review of electromagnetics and introduction to fdtd...11/2/2020 1 computational science:...

27
11/2/2020 1 Computational Science: Introduction to FiniteDifference TimeDomain Review of Electromagnetics and Introduction to FDTD Lecture Outline Review Maxwell’s equations Physical boundary conditions The constitutive relations Parameter relations see Balanis Chapter 1 Introduction to FDTD Flow of Maxwell’s equations Finitedifference approximations The update equation The FDTD algorithm…for now Slide 2

Upload: others

Post on 26-Feb-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

1

Computational Science:

Introduction to Finite‐Difference Time‐Domain

Review of Electromagnetics and Introduction to FDTD

Lecture Outline

• Review•Maxwell’s equations• Physical boundary conditions• The constitutive relations• Parameter relations• see Balanis Chapter 1

• Introduction to FDTD• Flow of Maxwell’s equations• Finite‐difference approximations• The update equation• The FDTD algorithm…for now 

Slide 2

Page 2: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

2

Slide 3

Review of Maxwell’s Equations and 

Electromagnetics

Maxwell’s Equations

4

Page 3: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

3

Four Field Terms in Maxwell’s Equations

Slide 5

Electric field intensityInitial electric push

V mE

Displaced Charges

+ = D

2C m

Electric Field Quantities

Magnetic Field Quantities

Magnetic field intensityInitial magnetic push

A mH

Tilted Magnetic Dipoles

+ = B

2Wb m

H J D t

E B t

Gauss’s Law

6

Electric fields diverge from positive charges and converge on negative charges.

‐+

vD

yx zDD D

Dx y z

If there are no charges, electric fields must form loops.

Page 4: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

4

Gauss’s Law for Magnetism

7

Magnetic fields always form loops.

0B

yx zBB B

Bx y z

Consequence of Zero Divergence

8

The divergence theorems force the 𝐷 and 𝐵 fields to be perpendicular to the propagation direction of a plane wave.

k D

0

0jk r

D

de

d

no charges

0

0

jk d

k d

k

k

k B

0

0jk r

B

be

b

no charges

0

0

jk b

k b

k

k

Page 5: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

5

Ampere’s Law with Maxwell’s Correction

9

DH J

t

ˆ ˆ ˆy yx xz zx y z

H HH HH HH a a a

y z z x x y

Circulating magnetic fields induce currents and/or time varying electric fields.  Currents and/or time varying electric fields induce circulating magnetic fields.

Faraday’s Law of Induction

10

BE

t

ˆ ˆ ˆy yx xz zx y z

E EE EE EE a a a

y z z x x y

Circulating electric fields induce time varying magnetic fields.Time varying magnetic fields induce circulating electric fields.

Page 6: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

6

How Waves Propagate

Slide 11

Start with an oscillating 

electric field.

How Waves Propagate

Slide 12

This induces a circulating 

magnetic field.

H j E

Page 7: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

7

How Waves Propagate

Slide 13

Now let’s examine the magnetic field 

on axis.

How Waves Propagate

Slide 14

This induces a circulating 

electric field.E j H

Page 8: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

8

How Waves Propagate

Slide 15

Now let’s examine the electric field on axis.

How Waves Propagate

Slide 16

This induces a circulating 

magnetic field.

H j E

Page 9: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

9

How Waves Propagate

Slide 17

…and so on…

Starting Point for Electromagnetic Analysis

18

Divergence Equations

0

v

B

D

DH J

t

BE

t

Curl Equations

Constitutive Relations

D t t E t

B t t H t

What produces fields

How fields interact with materials

means convolution

means tensor

Page 10: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

10

Maxwell’s Equations in Cartesian Coordinates (1 of 4)

Slide 19

Vector Terms

ˆ ˆ ˆ

ˆ ˆ ˆ

x x y y z z

x x y y z z

E E a E a E a

D D a D a D a

ˆ ˆ ˆ

ˆ ˆ ˆ

x x y y z z

x x y y z z

H H a H a H a

B B a B a B a

ˆ ˆ ˆx x y y z zJ J a J a J a

Divergence Equations

0

0yx z

D

DD D

x y z

0

0yx z

B

BB B

x y z

Maxwell’s Equations in Cartesian Coordinates (2 of 4)

Slide 20

Constitutive Relations

D E

ˆ ˆˆ ˆˆˆy y yx x xx x xy y xz zz z zx x zy y zx x yyx y z zy zy zzD D a Ea E ED a E E EE aa a E E

y yx x y

z zx x

x xx x xy y xz z

zy y zz z

y y yz zD E E

D E

D E E E

E

E E

B H x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

B H H H

B H H H

B H H H

Page 11: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

11

Maxwell’s Equations in Cartesian Coordinates (3 of 4)

Slide 21

Curl Equations

BE

t

ˆ ˆ ˆ ˆ ˆ ˆy yx xz zx y z x x y y z z

E EE EE Ea a a B a B a B a

y z z x x y t

ˆ ˆ ˆˆ ˆˆy xzx x

yx zy

y x zz zy

E E Ba a

E BEa

BE Ea a

y z tx tx ya

z t

yx zBE E

z x t

y xzE BE

y z t

y x zE E B

x y t

Maxwell’s Equations in Cartesian Coordinates (4 of 4)

Slide 22

Curl Equations

DH J

t

yx zy

DH HJ

z x t

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆy yx xz zx y z x x y y z z x x y y z z

H HH HH Ha a a J a J a J a D a D a D a

y z z x x y t

ˆ ˆˆ ˆ ˆˆy x zy xzx xz z

zy y y z

yx

xDH H

a J az x t

H DHa J a

y z t

H H Da J a

x y t

y xzx

H DHJ

y z t

y x z

z

H H DJ

x y t

Page 12: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

12

Alternative Form of Maxwell’s Equations in Cartesian Coordinates (1 of 2)

Slide 23

Alternate Curl Equations

EHt

ˆ

ˆ

ˆ

ˆ

ˆ ˆx zy

y

y xz

yx zzx zy zz

y yxz zx xx xy x

x

z x

zyx yy yz y

z

H EEH EH Ha

z x

E

H Ha

x y

EE Ea

t t t

E Ea

a az

t t

y t

t

t t

yx xz zyx yy y

y yx x zzx zy

y yxz zxx

zz

y

z

x xz

EH EH E

z x tH EH E E

x y t

H EEH E

y z

t

t

t

t t t

t

Alternative Form of Maxwell’s Equations in Cartesian Coordinates (2 of 2)

Slide 24

Alternate Curl Equations

HEt

ˆ

ˆˆ ˆ

ˆ

ˆ x y xz

y

y yxz zx xx xy xz

zy

yx zyx yy yz

x zzx zy zz

x

y

z

E EE HHE Ha aa

x y

E

y z t t t

Ea

z x

HH Ha

HH Ha

t t

t

t

t t

yx

y yx

x

y yx x z

z zxx x

zx zy zz

z zyx yy z

y z

y

x

E HE

HE HE H

z x t

H H

x y t t

E HHE

t

H

t

y t t t

t

z

Page 13: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

13

Tensors

Slide 25

Tensors are a generalization of a scaling factor where the direction of a vector can be altered in addition to its magnitude.

V

aV

V a V

Scalar Relation 

Tensor Relation

xx xy xz

yx yy yz

zx zy zz

x

y

z

a a a

a a a a

a a a

V

V V

V

The Constitutive Relations

26

Linear, isotropic and non‐dispersive materials:

Dispersive materials:

D t E t

Anisotropic materials:

D t t E t

D t E t

Nonlinear materials:

1 2 32 30 e e e1D t E t E t E t

This will be used throughout this course.

The point is that all of the complexities associated with modeling strange materials are incorporated into this single equation.  The implementation of Maxwell’s equations in FDTD will never change as different materials are introduced.  Keeping this as a separate step will make the FDTD code more modular and easier to modify.  It may not be as efficient as it could be though.

Page 14: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

14

Anisotropic Materials

27

xx xy xz

yx yy yz

zx zy zz

D t E t

A generalized tensor for permittivity is written as

We see that E and d can be in different directions when the permittivity is anisotropic.

how much of contributes to ij j iE D

It greatly simplifies a finite‐difference method to consider only diagonal tensors.  That is, all of the off‐diagonal terms will be set to zero.

0 0

0 0

0 0

xx x xx x

yy y yy y

zz z zz z

D t E t

D t E t D t E t

D t E t

Special Note: There are only three degrees of freedom for the tensor components.  The nine elements cannot be chosen arbitrarily.  It is always possible to choose a coordinate system that makes the tensor diagonal.  The off diagonal terms only arise when the chosencoordinate system does not match the crystal axes of the anisotropic material.   The simplification above restricts us to only be able to model anisotropic materials that align perfectly with our x, y, and z axes.  

Simplifying Maxwell’s Equations

28

0

0

B

D

H D t

E B t

D t t E t

B t t H t

1. Assume no charges or current sources: 0v 0J

0

0

H t

E t

EH

t

HE

t

3. Sometimes the constitutive relations are substituted into Maxwell’s equations:

Note: It is helpful to retain μ and ε and not replace them with refractive index n.

D t E t

B t H t

2. Assume linear, isotropic, and non‐dispersive materials:Convolution becomes simple multiplication

0

0

B

D

H D t

E B t

Page 15: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

15

Physical Interpretation of 𝐸 and 𝐷

29

𝐸 – Electric Field•A disturbance produced around charges or in the presence of a time‐varying magnetic field.

•Think of 𝐸 as a “push”•Units are volts per meter (V/m)

+‐

EV

d

V d

𝐷 – Electric Displacement Field• “D” stands for displacement

• Includes 𝐸, but also accounts for displaced charges in a material (material polarization)• Equivalent to flux density

• Think of 𝐷 as displaced charge•Units are dipole moments per unit volume (Cꞏm/m3), or just (C/m2)

•We can make 𝐸 look like an equivalent displaced 

charge through 𝐷 𝜀 𝐸.

Physical Interpretation of 𝐻 and 𝐵

30

𝐻 – Magnetic Field•A disturbance produced around currents or in the presence of a time‐varying electric field.

•Think of 𝐻 as a magnetic “push”•Units are amperes per meter (A/m)

𝐵 – Magnetic Displacement Field

• Includes 𝐻, but also accounts for tilted magnetic dipoles in a material (magnetization)• Equivalent to flux density

• Think of 𝐵 as reoriented magnetic dipoles•Units are magnetic dipole moments per unit volume (Wꞏm/m3), or just (W/m2)

•We can make 𝐻 look like an equivalent reoriented dipole through 𝐵 𝜇 𝐻.

Page 16: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

16

Physical Boundary Conditions

31

Tangential components of E and Hare continuous across an interface.

1,TE 2,TE

1,TH 2,TH

1 1 and 2 2 and

Fields normal to the interface are discontinuous across an interface.

Note: Normal components of Dand B are continuous across the interface.

1 1,NE

1 1,NH

2 2,NE

2 2,NH

These are more complicated boundary conditions, physically and analytically.

1,Tk 2,TkTangential component of the wave vector is continuous across an interface.

Slide 32

Parameter Relations

Page 17: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

17

The Dielectric Constant, r

Slide 33

0 r 12

0 8.854187817 10 F m

The dielectric constant 𝜀 of a material is its permittivity relative to the permittivity of free space 𝜀 .

r1 r is the relative permittivity or dielectric constant

The permittivity 𝜀 is a measure of how well a material stores electric energy.  A circulating magnetic field induces an electric field at the center of the circulation in proportion to the permittivity.

EH

t

Table of Dielectric Constants

Slide 34Constantine A. Balanis, Advanced Engineering Electromagnetics, Wiley, 1989.

Page 18: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

18

The Relative Permeability, r

Slide 35

0 r 6

0 1.256637061 10 H m

The relative permeability 𝜇 of a material is its permeability relative to the permeability of free space 𝜇 .

r1 r is the relative permeability

The permeability 𝜇 is a measure of how well a material stores magnetic energy.  A circulating electric field induces a magnetic field at the center of the circulation in proportion to the permeability.

HE

t

Table of Permeabilities

Slide 36Constantine A. Balanis, Advanced Engineering Electromagnetics, Wiley, 1989.

Page 19: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

19

The Refractive Index

Slide 37

r rn

The permittivity and permeability appear in Maxwell’s equations so they are the most fundamental material properties.  However, it is difficult to determine physical meaning from them in terms of how waves propagate (i.e. speed, loss, etc.).  In this case, the refractive index is a more meaningful quantity.

Most materials exhibit a negligible magnetic response and the refractive index and dielectric constant are related through

2rn Hint: one of the most common mistakes made in this course is 

using values of refractive index directly as permittivity.

Material Impedance

Slide 38

E H

The impedance 𝜂 of a material quantifies the relation between the electric and magnetic field of a wave travelling through that material.  It is the most fundamental quantity that causes reflections and scattering.

The impedance can be written relative to the free space impedance as

00 0

0

376.73031346177 r

r

This shows that the electric field is around two to three orders of magnitude larger than the magnetic field.

Page 20: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

20

𝜔 versus 𝑓

Slide 39

𝜔 is the angular frequency measured in radians per second.  It relates more directly to phase and 𝑘.  Think cos 𝜔𝑡 .

𝑓 is the ordinary frequency measured in cycles per second.  It relates most directly to time 𝑡.  Think cos 2 𝜋𝑓𝑡 and 𝜏 1/𝑓.

2 f

Wavelength and Frequency

Slide 40

The frequency f and free space wavelength 0 are related through

0 0c f Inside a material, the wave slows down according to the refractive index as follows.

0cvn

m0 s299792458 speed of light in vacuumc

The frequency is the most fundamental parameter because it is fixed.  Inside a material, the wave slows down so the wavelength is reduced.

v f The free space wavelength 0 is often used interchangeably with frequency f.   This is most common in optics.

Page 21: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

21

Sign Convention

Slide 41

How do you define forward wave propagation? +z

Quantity ‐z +z

Wave Solution

Dielectric Function

Refractive Index

0

j t kzE E e

0j t kzE E e

j j

N n j N n j

Sign convention for this course

Summary of Parameter Relations

Slide 42

Permittivity

0

120 8.854187817 10 F m

r

Permeability

0

60 1.256637061 10 H m

r

Refractive Index Impedance

r rn 0

0 0 0 376.73031346177

r r

Wave Velocity

0

0 299792458 m s

cv

nc

Exact

Frequency and Wavelength

0 0

2 f

c f

00

Wave Number

2k

Page 22: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

22

Duality Between E‐D and H‐B

43

Electric Field Magnetic Field

E H

D B

P M

ε μ

Slide 44

Introduction to Finite‐Difference Time‐Domain

Page 23: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

23

Flow of Maxwell’s Equations

Slide 45

B tE t

t

A circulating E field induces a change in the B field at the center of circulation.

B t t H t

A B field induces an H field in proportion to the permeability.

D tH t

t

A circulating H field induces a change in the D field at the center of circulation.

D t t E t

A D field induces an E field in proportion to the permittivity.

Note: In reality, this all happens simultaneously.  In FDTD, it follows this flow.

Flow of Maxwell’s Equations Inside Linear, Isotropic and Non‐Dispersive Materials

Slide 46

H tE t

t

E tH t

t

A circulating E field induces a change in the H field at the center of circulation in proportion to the permeability.

A circulating H field induces a change in the E field at the center of circulation in proportion to the permittivity.

In materials that are linear, isotropic and non‐dispersive we have

t t

In this case, the flow of Maxwell’s equations reduces to

Page 24: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

24

Finite‐Difference Approximations

Slide 47

1.5 2 1df f f

dx x

1f2f

df

dx

x

second‐order accuratefirst‐order derivative

This derivative is defined to exist at the mid point between f1 and f2.

Stable Finite‐Difference Equations

Slide 48

0 Given 0 , , 2 ,f x

f x f f x f xx

0f x x f x

f xx

Exists at 2x x Exists at x

Your simulation will be unstable (i.e. explode).

0

2

f x x f x xf x

x

0

2

f x x f x f x x f x

x

Each term in a finite‐difference equation must exist at the same point in time and space.

Exists at 2x x Exists at 2x x

Exists at 2x x Exists at 2x x f(x) is only known at integer multiples of x.  How do we calculate f(x+x/2)?

Example:

Page 25: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

25

Approximating the Time Derivative (1 of 3)

Slide 49

H tE t

t

E tH t

t

H t t H tE t

t

E t t E tH t

t

An intuitive first guess at approximating the time derivatives in Maxwell’s equations is:

This is an unstable formulation.

Exists at 2t t Exists at t

Exists at 2t t Exists at t

Approximating the Time Derivative (2 of 3)

Slide 50

H tE t

t

E tH t

t

2 2

H t H t t H t H t t

E tt

2

H t H t t E t t E t

t

We adjust the finite‐difference equations so that each term exists at the same point in time.

This works, but we will be doing more calculations than are necessary.

Is there a simpler approach?

Page 26: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

26

Approximating the Time Derivative (3 of 3)

Slide 51

H tE t

t

E tH t

t

2 2t t t t

t

H HE

t

2

t t t

t t

E EH

t

Stagger 𝐸 and 𝐻 in time so that 𝐸 exists at integer time steps (0, t, 2t, …) and 𝐻 exists at half time steps (t/2, t+t/2, 2t+t/2,…).

We will handle the spatial derivatives in × next lecture in a very similar manner.

Derivation of the Update Equations

Slide 52

The “update equations” are the equations used inside the main FDTD loop to calculate the field values at the next time step.

They are derived by solving our finite‐difference equations for the fields at the future time values.

2 2t t t t

t

H HE

t

2

t t t

t t

E EH

t

2 2t t t t t

tH H E

2t t t t t

tE E H

Page 27: Review of Electromagnetics and Introduction to FDTD...11/2/2020 1 Computational Science: Introduction to Finite‐Difference Time‐Domain Review of Electromagnetics and Introduction

11/2/2020

27

Anatomy of the FDTD Update Equation

Slide 53

2t tt t t

tHE E

Field at the future time 

step.

Field at the previous time 

step.

Update coefficient

Curl of the “other” field at an intermediate time 

step

To speed up simulation, we calculate these before iterating.

The FDTD Algorithm…for now 

Slide 54

Initialize Fields to Zero

2 2t t t t t

tH H E

0E H

Done?

Update H from E

Update E from H

2t t t t t

tE E H

2

0 0tt t

H E

2

2

3

2

32

2

52

2

53

2

tt t

tt t t

tt t t

tt t t

tt t t

tt t t

H E

E H

H E

E H

H E

E H

no

Finished!yes

Loop over time

t