8 9450 HCS03.1E-W010020000 50 97,5 6300 110 3,76 4 9450

13 70 140C-0050

HCS03.1E-W01507092 186 7,1 3914 202 1,85 26 3914 HMS01.1N-W00548144 181 11,9 3627 204 1,59 13 3627 HMS01.1N-W007010780 167 29,5 5929 192 4,25 14 5929 HMS01.1N-W011013411 154 54,8 6300 190 4,8 9 7813 HMS01.1N-W015017364 134 107,5 6300 190 4,8 4 9450 HMS01.1N-W02107092 186 7,1 1803 213 0,39 6 1803 HCS02.1E-W00548195 180 12,2 2089 212 0,53 4 2089 HCS02.1E-W00708144 181 11,9 5335 195 3,44 29 5335 HCS03.1E-W007010118 171 24,4 6300 190 4,8 20 7106 HCS03.1E-W010013411 154 54,8 6300 190 4,8 9 8335 HCS03.1E-W015017364 134 107,5 6300 190 4,8 4 9450

21 125 140C-0120

HCS03.1E-W02107042 246 6,7 2628 272 0,89 13 2628 HMS01.1N-W00709511 231 16,5 4295 262 2,38 14 4295 HMS01.1N-W011011976 217 30,7 6300 250 5,12 17 6732 HMS01.1N-W015015681 195 60,2 6300 250 5,12 9 9201 HMS01.1N-W02107090 246 6,8 1514 278 0,3 4 1514 HCS02.1E-W00707042 246 6,7 3865 264 1,93 29 3865 HCS03.1E-W00708892 235 13,6 5893 253 4,48 33 5893 HCS03.1E-W010011976 217 30,7 6300 250 5,12 17 7221 HCS03.1E-W015015681 195 60,2 6300 250 5,12 9 9450

29 140 140C-0170

HCS03.1E-W02107724 395 11 3824 409 2,3 21 3824 HMS01.1N-W01509716 388 21,5 6179 401 6 28 6179 HMS01.1N-W02107724 395 11 4290 408 2,89 26 4290 HCS03.1E-W01509716 388 21,5 6300 400 6,23 29 6574

53,5 260 140C-0350

HCS03.1E-W02105711 163 5,7 2389 190 0,81 14 2389 HMS01.1N-W00367304 150 12,8 4830 170 3,31 26 4836 HMS01.1N-W00548716 139 21,5 4489 173 2,86 13 4489 HMS01.1N-W007012251 111 53,1 4830 170 3,31 6 6023 HMS01.1N-W011014900 90 86 4830 170 3,31 4 7245 HMS01.1N-W01507304 150 12,8 2231 191 0,71 6 2231 HCS02.1E-W00548784 139 22 2586 188 0,95 4 2586 HCS02.1E-W00708716 139 21,5 4830 170 3,31 15 5673 HCS03.1E-W007011364 118 43,9 4830 170 3,31 8 7245 HCS03.1E-W010014900 90 86 4830 170 3,31 4 7245

13 70 200A-0090

HCS03.1E-W01506379 179 6,5 3943 196 1,7 26 3943 HMS01.1N-W00547488 172 11 3655 198 1,46 13 3655 HMS01.1N-W007010285 152 27,1 4830 190 2,56 9 5359 HMS01.1N-W011013077 132 50,4 4830 190 2,56 5 7138 HMS01.1N-W015014900 120 69,5 4830 190 2,56 4 7245 HMS01.1N-W02106372 179 6,5 1817 211 0,36 6 1817 HCS02.1E-W00547543 171 11,2 2105 209 0,49 4 2105 HCS02.1E-W00707488 172 11 4830 190 2,56 23 5082 HCS03.1E-W00709583 157 22,4 4830 190 2,56 11 6386 HCS03.1E-W010013077 133 50,4 4830 190 2,56 5 7245 HCS03.1E-W015014900 120 69,5 4830 190 2,56 4 7245

16 88 200A-0120

HCS03.1E-W02108231 95 7,3 3427 114 1,04 14 3427 HMS01.1N-W003610583 85 16,5 6930 100 4,27 26 6939 HMS01.1N-W005412668 77 27,7 6440 102 3,69 13 6440 HMS01.1N-W007017889 56 68,5 6930 100 4,27 6 8692 HMS01.1N-W011021800 40 110,8 6930 100 4,27 4 10395 HMS01.1N-W015010583 5 16,5 3201 115 0,91 6 3201 HCS02.1E-W005412769 76 28,3 3710 113 1,22 4 3710 HCS02.1E-W007012668 77 27,7 6930 100 4,27 15 8175 HCS03.1E-W007016579 61 56,5 6930 100 4,27 8 10395 HCS03.1E-W010021800 40 110,8 6930 100 4,27 4 10395

13 70 200B-0040

HCS03.1E-W0150

Page 185: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor-Controller-Combinations 10-15

DOK-MOTOR*-MLF********-PR02-EN-P

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

7621 187 4,8 4111 203 1,26 26 4111 HMS01.1N-W00548722 182 8,1 3810 205 1,08 13 3810 HMS01.1N-W007011478 169 20,1 6228 193 2,89 14 6228 HMS01.1N-W011014229 156 37,3 6930 190 3,58 10 8376 HMS01.1N-W015018362 136 73,1 6930 190 3,58 5 10395 HMS01.1N-W02107621 187 4,8 1894 214 0,27 6 1894 HCS02.1E-W00548775 181 8,3 2195 212 0,36 4 2195 HCS02.1E-W00708722 182 8,1 5604 196 2,34 29 5604 HCS03.1E-W007010786 172 16,6 6930 190 3,58 22 7636 HCS03.1E-W010014229 156 37,3 6930 190 3,58 10 8921 HCS03.1E-W015018362 136 73,1 6930 190 3,58 5 10395

22 130 200B-0120

HCS03.1E-W021011258 161 12,9 4594 188 1,72 13 4594 HMS01.1N-W007015318 144 31,9 7509 176 4,59 14 7509 HMS01.1N-W011019370 127 59,2 8920 170 6,47 11 10749 HMS01.1N-W015025459 102 116,1 8920 170 6,47 6 13380 HMS01.1N-W021011337 160 13,2 2646 196 0,57 4 2646 HCS02.1E-W007011258 161 12,9 6757 179 3,71 29 6757 HCS03.1E-W007014299 148 26,3 8920 170 6,47 25 9659 HCS03.1E-W010019370 127 59,2 8920 170 6,47 11 11552 HCS03.1E-W015025459 102 116,1 8920 170 6,47 6 13380

23 120 200C-0090

HCS03.1E-W021012299 178 20,1 5880 201 2,89 14 5880 HMS01.1N-W011014996 168 37,3 8920 190 6,65 18 9259 HMS01.1N-W015019049 154 73,1 8920 190 6,65 9 11961 HMS01.1N-W02109650 188 8,3 2072 215 0,36 4 2072 HCS02.1E-W007011622 180 16,6 8068 193 5,44 33 8068 HCS03.1E-W010014996 168 37,3 8920 190 6,65 18 9794 HCS03.1E-W015019049 154 73,1 8920 190 6,65 9 12457

30 175 200C-0120

HCS03.1E-W02109992 217 13 3830 233 1,87 14 3830 HMS01.1N-W011012378 211 24,1 6296 227 5,05 21 6296 HMS01.1N-W015015962 202 47,3 8920 220 10,14 21 9693 HMS01.1N-W021012378 211 24,1 7063 225 6,36 26 7063 HCS03.1E-W015015962 202 47,3 8920 220 10,14 21 10309

46 210 200C-0170

HCS03.1E-W021012644 135 13,4 4802 161 1,78 13 4802 HMS01.1N-W007017000 121 33 7849 151 4,76 14 7849 HMS01.1N-W011021348 107 61,4 11120 140 9,55 16 12097 HMS01.1N-W015027881 85 120,4 11120 140 9,55 8 16453 HMS01.1N-W021012728 135 13,7 2766 168 0,59 4 2766 HCS02.1E-W007012644 135 13,4 7062 153 3,85 29 7062 HCS03.1E-W007015907 124 27,3 10769 141 8,96 33 10769 HCS03.1E-W010021348 107 61,4 11120 140 9,55 16 12959 HCS03.1E-W015027881 85 120,4 11120 140 9,55 8 16680

28 140 200D-0060

HCS03.1E-W021012455 176 18,9 4774 201 2,72 14 4774 HMS01.1N-W011015425 166 35,1 7849 191 7,35 21 7849 HMS01.1N-W015019888 151 68,8 11120 180 14,75 21 12082 HMS01.1N-W021015425 166 35,1 8805 188 9,25 26 8805 HCS03.1E-W015019888 151 68,8 11120 180 14,75 21 12849

46 210 200D-0100

HCS03.1E-W021014233 181 28,5 6813 202 5,97 21 6813 HMS01.1N-W015018488 169 55,9 11009 190 15,59 28 11009 HMS01.1N-W021014233 181 28,5 7643 202 7,51 26 7643 HCS03.1E-W015018488 169 55,9 11120 190 15,9 28 11777

53 225 200D-0120

HCS03.1E-W02108043 154 8,8 4595 170 2,3 26 4595 HMS01.1N-W00549378 148 14,8 4259 171 1,97 13 4259 HMS01.1N-W007012751 132 36,6 6700 160 4,88 13 6825 HMS01.1N-W011016109 117 68 6700 160 4,88 7 8965 HMS01.1N-W015021156 94 133,3 6700 160 4,88 4 10050 HMS01.1N-W02108043 154 8,8 2117 181 0,49 6 2117 HCS02.1E-W00549452 148 15,1 2453 180 0,65 4 2453 HCS02.1E-W00709378 148 14,8 6264 162 4,26 29 6264 HCS03.1E-W007011907 136 30,2 6700 160 4,88 16 8061 HCS03.1E-W010016109 117 68 6700 160 4,88 7 9630 HCS03.1E-W015021156 94 133,3 6700 160 4,88 4 10050

19 110 300A-0090

HCS03.1E-W0210

Page 186: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

10-16 Motor-Controller-Combinations Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

FMAX [N]

vFmax

[m/min]PVMAX

[kW] FdN [N]

vN

[m/min]

PvN [kW]

EDFM

AX

[%]FKB [N]

idN [A]

iMAX

[A]

PRIMARY PARTStandard- / Thermal

encapsulation MLP... Controller

7236 188 5,7 3804 203 1,48 26 3804 HMS01.1N-W00548299 183 9,6 3525 205 1,27 13 3525 HMS01.1N-W007010960 171 23,6 5762 194 3,4 14 5762 HMS01.1N-W011013617 158 43,9 6700 190 4,59 10 7965 HMS01.1N-W015017608 140 86 6700 190 4,59 5 10050 HMS01.1N-W02107236 188 5,7 1752 213 0,31 6 1752 HCS02.1E-W00548350 183 9,8 2031 211 0,42 4 2031 HCS02.1E-W00708299 183 9,6 5185 197 2,75 29 5185 HCS03.1E-W007010292 174 19,5 6700 190 4,59 24 7250 HCS03.1E-W010013617 158 43,9 6700 190 4,59 10 8491 HCS03.1E-W015017608 140 86 6700 190 4,59 5 10050

23 138 300A-0120

HCS03.1E-W021011694 136 12,9 4448 158 1,72 13 4448 HMS01.1N-W007015678 123 31,9 7270 150 4,59 14 7270 HMS01.1N-W011019655 111 59,2 10300 140 9,21 16 11194 HMS01.1N-W015025631 92 116,1 10300 140 9,21 8 15178 HMS01.1N-W021011771 135 13,2 2562 164 0,57 4 2562 HCS02.1E-W007011694 136 12,9 6542 152 3,71 29 6542 HCS03.1E-W007014678 126 26,3 9975 141 8,64 33 9975 HCS03.1E-W010019655 111 59,2 10300 140 9,21 16 11982 HCS03.1E-W015025631 92 116,1 10300 140 9,21 8 15450

28 140 300B-0070

HCS03.1E-W021012925 182 15,3 5816 204 2,21 14 5816 HMS01.1N-W011015546 174 28,5 9561 192 5,97 21 9561 HMS01.1N-W015019483 161 55,9 10300 190 6,93 12 12595 HMS01.1N-W021012267 184 12,7 7980 197 4,16 33 7980 HCS03.1E-W010015546 174 28,5 9905 191 6,93 22 10490 HCS03.1E-W015019483 161 55,9 10300 190 6,93 12 13273

35 205 300B-0120

HCS03.1E-W021015040 107 6,7 5605 123 0,89 13 5605 HMS01.1N-W007020369 98 16,5 9162 117 2,38 14 9162 HMS01.1N-W011025688 89 30,7 13440 110 5,12 17 14372 HMS01.1N-W015033680 76 60,2 13440 110 5,12 9 19700 HMS01.1N-W021015144 107 6,8 3229 127 0,3 4 3229 HCS02.1E-W007015040 107 6,7 8244 119 1,93 29 8244 HCS03.1E-W007019032 101 13,6 12571 112 4,48 33 12571 HCS03.1E-W010025688 89 30,7 13440 110 5,12 17 15426 HCS03.1E-W015033680 76 60,2 13440 110 5,12 9 20160

29 140 300C-0060

HCS03.1E-W021016486 144 18,9 7183 163 2,72 14 7183 HMS01.1N-W011019860 137 35,1 11808 153 7,35 21 11808 HMS01.1N-W015024930 127 68,8 13440 150 9,52 14 16062 HMS01.1N-W021015638 146 15,6 9855 157 5,12 33 9855 HCS03.1E-W010019860 137 35,1 13247 150 9,25 26 13247 HCS03.1E-W015024930 127 68,8 13440 150 9,25 14 16933

37 212 300C-0090

HCS03.1E-W0210

Fig. 10-3: Possible combinations at parallel arrangement

Page 187: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-1

DOK-MOTOR*-MLF********-PR02-EN-P

11 Motor Sizing

11.1 General Procedure

The dimensioning of linear drives is mainly determined by the application-related characteristics of velocity and feed force. The basic sequence ofsizing linear drives is shown in the figure below.

6 )4

6?89

6

>$"">1< 1">. ">>&$&."1+,.$&,.&

?

=

>. ">" -" &<&&&40>& >2"-&&.2"<"<0>& ". """>& .!"

@===:%::

@+=: <

@+ <

@++=: <

,$""",$1",. ",

,& ". "",2&",& .!","32"2"<23"<! "<

+&&>&&

,!,$& ,682."$&

,&)4*

: <: <?

:%:::0?

< <?

: <: <?

&&8!%%$23"% !%23 !9

66?89

)46?89

Fig. 11-1: Basic procedure of sizing linear drives

Page 188: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-2 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

11.2 Basic Formulae

General Equations of MotionThe variables required for sizing and selecting the motor are calculatedusing the equations shown in Figure 11-2.

Note: When linear direct drives are configured, the process-relatedfeed forces and velocities are used directly and withoutconversion for selecting the drive.

⋅=

⋅=

++⋅=

=

=

T

0avg

T

0

2eff

P0

dt )t(vT1

v:velocity Average

dt)t(FT1

F :force Effective

)t(F)t(Fm)t(a)t(F:Force

dt)t(v

)t(a :onAccelerati

dt)t(s

)t(vVelocity

v(t): Velocity profile vs. time in m/ss(t): Path profile vs. time in ma(t): Acceleration profile vs. time in m/s²F(t): Force profile vs. time in Nm: Moved mass in kgF0(t): Base force in NFP(t): Process or machining force in NFeff: Effective force in Nvavg: Average velocity in m/st: Time in sT: Total time in s

Fig. 11-2: General equations of motion

In most cases the mathematical description of the required positions vs.the time is known (NC-program, electronic cam disk). Using thepreparatory function, velocity, acceleration and forces can be calculated.Standard software (such as MS Excel or MathCad) can be used forcalculating the required variables, even with complex motion profiles.

Note: The following Chapter provides a more detailed correlation fortrapezoidal, triangular or sinusoidal velocity characteristics.

Page 189: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-3

DOK-MOTOR*-MLF********-PR02-EN-P

Feed Forces

all

2221

21

EFF

PWFACCMAX

0ATTF

cbW

ACC

t...tFtF

F :force Effective

FFFFF :force Maximum

F)Fsing(mF :force Frictional

)100f

1(singmF : weightto due Force

amF :force onAccelerati

+⋅+⋅=

+++=

++⋅⋅⋅=

−⋅⋅⋅=

⋅=

αµ

α

6

E'(*L)*/<

6

6

FACC: Acceleration force in NFW: Force due to weight in NFF: Frictional force in NF0: Additional frictional or base force in N (e.g. by seals of linear guides)FMAX: Maximum force in NFEFF: Effective force in NFP: Machining force in Na: Acceleration in m/s²m: Moved mass in kgg: Gravitational acceleration (9.81 m/s²)α: Axis angel in degrees (0°: horizontal axis; 90°C: vertical axis)fCB: Weight compensation in %tall: Total duty cycle time in sFATT: Attractive force between primary and secondary part in Nµ: Friction coefficient

Fig. 11-3: Determining the feed forces

Note: For sizing calculations of linear motor drives, the moved massof the motor component must be taken into account (inparticular, if the slide masses are relatively small). However,the moved mass and the attractive force between primary andsecondary part are only known after the motor has beenselected. Thus, first make assumptions for these variablesand verify these values after the motor has been selected.

Page 190: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-4 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

W

WFACC

WF

WFACC

WFACC

WF

WFACC

F F:time Idle )7(

FFFF :(down) onDecelerati (6)

FFF:(down)velocity Const. (5)

FFF F:(down) tion Accelera(4)

FFFF:(up) onDecelerati (3)

F FF:(up)velocity Const. (2)

FFF F :(up) tion Accelera(1)

=−+−=

−=−+=

++−=+=

++=

1

$%

@ E'(*L)*/<

FACC: Acceleration force in NFW: Force due to weight in NFF: Frictional force in N

Fig. 11-4: Determining the resulting feed forces according to motion type anddirection

Note: With horizontal axis arrangement, the weight is FW = 0.

Further directional base and process forces must be taken intoaccount.

Page 191: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-5

DOK-MOTOR*-MLF********-PR02-EN-P

Average VelocityThe average velocity is required for determining the mechanicalcontinuous output of the drive. Figure 11-2 shows the general way ofdetermining the average velocity. The following calculation can be usedfor a simple determination in trapezoidal or triangular velocity profiles:

$

4,,*@

$

$ $$

$$$

$$

$$

all

ii avgavg

eaavgi

t

tvv

2

vvv

∑ ⋅=

−=

vavgi: Average velocity for a velocity segment of the duration ti in m/sva: Initial velocity of the velocity segment in m/sve: Final velocity of the velocity segment in m/svavg: Average velocity over total duty cycle time in m/sti: Duration of velocity segment in stall: Total duty cycle time, including breaks and/or standstill time, in s

Fig. 11-5: Determining the average velocity with triangular or trapezoidalvelocity profile

Page 192: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-6 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Trapezoidal velocityThis mode of operation is characteristic for the most applications. Anacceleration phase is followed by a movement of constant velocity up tothe deceleration phase.

$

$

?$

2

VTRAPEZ01-MLF-EN.EPS

Fig. 11-6: Trapezoidal velocity profile

Acceleration, initial velocity = 0

• Velocity v ≠ constant

• Initial velocity va = 0

• Acceleration a = constant and positive

as2

vs2

av

t:Time

2ta

a2v

t2v

s:Travel

ts2

sa2tav:velocity Final

s2v

ts2

tv

a:onAccelerati

c

ca

2a

2c

ac

a

ac

2c

2aa

c

⋅=⋅==

⋅=⋅

=⋅=

⋅=⋅⋅=⋅=

⋅=⋅==

a: Acceleration in m/s²vc: Final velocity in m/sta: Acceleration time in ss: Travel covered during acceleration in m

Fig. 11-7: Constantly accelerated movement, initial velocity = 0 (acc. to Fig. 11-6)

Acceleration, initial velocity ≠≠≠≠ 0

• Velocity v ≠ constant

• Initial velocity va ≠ 0

• Acceleration a = constant and positive

Page 193: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-7

DOK-MOTOR*-MLF********-PR02-EN-P

a

vvsa2

vvs2

avv

t:Time

2ta

tva2vv

t2

vvs:Travel

vt

s2vsa2tavv:Velocity

s2vv

tv2

ts2

tvv

a:onAccelerati

a2a

ac

aca

2a

aa

2a

2c

aac

a

a

2aaac

2a

2c

a

a

2aa

ac

−+⋅⋅=

+⋅=−=

⋅+⋅=⋅−=⋅+=

−⋅=+⋅⋅=⋅+=

⋅−=⋅−⋅=−=

a: Acceleration in m/s²vc: Final velocity in m/sva: Initial velocity in m/sta: Acceleration time in ss: Travel covered during acceleration in m

Fig. 11-8: Constantly accelerated movement, initial velocity ≠ 0 (acc. to Fig.

11-6)

Constant velocity

• Velocity v = constant

• Acceleration a = 0

c

cc

ccc

c

cc

vs

t:Time

tvs:Travel

ts

v:onAccelerati

=

⋅=

=

vc: Average velocity in m/stC: Time during constant velocity in ssc: Travel covered constant velocity in m

Fig. 11-9: Constant velocity (acc. to Fig. 11-6)

Decelerating, Final velocity ==== 0

• Velocity v ≠ constant

• Final velocity ve = 0

• Acceleration a = constant and negative

Page 194: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-8 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

as2

vs2

av

t :Time

2ta

a2v

t2v

s :Travel

ts2

sa2tav :Velocity

s2v

ts2

tv

a :onAccelerati

c

cb

2b

2c

bc

b

bc

2c

2bb

c

⋅=⋅==

⋅=⋅

=⋅=

⋅=⋅⋅=⋅=

⋅=⋅==

a: Acceleration in m/s²vc: Final velocity in m/stb: Deceleration time in ss: Travel covered during acceleration in m

Fig. 11-10: Constantly decelerated movement, final velocity = 0 (acc. to Fig. 11-6)

Decelerating, Final velocity ≠≠≠≠ 0

• Velocity v ≠ constant

• Final velocity ve ≠ 0

• Acceleration a = constant and negative

a

sa2vv

vvs2

avv

t:Time

2ta

tva2vv

t2

vvs:Travel

vt

s2sa2vtavv:Velocity

s2vv

ts2

tv2

tvv

a:onAccelerati

2cc

ec

eca

2b

bc

2e

2c

bec

c

b

2cbce

2e

2c

2bb

c

b

ec

⋅⋅−−=

+⋅=−=

⋅+⋅=⋅−=⋅+=

−⋅=⋅⋅−=⋅−=

⋅−=⋅−⋅=−=

a: Acceleration in m/s²vc: Initial velocity in m/sve: Final velocity in m/stb: Deceleration time in ss: Travel covered during acceleration in m

Fig. 11-11: Constantly decelerated movement, final velocity ≠ 0 (acc. to Fig. 11-

6)

Page 195: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-9

DOK-MOTOR*-MLF********-PR02-EN-P

Triangular velocityIn contrast to the trapezoidal characteristic, this velocity profile does nothave a phase of constant velocity. The acceleration phase is immediatelyfollowed by the deceleration phase. This characteristic can frequently befound in conjunction with movements of short strokes.

$

VDREIECK01-MLF-EN.EPS

Fig. 11-12: Triangular velocity profile

as4

vs4

av2

t :Time

4ta

a4v

2tv

s :Travel

ts2

sa2

tav:Velocity

sv

ts4

tv2

a :onAccelerati

all

max

allmax

22maxmax

all

allallmax

2max

2

allmax

⋅=⋅=⋅=

⋅=⋅

=⋅=

⋅=⋅=⋅=

=⋅=⋅=

vmax: Maximum velocity in m/sa: Acceleration in m/s²sall: Total motion travel in mt: Positioning time in s

Fig. 11-13: Calculation of triangular velocity profile (acc. to Fig. 11-12)

Page 196: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-10 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Sinusoidal velocityThis velocity profile results, for example, from the circular interplation oftwo axes (circular movement) or the oscillating movement of one axis(grinding, for example).

The specified variables are chiefly the motion travel or the circle diameterand the period T.

( ) ( )

( ) ( )

1

1

2

1

3

1

s(t) r sin( t)

Velocity : v(t) r cos( t)

Acceleration : a t r sin t

Jerk : r t r cos t

22 f

T

Travel profile:

profile

profile

profile

= ⋅ ω⋅

= ⋅ ω⋅ ⋅ω

= − ⋅ ω ⋅ω

= − ⋅ ω ⋅ω⋅ πω = = ⋅ π ⋅

/

s(t): Travel profile vs. time in mv(t): Velocity profile vs. time in m/sa(t): Acceleration profile vs. time in m/sr(t): Jerk profile over time t m/s³r1: Motion travel in one direction (circle radius) in mω: Angular frequency in s-1

T: Period in s (time for circular motion or complete stroke)t: Time in sf: Stroke frequency in Hz

Fig. 11-14: Motion profiles of an axis at sinusoidal velocity.

Page 197: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-11

DOK-MOTOR*-MLF********-PR02-EN-P

The following calculation bases on Fig. 11-14.

w0down 0

w0up 0

2down 0

2up 0

2acc

EFFv

20

2

accEFF

maxACC

maxavg

max

2

max

FFF :movement down force Base

FF F:movement up force Base

2

FFFF

:tarrangemen axis Vertical

F2

FF :force ffectiveE

maF :force ncceleratioA

Tr4v2

v:velocity Average

T2

rv:velocity Maximum

T2

ra:ionaccerlat aximumM

−=

+=

++=

+=

⋅=

⋅=⋅=

⋅⋅=

⋅⋅=

π

π

π

amax: Maximum acceleration in m/s²vmax: Maximum velocity in m/sr: Motion travel in one direction (or circle radius) in mT: Period in sm: Moved mass in kgFACC: Acceleration force in NFEFF: Effective force in NFEFFv: Effektive force at vertical or inclined axis arrangement in NF0: Base force, e.g. frictional force in NFW: Force due to weight in N (acc. to Fig. 11-3)

Fig. 11-15: Calculation formulae for sinusoidal velocity profile

Note: Further directional base and process forces must additionallybe taken into account.

Page 198: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-12 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

11.3 Duty cycle and Feed Force

The relative duty cycle ED specifies the duty cycle percentage of the loadwith respect to a total duty cycle time, including idle time. The thermalload capacity of the motor limits the duty cycle. Capacity the motor withrated force is possible over the entire duty cycle time. The duty cycle mustbe reduced at F > FdN (see Fig. 11-16) in order to not thermally overloadthe motor at higher feed forces.

*6

11

A:

*6:

$6$

6$

63

*6EDKENNLIN01-MLF-EN.EPS

Fig. 11-16: Correlation between duty cycle and feed force

Determining the duty cycleThe approximate determination of the relative duty cycle EDideal isperformed via the correlation:

100FF

ED 2MAX

2EFF

ideal ⋅

=

ED: Cyclic duration factor in %FEFF: Effective force or rated force in NFMAX: Maximum feed force

Fig. 11-17: Approximate determination of duty cycle ED

Prerequisites: Linear correlation between feed force and current.

For IndraDyn L motors to Fig. 11-17, only an approximate duty cyclecalculation is possible since there is a non-linear correlation betweenforce and current.

This calculation remains valid for a rough determination of possible dutycycle at short-time duty forces with FKB ≤ 1.5 FdN.

Note: You must check with Figure 11-18 or Figure 11-19 to exactlydetermine the relative duty cycle of IndraDyn L linear motors.

The non-linearity of the characteristic curve force vs. current ofsynchronous linear motor leads to an increased rise of power loss athigher feed forces. This increased power loss leads – in particular at a

Page 199: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-13

DOK-MOTOR*-MLF********-PR02-EN-P

high percentage of acceleration and deceleration processes – to apossible duty cycle that is reduced with respect to Fig. 11-17.

Use Fig. 11-18 or Fig. 11-19 to determine exactly the possible relativeduty cycle.

100PP

EDa AVG

vNreal ⋅=

EDreal: Possible relative duty cycle in %PvN Maximum removable power loss of the motor in W

(continuous power loss see Chapter 5 “Technical Data”)PAVG a: Average motor power loss in application over a duty cycle time

including idle time in WFig. 11-18: Determining the duty cycle ED

Prerequisites: Duty cycle time ≤ Thermal time constant of motor

Fig. 11-19: Duty cycle vs. force for IndraDyn L synchronous linear motors

11.4 Determining the Drive Power

To size the power supply module or the mains rating, you must determinethe rated (continuous) and maximum power of the linear drive.

Note: Take the corresponding simultaneity factor into account whendetermine the total power of several drives that are connectedto a single power supply module.

Continuous OutputThe rated output corresponds to the sum of the mechanical and electricalmotor power.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0

F / FdN

ED

ideal

NORMIERTE KENNLINIEN MLF.XLS

real

Page 200: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-14 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

dneffvn

2

dn

effce

avgeffcm

cecmc

F F mit PFF

P :output electrical Rated

v FP :output rated Mechanical

PPP :output rated Total

≤⋅

=

⋅=

+=

Pc: Rated power in WPcm: Mechanical rated output in WPce: Electrical rated power loss of motor in WFeff: Effective force in N (from application)vavg: Average velocity in m/sFdN: Rated force of the motor in N (see Chapter 4 “Technical data”)PvN Rated power loss of the motor in W (see Chapter 4 “Technical data”)

Fig. 11-20: Rated power of the linear motor

Note: The rated electrical output (see Fig. 11-20) is reduced whenthe rated force is reduced.

Page 201: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-15

DOK-MOTOR*-MLF********-PR02-EN-P

Maximum OutputThe maximum output is also the sum of the mechanical and electricalmaximum output. It must be made available to the drive duringacceleration and deceleration phase or for very high machining forces, forexample.

max maxm maxe

maxm max Fmax

Total maximum power: P P P

Mechanical maximum power: P F v

= +

= ⋅Pmax: Total maximum power in WPmaxm: Mechanical maximum power in WPmaxe: Electrical maximum power in W (see Fig. 11-22)Fmax: Maximum feed force in NvFmax: Maximum velocity with Fmax in N

Fig. 11-21: Maximum power of the linear motor

Note: When the maximum feed force is reduced against theachievable maximum force of the motor, the electricalmaximum output Pmaxe is reduced too. To determine thereduced electrical maximum output Pmaxe use Fig. 11-22.

FMAX: Maximum force of the motor in NF: Maximum force application in NPvmax: Maximum power loss of the motor in WPV: Power loss of the motor application in W

Fig. 11-22: Diagram used for determining the reduced electrical power loss

Note: The maximum power loss is specified in Chapter 10 “Motor-Controller-Combination”.

0,0

0,2

0,4

0,6

0,8

1,0

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

F / Fmax

P /

Pvm

ax

NORMIERTE KENNLINIEN MLF.XLS

Page 202: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-16 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Cooling CapacityThe necessary cooling capacity nearly corresponds to the motor´selectrical continuous power loss.

2

effco ce vn eff dn

dn

FRequired cooling capacity: P P P with F F

F

= = ⋅ ≤

Pco: Required cooling capacity in WPce: Electrical power loss of motor in WFeff: Effective force in NFdN: Rated force of the motor in N (see Chapter 4 “Technical data”)PvN Rated power loss of the motor in W (see Chapter 4 “Technical data”)

Fig. 11-23: Required cooling capacity of the linear motor

Regeneration EnergyCompared with rotary servo motors, the energy of a linear motor duringdeceleration is lower. The translatory velocity of a linear motor is usuallymuch lower than the circumferential speed of a rotary servo motor.

The regeneration energy of a synchronous linear drive results from theenergy balance during the deceleration process. To size additional brakeresistors or power supply units with feedback capability, it can beestimated as follows.

∫ ∑ ⋅=⋅=

⋅⋅⋅−

⋅−

⋅⋅

=

T

0 all

bii RRRavg

2

iFN

max12

2R

b

2

R

ttP

dt )t(PT1

P

ka

Rm5,12Fv

t2vm

P

PR: Regeneration energy during a deceleration phase in WPRavg: Average regeneration energy over total duty cycle time in Wm: Moved mass in kgv: Maximum velocity in m/stb: Deceleration time in sFR: Frictional force in NR12: Winding resistance of the motor at 20°C in ohms

(see Chapter 4 “Technical Data”)amax: Braking deceleration (negative acceleration) in m/s²kiFN: Motor constant in N/Atall: Total duty cycle time in s

Fig. 11-24: Regeneration energy of the linear motor

Prerequisites: Velocity-independent friction

Constant deceleration

Final velocity = 0

Note: If the regeneration energy that is determined according to Fig.11-24 is negative, energy is not fed back. This means thatenergy must be supplied to the motor during the decelerationprocess.

Page 203: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-17

DOK-MOTOR*-MLF********-PR02-EN-P

11.5 Efficiency

The efficiency of electrical machines is the ration between the motoroutput and the power fed to the motor. With linear motors, it is determinedby the application-related traverse rates and forces, and thecorresponding motor losses.

Fig. 11-25 and Fig. 11-26 can be used for determining and/or estimatingthe motor efficiency.

vFP

1

1P)vF(

vFPP

P

velel Vel Vmech

mech

⋅+

=+⋅⋅=

+=η

η: EfficiencyPmech: Mechanical output in WPVel: Electrical power loss in WF: Feed force in Nv: Velocity in m/s

Fig. 11-25: Determining the efficiency of linear motors

Fig. 11-26: Efficiency vs. velocity for IndraDyn L synchronous linear motors.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 m/min 100 m/min 200 m/min 300 m/min 400 m/min 500 m/min 600 m/min

Velocity

effeciency vs.maximum force Fmax

effeciency vs. continuousnorminal force FdN

WIRKUNGSGRAD MLF.XLS

Page 204: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-18 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

11.6 Sizing Examples

Handling AxisThe example of a simple handling axis is used for describing the basicprocedure of sizing a linear drive.

SpecificationsThe following data is specified:

Slide mass: mS = 52 kg

Maximum velocity possible: 300 m/min

Maximum acceleration possible: 50 m/s²

Axis arrangement: horizontally, primary part moved

Base force through energy chain,seals, linear guides, etc.: Fzus = 150 N (constant)

Additional process forces: none

Friction coefficient of linear guides: µ = 0.005

Rated connecting voltage: 3 x AC 400V

Coolant temperature (water): ϑcoolant = 25°C

Required positioning movements:

No.: Stroke Positioningtime

Idle time after stroke Comment

1 600 mm 0.32 s 0.20 s Moving from startposition to part

pickup

2 -1,300 mm 0.50 s 0.20 s Parts transportand deposit

3 700 mm 0.35 s 0.45 s Moving back tostart position

Fig. 11-27: Required positioning movements of the handling axis

The mass of the primary part must be taken into account when the feedforces are determined. The attractive force between primary andsecondary part is required additionally when the frictional force isdetermined. The following assumptions are made to start with:

Primary part mass: mP = 32 kg

Attractive force: FATT = 8000 N

Check the calculations again when you have selected the motor.

Page 205: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-19

DOK-MOTOR*-MLF********-PR02-EN-P

Calculation

The following velocity and acceleration values are selected in order tomaintain the required position times and specified limitations.

No.: Stroke Positioningtime

Feed rate Acceleration

1 600 mm 0.32 s 180 m/min 25 m/s²

2 -1,300 mm 0.50 s 220 m/min 25 m/s²

3 700 mm 0.35 s 185 m/min 25 m/s²

Fig. 11-28: Selected velocities and accelerations of the handling axes

Note: When you select the position velocity and positioningacceleration, you should try to find an optimum ration for themotor selection (to reach a minimum effective force, forexample).

kg 84m

kg 32kg 52m

mmm

ges

ges

PSges

=

+=

+=

N 194F

N 150N) 8000m/s² 9.81kg (840.005F

F)Fg(mF

FFF

0

0

zusATTges0

zusF0

=++⋅⋅=

++⋅⋅=+=

µ

N 0FW = (horizontal axis)

N 2100F

m/s² 52kg) (84F

amF

acc

acc

pgesacc

=⋅=

⋅=

N 2294F

N194N 2100F

FFF

max

max

0accmax

=+=

+=

s 2.02t

s 0.45s 0.35s 0.2s 0.5s 0.2s 0.32t

ges

ges

=

+++++=

Moved total mass

Base force

Force due to weight

Acceleration force:

Maximum force:

Total time or duty cycle time

Page 206: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-20 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

The selected velocities and the determined forces provide the followingvelocity and force profile:

$&$5

1

(5

5

(#5

) ) )

) )

,)% ,)% ,)%

)

"

("

"

"

'"

%"

'"

"

"

"

"

#"

DIMBSPHDL01-MLF-EN.EPS

Fig. 11-29: Velocity and force profile of handling axis

The effective force and the average velocity are determined on the basisof the force profile:

No.: Time tin s

Force Fi in N Averagevelocity vavg i

in m/min

1 0,120 2294 Fi = Facc+F0 90

2 0,080 194 Fi = F0 180

3 0,120 -1906 Fi = -Facc+F0 90

4 0,200 0 0

5 0,147 2294 Fi = Facc+F0 110

6 0,206 194 Fi = F0 220

7 0,147 -1906 Fi = -Facc+F0 110

8 0,2 0 0

9 0,123 2294 Fi = Facc+F0 92.5

10 0,104 194 Fi = F0 185

11 0,123 -1906 Fi = -Facc+F0 92.5

12 0,45 0 N 0

Fig. 11-30: Force profile vs. time to determine the effective force

N 1313F

t

)tF(F

eff

ges

i2i

eff

=

⋅= ∑

min/m 1.77v

t

tvv

avg

ges

ii avgavg

=

⋅= ∑

Velocity and force profile

Effective force and averagevelocity

Page 207: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-21

DOK-MOTOR*-MLF********-PR02-EN-P

Selection of motor – controller combinationOnce the application data has been calculated, an appropriate motor-controller combination can be selected.

The standard encapsulation and the IndraDrive controller family areselected. Using the calculated data, the following combination is chosenfrom the selection data for motor-controller combinations (see Chapter 10motor-controller combination):

Motor: MLP140C-0170-FS-xxxx

Drive device: HMS01.1N-W150

The mass of the selected primary part MLP140C-0170-FS is slightlysmaller than the previous mass. The same applies to the attractive force.The selected motor is retained within the scope of this example.

Using the profiles of velocity and force (Fig. 11-29), the operating pointsof the required feed forces and the necessary velocities can bedetermined. These operating points and the characteristics are shown inthe Figure below.

'#

#

#

'#

#

# #

%

# # # # #

1

3

,$.$!3 "&

DIMBSPHDL02-MLF-EN.EPS

Fig. 11-31: Force-velocity diagram of handling axis(operating points and motor characteristic)

Note: All operating points that are related to force and velocity of theapplication must be inside the characteristic curve of theselected motor – controller combination.

Verification of mass andattractive force

Operation points andcharacteristic curve of the motor

Page 208: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-22 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Selecting the secondary part segmentsBased on the motion profile, the effective total motion path and,consequently, the required quantity and/or length of the secondary partsegments can be determined. The effective total travel is 1300 mm; thelength of the selected primary part is 510 mm.

mm 1810L

mm 510mm 1300L

LLL

econdarys

condaryse

rimaryptravel totalondarysec

=

+=

+≥

Secondary part segments for IndraDyn L synchronous linear motors areavailable in a length of 150 mm, 450 mm and 600 mm. Three secondarypart segments of 600 mm each (total length of 1800 mm) are selected forthe handling axes.

Required length of thesecondary parts

Selecting the secondary partsegments

Page 209: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-23

DOK-MOTOR*-MLF********-PR02-EN-P

Power calculation

W 1687P60

min/m 1.77N 1313P

v FP

cm

cm

avgeffcm

=

⋅=

⋅=

W 703P

W 0013N 1785N 1313

P

PF

FP

ce

2

ce

vN

2

n_motor

effce

=

=

=

W 2390P

W 703W 1687P

PPP

c

c

cecmc

=+=

+=

W8412P60

min/m 220N 2294P

vFP

maxm

maxm

Fmaxmaxmaxm

=

⋅=

⋅=

Figure 11-22 is used for determining the maximum electrical power loss.The ratio of required maximum force and maximum force of the motor is2294 N / 5600 N = 0.41.

Thus, Figure 11-22 shows a reduction factor of 0.095 for the maximumpower loss. Together with the specification of the maximum motor powerloss from the selection charts for the motor-controller combination, themaximum electrical power loss results as

kW 78.5P

kW 84.60095.0P

P095.0P

maxe

maxe

motor maxmaxe

=⋅=⋅=

Wk 14.19 P

kW 78.5Wk 41.8P

PPP

max

max

maxemaxmmax

=+=

+=

W 704PP ceco ==

Rated mechanical power

Rated electrical power loss

Total rated power

Maximum output mechanical

Maximum output electrical

Total maximum output

Cooling capacity

Page 210: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-24 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Figure 11-24 and the motor data in Chapter 4 “Technical data” are usedfor determining the regeneration energy for all deceleration phases.

2

iFN

max12

2R

bi

2

Ri ka

Rm5,12Fv

t2vm

P

⋅⋅⋅−

⋅−

⋅⋅

=

No.: Deceleration time tbi Feed rate Acceleration Regeneration energyPRi

1 0.120 s 180 m/min -25 m/s² 1678 W

2 0.147 s 220 m/min -25 m/s² 2305 W

3 0.123 s 185 m/min -25 m/s² 1767 W

Fig. 11-32: Regeneration energy during the deceleration phases

The average regeneration energy over the entire duty cycle time amountsto:

W 375P

t

tPP

Ravg

all

bii RRavg

=

⋅= ∑

Additional DC bus capacities (condensers) shall ensure that the axis issafely deactivate in the event of a power failure. Determination of thenecessary additional capacities in the DC bus voltage is done accordingto the following example. The motor brakes with a maximum feed force.The minimum DC bus voltage should be 50V. The maximum velocity is220 m/min is considered as worst case.

( ) ( )

mF 4.2F 00242.0C

3.0N 5600

N 194sm

17.4 2.1

AN

82

N 56005,3

V 50V 540sm

17.4kg 84C

3.0F

FvR

k

F5,3

UU

vmC

add

222add

motormax_

Rmax122

iF

motormax_

2minDC

2maxDC

maxgesadd

==

+⋅−⋅

⋅⋅−

⋅=

+⋅−⋅⋅⋅

⋅=

Ω

Note: The maximum possible DC bus capacity of the employedpower supply module must be taken into account whenadditional capacities are used in the DC bus.

Regeneration energy

Additional capacities fordeactivation the axis upon a

power failure

Page 211: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-25

DOK-MOTOR*-MLF********-PR02-EN-P

Selection of linear scaleThe linear scale can be selected when the effective total travel is known.

An open incremental linear scale of the LIDA187C type is selected for thehandling axis. The selected system has distance-encoded referencemarks.

Motor efficiencyThe motor efficiency, related on the continuous output, results as follows:

706.0

W703 W1687W 1687

PPP

c

eccm

cmc

=

+=

+=

η

η

Final overtemperature of the motor

K 130

K 25K 155

wg

wg

coolantmaxwwg

=

−=

−=

ϑϑ

ϑϑϑ

K 70

K130N 1785N 1313

F

F

w

2

w

wg

2

n_motor

effw

=

=

=

ϑ

ϑ

ϑϑ

C 95

K 25K 70

wabs

wabs

coolantwwabs

°=+=

+=

ϑϑ

ϑϑϑ

The thermal time constant of the selected motor is Tth = 7 min. 98% of thefinal temperature is reached after approximately 4 thermal time constants(i.e. after 28 minutes).

Note: Additional explanations of the thermal behavior of linearmotors can be found in Chapter 9.6 “Motor Cooling”.

Limit overtemperature of themotor winding

Final overtemperature of themotor winding

Absolute final temperature of themotor winding

Reaching the final temperature

Page 212: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-26 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Machine Tool Feed Axis; Dimensioning via Duty CycleDetailed information of the motion cycle are sometimes not available orare not exact. In the case of, e.g. small batch production and frequentlychanging port programs. Sizing of the drives is performed on the basis ofthe relative duty cycle of different operating phases, and based onempirical values from machine manufacturers and/or machine users.

The following example explains this procedure.

SpecificationsThe following data is specified:

Slide mass including motor: mS = 580 kg

Velocity rapid travers: 120 m/min

Velocity machining 15 m/min

Maximum acceleration possible: 15 m/s²

Axis arrangement: horizontally, primary part moved

Motion path 800 mm

Base force: F0 = 600 N (constant)

Maximum machining force: FP = 1200 N

Friction coefficient of linear guides: µ = 0.005

Rated connecting voltage: 3 x AC 400V

Type of machining/movement ShareAcceleration and declaration 10 %

Rapid traverse 20 %

Machining process 30 %

Standstill with machining 20 %

Standstill without machining 20 %

Total: 100 %

Fig. 11-33: Percentage of individual machining processes and movements

Fig. 11-34: Graphical presentation of the individual operating phases

Bearbeitung30%

Stillstand mitBearbeitung

20%

Stillstand ohneBearbeitung

20%

Beschleunigenund Bremsen

10%

Eilgang20%

machining30%

Standstill withmachining

20%

Standstill withoutmachining

20%

Acceleration/deceleration

10%

Rapid traverse20%

Page 213: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Motor Sizing 11-27

DOK-MOTOR*-MLF********-PR02-EN-P

Calculation

N 8700F

m/s² 51kg 580F

amF

acc

acc

gesacc

=⋅=

⋅=

N 9300F

N 600N 8700F

FFF

max

max

0accmax

=+=

+=

The effective force and the average velocity are determined on the basisof the specifications for the individual operating phases.

Type of machining/movement EDi Force Fi Averagevelocity vavgi

Acceleration and declaration 10 % 8700 N Fi = Facc ± F0 60 m/min

Rapid traverse 20 % 600 N Fi = F0 120 m/min

Machining process 30 % 1800 N Fi = FP + F0 15 m/min

Standstill with machining 20 % 1200 N Fi = FP 0 m/min

Standstill without machining 20 % 0 N 0 m/min

Fig. 11-35: Percentage of individual machining processes and movements

N 2983F

)100ED

F(F

eff

i2ieff

=

⋅= ∑

min/m 5.34v

)100ED

v(v

avg

iavgiavg

=

⋅=∑

Drive selectionThe determined data can be used for selecting a motor-controllercombination. The primary part with thermal encapsulation is selected formachine tool applications.

Primary part MLP140C-0170-FS-N0CN-NNNNFmax_motor: 10000 N Fn_motor: 3150 NvFmax 750V:170 m/min vNENN 750V: 250 m/min

Secondary partsegments

MLS140A-3A-xxxx-NNNNTotal travel + Primary part length≈ 1500 mm

Drive device HMS01.1N-W0150

Power supply module HMV ( UDC=750V, with feedback capability)

Linear scale Heidenhain LC481encapsulated, absolute, ENDAT interface

Acceleration force:

Maximum force:

Effective force and averagevelocity

Page 214: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

11-28 Motor Sizing Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Determining the cooling capacity

W 3050P

W 3400N 3150N 2983

P

PF

FPP

co

2

co

vN_motor

2

n_motor

effceco

=

=

==

The maximum temperature rise at the contact surface of the primary partshould not exceed 3 K. The necessary coolant flow in L/min is determinedaccording to:

minl

2.6Q

K 3mkg

3,988Kkg

J4183

25200W 3050Q

Tc25200P

Q

3

m

co

=

⋅⋅⋅

⋅=

⋅⋅⋅=

∆ρ

Note: The way of determining the drive power and other moredetailed data are not discussed within the scope of thisexample.

Rated electrical power loss

Required coolant flow

Page 215: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Handling, Transport and Storage 12-1

DOK-MOTOR*-MLF********-PR02-EN-P

12 Handling, Transport and Storage

12.1 Identifying the Motor components

Primary partOn the front of the primary part, on which the connection for the powercable and coolant is arranged, a type plate is fixed. The type plate makesa definite identification of the primary part possible. An additional typeplate is attached to the primary part. This type plate can be attached tothe machine or can be used otherwise. The type plate of the primary partcontains the following data:

67686%99%96

%81(''%'**'****!*1('

:1,

2*3 *72*3

*616(+

7 7

";#&".

$ ( &&

& <

' %

Typenschild_Primärteil.EPS

(1): Rated force (N) (2): Rated voltage (A)(3): Insulation class (4): Protection class(5): Pole pitch (mm)

Fig. 12-1: Type plate primary part

Secondary partOn the secondary part can no type plate brought on, because for lack ofspace. Two identical type plates are attached to the secondary part atdelivery. To ensure a safe and permanent identification of the type, thetype designation and the serial number are fixed directly on the secondarypart.

The type designation and the serial number is located between the firstboth fixing holes, starting from the front, which is signed with the southpole sign.

A << *&*<$$$ 3%<

>>>> >>

>>>

MLS_KENNZ_DE.EPS

(1): Type and serial number(2): Manufacturing date (month/year)(3): Supplier(4): Number of measurement report(5): Pole designation “S” (for south pole)

Fig. 12-2: Position of the type designation and serial number of the secondarypart

Page 216: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

12-2 Handling, Transport and Storage Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Note: Each secondary part has a magnetic north pole, unless thelength of a front and on the opposite side, a magnetic southpole on the front. The secondary parts are signed with “S”(south pole) on one front.

The type plate of the secondary part contains the following data:

!/9*:686%99%96

%81!(!'''****!*1!('

*616(

7

";#&".

& <

' %

:1,

Typenschild_Sekundärteil.EPS

(1): Protection class(2): Secundary part mass

Fig. 12-3: Type plate secondary part

12.2 Delivery Status and Packaging

Primary partsThe primary parts are separately packed in a wooden box. To identify theprimary part, a type designation exist on the packaging.

Secondary partsThe secondary parts are separately packed in a cardboard box. Toidentify the secondary part, a type designation exist on the packaging.

The packaging of the secondary parts carries the following warnings:

0'A =M/ @ME=0< <G%#% "N

"6! 3! !3 !%!62 !"32 !" %2 ! $8#!%3!O $3!%:$96&%2 !"

A 3 O 3! !OO #'#6 2 %6 $$ %2 ! $$ $ 6 * 3/!O $#0%:$% ( 2 %% $ $

L P#22 "$! $ N

7'E/=/B< $G%" %"$ 6 "! O 3 $"$ 26 "%&% "N

%22 ! $# %" %%2 N

'&% 6"! O 3 $"$% 2 %" %""%!%%$ %%"

=&%# #!!%%3!%#$6"&!"%%$2 "

7'E/A/B

( % < G!! 3 $$! ="$ % <P2 Q R !! %% $ Q % #2

4 /%6 2O R%$! ( % 3! $ G#Q 3%G#%% 'GG# !

B # 2 R( % < G!! 3 $$! ="$ % "$ #<P2 Q # $: A2 :#2 $ N

O 2 $#!( 2 %% $ N

0'A =M/ @ME=0< <G%#%2 # %2! %! %" %%2 N

%22 ! $# %" %%2 N

<$ %$&6"% ! 2$% N<$ 6 !

/#!#G!# @%!2:

F# !2 %2 #<#!O 'G #2OQ 2 N

O 2 $#!( 2 %% $ N

/

WARNMAGN_MLF_EN.EPS

Fig. 12-4: Warning label on the packaging of MLS secondary parts

Name plate

Warnings on the packaging ofthe secondary parts

Page 217: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Handling, Transport and Storage 12-3

DOK-MOTOR*-MLF********-PR02-EN-P

Note: The self-sticking warning label shown in Fig. 12-4 (sizesapprox. 110 mm x 150 mm) can be ordered from Rexroth(MNR. R911278745).

12.3 Transport and Storage

TransportTransport and store the primary and secondary parts in their originalpackage from Bosch Rexroth only. Unpack the parts only at theinstallation location.

Note: Keep the packaging for later use, e.g. reconstruction of themachine or redelivery.

Depending on height and weight of the primary part, it maybe cannot betransported by hand. In such cases make suitable chain hosts available.

To horizontally move the primary part, it can be transported with ringscrews for example. Heed the thread measurement within the dimensionsheet of the primary part.

CAUTION

Risk of injury and / or damage when handlingprimary parts!⇒ Use both outer threaded holes on each side to screw

in the ring screws.⇒ Tighten the ring screws by hand until the ground of

the fastening thread is reached or until the contactsurface of the ring screw lays on the primary part.

⇒ Use 4 identically lifting belts for transport to reach auniformly load on the threaded holes and to avoid atilting of the primary part during transport.

Transport_Primärteil.EPS

Fig. 12-5: Example of the transport of a primary part

Transport of the primary part

Page 218: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

12-4 Handling, Transport and Storage Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

CAUTION

Risk of injuries and / or damage when handlingsecondary parts of synchronous linear motors!⇒ Heed the safety and warning notes (see Fig. 12-4),

when using secondary parts and ensure their strictobservance.

⇒ Remove the transport or assembly protection, whichis stuck onto the cover sheet, when mounting it intothe machine.

Depending on size and weight of the secondary part, it maybe cannot betransported by hand. Use antimagnetic lifting belts, because of a strongmagnetic field around the secondary part.

We recommend to transport the secondary part with lifting belts.

To avoid that the lifting belts slip together during transport, lock them.Therefore, two fastening screws for the secondary part can be connectedinto the appropriate hole on the secondary part (see Fig. 12-6). Heed asufficient excess length of the lock on the lower side of the secondarypart.

CAUTION

Risk of injury and / or damage when handlingsecondary parts!⇒ Use an antimagnetic lock during transport of the

secondary parts with lifting belts. This lock avoids apossible slip of the lifting belts during transport.

Transport_Sekundärteil.EPS

(1): Lifting belts(2): Lock against slipping together of the lifting belts(3): Stuck on transport and assembly protection

Fig. 12-6: Example of the transport of a primary part

Transport secondary part

Safety on the lifting belts duringtransport

Page 219: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Handling, Transport and Storage 12-5

DOK-MOTOR*-MLF********-PR02-EN-P

The secondary parts of synchronous linear motors are equipped withpermanent magnets, which are not magnetically shielded. The safetynotes have to be absolutely adhered.

CAUTION

Possible influence of plane electronic on boardthrough magnet fields!⇒ Heed the packaging and transport instructions (IATA

902)

StoragePreferably use the original package to store the parts. If it is not possible,store primary and secondary parts of synchronous linear motors on aplain base, where the primary and secondary parts are totally underlaid.This must be ensured even at short time storage.

The permissible storage and transport temperature is –10...+60°C. Heavyor periodic temperature fluctuations during transport and storage are notpermitted.

;<B(

*<B(

LAGKOMP_MLF_DE.EPS

Fig. 12-7: Storage of linear motor components

CAUTION

Inappropriate handling during storage ortransport can damage or destroy the motorcomponents!⇒ Use the original packaging for permanent storage.⇒ Short-term storage during installation acc. to Fig.12-

7⇒ Do not throw parts.⇒ Adhere to permissible transport and storage

temperatures.⇒ Remove the transportation and installation protection

only during or after the installation into the machine.

Further features about transportof secondary parts

Air freight

Storage of primary andsecondary parts

Page 220: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

12-6 Handling, Transport and Storage Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

12.4 Checking the motor components

Factory checks

The Bosch Rexroth linear motors undergo the following electrical checksat the factory:

• High-voltage test acc. to EN 60034-1/2.95 (VDE 0530 Part 1)

• Insulation resistance test acc. to EN 60204-1

• Verification of the specified electrical characteristics

The Bosch Rexroth linear motors undergo the following mechanical tests:

• Form and location tolerances acc. to ISO 1101

• Construction and fits acc. to DIN 7157

• Surface structure acc. to DIN ISO1302

• Thread test acc. to DIN 13, Part 20

• Leak test of the cooling circuit

Note: Each motor is accompanied by a corresponding testcertificate.

The linear motor components of Bosch Rexroth have been subjected toan EMV type test and have been certified as complying

EN 55011 Limit Class B, VDE 0875 Part 11

Incoming Inspection by the CustomerYou must contact Bosch Rexroth, if you wish to perform a high-voltageincoming test at customer side.

CAUTION

Destruction of motor components by improperlyor repeatedly executed high-voltage inspection!⇒ Contact Bosch Rexroth before carrying out tests!

Electrical inspections

Mechanical inspections

EMV radia interferencesuppression

Page 221: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Assembly 13-1

DOK-MOTOR*-MLF********-PR02-EN-P

13 Assembly

13.1 Basic Precondition

Basic precondition for mounting the IndraDyn L components is thekeeping of the following basic preconditions:

• Precondition of the necessary installation sizes (see Fig. 5-1)

• Machine construction fulfills the requests for mounting (stiffness,attractive force, feed force and acceleration force, etc.)

• Machine construction is prepared for mounting of all components

• Clean screw-on surfaces between machine and motor components.

• Mounting is done by trained personal

• Compliance of danger and safety notes is guaranteed.

13.2 General Procedure at Mounting of the Motor Components

The installation of the motor into the machine construction depends onthe arrangement of the secondary part and can be done in different ways.

• Installation at spanned secondary parts over the entire traverse path

• Installation at whole secondary part over the entire traverse path

Note: The described procedures are only suggestions and can bedone user-specific in other forms.

Installation at Spanned Secondary Parts over the Entire Traverse PathInstallation for a spanned secondary part can be done, as shown in Fig.13-1. Thereby, only a part of the secondary part is installed, so that theprimary part can be laid on the machine bed.

WARNING

Do not lay the primary part directly on thesecondary part!⇒ Lift-off of the primary part from the secondary part is

difficult because of high attractive forces (apparatusnecessary).

The assembly of the primary part into the installed slide can be done now.Afterwards, the slide with installed primary part can be pushed over theinstalled secondary parts. Then, all the remaining secondary parts can beinstalled.

Page 222: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

13-2 Assembly Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

2

""

"&

&

2

""

"&

&

""

0

0

MOTEINBAU01_MLF_EN.EPS

Fig. 13-1: Assembly of the components of linear motors at spanned secondarypart

CAUTION

Uncontrolled movement of the slide!⇒ Safety against uncontrolled movements by partial

covering of primary and secondary parts (force intraverse direction).

Installation at Whole Secondary Part over the Entire Traverse PathAt whole secondary part over the entire traverse path can the primary partbe installed into the prepared slide. After mounting the secondary part, theslide with prepared primary part can be lowered on the machine bed via asuited apparatus

2

"

"&

&

. &! ." $

MOTEINBAU02_MLF_EN.EPS

Fig. 13-2: Installation of the linear motor components at whole secondary partover the entire traverse path

Note: The apparatus for lowering the primary part and the slide is notin the scope of delivery of Bosch Rexroth.

Page 223: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Assembly 13-3

DOK-MOTOR*-MLF********-PR02-EN-P

CAUTION

When lowering the primary part on thesecondary part, result by reducing the air gapincreasing attractive forces!⇒ Heed the specifications in chapter 9.5 Feeding and

Attractive Forces⇒ Do not lower the primary part on the secondary part

with a crane (elasticity / attractive force).

Another possibility is, to lay the primary part on the installed secondarypart – with a suited apparatus – and to screw it with fastening screws onthe slide. Thereby, a non-ferromagnetic distance plate (made of plastic orwood) has to be laid among the primary and secondary part so that theprimary part does not bear on the secondary part directly. The thicknessof the distance plate should be measured according to < nominal air gap.After the fastening of the primary part on the slide a moving of the slideshould be possible.

The thickness of the distance plate must be measured in such a way thatthe primary part with the fastening screws can preferably not or onlyexiguously be lifted.

Measurable air gap: 1.0 mm

Thickness of the distance plate: 0,95 ... 0.99 mm

The tightening of the fastening screws for the primary part has to bemade as described in chapter 13.4 Mounting of the Primary Part.

2

"

"&

&

2

""&

&

0

0,1

"&

2

""&

&

0,1

"&

&! ." $

MOTEINBAU03_MLF_EN.EPS

Fig. 13-3: Installation of the linear motor components at whole secondary partover the entire traverse path

Example

Page 224: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

13-4 Assembly Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

13.3 Installation of Secondary Part Segments

WARNING

Personal injury and / or damage of motorcomponents!⇒ Remove the transport and installation protection of

the secondary part only after mounting of thesecondary parts.

The screw-on surfaces must be cleaned and be free of grease before thesecondary parts can be screwed on the machine construction. With thesemeasures, a high stability of the screwed connections with screws of theproperty class 8.8 can be reached. If the screw-on surfaces could not beoptimally prepared, or if it could be expected that during operation of themotor do some influences occur, due to using coolants, the lifetime of themachine can reduce the sliding friction between the screw-on surfaces. Insuch cases, we recommend to use screws of property class 10.9 tofasten the secondary parts.

The tightening torque of the fastening screws are given as follows:

Size secondarypart

Bolt size-ISO-grade

Tensilestrength

Tighteningtorque

040...200 M6 (DIN 7984, shallowscrew head)

300 M6 (DIN EN ISO 4762)

8.8 10 Nm

040...200 M6 (DIN 7984, shallowscrew head)

300 M6 (DIN EN ISO 4762)

10.9 15 Nm

Fig. 13-4: Tightening torque for the secondary part`s fastening screws.

WARNING

Malfunction and / or uncontrolled movement ofthe motor result in danger of damage or risk ofinjury!⇒ Correct arrangement of the secondary part

segments.

Using several arranged secondary part segments over the entire traversepath, the pole series and the alignment must be kept according to thefollowing figure.

Spanned secondary part

Page 225: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Assembly 13-5

DOK-MOTOR*-MLF********-PR02-EN-P

,% #%

,# #%

,% #%

,# #% ,#

#%

,# #%

,% #% ,#

#% ,# #%

MOTEINBAU04_MLF.EPS

Fig. 13-5: Arrangement of several secondary parts

WARNING

Risk of injury or damage by attractive force orrepulsive force when arranging the secondarypart segments!⇒ Ensure that uncontrolled movements do not occur.⇒ Remove the transportation and installation protection

only during or after the installation into the machine.

Attractive or repulsive forces can be approx. 300N differing from the size,when arranging the secondary part segments.

,# #%

,# #%

,# #%

,# #%

,# #%

,# #%

MOTEINBAU05_MLF.EPS

Fig. 13-6: Attractive or repulsive force when arranging the secondary partsegments

Page 226: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

13-6 Assembly Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

13.4 Installation of Primary Part

(

%

#

'

1 "!"

"&

MOTEINBAU06_MLF_EN.EPS

Fig. 13-7: Order of tightening the fastening screws of the primary part

Mounting instructions:

1. Prepare the threaded holes (see chapter 13-7 “Screw Locking”).

2. Fasten the primary part with screws 1, 2, 3...n until the primary partlays on the slide.

3. Fasten screws 1, 2, 3 ...n with nominal tightening torque:

Frame sizePrimary part

MLP...Designs

Bolt size-ISO-grade

Nominaltightening

torque

040...300 Standard and thermalencapsulation M6 10 Nm

Fig. 13-8: Nominal tightening torque for the fastening screws of the primaryparts

Note: The screw-on surface among primary part and machineconstruction must be oil free and free of grease.

13.5 Air-gap, Parallelism and Symmetry among the MotorComponents

When mounting primary and secondary parts, their position is specified bythe holes or threads within the machine slide and within the machine bed(see Fig. 5-2).

As a small tolerance exists within the holes of the screw connections, theparts must be averaged and arranged according to Fig. 13-5 before thescrews are finally tightened.

)

MOTEINBAU07_MLF.EPS

(1): Primary part (2): Secondary part(L): Air gap

Fig. 13-9: Alignment of the motor components

Parallelism and symmetry

Page 227: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Assembly 13-7

DOK-MOTOR*-MLF********-PR02-EN-P

We recommend after the assembly of the motor components, to checkthe necessary minimum air gap among primary and secondary part (seeFig. 13-9).

Therefore, a test-strip made of antimagnetic material (aluminium, plastics,etc.) of a thickness of

• 0.5...0.55 mm

must be inserted into the air gap between primary and secondary part.The test strip must be freemoving on each point within the whole traversepath of the air gap.

With this measure, you will prevent that dirt under the mounting surface,the assembly material or even an unsufficient machine rigidity improperlylowers the air gap and therewith damages the motor.

13.6 Connection Liquid Cooling

Connection of the liquid cooling is made by standard threads directly onthe primary part.

Note: Fittings and cooling pipes are not in the scope of delivery ofthe linear motor.

The indicated tightening torque (see Fig. 13-10) of the fitting on the motorside should not be exceeded.

Heed that depending on the form of the selected connection fitting, thevalue possibly cannot be used, but rather be reduced to do not damagethe connection fitting.

Note: Heed the information of the manufacturer, especially thedetails about the permitted tightening torque of the connectionfitting.

The following connection data have to be kept. Excursion of tighteningtorque or depth of engagement can lead to irreversible motor damage.

Fitting on the motor sidePrimary partwith... Thread Tightening torque Depth of thread

Standardencapsulation

Thermalencapsulation

G1/4" max. 30 Nm max. 12 mm

Abb. 13-1: Connection liquid cooling

Air gap

Tightening torque

Page 228: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

13-8 Assembly Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

13.7 Screw Locking

LOCTITE is a plastic adhesive, which is applied to the installation parts inliquid form. The adhesive remains liquid as long as it is in contact withoxygen. Only after the parts have been mounted, it converts from its liquidstate into hard plastic. This chemical conversion takes place underexclusion of air and the produced metallic contact. The result is a form-locking connection that is impact- and vibration-resistant. It is shock-proofand resistant to vibrations. The hardening accelerator Activator 7649reduces the hardening time of the adhesive.

Proceed as follows:

1. Clean metal chips and coarse dirt from threaded hole and screw orgrub screw.

2. Use LOCTITE rapid cleanser 7061 to clean oil, grease and dirtparticles from threaded hole and screw/grub screw. The threads haveto be absolutely restless.

3. Spray LOCTITE activator into the threaded hole and let it dry.

4. Use LOCTITE adhesive to moisten the same threaded hole in itsentire thread length thinly and evenly.

5. Screw in the matching screw/grub screw.

6. Allow join to harden. Hardening times see Fig. 13-11.

Securing screwed connections using LOCTITE in tappedblind holesThe adhesive must always be dosed into the tapped hole, never on thescrew. This prevents that the compressed air extrudes the adhesive whenthe screw or grub screw is screwed in.

Hardened Hard to the touchwithout activator

Hard to the touchwith activator 7649

LOCTITE 243 ≈ 12 h 15 bis 30 min 10 bis 20 min

LOCTITE 620 ≈ 24 h 1 bis 2 h 15 bis 30 min

NOTE: All values refer to the hardening time at room temperature. The times are shorterwhen heat is added.

Fig. 13-11: Hardening times LOCTITE adhesive

Note: LOCTITE 620 is heat-resistant up to 200°C, LOCTITE 243 upto 150°C.

To detach the connection, use a wrench for unscrewing the screw or grubscrew in the traditional way. The breakaway torque of LOCTITE 620 is 20-45 Nm, the one of LOCTITE 243 is 14-34 Nm (acc. to DIN 54 454).Blowing hot air on the screw connection reduces the breakaway torque.

Is the screw/grub screw removed, the residuals of the adhesive must beremoved from the threaded hole (e.g. re-cutting the thread).

NOTE: The German version of the chapter was checked by LOCTITE Germany forcorrectness and was approved for publication.

General

Gluing

Detach the connection

Page 229: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Startup, Operation and Maintenance 14-1

DOK-MOTOR*-MLF********-PR02-EN-P

14 Startup, Operation and Maintenance

14.1 General Information for Startup of IndraDyn L Motors

The startup of linear motors is different to the rotative servo motors. Thedifferences are described in this chapter.

Note: Use the functional description of the drive controller for moredetailed information.

The following points have to be especially noticed when startupsynchronous-linear motors.

Synchronous-linear motors are kit motors whose single components are –completed by an encoder system – directly installed into the machine bythe manufacturer. As a result of this, kit motors have no data memory tosupply motor parameters or standard controller adjustment. At startup, allparameters must be manually entered or loaded into the drive. Thestartup-program DriveTop makes all motor parameters of Bosch Rexrothavailable.

The procedure at controller optimization (voltage, acceleration andposition controller) of linear direct drives is the same as at rotative servodrives. At linear drives are only the adjustment limits higher. At lineardirect drives compared with rotative servo drives can be, for example, a10-fold higher kv-factor adjusted. Precondition therefore is an appropriatemachine construction (see chapter 9.3 “Request for a machineconstruction”.

At controlled rotative servo drives are automatic-control engineeringmodifications at the rate of motor-moment of inertia to demand-momentof inertia. Such a modification is not available for direct drives with linearmotors. The moved foreign mass is independent from the motor self-mass.

The polarity of the actual-speed (length measuring system) must agreewith the force polarity of the motor. This connection has to be establishedbefore commutation adjustment.

It is necessary at synchronous linear motors to receive the position of theprimary relating on the secondary part by return after start or after amalfunction. This is called identification of pole position or commutationadjustment. The commutation adjustment-process is the establishment ofa position reference to the electrical or magnetic model of the motor. Thecommutation adjustment can be done after installation of the motorcomponents and length measuring system. The way of doing thecommutation adjustment complies with the measuring principle of thelength measuring system.

14.2 General Precondition

The following preconditions have to be provided for a successful startup.

• Adherence of the safety instructions and notes.

• Check of electrical and mechanical components for a safe function.

• Availability and supply of required implements.

• Heed the following described start-up.

Parameter

Controller optimization

Moving masses

Encoder polarity

Commutation Adjustment

Page 230: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

14-2 Startup, Operation and Maintenance Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Check of All Electrical and Mechanical ComponentsDo a check of all electrically and mechanically components before start-up. Heed the following points in particular:

• Safety warranty of personnel and machine

• Proper installation of the motor

• Correct power connection of the motor

• Correct connection of the length measuring system

• Functioning of available limit switch, door switch, ...

• Proper functioning of the emergency stop circuit and emergency stop.

• Machine construction (mechanical installation) in proper and completecondition.

• Availability and function of suitable end-of-stroke damper.

• Correct connection and function of the motor cooling system.

• Proper connection and functioning of the drive control unit.

WARNING

Danger to life, heavy injury or damage by failureor malfunction on mechanical or electricalcomponents!⇒ Troubleshoot at mechanical or electrical components

before continue with the start-up.

WARNING

Risk of injury or danger to life, as well asdamage due to non-adherence of warnings andsafety notes!⇒ Adherence of the warning and safety notes.⇒ Start-up must to be done by skilled personnel⇒ Adherence of the following described start-up.

Implements

The start-up can be made directly using a NC terminal or using specialsoftware. The start-up software DriveTop makes a menu-driven, custom-designed and motor-specific parameterizing and optimization possible.

For start-up with DriveTop is a usual Windows PC needed.

For a start-up using NC control, access to all drive parameters andfunctions must be guaranteed.

An oscilloscope is needed for drive optimization. It serves to display thesignals, which can be shown via the adjustable analog output of the drivecontroller. Viewable signals are, e.g. nominal and actual values for thespeed, position or voltage, position lag, intermediate circuit, etc.

During troubleshooting and check of the components, a multimeter whichcan measure voltages, currents and resistance can be helpful.

Start-up software DriveTop

PC

Start-up via NC

Oscilloscope

Multimeter

Page 231: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Startup, Operation and Maintenance 14-3

DOK-MOTOR*-MLF********-PR02-EN-P

14.3 General Start-Up Procedure

In the following flow-chart is the general start-up procedure atsynchronous linear motors MLF shown. In the following chapters arethese points explained in detail.

parameter value assignments

Verification:

- power connection - safety end switch- measuring system connection - motor cooling- mechanical system - controller function- end position dampers - drive control function- E STOP function

No

determine sensorpolarity

commutation setting

position sensor typeparameter S-0-0277 Bit 3 = 1

............1001

Necessary information,parameters and aids

- motor parameters- constant focommutation setting kmx

set and optimizecontrol loop

error ?

polarityFsoll = vist?

eliminate errorYes

system is operational!

No

load drive parameterdefault values

enter/load motorparameters

enteapplication-relatedparameters

enter drive limitation

enter parameters forlength measuring

system

Yes

initialcommissioning

Yes

No

Fig. 14-1: General start-up procedure at synchronous linear motors

Page 232: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

14-4 Startup, Operation and Maintenance Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

14.4 Parameterization

With DriveTop, entering or editing certain parameters and executingcommands during the commissioning process is done inside menu-drivendialog boxes or in list representations. Optionally, this can also beperformed via the control terminal.

Entering Motor Parameters

Note: The motor parameters are specified by Rexroth and must notbe changed by the user. Commissioning is not possible ifthese parameters are not available. In this case, please get incontact with your Rexroth Sales and Service Facility.

WARNING

Injuries and mechanical damage if the motor isswitched on immediately after the motorparameters have been entered! Entering themotor parameters does not make the motoroperational!⇒ Do not switch on the motor immediately after the

motor parameters have been entered.⇒ Enter the parameters for the linear scale.⇒ Check and adjust the measuring system polarity.⇒ Perform commutation setting.

The motor parameters can be entered in the following way:

• Use DriveTop to load all the motor parameters.

• Enter the individual parameters manually via the controller.

• With series machines, load a complete parameter recordvia the controller or DriveTop.

Motor Parameter at Parallel ArrangementAre two linear motors operated in a control device, the followingparameters have to be adjusted when commissioning.

Parameter Description Matchingcoefficient

P-0-4016 Motor series inductance x 0,5

P-0-4017 Motor shunt inductance x 0,5

P-0-4048 Motor winding resistance x 0,5

S-0-0106 Current loop proportional gain 1 x 0,5

S-0-0109 Motor peak current x 2

S-0-0111 Motor current at standstill x 2

Fig. 14-2: Parameter adjustment at parallel arrangement

Note: If not the maximum possible continuous nominal force or themaximum possible peak load of the motor is necessary, a

Page 233: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Startup, Operation and Maintenance 14-5

DOK-MOTOR*-MLF********-PR02-EN-P

smaller drive device can be used. In this case, the setting ofthe mentioned currents must be adjusted to the selected drivedevice.

Operation of IndraDyn L Synchronous Linear Motors without LiquidCooling

WARNING

Motor damage! Overheated winding!⇒ If the current on a water-cooled motor is not

accordingly reduced, then the motor heats-up so fastat 2.2x rated current that not in any case the thermalcontacts cannot switch-off the motor on time. Anoverheat of the winding is the consequence. Due tothe overheated winding, the winding insulation isweak or in an extreme case destroyed.

Without liquid coolant only reduced power data are available. These arelisted in this documentation.

The stated values in the data sheets regarding rated force and ratedcurrent of the motors must be lowered depending on the coupling of themotors to ~40% of the stated value.

If this current reduction is not recorded in the parameter S-0-0111(standstill motor), the 2.2-times of the water-cooled rated current can beapplied to the motor, if necessary (for a stipulated time in the parameterP-0-4035). This current is by the factor 2.5 too high for the non-watercooled IndraDyn L motor.

Example:

Rated current for the water-cooled motor = 10A

S-0-0111 = 10A

Possible current = 2,2 x 10A = 22A

Rated current for the same motor design, but not water-cooled:

S-0-0111 = 10A x 0,4 = 4A

Possible current = 2,2 x 4A = 8.8A

Note: Notice the details in chapter 9.6 about operation of anIndraDyn L motor without liquid cooling.

Page 234: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

14-6 Startup, Operation and Maintenance Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Input of Linear Scale ParametersThe type of the linear scale must be defined. The parameter P-0-0074,encoder type 1 (see also Fig. 9-83).

Encoder type P-0-0074

Incremental measuring system, e.g. LS486 inconjunction with high-resolution DLF positioninterface

2

Absolute encoder with ENDAT interface, e.g.LC181 in conjunction with high-resolution DAGposition interface

8

Fig. 14-3: Encoder type definition

Linear scale for linear motors generate and interpret sinusoid signals.The sine signal period must be entered in parameter S-0-0116, sensor 1resolution.

Note: The values that must be entered for parameter S-0-0116,sensor resolution, are specified in Fig. 9-66. The values forlinear scale that are not shown in this figure must be obtaineddirectly from the manufacturer.

Input of Drive Limitations and Application-Related ParametersThe possible selectable drive limitations include:

• Current limitation

• Force limitation

• Velocity limitations

• Travel range limits

The application-related drive parameters include, for example, theparameters of the drive fault reaction.

Note: Detailed information can be found in the description of functionof the employed drive controller and/or Firmware.

14.5 Determining the Polarity of the Linear Scale

In order to avoid direct feedback in the velocity control loop, the effectivedirection of the motor force and the count direction of the linear scalesmust be the same.

WARNING

Different effective directions of motor force andcount direction of linear scale causeuncontrolled movements of the motor uponpower-up!⇒ Ensure that uncontrolled movements do not occur.⇒ Adjust effective direction of motor force equal to

linear scale count direction.

Encoder type

Signal period

Drive limitations

Application-related parameters

Page 235: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Startup, Operation and Maintenance 14-7

DOK-MOTOR*-MLF********-PR02-EN-P

To set the correct sensor polarity:

The effective direction of the motor force is always positive in thedirection of the cable connection of the primary part.

)

;

GEBPOL01-MLF-EN.EPS

Fig. 14-4: Effective direction of motor force

When the primary part is moved in the direction of the cable connection,the count direction of the linear scale must consequently be positive:

)

;

;

GEBPOL02-MLF-EN.EPS

Fig. 14-5: Effective direction motor force = linear scale count direction

Note: The encoder polarity is selected via the primary part (cableconnection). The installation direction or the pole sequence ofthe secondary part does not have any influence on theselection of the sensor polarity.

The encoder polarity is selected via parameter

S-0-0277, position feedback type 1 (bit 3)

Position, velocity and force data must not be inverted when the linearscale count direction is set:

S-0-0085, Force polarity parameter 0000000000000000

S-0-0043, Velocity polarity parameter 0000000000000000

S-0-0055, Position polarities 0000000000000000

The process-related axis count direction is set as required after sensorpolarity and commutation have been set.

Effective direction of motorforce

Effective direction motor force =linear scale count direction

Page 236: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

14-8 Startup, Operation and Maintenance Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

14.6 Commutation Adjustment

Setting the correct commutation angle is a prerequisite for maximum andconstant force development of the synchronous linear motor.

This procedure ensures that the angle between the current vector of theprimary part and the flux vector of the secondary part is always 90°. Themotor supplies the maximum force in this state.

Three different commutation adjustment procedures have beenimplemented in the firmware. The figure below shows the correlationbetween the employed linear scale and the method that is to be use.

incremental

Only for initialcommissioning and sensor

replacement

measuringprinciple of linear scale

absoluteENDAT

initialcommissioning

NoYes

Commutation setting ofsynchronous linear motors

Procedure 1

Measuring the refernecebetween primary and secondarypart and starting the P-0-0524

command

no controller enabling signal no axis movment

always after power-up

Procedure 3

Current flow methodAutomatic execution after

controller enabling signal is set

Only for initialcommissioning and sensor

replacement

Procedure 2

Current flow methode bystarting the P-0-0524 command

with controller enabling signal axis movement

with controller anabling signal axis movement

Fig. 14-6: Commutation adjustment method for synchronous linear motors

Note: The three methods are described subsequently.

Note: Method 2 and 3 cannot be employed for:- vertical axes without weight compensation– jammed or blocking axes

Adjustment procedure

Page 237: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Startup, Operation and Maintenance 14-9

DOK-MOTOR*-MLF********-PR02-EN-P

DANGER

Malfunction due to errors in activating motorsand moving elements!Commutation adjustment must always beperformed in the following cases:⇒ Initial commissioning⇒ Modification of the mechanical attachment of the

linear scale⇒ Replacement of the linear scale⇒ Modification of the mechanical attachment of the

primary and/or secondary part

WARNING

Malfunction and/or uncontrolled motormovement due to error in commutationadjustment!⇒ Effective direction motor force = linear scale count

direction⇒ Adhering to the described setting procedures⇒ Correct motor and encoder parameterization⇒ Expedient parameter values must be assigned for

current and velocity control loop⇒ Correct connection of motor power cable⇒ Protection against uncontrolled movements

The individual phases of the motor power connection must be assignedcorrectly. See also Chapter 8 “Electrical Connection”.

To ensure a correct commutation adjustment, the following parametersshould be checked again and, if necessary, set to the values specifiedbelow:

ID number Description Value

S-0-0085 Torque/force polarity parameter 0000000000000000

S-0-0043 Velocity polarity parameter 0000000000000000

S-0-0055 Position polarities 0000000000000000

P-0-4014 Motor type 3 (synchronous linearmotor)

P-0-0018 Number of pole pairs/pole pairdistance

75

S-0-0116 S-0-0016, Encoder 1 resolution Fig. 9-80

Fig. 14-7: Parameters that must be checked prior to commutation adjustment

Motor connection

Parameter verification

Page 238: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

14-10 Startup, Operation and Maintenance Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Method 1: Measuring the Reference between Primary and SecondaryPart

If this procedure is used for commutation adjustment, the relative positionof the primary part with respect to the secondary part must bedetermined. The benefit of this procedure is that the commuationadjustment requires neither the power to be switched on nor the axes tobe moved. Commutation adjustment need only be performed during thefirst-time commissioning.

Note: This procedure requires an absolute linear scale with ENDATinterface.

Depending on the accessibility of primary and secondary part in themachine or system, the relative position between primary and secondarypart can be measured in different ways.

)

1

&

KOMMUT01-MLF-EN.EPS

Fig. 14-8: Measuring the relative position between primary and secondary part

Note: From now on, the position of the primary part must not bechanged until the commutation adjustment procedure isterminated!

The input value for P-0-0523 that is required for calculating thecommutation offset, is determined from the measured relativce position ofthe primary part with respect to the secondary part (Fig. 14-8, distance d,e, f or g, depending on accessibility), and a motor-related constant kmx

(see Fig 14-9 and Fig. 14-11).

Measuring the relative positionbetween primary and secondary

part

Calculation of P-0-0523,commutation adjustment

measured value

Page 239: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Startup, Operation and Maintenance 14-11

DOK-MOTOR*-MLF********-PR02-EN-P

mxp

mxp

mx

mx

klgmmP

klfP

mmkeP

kdP

−−−=−−

−−−=−−

−−=−−

−=−−

5.3705230 :4point Reference

05230 :3point Reference

5.3705230 :2point Reference

05230 :1point Reference

P-0-0523: Commutation adjustment measured value in mmd: Relative position, reference position 3 in mm (see Fig. 14-7)e: Relative position, reference position 2 in mm (see Fig. 14-8)f: Relative position, reference position 3 in mm (see Fig. 14-8)g: Relative position, reference position 4 in mm (see Fig. 14-8)kmx: Motor constant for commutation adjustment in mmlp: Length of primary part in mm

Fig. 14-9: Calculation of P-0-0523, commutation adjustment measured value

Note: Ensure that the sign is correct when you determine P-0-0523,commutation adjustment measured value.If P-0-0523 is determined with a negative sign, this must beentered when the setup procedure is started.

The motor constants for adjusting the commutation offset kmx depend onthe orientation of primary and secondary part:

)

&

)

C

3

3

3

3

KOMMUT02-MLF-EN.EPS

Fig. 14-10: Possible arrangements between primary and secondary part

Motor constant for commutationadjustment kmx

Page 240: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

14-12 Startup, Operation and Maintenance Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Arrangement A(acc. to Fig. 14-10)

kmx in mm

Arrangement B(acc. to Fig. 14-10)

kmx in mm

Standard encapsulationSize 040...300 68 105,5

Thermal encapsulationSize 040 300 300

65 102,5

Fig. 14-11: Motor constants for commutation adjustment kmx

Example 1, reference point (see Fig. 14-8):

d = 100 mm , kmx = 68.0 mm

P-0-0523 = d - kmx = 100 mm - 68.0 mm = 32 mm

Example 2, reference point (see Fig. 14-8):

d = 0 mm , kmx = 68.0 mm

P-0-0523 = d - kmx = 0 mm - 68.0 mm = -68.0 mm

Example 3, reference point (see Fig. 14-8):

g = 180 mm , kmx = 68.0 mm , lp = 540 mm

P-0-0523 = 37.5 mm - g - lp - kmx = 37.5 mm -180 mm - 540 mm - 68 mm

P-0-0523 = 750.5 mm

Prerequisites:

1. The drive must be in the A0-13 state during the subsequent adjustmentprocedure (ready for power connection).

2. The position of the primary part and/or the slide must not habechanged since the relative position of the primary part with respect to thesecondary part has been measured.

Once the determined value P-0-0523, commutation setting measuredvalue, has been entered, the command P-0-0524, D300 commutationsetting command must be started. The commutation offset is calculated inthis step. The commutation offset is calculated in this step.

Note: If the drive is in control mode when the command is started,the commutation offset is determined using the current flowmethod (see method 2).

The command must subsequently be cleared.

Activation of commutationadjustment command

Page 241: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Startup, Operation and Maintenance 14-13

DOK-MOTOR*-MLF********-PR02-EN-P

Method 2: Current Flow Method manually activated

This method is used for the following configurations:

• Synchronous linear motors with absolute linear scale. Infirst-time commissioning, as an alternative of method 1.

1. Adjust the operation mode “Torque-force control”2. Bring the drive into control (AF).3. Start the commando via P-0-0524

WARNING

Injuries due to errors in trigger motors andmoving elements!⇒ Is the drive not accordingly commutated, then the

drive must only be switched in operation mode“Torque-force control” in AF.

⇒ Is the drive switched in velocity control or in positioncontrol in AF, an uncontrolled axis movement cannotbe excepted.

Note: The parameter P-0-0560, commutation adjustment voltage, P-0-0562 and cycle duration can individually be adjusted at initialstart-up by the user.

Method 3: Current Flow Method Automatically Activated

This method is used for the following configurations:

• Synchronous linear motor with incremental length scale inconnection with controllers Ecodrive and Diax04

At initial start-up of the axis, the parameter P-0-0560,commutation adjustment voltage, P-0-0562 andcommutation adjustment are automatically determinatedand recorded in the drive.At every re-start of the axis, the commutation adjustment ismade new to method 3. The parameter values for P-0-0560and P-0-0562 of the initial start-up serve as initial value forthe procedure.

Note: The parameter P-0-0560, commutation adjustment voltage, P-0-0562 and cycle duration can individually be adjusted at initialstart-up by the user.

This method is used for the following configurations:

• Synchronous linear motors with incremental length scale inconnection with IndraDrive controllers.

At initial start-up of the axis, the parameters P-0-0506,peak value for angle-survey and P-0-0507, test frequency

Controllers ECODRIVE andDIAX04

Controller IndraDrive

Page 242: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

14-14 Startup, Operation and Maintenance Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

for angle-survey are automatically determinated, if in P-0-506 “0” is entered. Subsequently, the determinedparameters are recorded in the drive-device.At every re-start of the axis, the commutation adjustment ismade new to method 3. The parameter values for P0-0506and P0-0507 of the initial start-up serve as initial value forthe procedure.

Note: The parameters P-0-0506, peak value for angle-survey and P-0-507, test frequency for angle-survey can individually beadjusted at initial start-up by the user.

14.7 Setting and Optimizing the Control Loop

General SequenceThe control loop settings in a digital drive controller are significant to thecharacteristics of the servo axis. The control loop structure consists of acascaded position, velocity and current controller. The correspondingmode defines the active controllers.

Note: Defining the control loop settings requires the correspondingexpertise.

The procedure used for optimizing the control loops (current, velocity andposition controllers) of linear direct drives corresponds to the one used forrotary servo drives. At linear drives are only the adjustment limits higher.

Page 243: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Startup, Operation and Maintenance 14-15

DOK-MOTOR*-MLF********-PR02-EN-P

filtering mechanicalresonance vibrations

no

yes

setting and optimizing control loop ofsynchronous linear drives

set current controller (part of motor parameter)

optimize velocity controller

set rejection frequency

re-optimize velocity controller

optimize position controller

set and optimize accelerationprecontrol

Fig. 14-12: Setting and optimizing the control loop of synchronous linear drives.

Note: Use the functional description of the drive controller for moredetailed information.

Drive controllers of the EcoDrive03 series are able to perform automaticcontrol loop adjustment.

Digital drives from Rexroth are able to provide narrow-band suppressionof vibrations that are produced due to the power train between the motorand the mechanical axis system. This results in increased drive dynamicswith good stability.

The position or velocity feedback in the closed control loop excites themechanical system of the slide that is moved by the linear drive toperform mechanical vibrations. This behavior, known as “two-massvibration”, is mainly in the frequency range between 400 and 800 Hz. Itdepends on the rigidity of the mechanical system and the spatialexpansion of the system.

Automatic control loop setting

Filtering mechanical resonancevibrations

Page 244: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

14-16 Startup, Operation and Maintenance Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

In most cases, this “two-mass vibration” has a clear resonance frequencythat can selectively be suppressed by a cutoff filter in the drive.

Suppressing the mechanical resonance frequency may improve thedynamic properties of the velocity control loop and of the position controlloop compared with closed-loop operation without the cutoff filter.

This leads to an increased profile accuracy and to smaller cycle times forpositioning processes at a sufficient distance from the stability limit.

The cutoff frequency and bandwidth of the filter can be selected. Thehighest attenuation takes effect on the cutoff frequency. The bandwidthdefines the frequency range at which the attenuation is less than -3dB. Ahigher bandwidth leads to less attenuation of the cutoff frequency!

B19.1"

,

7 19.12!

SPERRFILTER-MLF-EN.EPS

Fig. 14-13: Amplitude response of cutoff filter depending on bandwidth,qualitative

Parameter Value Assignments and Optimization of Gantry Axes

Prerequisites:

• The parameter settings of the axes are identical

• Parallelism of the guides of the Gantry axes

• Parallelism of the linear scale

• In the controller, the axes are registered as individual axes

Note: Drive-internal axis error compensation procedures can beused for compensating the misalignments between two linearscales as or the mechanical system. Please refer to thecorresponding description of functions of the drive controllerfor a description of the operational principle and the parametersettings.

Page 245: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Startup, Operation and Maintenance 14-17

DOK-MOTOR*-MLF********-PR02-EN-P

& """

& """

.&"$&. .&"$&.

ACHSKOMP-MLF-EN.EPS

Fig. 14-14: Possible misalignment with the linear scale of a Gantry axes

Parameter settingsWhen using Gantry axes, your must ensure that the parameter settings ofthe following parameters are identical:

• Motor parameters

• Polarity parameters for force, velocity and position

• Control loop parameters

We have:

2p1p

2v1v

kk

kk

=

=

kv: Position controller kv-factor S-0-0104kp: Velocity controller proportional gain S-0-0100

Fig. 14-15: Proportional gains in the position and velocity control loop of bothaxes.

The following possibilities must be taken into account for the velocitycontroller integral time (integral part):

Possibility 1 Possibility 2 Possibility 3 Possibility 4

Alignment of length linearscale and guides ideal not ideal not ideal not ideal

Integral Part in both axes in both axes in one axis only in no axis

Behaviour of the axes Since bothmotors followthe positioncommandvalue ideally,there will notbe a distortionof themechanicalsystem

Both axes workagainst each otheruntil there is anequalization via themechanical couplingor until the maximumcurrent of one or bothdrive controller(s) hasbeen reached and acontrol effect is nolonger possible.

The axis withoutintegral-part permits acontinuous positionoffset. The size of theposition offsetdepends on therigidity of themechanical couplingof both axes and ofthe proportional gainsin the position andvelocity control loop.

Both axes permit acontinuous positionoffset. The size of theposition offsetdepends on theproportional gains inthe position andvelocity control loop.

Fig. 14-16: Parameterization of the velocity controller integral time S-0-0101 forGantry-axes.

Velocity controller integral time(integral part)

Page 246: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

14-18 Startup, Operation and Maintenance Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

The previously described procedure must be followed for optimizing theposition and velocity loop.

Note: Any parameter modifications that are made during theoptimization of Gantry axes must always be made in both axessimultaneously. If this is not possible, the parameter changesshould be made during optimization in smaller subsequentsteps in both axes.

Estimating the Moved Mass using a Velocity RampOften, the exact moving mass of the machine slide is not known.Determining this mass can be made difficult by moving parts, additionallymounted parts, etc.

The procedure explained below permits the moving axes mass to beestimated on the basis of a recorded velocity ramp. This permits, forexample, the acceleration capability of the axis to be estimated.

This procedure requires the oscillographic recording of the followingparameters:

• S-0-0040, actual velocity value

• S-0-0080, torque/force command value

You can either use an oscilloscope or the oscilloscope function of thedrive in conjunction with DriveTop or NC.

*<*<<.<D

6

6

*<*<<<D

ERMITTLGMASSE-MLF-EN.EPS

Fig. 14-17: Oscillogram of velocity and force

Optimization

Preparation

Page 247: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Startup, Operation and Maintenance 14-19

DOK-MOTOR*-MLF********-PR02-EN-P

vt

%100FF

F30m DECACCdN ∆

∆⋅

+⋅⋅=

m: Moved axis mass in kgFdN: Continuous nominal force of the motor in NFACC: Force command value during acceleration in %FDEC: Force command value during braking in %∆v: Velocity change during constant Maximum velocity in m/min∆t: Time change during constant acceleration in s

Fig. 14-18: Determining the moved axis mass on the basis of a recorded velocityramp

Prerequisites: 1. Correct parameter settings of the rated motorcurrent (basis of representation S-0-0080)

2. Frictional force not directional

3. Recording of ∆v and ∆t at constant acceleration

4. Do not perform at maximum motor force to avoidnon-linearities

Note: Due to possible direction-related force variations, thisprocedure cannot or can only conditionally be used for verticalaxes.

Page 248: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

14-20 Startup, Operation and Maintenance Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

14.8 Maintenance and check of Motor components

The motor components of IndraDyn L do not need any maintenance. Dueto external influence, the motor components can be damaged duringoperation. There should be a preventive maintenance of the linear motorcomponents within the service intervals of the machine or system.

Check of Motor and Auxiliary ComponentsThe following points should be observed during the preventive check ofmotor and auxiliary components:

• Scratches on primary and secondary part

• Chips in the air gap between primary and secondary part

• Tightness of liquid cooling, hoses and connections

• State of power and encoder cables in a drag chain.

• State of linear scale (e.g. soiled)

• State of guides (e.g. deterioration of linear guides)

Electrical Check of Motor Components

The electrical defect of a primary part can be checked by measuringelectrical characteristics. The following variables are relevant:

• Resistance between motor connecting wires 1-2, 2-3 and 1-3

• Inductance between motor connecting wires 1-2, 2-3 and 1-3

• Insulation resistance between motor connecting wired and guides

The measured values of resistance and inductance can be compared withthe values specified in Chapter 5 “Technical Data”. The individual valuesof resistance and inductance measured between the connections 1-2, 2-3and 1-3 should be identical – within a tolerance of ± 5 %. There can be aphase short circuit, a fault between windings, or a short circuit to ground ifone or more values differ significantly.

The insulation resistance – measured between the motor connectingleads and ground – should be at least 1 MΩ. The primary part must bereplaced in this case.

Note: If there are and doubts during the electrical verification, pleaseconsult Rexroth Service.

Resistance and inductance

Insulation resistance

Page 249: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Service & Support 15-1

DOK-MOTOR*-MLF********-PR02-EN-P

15 Service & Support

15.1 Helpdesk

Unser Kundendienst-Helpdesk im Hauptwerk Lohram Main steht Ihnen mit Rat und Tat zur Seite.Sie erreichen uns

Our service helpdesk at our headquarters in Lohr amMain, Germany can assist you in all kinds of inquiries.Contact us

- telefonisch - by phone: +49 (0) 9352 40 50 60über Service Call Entry Center Mo-Fr 07:00-18:00 Central European Time- via Service Call Entry Center Mo-Fr 7:00 am - 6:00 pm CET

- per Fax - by fax: +49 (0) 9352 40 49 41

- per e-Mail - by e-mail: [email protected]

15.2 Service-Hotline

Außerhalb der Helpdesk-Zeiten ist der ServiceDeutschland direkt ansprechbar unter

After helpdesk hours, contact the German serviceexperts directly at

+49 (0) 171 333 88 26oder - or +49 (0) 172 660 04 06

Hotline-Rufnummern anderer Länder entnehmenSie bitte den Adressen in den jeweiligen Regionen.

Hotline numbers of other countries to be seen inthe addresses of each region.

15.3 Internet

Unter www.boschrexroth.com finden Sieergänzende Hinweise zu Service, Reparatur undTraining sowie die aktuellen Adressen *) unsererauf den folgenden Seiten aufgeführten Vertriebs-und Servicebüros.

Verkaufsniederlassungen

Niederlassungen mit Kundendienst

Außerhalb Deutschlands nehmen Sie bitte zuerst Kontakt mitunserem für Sie nächstgelegenen Ansprechpartner auf.

*) Die Angaben in der vorliegenden Dokumentation könnenseit Drucklegung überholt sein.

At www.boschrexroth.com you can findadditional notes about service, repairs and training.The current addresses *) for our sales and servicefacilities locations around the world are on thefollowing pages.

sales agencies

sales agencies providing service

Please contact our sales / service office in your area first.

*) Data in the present documentation may have becomeobsolete since printing.

15.4 Vor der Kontaktaufnahme... - Before contacting us...

Wir können Ihnen schnell und effizient helfen wenn Siefolgende Informationen bereithalten:

1. detaillierte Beschreibung der Störung und derUmstände.

2. Angaben auf dem Typenschild der betreffendenProdukte, insbesondere Typenschlüssel undSeriennummern.

3. Tel.-/Faxnummern und e-Mail-Adresse, unter denenSie für Rückfragen zu erreichen sind.

For quick and efficient help, please have the followinginformation ready:

1. Detailed description of the failure andcircumstances.

2. Information on the type plate of the affectedproducts, especially type codes and serial numbers.

3. Your phone/fax numbers and e-mail address, so wecan contact you in case of questions.

Page 250: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

15-2 Service & Support Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

15.5 Kundenbetreuungsstellen - Sales & Service Facilities

Deutschland – Germany vom Ausland: (0) nach Landeskennziffer weglassen!from abroad: don’t dial (0) after country code!

Vertriebsgebiet Mitte Germany Centre

Bosch RexrothElectrice Drives and Controls GmbHBgm.-Dr.-Nebel-Str. 2 / Postf. 135797816 Lohr am Main / 97803 Lohr

Kompetenz-Zentrum Europa

Tel.: +49 (0)9352 40-0Fax: +49 (0)9352 40-4885

S E R V I C E A U T O M A T I O N

C A L L E N T R Y C E N T E RH e l p d e s kMO – FR

von 07:00 - 18:00 Uhrfrom 7 am – 6 pm

Tel. +49 (0) 9352 40 50 60Fax +49 (0) 9352 40 49 41

[email protected]

S E R V I C E A U T O M A T I O N

HO T L INE 24 / 7 / 3 6 5

außerhalb der Helpdesk-Zeitout of helpdesk hours

Tel.: +49 (0)172 660 04 06o d e r / o r

Tel.: +49 (0)171 333 88 26

S E R V I C E A U T O M A T I O N

ERSATZTEILE / SPARESverlängerte Ansprechzeit- extended office time -

♦ nur an Werktagen- only on working days -

♦ von 07:00 - 18:00 Uhr- from 7 am - 6 pm -

Tel. +49 (0) 9352 40 42 22

Vertriebsgebiet Süd Germany South

Bosch Rexroth AGLandshuter Allee 8-1080637 München

Tel.: +49 (0)89 127 14-0Fax: +49 (0)89 127 14-490

Vertriebsgebiet West Germany West

Bosch Rexroth AGRegionalzentrum WestBorsigstrasse 1540880 Ratingen

Tel.: +49 (0)2102 409-0Fax: +49 (0)2102 409-406

+49 (0)2102 409-430

Gebiet Südwest Germany South-West

Bosch Rexroth AGService-Regionalzentrum Süd-WestSiemensstr. 170736 Fellbach

Tel.: +49 (0)711 51046–0Fax: +49 (0)711 51046–248

Vertriebsgebiet Nord Germany North

Bosch Rexroth AGWalsroder Str. 9330853 Langenhagen

Tel.: +49 (0) 511 72 66 57-0Service: +49 (0) 511 72 66 57-256Fax: +49 (0) 511 72 66 57-93Service: +49 (0) 511 72 66 57-783

Vertriebsgebiet Mitte Germany Centre

Bosch Rexroth AGRegionalzentrum MitteWaldecker Straße 1364546 Mörfelden-Walldorf

Tel.: +49 (0) 61 05 702-3Fax: +49 (0) 61 05 702-444

Vertriebsgebiet Ost Germany East

Bosch Rexroth AGBeckerstraße 3109120 Chemnitz

Tel.: +49 (0)371 35 55-0Fax: +49 (0)371 35 55-333

Vertriebsgebiet Ost Germany East

Bosch Rexroth AGRegionalzentrum OstWalter-Köhn-Str. 4d04356 Leipzig

Tel.: +49 (0)341 25 61-0Fax: +49 (0)341 25 61-111

Page 251: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Service & Support 15-3

DOK-MOTOR*-MLF********-PR02-EN-P

Europa (West) - Europe (West)

vom Ausland: (0) nach Landeskennziffer weglassen, Italien: 0 nach Landeskennziffer mitwählenfrom abroad: don’t dial (0) after country code, Italy: dial 0 after country code

Austria - Österreich

Bosch Rexroth GmbHElectric Drives & ControlsStachegasse 131120 Wien

Tel.: +43 (0) 1 985 25 40Fax: +43 (0) 1 985 25 40-1459

Austria – Österreich

Bosch Rexroth GmbHElectric Drives & ControlsIndustriepark 184061 Pasching

Tel.: +43 (0)7221 605-0Fax: +43 (0)7221 605-1220

Belgium - Belgien

Bosch Rexroth NV/SAHenri Genessestraat 11070 Bruxelles

Tel: +32 (0) 2 451 26 08Fax: +32 (0) 2 451 27 90 [email protected] [email protected]

Denmark - Dänemark

BEC A/SZinkvej 68900 Randers

Tel.: +45 87 11 90 60Fax: +45 87 11 90 61

Denmark - Dänemark

Bosch Rexroth A/SEngelsholmvej 268900 Randers

Tel.: +45 36 77 44 66Fax: +45 70 10 03 20 [email protected]

Great Britain – Großbritannien

Bosch Rexroth Ltd.Electric Drives & ControlsBroadway Lane, South CerneyCirencester, Glos GL7 5UH

Tel.: +44 (0)1285 863-000Fax: +44 (0)1285 863-030 [email protected] [email protected]

Finland - Finnland

Bosch Rexroth OyElectric Drives & ControlsAnsatie 601740 Vantaa

Tel.: +358 10 3441 000Fax: +358 10 3441 506

France - Frankreich

Bosch Rexroth SASElectric Drives & ControlsAvenue de la Trentaine(BP. 74)77503 Chelles Cedex

Tel.: +33 (0)164 72-63 22Fax: +33 (0)164 72-63 20Hotline: +33 (0)608 33 43 28

France - Frankreich

Bosch Rexroth SASElectric Drives & ControlsZI de Thibaud, 20 bd. Thibaud(BP. 1751)31084 Toulouse

Tel.: +33 (0)5 61 43 61 87Fax: +33 (0)5 61 43 94 12

France – Frankreich

Bosch Rexroth SASElectric Drives & Controls91, Bd. Irène Joliot-Curie69634 Vénissieux – CedexTel.: +33 (0)4 78 78 53 65Fax: +33 (0)4 78 78 53 62

France – Frankreich

Tightening & Press-fit:Globe Techniques Nouvelles143, Av. du Général de Gaulle92252 La Garenne Colombes

Tel.: +33 (0)1 41 19 33 33

Italy - Italien

Bosch Rexroth S.p.A.Strada Statale PadanaSuperiore 11, no. 4120063 Cernusco S/N.MITel.: +39 02 92 365 1Service: +39 02 92 365 300Fax: +39 02 92 365 500Service: +39 02 92 365 516

Italy - Italien

Bosch Rexroth S.p.A.Via Paolo Veronesi, 25010148 Torino

Tel.: +39 011 224 88 11Fax: +39 011 224 88 30

Italy - Italien

Bosch Rexroth S.p.A.Via Mascia, 180053 Castellamare di Stabia NA

Tel.: +39 081 8 71 57 00Fax: +39 081 8 71 68 85

Italy - Italien

Bosch Rexroth S.p.A.Via del Progresso, 16 (Zona Ind.)35020 Padova

Tel.: +39 049 8 70 13 70Fax: +39 049 8 70 13 77

Italy - Italien

Bosch Rexroth S.p.A.Via Isonzo, 6140033 Casalecchio di Reno (Bo)

Tel.: +39 051 29 86 430Fax: +39 051 29 86 490

Italy - Italien

Tightening & Press-fit:TEMA S.p.A. AutomazioneVia Juker, 2820025 Legnano

Tel.: +39 0 331 4671

Netherlands – Niederlande/Holland

Bosch Rexroth B.V.Kruisbroeksestraat 1(P.O. Box 32)5281 RV Boxtel

Tel.: +31 (0) 411 65 16 40Fax: +31 (0) 411 65 14 83 www.boschrexroth.nl

Netherlands - Niederlande/Holland

Bosch Rexroth Services B.V.Technical ServicesKruisbroeksestraat 1(P.O. Box 32)5281 RV BoxtelTel.: +31 (0) 411 65 19 51Fax: +31 (0) 411 67 78 14Hotline: +31 (0) 411 65 19 51 [email protected]

Norway - Norwegen

Bosch Rexroth ASElectric Drives & ControlsBerghagan 1 or: Box 30071405 Ski-Langhus 1402 Ski

Tel.: +47 64 86 41 00Fax: +47 64 86 90 62Hotline: +47 64 86 94 82arnt.kristian.barsten @boschrexroth.no

Spain – Spanien

Goimendi Automation S.L.Parque Empresarial ZuatzuC/ Francisco Grandmontagne no.220018 San Sebastian

Tel.: +34 9 43 31 84 21- service: +34 9 43 31 84 56Fax: +34 9 43 31 84 27- service: +34 9 43 31 84 60 [email protected]

Spain - Spanien

Bosch Rexroth S.A.Electric Drives & ControlsCentro Industrial SantigaObradors 14-1608130 Santa Perpetua de MogodaBarcelonaTel.: +34 9 37 47 94-00Fax: +34 9 37 47 94-01

Spain - Spanien

Bosch Rexroth S.A.Electric Drives & Controlsc/ Almazara, 928760 Tres Cantos (Madrid)

Tel.: +34 91 806 24 79Fax: +34 91 806 24 72 [email protected]

Sweden - Schweden

Bosch Rexroth ABElectric Drives & Controls- Varuvägen 7(Service: Konsumentvägen 4, Älfsjö)125 81 Stockholm

Tel.: +46 (0) 8 727 92 00Fax: +46 (0) 8 647 32 77

Sweden - Schweden

Bosch Rexroth ABElectric Drives & ControlsEkvändan 7254 67 Helsingborg

Tel.: +46 (0) 4 238 88 -50Fax: +46 (0) 4 238 88 -74

Switzerland East - Schweiz Ost

Bosch Rexroth Schweiz AGElectric Drives & ControlsHemrietstrasse 28863 ButtikonTel. +41 (0) 55 46 46 111Fax +41 (0) 55 46 46 222

Switzerland West - Schweiz West

Bosch Rexroth Suisse SAAv. Général Guisan 261800 Vevey 1

Tel.: +41 (0)21 632 84 20Fax: +41 (0)21 632 84 21

Page 252: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

15-4 Service & Support Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Europa (Ost) - Europe (East)

vom Ausland: (0) nach Landeskennziffer weglassen from abroad: don’t dial (0) after country code

Czech Republic - Tschechien

Bosch -Rexroth, spol.s.r.o.Hviezdoslavova 5627 00 Brno

Tel.: +420 (0)5 48 126 358Fax: +420 (0)5 48 126 112

Czech Republic - Tschechien

Tightening & Press-fit:Bosch -Rexroth, spol.s.r.o.Stetkova 18140 68 Praha 4

Tel.: +420 (0)241 406 675

Hungary - Ungarn

Bosch Rexroth Kft.Angol utca 341149 Budapest

Tel.: +36 (1) 422 3200Fax: +36 (1) 422 3201

Poland – Polen

Bosch Rexroth Sp.zo.o.ul. Staszica 105-800 Pruszków

Tel.: +48 (0) 22 738 18 00– service: +48 (0) 22 738 18 46Fax: +48 (0) 22 758 87 35– service: +48 (0) 22 738 18 42

Poland – Polen

Bosch Rexroth Sp.zo.o.Biuro Poznanul. Dabrowskiego 81/8560-529 Poznan

Tel.: +48 061 847 64 62 /-63Fax: +48 061 847 64 02

Romania - Rumänien

East Electric S.R.L.Bdul Basarabia no.250, sector 373429 Bucuresti

Tel./Fax:: +40 (0)21 255 35 07+40 (0)21 255 77 13

Fax: +40 (0)21 725 61 21 [email protected]

Romania - Rumänien

Bosch Rexroth Sp.zo.o.Str. Drobety nr. 4-10, app. 1470258 Bucuresti, Sector 2

Tel.: +40 (0)1 210 48 25+40 (0)1 210 29 50

Fax: +40 (0)1 210 29 52

Russia - Russland

Bosch Rexroth OOOTschschjolkowskoje Chaussee 100,Etage 11105523 Moskau

Tel.: +7-495-783 30 60Fax: +7-495 783 30 69 brcschrexroth.ru

Turkey - Türkei

Bosch Rexroth OtomasyonSan & Tic. A..S.Fevzi Cakmak Cad No. 334295 Sefaköy Istanbul

Tel.: +90 212 411-13 00Fax: +90 212 411-13 17 www.boschrexroth.com.tr

Turkey - Türkei

Servo Kontrol Ltd. Sti.Perpa Ticaret Merkezi B BlokKat: 11 No: 160980270 Okmeydani-Istanbul

Tel: +90 212 320 30 80Fax: +90 212 320 30 81 [email protected] www.servokontrol.com

Slowakia - Slowakei

Tightening & Press-fit:

MTS, spol .s.r.o.02755 Kriva 53

Tel.: +421 43 5819 161

Slowenia - Slowenien

DOMELOtoki 2164 228 Zelezniki

Tel.: +386 5 5117 152Fax: +386 5 5117 225 [email protected]

Australien, Süd-Afrika - Australia, South AfricaAustralia - Australien

AIMS - Australian IndustrialMachinery Services Pty. Ltd.28 Westside DriveLaverton North Vic 3026Melbourne

Tel.: +61 3 93 14 3321Fax: +61 3 93 14 3329Hotlines: +61 3 93 14 3321

+61 4 19 369 195 [email protected]

Australia - Australien

Bosch Rexroth Pty. Ltd.No. 7, Endeavour WayBraeside Victoria, 31 95Melbourne

Tel.: +61 3 95 80 39 33Fax: +61 3 95 80 17 33 [email protected]

South Africa - Südafrika

TECTRA Automation (Pty) Ltd.100 Newton Road, MeadowdaleEdenvale 1609

Tel.: +27 11 971 94 00Fax: +27 11 971 94 40Hotline: +27 82 903 29 23 [email protected]

South Africa - Südafrika

Tightening & Press-fit:Jendamark Automation76A York Road, North End6000 Port Elizabeth

Tel.: +27 41 391 4735

Page 253: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Service & Support 15-5

DOK-MOTOR*-MLF********-PR02-EN-P

Asien - Asia (incl. Pacific Rim)China

Shanghai Bosch RexrothHydraulics & Automation Ltd.No.122, Fu Te Dong Yi RoadWaigaoqiao, Free Trade ZoneShanghai 200131 - P.R.China

Tel.: +86 21 58 66 30 30Fax: +86 21 58 66 55 [email protected]

China

Shanghai Bosch RexrothHydraulics & Automation Ltd.4/f, Marine TowerNo.1, Pudong AvenueShanghai 200120 - P.R.China

Tel: +86 21 68 86 15 88Fax: +86 21 68 86 05 99

+86 21 58 40 65 77 [email protected]

China

Bosch Rexroth (China) Ltd.Satellite Service Office ChangchunRm. 1910, Guangming BuildingNo.336 Xi’an Rd., Chao Yang Distr.Changchun 130061 - P.R.China

Tel.+Fax: +86 431 898 1129Mobile: +86 139 431 92 659 [email protected]

China

Bosch Rexroth (China) Ltd.Satellite Service Office WuhanNo. 22, Pinglanju, Milanyuan, GoldenHarborNo. 236 Longyang AvenueEconomic & Technology DevelopmentZoneWuhan 430056 - P.R.China

Tel.+Fax: +86 27 84 23 23 92Mobile: +86 139 71 58 89 67 [email protected]

China

Bosch Rexroth (China) Ltd.Beijing Representative OfficeXi San Qi Dong, De Sheng Mei WaiHai Dian DistrictBeijing 100096, P.R.China

Tel.: +86 10 82 91 22 29Fax: +86 10 82 91 81 09 [email protected]

China

Bosch Rexroth (China) Ltd.Guangzhou Repres. OfficeRoom 3710-3716, Metro Plaza,Tian He District, 183 Tian He Bei RdGuangzhou 510075, P.R.China

Tel.: +86 20 87 55 00 30+86 20 87 55 00 11

Fax: +86 20 87 55 23 87 [email protected]

China

Bosch Rexroth (China) Ltd.Dalian Representative OfficeRoom 2005,Pearl River Int. BuildingNo.99 Xin Kai Rd., Xi Gang DistrictDalian, 116011, P.R.China

Tel.: +86 411 83 68 26 02Fax: +86 411 83 68 27 02 [email protected]

China

Tightening & Press-fit:C. Melchers GmbH & CoShanghai Representation 13 Floor Est Ocean CentreNo.588 Yanan Rd. East65 Yanan Rd. WestShanghai 200001Tel.: +86 21 63 52 88 48Fax: +86 21 63 51 31 38 [email protected]

Hongkong

Bosch Rexroth (China) Ltd.6th Floor,Yeung Yiu Chung No.6 Ind Bldg.19 Cheung Shun StreetCheung Sha Wan,Kowloon, Hongkong

Tel.: +852 27 86 46 32Fax: +852 27 42 60 [email protected]

India - Indien

Bosch Rexroth (India) Ltd.Electric Drives & ControlsPlot. No.96, Phase IIIPeenya Industrial AreaBangalore – 560058

Tel.: +91 80 41 17 0211Fax: +91 80 83 97 374 [email protected]

India - Indien

Bosch Rexroth (India) Ltd.Electric Drives & ControlsAdvance House, II FloorArk Industrial CompoundNarol Naka, Makwana RoadAndheri (East), Mumbai - 400 059

Tel.: +91 22 28 56 32 90+91 22 28 56 33 18

Fax: +91 22 28 56 32 [email protected]

India - Indien

Tightening & Press-fit:

MICOHosur Road Adugodi560 030 Bangalore Karnataki

Tel.: +91 80 22 99 28 86

India - Indien

Bosch Rexroth (India) Ltd.S-10, Green Park ExtensionNew Delhi – 110016

Tel.: +91 11 26 56 65 25+91 11 26 56 65 27

Fax: +91 11 26 56 68 [email protected]

Indonesia - Indonesien

PT. Bosch RexrothBuilding # 202, Cilandak CommercialEstateJl. Cilandak KKO, Jakarta 12560

Tel.: +62 21 7891169 (5 lines)Fax: +62 21 7891170 - [email protected]

Japan

Bosch Rexroth CorporationService Center Japan2125-1 atsukawado-choKasugai-shi Aichi-ken486-0932, Japan

Tel.: +81 568 35 7701Fax: +81 568 35 7705

Japan

Bosch Rexroth CorporationElectric Drives & ControlsBOSCH Bldg. 4F, 3-6-7 ShibuyaShibuya-ku, Tokyo150-0002, Japan

Tel : +81 354 85 7240Fax: +81 354 85 7241

Korea

Bosch Rexroth-Korea Ltd.Electric Drives & Controls1515-14 Dadae-Dong, Saha-guPusan Metropolitan City, 604-050

Tel.: +82 51 26 00 741Fax: +82 51 26 00 747 [email protected]

Korea

Bosch Rexroth-Korea Ltd.Electric Drives and ControlsBongwoo Bldg. 7FL, 31-7, 1GaJangchoong-dong, Jung-guSeoul, 100-391

Tel.: +82 234 061 813Fax: +82 222 641 295

Korea

Bosch Rexroth-Korea Ltd.Electric Drives & Controls1515-14 Dadae-Dong, Saha-guUlsan, 680-010

Tel.: +82 52 256-0734Fax: +82 52 256-0738 [email protected]

Korea

Tightening & Press-fit:KVT Co., Ltd.901, Daeryung Techno Town 8481-11 Gasan-DongGeumcheon-GuSeoul, 153-775Tel.: +82 2 2163 0231 9

Malaysia

Bosch Rexroth Sdn.Bhd.11, Jalan U8/82, Seksyen U840150 Shah AlamSelangor, Malaysia

Tel.: +60 3 78 44 80 00Fax: +60 3 78 45 48 00 [email protected]

Singapore - Singapur

Bosch Rexroth Pte Ltd15D Tuas RoadSingapore 638520

Tel.: +65 68 61 87 33Fax: +65 68 61 18 25 [email protected]

Taiwan

Bosch Rexroth Co., Ltd.Taichung Industrial AreaNo.19, 38 RoadTaichung, Taiwan 407, R.O.C.

Tel : +886 - 4 -235 08 383Fax: +886 - 4 -235 08 586 [email protected] [email protected]

Taiwan

Bosch Rexroth Co., Ltd.Tainan BranchNo. 17, Alley 24, Lane 737Chung Cheng N.Rd. YungkangTainan Hsien, Taiwan, R.O.C.

Tel : +886 - 6 –253 6565Fax: +886 - 6 –253 4754 [email protected]

Thailand

NC Advance Technology Co. Ltd.59/76 Moo 9Ramintra road 34Tharang, Bangkhen,Bangkok 10230

Tel.: +66 2 943 70 62 +66 2 943 71 21Fax: +66 2 509 23 62Hotline +66 1 984 61 52 [email protected]

Page 254: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

15-6 Service & Support Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Nordamerika – North AmericaUSAHeadquarters - Hauptniederlassung

Bosch Rexroth CorporationElectric Drives & Controls5150 Prairie Stone ParkwayHoffman Estates, IL 60192-3707

Tel.: +1 847 645-3600Fax: +1 847 [email protected] [email protected]

USA Central Region - Mitte

Bosch Rexroth CorporationElectric Drives & Controls1701 Harmon RoadAuburn Hills, MI 48326

Tel.: +1 248 393-3330Fax: +1 248 393-2906

USA Southeast Region - Südost

Bosch Rexroth CorporationElectric Drives & Controls2810 Premiere Parkway, Suite 500Duluth, GA 30097

Tel.: +1 678 957-4050Fax: +1 678 417-6637

USA SERVICE-HOTLINE

- 7 days week/ 24 hrs day -

+1-800-REXROTH+1 800 739 7684

USA Northeast Region – Nordost

Bosch Rexroth CorporationElectric Drives & Controls99 Rainbow RoadEast Granby, CT 06026

Tel.: +1 860 844-8377Fax: +1 860 844-8595

USA West Region – West

Bosch Rexroth CorporationElectric Drives & Controls7901 Stoneridge Drive, Suite 220Pleasanton, CA 94588

Tel.: +1 925 227-1084Fax: +1 925 227-1081

Canada East - Kanada Ost

Bosch Rexroth Canada Corporation5345 Outer Drive unit 5Windsor, OntarioCanada N9A 6J3

Tel.: +1 519 737 7393Fax.: +1 519 737 9999

Canada East - Kanada Ost

Bosch Rexroth Canada CorporationAutomation Division3426 Mainway DriveBurlington, OntarioCanada L7M 1A8

Tel.: +1 905 335 5511Fax: +1 905 335 4184 (Main)

+1 905 335 9803 (Serv.)

[email protected]@boschrexroth.ca

Canada West - Kanada West

Bosch Rexroth Canada Corporation5345 Goring St.Burnaby, British ColumbiaCanada V7J 1R1

Tel. +1 604 205 5777Fax +1 604 205 6944

[email protected]@boschrexroth.ca

CANADA SERVICE HOTLINE

- 7 days week/ 24 hrs day -

+1 905 335 5511

Mexico

Bosch Rexroth Mexico S.A. de C.V.Calle Neptuno 72Unidad Ind. Vallejo07700 Mexico, D.F.

Tel.: +52 55 57 54 17 11Fax: +52 55 57 54 50 [email protected]

Mexico

Bosch Rexroth S.A. de C.V.Calle Argentina No 3913Fracc. las Torres64930 Monterrey, N.L.

Tel.: +52 81 83 49 80 91+52 81 83 49 80 92+52 81 83 49 80 93

Fax: +52 81 83 65 52 80

Südamerika – South AmericaArgentina - Argentinien

Bosch Rexroth S.A.I.C."The Drive & Control Company"Rosario 2302B1606DLD CarapachayProvincia de Buenos Aires

Tel.: +54 11 4756 01 40+54 11 4756 02 40+54 11 4756 03 40+54 11 4756 04 40

Fax: +54 11 4756 01 36+54 11 4721 91 53

[email protected]

Argentina - Argentinien

NAKASE SRLServicio Tecnico CNCCalle 49, No. 5764/66B1653AOX Villa BalesterProvincia de Buenos Aires

Tel.: +54 11 4768 42 42Fax: +54 11 4768 42 42 111Hotline: +54 11 155 307 6781 [email protected]

Brazil - Brasilien

Bosch Rexroth Ltda.Av. Tégula, 888Ponte Alta, Atibaia SPCEP 12942-440

Tel.: +55 11 4414 -56 92+55 11 4414 -56 84

Fax sales: +55 11 4414 -57 07Fax serv.: +55 11 4414 -56 86 [email protected]

Brazil - Brasilien

Bosch Rexroth Ltda.R. Dr.Humberto Pinheiro Vieira, 100Distrito Industrial [Caixa Postal 1273]89220-390 Joinville - SC

Tel./Fax: +55 47 473 58 33Mobil: +55 47 9974 6645

[email protected]

Columbia - Kolumbien

Reflutec de Colombia Ltda.Calle 37 No. 22-31Santafé de Bogotá, D.C.Colombia

Tel.: +57 1 208 65 55Fax: +57 1 269 97 [email protected]

Page 255: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Appendix 16-1

DOK-MOTOR*-MLF********-PR02-EN-P

16 Appendix

16.1 Recommended suppliers of additional components

Length Measuring SystemDR. JOHANNES HEIDENHAIN GmbHDr.-Johannes-Heidenhain-Str. 583301 Traunreut, Germany +49 (0) 8669 31 29 - 0Fax: +49 (0) 8669 50 61Email: [email protected]: http://www.heidenhain.de/

Renishaw GmbHKarl-Benz Strasse 12 • 72124 Pliezhausen, GermanyTel.: +49 (0) 712 797 960Fax: +49 (0) 712 788 237Email: [email protected]: http://www.renishaw.com/encoder/

RexrothErnst-Sachs-Str. 90 • 97419 Schweinfurt, GermanyTel.: +49 (0) 9721 937 0Fax: +49 (0) 9721 937 350E-Mail: [email protected]: http://www.rexroth.com/rexrothstar

Linear GuideRexrothErnst-Sachs-Str. 90 • 97419 Schweinfurt, GermanyTel.: +49 (0) 9721 937 0Fax: +49 (0) 9721 937 350E-Mail: [email protected]: http://www.rexroth.com/rexrothstar

Energy Chainsigus GmbHSpicher Straße 1a • 51147 Köln, GermanyTel.: +49 (0) 2203 9649 0Fax: +49 (0) 2203 9649 222E-Mail: [email protected]: http://www.igus.de/

KABELSCHLEPP GMBHMarienborner Straße 75 • 57074 Siegen, GermanyTel.: +49 (0) 271 5801 0Fax: +49 (0) 271 5801 220Email: [email protected]: http://www.kabelschlepp.de/

Page 256: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

16-2 Appendix Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Heat-Exchanger UnitSCHWÄMMLE GmbH & Co KGDieselstraße 12-14 • 71546 Aspach, GermanyTel.: +49 (0) 7191 9242 0Fax: +49 (0) 7191 225 310Email: [email protected]:

Universal Hydraulik GmbHSiemensstrasse 33 • 61267 Neu-Anspach, GermanyTel.: +49 (0) 6081 9418 0Fax: +49 (0) 6081 9602 20Email:Internet: http://www.universalhydraulik.com/

Coolant AdditivesSee Fig. 9-27

Coolant TubesPolyflex AGDorfstasse 49 • 5430 Wettingen, SwitzerlandTel.: +44 (0) 56-4241088Fax: +44 (0) 56-4241114E-Mail:Internet: http://www.polyflex.ch/

igus GmbHSpicher Straße 1a • 51147 Köln, GermanyTel.: +49 (0) 2203 9649 0Fax: +49 (0) 2203 9649 222E-Mail: [email protected]: http://www.igus.de/

RexrothPostfach 91 07 62 • 30427 Hannover, GermanyTel.: +49 (0) 511 2136 0Fax: +49 (0) 511 2136 269E-Mail: [email protected]: http://www.rexroth.com/rexrothmecman

Axis Cover SystemMöller Werke GmbHMöller BalgKupferhammer • 33649 Bielefeld, GermanyTel.: +49 (0) 521 4477 0Fax: +49 (0) 521 4477 333E-Mail: [email protected]: http://www.moellerflex.de/

HCR-Heinrich Cremer GmbHOppelner Str. 37 • 41199 Mönchengladbach, GermanyTel.: +49 (0) 2166 964900Fax: +49 (0) 2166 609157

Page 257: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Appendix 16-3

DOK-MOTOR*-MLF********-PR02-EN-P

E-Mail: [email protected]: http://www.hcr.de/

Gebr. HENNIG GmbHPostfach 11 37 • 85729 Ismaning, GermanyTel.: +49 (0) 89 96096 0Fax: +49 (0) 89 96096 120Email: [email protected]: http://www.hennig-gmbh.de/

End Position Shock AbsorbersACE Stoßdämpfer GmbHPostfach 15 10 • 40740 Langenfeld, GermanyHerzogstraße 28 • 40764 Langenfeld, GermanyTel.: +49 (0) 2173 92 26 10Fax: +49 (0) 2173 92 26 19E-Mail: [email protected]: http://www.ace-ace.de/

RexrothPostfach 91 07 62 • 30427 Hannover, GermanyTel.: +49 (0) 511 2136 0Fax: +49 (0) 511 2136 269E-Mail: [email protected]: http://www.rexroth.com/rexrothmecman

Rhodius GmbHTreuchlinger Str. 23 • 91781 Weißenburg, GermanyTel.: +49 (0) 9141 919 0Fax: +49 (0) 9141 919 45Email: [email protected]: http://www.rhodius.com/

Clamping Elements for Linear GuidewaysRexrothErnst-Sachs-Str. 90 • 97419 Schweinfurt, GermanyTel.: +49 (0) 9721 937 0Fax: +49 (0) 9721 937 350E-Mail: [email protected]: http://www.rexroth.com/rexrothstar

Metal Braid Shock Absorbers

Page 258: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

16-4 Appendix Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

External Mechanical BrakesKendrion Binder Magnete GmbHMönchweiler Str. 1 • 78048 Villingen-Schwenningen, GermanyTel.: +49 (0) 7721 877 455Fax: +49 (0) 7721 877 462E-Mail:Internet: http://www.binder-magnete.de/

Ortlinghaus-Werke GmbH

Kenkhauser Str. 125 • 42929 Wermelskirchen, Germany

Tel.: +49 (0) 2196 85 0Fax: +49 (0) 2196 855-444Email: [email protected]: http://www.ortlinghaus.com/

Weight Compensation SystemsRoss Europa GmbHRobert-Bosch-Str. 2 • 63225 Langen, GermanyTel.: +49 (0) 6103 7597 0Fax: +49 (0) 6103 7469 40 Email:Internet:

RexrothJahnstr. 3-5 • 97816 Lohr am Main, GermanyTel.: +49 (0) 9352 18 0Fax: +49 (0) 9352 18 2598Email:Internet: http://www.rexroth.com/

WipersHunger DFE GmbHDichtungs- und Führungselemente

Alfred-Nobel Str. 26 • 97080 Würzburg, GermanyTel.: +49 (0) 931,900 97 0Fax: +49 (0) 931- 900 97 30E-Mail: [email protected]: http://www.hunger-dichtungen.de/

HME DichtungssystemeRichthofenstr. 31 • 86343 Königsbrunn, GermanyTel.: +49 (0) 8231 9623 0Fax: +49 (0) 8231 865 16E-Mail: [email protected]: http://www.hme-seals.de/

Pneumatic

Hydraulic

Page 259: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Appendix 16-5

DOK-MOTOR*-MLF********-PR02-EN-P

16.2 Enquiry form for Linear Drives

Bosch Rexroth AG

Fax:

Contact person:

..............................................................

..............................................................

Date: ..........................

1. Information for the user

Company ..................................................... Name ...........................................................

Street ..................................................... Department ...........................................................

Zip Code ..................................................... Phone ...........................................................

Place ..................................................... Fax ...........................................................

Email ...........................................................

Requesting to: O Recall O Drive dimensioning O Offer O ..................................................

2. General information on use

Sector O Machine Tools O Automation O Packaging O Printing

O ........................................................................................................

Type of use ............................................................................................................

............................................................................................................

Designation of the ............................................................................................................

Axis Grouping O Single axis O Grouping of ............ axis within the machine

O only linear drives O rotative and linear drives

Quantity ........................... per year

3. Mechanical and cinematic requirements

Installation position O Horizontal O Vertical O Slant, axis angle: ............degrees

Moved motorcomponent

O Primary part moves O Secondary part moves

Moved mass ....................... kg (incl. guides, power feeders, etc.)

Maximum velocity ..................... m/min Maximum acceleration

....................... m/s²

Base force ....................... N (friction, energy supply, etc. )

Machining force ....................... N (detailed specifications see point 5)

Page 260: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

16-6 Appendix Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

4. Ambient conditions

Ambient temperature ....................... °C

Machined material O Steel / cast iron O Light metal O Plastic O Wood

O Other:......................................... O None(only handling)

Dirt and aggressive media O Chips O Dust

O Oil or lubricants: .........................................................................

O Other: .........................................................................................

Protection ofmotor components

O Bellows O Telescopic cover O Wiper on secondary

O Other:................................................................................................

5. Thermal conditions and cooling

Liquid cooling Coolant and additives: .............................................................................

Inlet temperature, minimum: .............°C maximum: ...............°C

Max. flow quantity: .........l/min Max. system pressure: .........bar

Maximum heating of the machine structure: ........... K O Not relevant

Maximum coolant temperature rise: ....................... K O Not relevant

Additional cooling at machine O Yes O No

O Air cooling, natural convection (Reducing the continuous forces to approximately 25 %)

6. Drive and Control

Drive series O ECODRIVE03 O DIAX04 O IndraDrive

Mainvoltage

O 1 x 230 V O 3 x 400 V O 3 x 480 V O ................................

Driveinterface /bus system

O SERCOS interface O ANALOG ±10V O Parallel interface

O Profibus O Interbus O CANopen O DeviceNet O PWM

O .....................................................................................................................

ControlO ..................................................:..................................................................

7. Linear scale

Measuring principleand interface

O absolut ENDAT

O incremental, sine signals 1 VSS

O incremental, sine signals 1 VSS, distance-encoded reference marks

Model O open O encapsulated O integradted in linearbuides

Positioning accurary ......................... µm

Page 261: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Appendix 16-7

DOK-MOTOR*-MLF********-PR02-EN-P

8. Motion profile

Specification ofmotion profile O Not required, drive selection data exist (see 8.1)

O Strokes, positioning and idle times, maximum velocity and acceleration as specified under item 3 (see 8.2)O Sketch of velocity profile v(t) and process forces FP(t) (see 8.2 and 8.3)

O Operating phases and duty cycles (see 8.4)

O Equation of motion for s(t) and / or v(t) (see 8.5)

O s(t) and / or v(t) can ve specified in digital form: O MathCad O Excel O ASCII O ...........................

8.1 Data for motion selection exists:

Fmax: .............. N FEFF / FdN: .............. N vFmax: ............. m/min vmax: ............. m/min

8.2 Specification of strokes, position and idle times

Stroke Travel Positioning time Idle time Stroke Travel Positioning time Idle time

1 82 93 104 115 126 137 14

8.3 Sketch of velocity profile and process forces

wÉáí==áå=KKK KKK

wÉáí==áå=KKKKKK

Page 262: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

16-8 Appendix Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

8.4 Specification of operating phases and related duty cycle

EDi Force Fi

Acceleration, deceleration at .............m/s² ............. % .............. N

Acceleration, deceleration at .............m/s² and machining ............. % .............. N

Rapid traverse at v = constant = ............ m/min ............. % .............. N

Machining at v = ............ m/min ............. % .............. N

Standstill with machining ............. % .............. N

Standstill without machining ............. % .............. N

................................................................................ ............. % .............. N

Total: 100 %

8.5 Equation of motion for s(t) or v(t)

Equation of motion,

e.g.: )tsin(r)t(s ⋅ω⋅=

Explanation:

9. Miscellaneous/comments/sketches

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

............................................................................................................................................................

Page 263: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Rexroth IndraDyn L Index 17-1

DOK-MOTOR*-MLF********-PR02-EN-P

17 Index

AAttractive force 4-4

CCommissioning

parameterization 14-4precondition 14-1procedure 14-3

Commutation adjustment 14-1, 14-8Constant to determine the pressure loss 4-5Continuous nominal current 4-4Continuous nominal force 4-4Coolant inlet temperature 4-5Cooling 6-3

EEfficiency 11-17Electrical Connection 6-3Encapsulation 6-3Encoder 6-3Encoder polarity 14-1

Fforce constant 4-4Frame length 6-3Frame Size 6-3

IInstallation Height 5-1International Protection Class 9-42

MMaximum current 4-4Maximum force 4-4Maximum velocity 4-4Measurable Air Gap 5-1

NNecessary coolant flow 4-5Necessary power wire cross-section 4-4Nominal air gap 4-4Nominal velocity 4-4

PParallelism and symmetry of machinery parts 5-2Parameter 14-1Permitted input pressure 4-5Pole width 4-4Pressure drop 9-30Pressure loss 4-5

RRated power loss 4-4

Page 264: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

17-2 Index Rexroth IndraDyn L

DOK-MOTOR*-MLF********-PR02-EN-P

Ssafety instructions for electric drives and controls 3-1Setting and optimizing control loop 14-14Standards 1-4Start-up

Implements 14-2

TTemperature increase 4-5Thermal time constant 4-5

UUtilization factor 9-41

VVoltage constant 4-4

WWinding 6-3Winding resistance 4-4

Page 265: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion
Page 266: Rexroth IndraDyn L - Bosch Rexroth AG IndraDyn L Synchronous Linear Motors R911293635 Edition 02 Project Planning Manual Electric Drives and Controls Pneumatics Service Linear Motion

Bosch Rexroth AGElectric Drives and ControlsP.O. Box 13 5797803 Lohr, GermanyBgm.-Dr.-Nebel-Str. 297816 Lohr, GermanyPhone +49 (0)93 52-40-50 60Fax +49 (0)93 52-40-49 [email protected]

Printed in GermanyDOK-MOTOR*-MLF********-PR02-EN-PR911293635