review response of tomato root systems to environmental ... · with image-processing software...

10
7 Introduction In Japan, the area of vegetables under soilless culture has gradually increased to 1,192 ha (2003) 24 , whereas the total area of vegetable cultivation has decreased about 2% yearly 22 . More than 40 types of soilless culture are prac- ticed in Japan 8 , but few studies have compared the structure and function of root systems among them, between which close interrelationships should exist. Soilless culture allows reproducible control of the root-zone environment. Nevertheless, even under soilless culture, roots could experience multiple environmental stresses. Especially in systems without solid media, changes in nutrient con- centration, pH, temperature, and oxygen concentration would have large impacts on plant growth. Root systems alter their internal structure and external architecture to minimize such impacts and to acquire oxygen, water and nutrients in the most efficient way 12 . We evaluated the structural and functional responses of tomatoes grown in soilless culture to the root-zone environment. We focused on roots in humid air and roots in nutrient solution. Roots in humid air adapt much better to changes in nutrient concentration, pH and temperature than do those in solution 25 . Root systems of tomatoes grown by capil- lary hydroponics 21 and in nutrient film 2 develop in both humid air and solution; these two root parts could play complementary roles. Therefore, quantitative evaluation is needed to clarify the responses of both types of root system to the root-zone environment. External and internal root structures of tomato plants grown hydroponically in humid air or in nutrient solution We examined the effects of root-zone environment, humid air and nutrient solution on the external and inter- nal structures of tomato roots 17 . Young tomato plants were grown either in wet-sheet culture (WSC), in which all roots develop in humid air, or hydroponically by the deep flow technique (DFT) with or without aeration (Fig. 1). Dissolved oxygen concentration was 45% to 62% of satu- ration in DFT, and 91% to 96% in DFT+Air. Growth of tomato plants in DFT+Air and WSC was REVIEW Response of Tomato Root Systems to Environmental Stress under Soilless Culture Yuka NAKANO* Department of Fruit Vegetables, National Institute of Vegetable and Tea Science (Taketoyo, Aichi 470–2351, Japan) Abstract We investigated the effects of root-zone environment, humidity around the roots and nutrient solution on the activity and morphology of tomato roots grown in wet-sheet culture (exposed to air) or deep flow technique (submerged in solution). Differences in root external and internal structure between treatment groups could be interpreted as adaptive responses to the root environment. The exposed roots could adapt more readily to extremes of temperature than those in the solution. Those adaptations occurred through short-term physiological responses and long-term additive morphological responses. We also evaluated the facilitating effects of the flow of nutrient solution on root respiration and nutri- ent uptake rate. Where the root system was split between humid air and nutrient solution, roots in the solution absorbed and supplied nitrogen more efficiently per dry weight than did roots in air. Split root systems between humid air and nutrient solution showed stable growth of tomato plants. Our observa- tions of root plasticity will help the establishment of growing systems that support high yield and stable production. Discipline: Horticulture Additional key words: nutrient absorption, root respiration, root structure, root-zone temperature JARQ 41 (1), 7 – 15 (2007) http://www.jircas.affrc.go.jp *Corresponding author: e-mail [email protected] Received 27 February 2006; accepted 26 April 2006.

Upload: others

Post on 31-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: REVIEW Response of Tomato Root Systems to Environmental ... · with image-processing software (NIH-Image) revealed no differences in the total root lengths or root surface areas among

7

Introduction

InJapan,theareaofvegetablesundersoillessculturehasgraduallyincreasedto1,192ha(2003)24,whereasthetotalareaofvegetablecultivationhasdecreasedabout2%yearly22.Morethan40typesofsoillesscultureareprac-ticedinJapan8,butfewstudieshavecomparedthestructureandfunctionofrootsystemsamongthem,betweenwhichclose interrelationships should exist. Soilless cultureallowsreproduciblecontroloftheroot-zoneenvironment.Nevertheless, evenunder soilless culture, roots couldexperiencemultipleenvironmentalstresses.Especiallyinsystemswithoutsolidmedia,changesinnutrientcon-centration,pH,temperature,andoxygenconcentrationwouldhavelargeimpactsonplantgrowth.Rootsystemsaltertheirinternalstructureandexternalarchitecturetominimizesuchimpactsandtoacquireoxygen,waterandnutrientsinthemostefficientway12.Weevaluatedthestructuralandfunctionalresponsesoftomatoesgrowninsoillessculturetotheroot-zoneenvironment.Wefocusedonrootsinhumidairandrootsinnutrientsolution.

Rootsinhumidairadaptmuchbettertochangesinnutrientconcentration,pHandtemperaturethandothoseinsolution25.Rootsystemsoftomatoesgrownbycapil-laryhydroponics21andinnutrientfilm2developinbothhumidairandsolution;thesetworootpartscouldplaycomplementaryroles.Therefore,quantitativeevaluationisneededtoclarifytheresponsesofbothtypesofrootsystemtotheroot-zoneenvironment.

External and internal root structures of tomato plants grown hydroponically in humid air or in nutrient solution

Weexaminedtheeffectsofroot-zoneenvironment,humidairandnutrientsolutionontheexternalandinter-nalstructuresoftomatoroots17.Youngtomatoplantsweregrowneither inwet-sheetculture(WSC), inwhichallrootsdevelopinhumidair,orhydroponicallybythedeepflowtechnique(DFT)withorwithoutaeration(Fig.1).Dissolvedoxygenconcentrationwas45%to62%ofsatu-rationinDFT,and91%to96%inDFT+Air.

GrowthoftomatoplantsinDFT+AirandWSCwas

REVIEWResponse of Tomato Root Systems to Environmental Stress under Soilless Culture

Yuka NAKANO*DepartmentofFruitVegetables,NationalInstituteofVegetableandTeaScience(Taketoyo,Aichi470–2351,Japan)

AbstractWeinvestigatedtheeffectsofroot-zoneenvironment,humidityaroundtherootsandnutrientsolutionontheactivityandmorphologyoftomatorootsgrowninwet-sheetculture(exposedtoair)ordeepflowtechnique(submergedinsolution).Differencesinrootexternalandinternalstructurebetweentreatmentgroupscouldbeinterpretedasadaptiveresponsestotherootenvironment.Theexposedrootscouldadaptmorereadilytoextremesoftemperaturethanthoseinthesolution.Thoseadaptationsoccurredthroughshort-termphysiologicalresponsesandlong-termadditivemorphologicalresponses.Wealsoevaluatedthefacilitatingeffectsoftheflowofnutrientsolutiononrootrespirationandnutri-entuptakerate.Wheretherootsystemwassplitbetweenhumidairandnutrientsolution,rootsinthesolutionabsorbedandsuppliednitrogenmoreefficientlyperdryweightthandidrootsinair.Splitrootsystemsbetweenhumidairandnutrientsolutionshowedstablegrowthoftomatoplants.Ourobserva-tionsofrootplasticitywillhelptheestablishmentofgrowingsystemsthatsupporthighyieldandstableproduction.

Discipline: HorticultureAdditional key words:nutrientabsorption,rootrespiration,rootstructure,root-zonetemperature

JARQ41(1),7–15(2007)http://www.jircas.affrc.go.jp

*Correspondingauthor:[email protected];accepted26April2006.

Page 2: REVIEW Response of Tomato Root Systems to Environmental ... · with image-processing software (NIH-Image) revealed no differences in the total root lengths or root surface areas among

8 JARQ41(1)2007

Y.Nakano

morevigorousthanthatinDFT(Table1). Theshoot-to-rootratiodecreasedintheorderDFT+Air>WSC>DFT,butcomputerizedimageanalysisoftherootsystemswithimage-processingsoftware(NIH-Image)revealednodifferencesinthetotalrootlengthsorrootsurfaceareasamongthethreetreatments.DFThadalargerproportionofshorterlateralrootsthanDFT+AirandWSC(Fig.2),suggestingthatoxygendeficitinDFTinhibitedrootelon-gation.Aerenchyma,consideredtobeanadaptationtoanaerobicconditions9,waspresent in thesteleonly in

Tomato plantIrrigation tube Air pump Multi-hole tube Root-proof sheet

PumpAir stone Nutrient solution Non-woven fabric

Styrene foamDFT DFT+Air WSC

P P P

0

4

8

12

16

0

4

8

12

16

0

4

8

12

16

Freq

uenc

y (%

)

DFT

Freq

uenc

y (%

)

DFT+Air

10 100 1,000

Length of lateral roots (cm)

Freq

uenc

y (%

) WSC

0

10

20

30

40

50

60

0 5 10 15 20 25 30

Distance from root tip of the first order laterals (cm)

Num

ber o

f roo

t hai

rs in

slic

es

of la

tera

l axe

sDFTDFT+AirWSC

Fig. 1. Schematic diagrams of deep flow technique without aeration (DFT), DFT with aeration (DFT+Air) and wet-sheet culture (WSC) for the cultivation of tomato

Nutrientsolutionineachcontaineriscirculatedbyapump.

Fig. 2. Frequency distribution of total length of individual lateral roots of tomato seedlings grown in different hydroponic systems

Lateralrootsarefirst-orderlateralsincludinghigher-orderlaterals.DetailsoftreatmentsaredescribedinFig.1.

Fig. 4. Numbers of root hairs on 250-µm lengths of lateral roots of tomato seedlings grown in different hydroponic systems

VerticallinesindicateSD(n=3).

Page 3: REVIEW Response of Tomato Root Systems to Environmental ... · with image-processing software (NIH-Image) revealed no differences in the total root lengths or root surface areas among

9

ResponseofHydroponicTomatoRootstoStress

DFT.RootsinWSChadlargercorticalcells,metaxylemandstele,moredepositsofligninlamellaeintheexoder-mis,andmoreroothairsthanrootsinDFT(Figs.3&4).Enlargedcorticalcellsandincreaseddepositsofligninarealsofoundunderdroughtstress4,26.Waterdeficitpromotesthedevelopmentofroothairs13,whichplayanimportantroleinuptakeofmineralsandwater.Accordingly,thegreaterallocationofphotosynthates,namelydrymatter,to theroots inWSCthaninDFT(Table1)couldbearesponsetothedrierconditionsinWSC.Thesechangesinexternalandinternalstructuresoftherootscouldbeinterpretedasadaptiveresponsestotherootenvironment,thatis,anoxiainDFTandwaterdeficitinWSC.

Fig. 3. Transection of tomato roots with phloroglucinol staining of lignin lamellae (arrowheads) within exodermal wallsSampleswerepreparedfromfirst-orderlateralrootsdevelopedineachhydroponicsystem.a:Deepflowtechniquewithoutaeration(×200),b:Deepflowtechniquewithaeration(×200),c:Wet-sheetculture(×200),d:Wet-sheetculture(×400).Rectanglemarked(d)incistheimageind.

Table 1. Effects of root-zone environment on the growth of tomato seedlingsz

Hydroponicsystemy

Dryweight(g·plant–1)w S/Rx,w

Shoot Root

DFT 1.29 b 0.25 b 5.0 cDFT+Air 1.79 a 0.28 ab 6.3 aWSC 1.73 a 0.30 a 5.6 bz Dataareshownasthemeanof20–21samplesat8daysfromtransplanting.

yDFT:Deepflowtechniquewithoutaeration,DFT+Air:Deepflowtechniquewithaeration,WSC:Wet-sheetcul-ture.

xShootdryweight/rootdryweight.wValuesfollowedbythesameletterwithinacolumnarenotsignificantlydifferentatΡ=0.05.

Page 4: REVIEW Response of Tomato Root Systems to Environmental ... · with image-processing software (NIH-Image) revealed no differences in the total root lengths or root surface areas among

10 JARQ41(1)2007

Y.Nakano

Influence of growing temperature on activity and structure of roots in humid air and in nutrient solution

Theroot-zonetemperaturedirectlyaffectsnutrientabsorption1andrespiration11andindirectlyaffectsrootdevelopment5 andallocationofphotosynthates3,7. Westudiedtheshort-termandlong-termeffectsofroot-zonetemperatureonrootphysiology15,18.

1. Short-term influence of growing temperatureWecomparedshort-termdifferences inwaterand

nitrate absorption between tomato roots in humid air(WSC)androotsinnutrientsolution(DFT)atfourroottemperatures,17,27,33,and45ºC18.Tomatoseedlingswere transplanted into acryl growing containers withDFTorWSCingrowthchamberssettoa35ºC(day)/22.5ºC(night)temperaturecycle.At9to11daysaftertransplanting,eachgrowingcontainerwasimmersedinawaterbathwithtemperaturecontrolledat17,27,33,or45ºC.Ratesofwaterandoxygenabsorptionbytomatorootsweremonitoredbyusinganelectronicbalanceandoxygensensorduringdaytime.

Waterabsorptionratesperplantwerealmostequalinbothsystemsatalltemperatures(Fig.5).Ontheotherhand,nitrateabsorptionrateperplantwasgreaterinWSCthaninDFTat45ºC,althoughnosignificantdifferenceswerefoundatother temperatures. Rootrespiration inDFTincreasedastheroottemperatureincreasedfrom17to33ºC,butdecreasedat45ºC,whilewaterabsorptionperrootrespirationdecreasedwithincreasingtemperature(Fig.6).Theseresultssuggestthatrootsinthehumidair

0

1

2

3

Nitr

ate

abso

rptio

n ra

te

per p

lant

(mg·

plan

t–1·h

–1)

NSNS

NS

*

0

2

4

6

8

10 20 30 40 50

Temperature (°C)

Nitr

ate

abso

rptio

n ra

te p

er

DW

(μg·

mg

root

DW

–1·h

–1)

**

NS

NS

0

10

20

30

wat

er a

bsor

ptio

n ra

te

per p

lant

(g·ro

ot–1

·h–1

)

NSNS

NS

NS

0

20

40

60

80

wat

er a

bsor

ptio

n ra

te

per D

W (m

g·g

root

DW

–1·h

–1)

***

******

0

50

100

150

200

17 27 33 450

0.2

0.4

0.6

0.8

1

1.2

bb

a

b

bb

aba

Temperature (°C)

Roo

t res

pira

tion

rate

mol

O2·m

g D

W–1

·h–1

)

Wat

er a

bsor

ptio

n pe

r roo

t re

spira

tion

(g·μ

mol

O2–1

)

Fig. 5. Effects of root zone temperature on water and nitrate absorption rates of tomato seedlings in two hydroponic systems

:Deepflowtechnique,:Wet-sheetculture.Dataaremeansof3or5samples.Waterandnitrateabsorptionratesweremeasuredduringtheperiod10:00to14:30.*, **, and *** indicate significant difference atP=0.05,0.01and0.001,respectivelywithFisher’sPLSDtest.DW:Dryweight.

Fig. 6. Effects of root zone temperature on root respiration rate and water absorption per unit of respiration in deep flow technique (DFT)

:Rootrespiration,:Waterabsorptionperroot.Valuesaremeansof3or4measurements±SD.DifferentlettersrepresentsignificantdifferencesatP=0.05.

Page 5: REVIEW Response of Tomato Root Systems to Environmental ... · with image-processing software (NIH-Image) revealed no differences in the total root lengths or root surface areas among

11

ResponseofHydroponicTomatoRootstoStress

wouldbemoretolerantofsupraoptimaltemperaturethanthoseinthesolution.

2. Long-term influence of growing temperatureWealsoanalyzedthelong-termeffectsofroot-zone

temperatureonrootdevelopment15. TomatoseedlingsgrowinginWSCorDFTwereraisedingrowthchamberskeptataconstant15,25or35ºCfor6to12daysuntilthefive-leafstage.Weevaluatedtheadaptabilityoftherootsystemstohighorlowtemperaturebycomparingtherootactivityandstructurebetweenthesystems(Fig.7).Atalltemperatures,WSCtomatoplantsgrewlargerthanDFTplants.ThebleedingrateofxylemsapperwholerootsystemwashigherinWSCthaninDFTat15and35ºC,andtherootrespirationrateperdryweightwashigherinDFTthaninWSCatalltemperatures(Table2).TherootrespirationratemeasuredinDFTshoweddifferenttrendsfromthegrowthandbleedingratesofxylemsap,soweuseditinfurtherexaminationasanindexofphysiologicalactivity.

TherootsystemsinWSChadmorefirst-orderlater-alsandgreaterprojectedareasthanthoseinDFTat15and35ºC,butweresimilartothoseinDFTat25ºC(Table3).Thefractaldimensionoftherootsystems,character-izingtheircomplexity23,washigherinWSCthaninDFTat15ºC,butlowerat35ºC.ThehigherrootdensityandtheshorterorequivalentmeanlengthinDFTthaninWSCatalltemperatures(Table3)meansthatrootelongationwasinhibitedbyhightemperature.Therewasahighcor-relationbetweentotalrootlength,projectedareaandthefractaldimensionsat25and35ºC.

Theseresultsindicatethatrootsinhumidairwouldadaptmorereadilytohighorlowtemperaturethanthosein solution. Thisagreeswellwith theobservationbyYamazaki(1986)25.

Table 2. Effects of growing temperature on the bleeding rate of xylem sap and root respiration of young tomato seedlings in the two types of hydroponic systemz

Hydroponicsystemy

Bleedingratex,w Rootrespirationratew

mg·plant–1·h–1 mg·rootlength(m)–1·h–1 µmolO2·root–1·h–1 µmolO2·mgDW–1·h–1

15ºC 25ºC 35ºC 15ºC 25ºC 35ºC 15ºC 25ºC 35ºC 15ºC 25ºC 35ºC

WSC 460 414 140 15.3 12.9 7.3 22.9 13.5 14.4 0.093 0.102 0.164DFT 191 339 69 12.8 9.6 5.2 19.8 26.2 12.4 0.156 0.266 0.221

*** NS *** NS * NS NS ** NS *** *** *zDataareshownasthemeanof5or6samples.yWSC:Wet-sheetculture,DFT:Deepflowtechnique.xAverageofthebleedingratemeasuredduringtheperiodfrom7:30to12:00.wNS,*,**,and***indicatenosignificantdifferenceorsignificantdifferenceatP=0.05,0.01and0.001,respectivelywithFisher’sPLSDtest.

Fig. 7. Digitized images of tomato root systems grown at 15, 25 and 35ºC in the two hydroponic systems

WSC:Wet-sheet culture, DFT:Deep flow tech-nique.Eachbarindicates5cm.

Page 6: REVIEW Response of Tomato Root Systems to Environmental ... · with image-processing software (NIH-Image) revealed no differences in the total root lengths or root surface areas among

12 JARQ41(1)2007

Y.Nakano

Effects of flow rate of hydroponic nutrient solution on growth and ion uptake by tomato seedlings

Inmanyhydroponicsystems,nutrientsolutioniscir-culatedforaeration.Evenapartfromtheeffectsofaera-tion,circulationitselfhasaneffectonplantgrowth,butnoquantitativeanalysishadbeendone.Wedeterminedtheeffectsofstirringofnutrientsolutiononrespirationandionuptakebytomatoroots,andtheeffectsofincreasedflowrateofnutrientsolutionongrowthoftomatoseed-lingscultivatedbyDFT14.

Weusedstirrersinbufferwithamanometerat500,700,900,and1,200rpmtomeasuretherespirationrateofdetachedrootsculturedinDFT.Therespirationrateincreasedwiththestirringrate.Eventhoughthelevelofdissolvedoxygen(DO)droppedrapidly,therootrespira-tionratestayedconstant.

Tomatoseedlingsweretransferredintocontainerswithnutrientsolutioncontaining15N-labelednitrateinagrowthchamber.Absorptionofwaterand15Nalsotendedtoincreasewithincreasedstirringrate,andthisincreasewasalsoindependentofDO.

Wedetermined theeffectsof the flowrateof thenutrientsolution(0.35,1.5and3.6L·min–1)inDFTonseedlinggrowth.Higherflowratesstimulatedshootandrootgrowth(Fig.8).DOvaluesinthenutrientsolutionforflowratesof0.35,1.5and3.6L·min–1were1.1–3.4ppm,1.8–4.4ppmand2.6–5.8ppm, respectively. ChangesintheflowrateofthesolutionmayaffectplantgrowththroughchangesinthelevelofDOinthesolutionandintherateoftransferofoxygenandionsclosetotherootsurfaces,wherethediffusionprocessisdominant.Theseresultssupportthehypothesisthataboundarylayerexistsontherootsurfaceandgetsthinnerastheflowofnutrient

solutionincreases19.

Effects of a combination of roots in humid air and roots in nutrient solution

Asdiscussedabove,tomatorootsinthehumidairandinthenutrientsolutiondifferedintheirmorphologyandphysiology.Toallowplantstocopewithroot-zonestresses,weproposeasoillessculturesystemthatdevel-opsbothtypesofroot.

Table 3. Effects of growing temperature on the number of first order lateral roots, total projected root area, average root diameter, and fractal dimension in tomato root in the two types of hydroponic systemz

Hydroponicsystemy

Firstorderlateralrootsw Averagerootdiameter(mm)w

Totalprojectedrootarea(cm2)w

Fractaldimensionx,w

No.(No.·plant–1)

Meanlength(cm)

Density(No.·cmtaprootaxis–1)

15ºC 25ºC 35ºC 15ºC 25ºC 35ºC 15ºC 25ºC 35ºC 15ºC 25ºC 35ºC 15ºC 25ºC 35ºC 15ºC 25ºC 35ºC

WSC 108 112 89 6.0 5.5 6.5 4.0 4.7 5.7 0.58 0.43 0.43 179.7 123.1 76.7 1.74 1.66 1.59DFT 80 107 111 4.6 6.1 4.6 4.5 5.2 21.3 0.58 0.43 0.44 79.4 142.3 53.1 1.68 1.63 1.64

* NS * * NS *** NS NS *** NS NS NS *** NS ** * NS *zDataareshownasthemeanof5or6samples.yWSC:wet-sheetculture;DFT:deepflowtechnique.xThefractaldimensionwasdeterminedusingtheaverageofthelocalfractalbymass-radiusmethod(Ketipearachchi&Tatsumi,2000)10.

wNS,*,**,and***indicatenosignificantdifferenceorsignificantdifferenceatP=0.05,0.01and0.001,respectivelywithFisher’sPLSDtest.

0

2

4

6

8S

hoot

dry

wei

ght

(g·p

lant

–1)

0

0.5

1

1.5

8 10 12 14

Days after transplanting

Roo

t dry

wei

ght

(g·p

lant

–1)

Fig. 8. Effect of flow rate of nutrient solution on growth of tomato seedlings

:0.35L·min–1,:1.5L·min–1,:3.6L·min–1.

Page 7: REVIEW Response of Tomato Root Systems to Environmental ... · with image-processing software (NIH-Image) revealed no differences in the total root lengths or root surface areas among

13

ResponseofHydroponicTomatoRootstoStress

1. Absorption and distribution of 15N by tomato roots divided between humid air and nutrient solution

Wedividedtherootsystemsofplantsbetweenhumidairandnutrientsolutionandanalyzedtheabsorptionanddistributionof15Nbythedifferentparts16.Equalconcen-trationsofK15NO3solutionwereadministeredsimultane-ouslytothenutrientsolutionbyanutrienttube,andthehumidairthroughnon-wovenfabricandanutrienttube.Attheendof72-hexposureto15N,weanalyzedtherootsandshoots.

Dryweightandpercentagedrymatterweresignifi-cantlyhigherinrootsinthehumidairthaninthenutri-entsolution.Percentagenitrogencontentsofrootsinthehumidairandinthenutrientsolutionwere1.52%and0.38%,respectively.Respirationratewashigherinrootsinthenutrientsolutionthanthoseinthehumidair,by2timesonawhole-rootdryweightbasisandby3timesonadry-weightbasis.Rootsinthehumidairexportedless15Ntootherpartsoftheplantthandidrootsinthesolu-tion;theformerretained5timesasmuch15Nthattheyabsorbedthanthelatterandimportedmore15Nthanthelatterdid(Fig.9).

Rootsinthesolutionabsorbedandsuppliednitro-genmoreefficientlyperdryweightthandidrootsinthehumidair.Thelargeaccumulationofdrymatterbyrootsinthehumidairmayincreasenitrogenabsorption,eventhoughtheefficiencyislow.

2. Influence of percentage of air and solution spaces in the root-zone on vegetative growth and fruit yield of tomato grown in wet-sheet culture

Somesoillessculturesystemshavehumidairandsolutionspacesintheroot-zone.Althoughthosesystemsaresuitableforgrowingvegetables,theappropriateratioofspacesandtheirphysiologicalroleswereunknown.Soweinvestigatedtheeffectsofpercentagesofhumidairandsolutionspacesintheroot-zoneonvegetativegrowthandfruityieldoftomato20.Percentagesofairspaceintheroot-zonewere0(allrootsweresubmergedinnutrientsolution),25,50,75,and100%(theentirerootsystemwasdevelopedonthewetsheetandexposedtothehumidair).

Enlargingtheairspaceintheroot-zoneupto50%increasedthedryweightofshootsandroots.Leafexpan-sionwassuppressedatboth0%and100%airspace.Fruityieldandweightwereheavierwhentheairspaceexceeded50%(Fig.10),butthepercentagesofdrymatterandsol-ublesolidswerelower(5.1–5.3%)thanat25%(6.0%)andat0%(7.1%).Thephotosyntheticrateofleaveswassignificantlylowerat0%airspace.Respirationratesofrootsnearthebasewerealmostequalinalltreatments,whereasthoseofrootsfrommiddletotipwerehigherat

50%and75%airspacethanatotherproportions(Fig.11).Totalrootrespirationincreasedastheairspaceincreasedto75%.

Partial exposure of roots to humid air promotedthephysiologicalactivityofthewholerootsystemandincreasedyield.Hence,forstablegrowthoftomatoplantsinsoillessculture,therootsneedexposuretobothenvi-ronmentsidenticallyinsoilculture.

Shoot

Roots in thehumid air

Roots in thenutrientsolution

retain0.4500.085

export5.348.82

import0.648

import0.035

exportretain

0

200

400

600

800

1,000

1,200

1,400

Percentage of humid air

Frui

t yie

ld (g

·pla

nt–1

)

0

50

100

150

200

Frui

t wei

ght (

g·fru

it–1)

LSDz

LSDy

0 25 50 75 100

Fig. 9. Schematic diagram of nitrogen flow from roots in the nutrient solution and in the humid air (µg·g DW–1·h–1)

Fig. 10. Effects of percentage of humid air space in the root-zone on fruit yield and weight of single-truss tomato

:Fruityield,:Fruitweight.VerticalbarsrepresentLSDatP=0.05.zLSDonfruitweight.yLSDonfruityield.

Page 8: REVIEW Response of Tomato Root Systems to Environmental ... · with image-processing software (NIH-Image) revealed no differences in the total root lengths or root surface areas among

14 JARQ41(1)2007

Y.Nakano

Responses of root system to environment and stress adaptability

Weundertook a series of experiments to test theplasticityofrootsinresponsetovariationsintheroot-zoneenvironment.Inhumidair,rootsadapttomildwaterstressbychangingtheirmorphologyandfunction,result-inginalargeandwellbranchedrootsystem.Ontheotherhand,rootsinnutrientsolutionhavefewbranchesandroothairs.Rootsinhumidairhavelowerrespirationandnutrientabsorptionthanrootsinnutrientsolutiononadryweightbasis,butalmostthesameonarootsystembasis.Theadaptationsinrootsinthehumidairallowedplantstowithstandtemperaturestress.Wherethereislittlelikeli-hoodofstress,asinahighlyregulatednutrientsolutionwithplentyofresources,the‘optimum’rootsystemwillbesmall.Thebalancebetweenrootdevelopment(costs)andwaterandnutrientavailability(benefits)willreflectthestressadaptabilityofroots6.Whenseveralstressesoverlapcoincidentally,variousresponseswouldinteractwitheachotherand,hence,totalabilityofrootswouldbedefined.Minimizingtheriskofstressesshouldbeabasicstrategy,butourobservationsofrootplasticitywillhelptheestablishmentofgrowingsystemsthatsupporthighyieldandstableproduction.

References

1. Ali,I.A.etal.(1994)Responseofsand-growntomatosuppliedwithvaryingratiosofnitrate/ammoniumtocon-stantandvariableroottemperatures.J. Plant Nutr.,17,2001–2024.

2. Cooper,A.J.(1966)Singletrusstomatoesmeanplant,pinch,pickandpullup.Grower,22,143–144.

3. Du,Y.C.&Tachibana,S.(1994)Photosynthesis,photo-synthatetranslocationandmetabolismincucumberrootsheldatsupraoptimaltemperature.Engei gakkai zasshi(J. Jpn. Soc. Hort. Sci.),63,401–408.

4. Galamay,T.O.etal.(1992)Acropetallignificationinpro-tectivetissuesofcerealnodalrootaxesasaffectedbydif-ferentsoilmoistureconditions.Nihon sakumotsu gakkai kiji (Jpn. J. Crop Sci.),61,511–517.

5. Haarmann,L.J.H.etal.(1999)Astudyofrootelonga-tionusingtomatoandradishseeds:evaluationofgrowth,temperatureandpH,andtoxicityforcacodylicacidandglutaraldehyde.Fresenius Environ. Bull.,8,37–44.

6. Ho,M.D.,McCannon,B.C.&Lynch,J.P.(2004)Opti-mizationmodelingofplantrootarchitectureforwaterandphosphorusacquisition.J. Theor. Biol.,226,331–340.

7. Hurewitz,J.&Janes,H.W.(1983)Effectofalteringtheroot-zonetemperatureongrowth,translocation,carbonexchangerate,andleafstarchaccumulationintomato.Plant Physiol.,73,46–50.

8. Itagi, T. (1996) Growing systems of soilless culture.In Saishinyoueki saibaino tebiki (Manualof soillessculture),ed.JapanGreenhouseHorticultureAssociation,

0

1

2

3

4

5

6

Percentage of humid air

Res

pira

tion

rate

(μ m

ol O

2 g D

W–1

min

–1)

0 25 50 75 100

A B AAAA B B BC BC C C CD D D DE E

Fig. 11. Effects of percentage of humid air spaces in the root-zone on respiratory rate of tomato root segments:Rootsinthenutrientsolution, :Rootsinthehumidair.

Measurementwascarriedoutatfloweringstage.Rootsweredividedat6-cmintervalsfromthebasalpartofthestem.A:0–6cm,B:6–12cm,C:12–18cm,D:18–24cm,E:>24cm.Valuesaremeansof3to5measurements±SD.

Page 9: REVIEW Response of Tomato Root Systems to Environmental ... · with image-processing software (NIH-Image) revealed no differences in the total root lengths or root surface areas among

15

ResponseofHydroponicTomatoRootstoStress

SeibundoShinkosya,Tokyo,Japan,10–12[InJapanese].9. Justin,S.H.F.W.&Armstrong,W.(1987)Theanatomical

characteristicsofrootsandplantresponsetosoilflooding.New Phytol.,106,465–495.

10. Ketipearachchi,K.W.&Tatsumi,J.(2000)Localfractaldimensionsandmultifractalanalysisoftherootsystemoflegumes.Plant Prod. Sci.,3,289–295.

11. Klock,K.A.,Taber,H.G.&Graves,W.R.(1997)Rootrespiration and phosphorus nutrition of tomato plantsgrownata36ºCroot-zonetemperature.J. Am. Soc. Hort. Sci.,122,175–178.

12. Lynch,J.(1995)Rootarchitectureandplantproductivity.Plant Physiol.,109,7–13.

13. Mackay,A.D.&Barber,S.A.(1985)Effectofsoilmois-tureandphosphatelevelonroothairgrowthofcornroots.Plant Soil,86,321–331.

14. Nakano,Y.etal.(2001)Effectsofflowrateofhydroponicnutrient solutionongrowthand ionuptakeby tomatoseedlings.Seibutsu kankyo chosetsu (Environ. Control Biol.),39,199–204[InJapanesewithEnglishsummary].

15. Nakano,Y.etal.(2002)Theinfluenceofgrowingtem-peraturesonactivityandstructureoftomatorootshydro-ponicallygrowninwetatmosphereorinsolution.Engei gakkai zasshi(J. Jpn. Soc. Hort. Sci.),71,683–690[InJapanesewithEnglishsummary].

16. Nakano,Y.etal.(2003)Absorptionanddistributionof15Nbydividedtomatoroots;partimmersedinanutrientsolutionandpartinahumidatmosphere.Engei gakkai zasshi(J. Jpn. Soc. Hort. Sci.),72,156–161[InJapanesewithEnglishsummary].

17. Nakano,Y.etal.(2003)Externalandinternalrootstruc-turesoftomatoplantsgrownhydroponicallyinahumidatmosphereorinanutrientsolution.Engei gakkai zasshi(J. Jpn. Soc. Hort. Sci.),72,148–155[InJapanesewithEnglishsummary].

18. Nakano,Y.etal.(2003)Theinfluencesofhighroot-zonetemperatureonabsorptionofwaterandnitratebytomatorootshydroponicallygrowninatmosphereorinsolution.Ne no kenkyu(Root Res.),12,35–40[InJapanesewithEnglishsummary]. Availableonlineathttp://root.jsrr.

jp/012020035.pdf.19. Polle,E.O.&Jenny,H.(1971)Boundarylayereffects

inionabsorptionbyrootsandstorageorgansofplants.Physiol. Plant.,25,219–224.

20. Sakamoto,Y.etal.(2001)Theinfluencesofgas/liquidphaseratiosintheroot-zoneonvegetativegrowthandfruityieldoftomatogrowninwet-sheetculture.Engei gakkai zasshi(J. Jpn. Soc. Hort. Sci.),70,622–628[InJapanesewithEnglishsummary].

21. Shinohara,Y.,Maruo,T.&Ito,T.(1993)Effectsofcapil-laryhydroponicsystemonthegrowth,yieldandqualityoftomatoandcucumber.Tech. Bull. Fac. Hort. Chiba Univ.,47,1–8.

22. Statistics and Information Department, Ministry ofAgriculture,ForestryandFisheries,Japan(2006)Heisei 16 nen san yasai seisan shukka toukei(Statisticsforpro-ductionandmarketingofvegetablesin2004).AssociationofAgricultureandForestryStatistics,Tokyo,Japan,8–9[InJapanese].Availableonlineathttp://www.tdb.maff.go.jp/toukei/a02smenu?TouID=F005.

23. Tatsumi,J.&Takagai,K.(1997)Fractalcharacterizationofrootsystemarchitectureinlegumeseedlings.InFrac-talfrontiers,eds.Novak,M.M.&Dewey,T.G.,WorldScientific,Singapore,359–365.

24. VegetableSection,ProductionDepartment,MinistryofAgriculture,ForestryandFisheries,Japan(2003)Engei you garasu shitsu, hausu tou no setchi jokyo (Stateof established horticultural glass and plastic houses).VegetableSection,ProductionDepartment,MinistryofAgriculture,ForestryandFisheries,Tokyo,Japan,12–13[InJapanese].Availableonlineathttp://www.tdb.maff.go.jp/toukei/a02smenu1?TokID=P007&TokKbn=B&Nen=2003#TOP.

25. Yamazaki,K. (1986)Progressand futureprospectsofsoillessculture.Nougyou oyobi engei (Agric.& Hort.),61,107–114[InJapanese].

26. Zimmermann,H.M.&Steudle,E. (1998)Apoplastictransportacrossyoungmaizeroots:effectoftheexoder-mis.Planta,206,7–19.

Page 10: REVIEW Response of Tomato Root Systems to Environmental ... · with image-processing software (NIH-Image) revealed no differences in the total root lengths or root surface areas among