review

9
Study Sheet for Exam #1 /Users/michaelthompson/Desktop/outline_of_testable_facts-for exam 1 .docx Here is an outline of important things to know for exam #1. Unfortunately I have not had a chance to add the adrenergics material. Please also make sure to review the drug lists. Topic #1: Principles of Drug Action a) Potency: how much drug does it take to produce an effect b) Efficacy: how much of an effect can the drug produce c) Compare 2 drugs in terms of their dose response curves in terms of potency and efficacy d) ED50 as individual measure (used as a measure of potency) vs. as a population measure (in the calculation of therapeutic index) e) Therapeutic index (population measure of safety, TI= LD50/ED50) vs. therapeutic window (therapeutic dose range for an individual, defined by the range between the minimum therapeutic concentration and the minimum toxic concentration ) f) Physiological antagonism: examples – histamine/epinephrine, NSAIDS/diuretics a. When one agonist drug antagonizes or reduces the effect of a second drug by acting at different receptor sites to produce opposite effects to that of the 2 nd agonist drug g) Competitive antagonism: when an antagonist drug binds competitively to the same receptor as the agonist drug, shifting the dose response curve of the agonist to the right (decreased potency/increase in ED50), no change efficacy since the antagonism can be overcome by increasing the dose of the agonist h) Full agonist vs. partial agonist vs. antagonist vs. inverse agonist a. Agonists have potency and efficacy b. Partial agonists have potency but reduced efficacy compared to a full agonist, due to their inability to fully activate the receptor c. Inverse agonists produce the opposite response to an agonist d. Antagonists have potency, no efficacy – they can bind to the receptor but can’t activate it. Their effect is seen when they prevent the binding of an agonist i) Shifts in dose response curve of one drug in the presence of another drug that might be an antagonist : (competitive antagonist: ED50 increases (meaning potency decreases), efficacy stays the same) Topic #2: Kinetics a) Types of drug response:

Upload: tntvu

Post on 04-Dec-2015

221 views

Category:

Documents


2 download

DESCRIPTION

review for dental shcool

TRANSCRIPT

Study  Sheet  for  Exam  #1  

/Users/michaelthompson/Desktop/outline_of_testable_facts-for exam 1 .docx  

Here  is  an  outline  of  important  things  to  know  for  exam  #1.  Unfortunately  I  have  not  had  a  chance  to  add  the  adrenergics  material.  Please  also  make  sure  to  review  the  drug  lists.  

 

Topic    #1:  Principles  of  Drug  Action  

a)   Potency:  how  much  drug  does  it  take  to  produce  an  effect  

b)   Efficacy:  how  much  of  an  effect  can  the  drug  produce  

c)   Compare  2  drugs  in  terms  of  their  dose  response  curves  in  terms  of  potency  and  efficacy  

d)   ED50  as  individual  measure  (used  as  a  measure  of  potency)  vs.  as  a  population  measure  (in  the  calculation  of  therapeutic  index)  

e)   Therapeutic  index  (population  measure  of  safety,  TI=  LD50/ED50)  vs.  therapeutic  window    (therapeutic  dose  range  for  an  individual,  defined  by  the  range  between  the  minimum  therapeutic  concentration  and  the  minimum  toxic  concentration  )  

f)   Physiological  antagonism:  examples  –  histamine/epinephrine,  NSAIDS/diuretics  

a.   When  one  agonist  drug  antagonizes  or  reduces  the  effect  of  a  second  drug  by  acting  at  different  receptor  sites  to  produce  opposite  effects  to  that  of  the  2nd  agonist  drug  

g)   Competitive  antagonism:  when  an  antagonist  drug  binds  competitively  to  the  same  receptor  as  the  agonist  drug,  shifting  the  dose  response  curve  of  the  agonist  to  the  right  (decreased  potency/increase  in  ED50),  no  change  efficacy  since  the  antagonism  can  be  overcome  by  increasing  the  dose  of  the  agonist    

h)   Full  agonist  vs.  partial  agonist  vs.  antagonist  vs.  inverse  agonist  

a.   Agonists  have  potency  and  efficacy  

b.   Partial  agonists  have  potency  but  reduced  efficacy  compared  to  a  full  agonist,  due  to  their  inability  to  fully  activate  the  receptor  

c.   Inverse  agonists  produce  the  opposite  response  to  an  agonist  

d.   Antagonists  have  potency,  no  efficacy  –  they  can  bind  to  the  receptor  but  can’t  activate  it.  Their  effect  is  seen  when  they  prevent  the  binding  of  an  agonist  

i)   Shifts  in  dose  response  curve  of  one  drug  in  the  presence  of  another  drug  that  might  be  an  antagonist  :  (competitive  antagonist:  ED50  increases  (meaning  potency  decreases),  efficacy  stays  the  same)  

Topic    #2:  Kinetics  

a)   Types  of  drug  response:    

Study  Sheet  for  Exam  #1  

/Users/michaelthompson/Desktop/outline_of_testable_facts-for exam 1 .docx  

a.   adverse  (drug  working  on  other  systems  –  dose  related),    

b.   toxic  (dose  related  extensions  of  therapeutic  effect),    

c.   idiosyncratic  (unexpected  response,  genetically  determined,  but  magnitude  of  response  is  dose  related),    

d.   paradoxical  (reverse  reaction  seen  in  elderly  and  children  –  magnitude  of  response  is  dose  related),    

e.   allergic  (not  dose  related)  

b)   Advantages/disadvantages  or  routes  of  administration  

a.   Oral:  cheap,  easy,  but  slow,  erratic  absorption  and  subject  to  1st  pass  effect  

b.   IV:  can  titrate  dose,  no  1st  pass,  rapid  onset,  but  expensive  and  requires  trained  staff,  also  easy  to  give  too  much  drug  too  fast  

c.   Sublingual:  rapid  onset,  no  1st  pass,  but  not  all  drugs  suitable  for  this  route  

d.   Rectal:  bypasses  50%  of  1st  pass  effect,  good  for  unruly  patients  

e.   Inhalational:  rapid  onset  &  offset,  titrateable,  localized  delivery  to  airways  

c)   Factors  affecting  drug  response  

a.   Absorption  –   factors  that  alter  absorption  of  a  drug  (form  of  drug  administered,  pH  of  environment,  presence  of  food  in  stomach)  –  process  least  altered  by  aging  

b.   Distribution  –  factors  that  alter  distribution  

i.   Plasma  protein  binding:    

1.   drugs  bound  to  plasma  proteins  are   incapable  of  reaching  active  site  –  only  free,  unbound  drug  can  reach  receptor.    

2.   Can   be   source   of   DDIs   due   to   one   drug   displacing   another   drug   from  protein  binding   sites,   thus   increasing   amount  of   “free”  drug.   Example:  warfarin  and  aspirin  

ii.   Ionization:   ionized   forms   of   drugs   cannot   cross   membranes.   Example:   local  anesthetics  

iii.   Lipid  solubility:    

iv.   Rate  of  blood  flow  to  organ.  Example:  lipid  soluble  drugs  go  to  brain  first,  since  brain  has  the  highest  rate  of  blood  delivery  

Study  Sheet  for  Exam  #1  

/Users/michaelthompson/Desktop/outline_of_testable_facts-for exam 1 .docx  

c.   Redistribution:  action  of  drug  is  terminated  not  by  elimination  but  by  drug  redistributing  away   from   active   site   to   inactive   sites.   Example:   thiopental   is   short   acting   sedative  induction  agent  –  sedative  action  is  terminated  due  to  rapid  redistribution  out  of  brain  to  other  tissues  

d.   Metabolism:  1st  pass  effect,  bioavailability  

i.   1st  pass  effect:  defined  as  the  portion  of  the  dose  of  the  drug  administered  that  is  eliminated  by  metabolism  in  the  liver  before  reaching  the  systemic  circulation  

ii.   Bioavailability:   the   proportion   of   the   drug   dose   administered   that   can   be  measured   in   the   circulation   after   non   IV   route   of   administration   compared   to  the  measurable  after  IV  administration  –  usually  a  %  amount.  IV  administration  is   defined   as   giving   100%   bioavailability   Bioavailability   =   conc.   after   non-­‐IV  administration/conc.  after  IV  administration  

e.   Renal  function:  can  be  measured  directly  by  creatinine  clearance  

f.   Patient  compliance  

g.   Effects  of  aging:   increased  fat  to  lean  tissue,   increased  CNS  sensitivity  to  sedatives  and  analgesics,  decreased  renal  and  hepatic  function  (phase  I  type  of  reactions),  decreased  plasma   proteins,   more   potential   for   DDIs   due   to   taking   more   drugs   (polypharmacy).  Example:  BDZ  dose  needs  to  be  reduced  by  ½.  Aging  does  not  alter  drug  absorption.  

d)   Volume  of  distribution:  high  Vd   indicates  drug   is   lipophilic  and  undergoes  hepatic  metabolism.  low  Vd  indicates  drug  is  hydrophilic  and  undergoes  renal  elimination    

e)   1st  order/zero  order  processes  of  elimination  

a.   1st   order:   constant  %  of  drug  amount   in  body   removed  per  unit   time.  Most  drugs   are  eliminated  following  1st  order  kinetics  

b.   Zero   order:   constant   amount   removed   per   unit   time.   Seen   in   overdose.   Capacity   of  enzymes   to  metabolize   the   drugs   or   the   capacity   of   the   kidney   to   excrete   the   drug   is  exceeded  by  the  excessive  amount  of  drug.  As  plasma  concentrations  fall  via  zero-­‐order  kinetics,   eventually   the   process   falls  within   the   capacity   of   clearing   organs   so   that   1st  order  elimination  can  happen..  Examples:  aspirin,  alcohol    

f)   Steady   state   concentration   (Css):   the   plasma   concentration   achieved   when   the   rate   of   drug  intake  equals   the  rate  of  drug  elimination.  Dependent  upon  the  rate  and  dose  administered  –  ideally  we  dose  a  drug  such  that  the  Css  achieved  falls  within  the  therapeutic  window.  Takes  4  half-­‐lives  to  reach  Css.  

Study  Sheet  for  Exam  #1  

/Users/michaelthompson/Desktop/outline_of_testable_facts-for exam 1 .docx  

g)   Half-­‐life:  4  half-­‐lives  to  achieve  Css  after  we  initiate  drug  administration,  4  half-­‐lives  to  remove  more  than  90%  of  drug  once  administration  is  stopped  

a.   Calculation   problems:   if   we   have   administered   a   drug   that   has   a   t1/2   of   5   hrs   and  achieved  a  Css  of  10  mg/L,  once  we  stop  giving  the  drug,  how  much  will  be   left   in  the  body   after   two   half-­‐lives?   Answer:   2.5   mg/L.   During   the   1st   half-­‐life   of   5   hrs   the  concentration  falls  from  10  to  5  mg/L,  during  the  second  half-­‐life  the  concentration  falls  from  5  mg/L  to  2.5  mg/L.  This  question  might  also  be  asked  differently:  how  long  would  it   take  for  the  concentration  to  fall   from  10  mg/L  to  2.5  mg/L  once  we  stop  giving  the  drug?  Answer:  two  half-­‐lives,  or  10  hrs.  

h)   Loading  dose:  given  to  produce  a  rapid  therapeutic  effect  when  you  can’t  wait  for  four  t½  lives  to  achieve  steady  state  concentration  

Topic  #3:  Drug  Metabolism  

a.   Results  of  metabolism  on  drug  activity  –  to  change  drug  into  a  more  excretable  form  

a.   Active  form  to  inactive  form  (most  drugs)  

b.   Active  form  to  active  metabolite  (Example:  diazepam  vs.   lorazepam:  difference   in  half-­‐life  due  to  formation  of  active  metabolites  from  diazepam)  

c.   Inactive  form  (“prodrug”)  to  active  metabolite  (Codeine  to  morphine)  

d.   Active  form  to  toxic  form  (acetaminophen  to  hepatotoxic  form)  

b.   Phase   I   vs.   Phase   II   reactions:   examples   of   each   type,   what   each   accomplishes   in   terms   of  inactivation  and  making  drug  excretable    

a.   Phase   I:   removes   something   from   compound   usually   via   oxidation,   hydroxylation,  reduction.  Point  is  to  create  a  space  to  add  something  via  Phase  II  reaction  that  makes  compound  more  polar   and   thus  more  excretable.  Metabolites  may   retain  parent  drug  activity  or  have  completely  different  activity,  or  may  be  inactive.  

b.   Phase   II:   addition  of   conjugate  group   (i.e.,   glucuronide)   to   increase   solubility   and   thus  excretability.  Typically  phase  II  metabolites  are  inactive  

c.   Induction  (primarily  effects  Phase  I  type  reactions)  

a.   Examples  of  inducers:  Phenobarbital,  alcohol,  cigarette  smoke  

i.   Alcohol  and  acetaminophen:  alcohol  induces  liver  enzymes,  some  of  which  also  metabolize   acetaminophen.   The   enzyme   2E1   is   induced   by   alcohol   –   this  enzyme   converts   acetaminophen   into   a   hepatotoxic   form.   Normally   this   is   a  

Study  Sheet  for  Exam  #1  

/Users/michaelthompson/Desktop/outline_of_testable_facts-for exam 1 .docx  

very  minor   pathway  of   acetaminophen  metabolism,   but  when  2E1   is   induced,  much  more  of  this  metabolite  is  made,  causing  liver  damage.  

ii.   Cigarette   smoke   and   theophylline:   smokers   require   up   to   4   X   normal   dose   of  theophylline   due   to   cigarette   smoke   inducing   enzymes   (P450   1A2)   that  metabolize  theophylline  

d.   Inhibition  

a.   Examples  of  inhibitors  

i.   Macrolide   antibiotics   like   erythromycin,   antifungals   inhibit   3A4.   Example:   see  slide  of  erythromycin  and  seldane  interaction  in  metabolism  slides.  Seldane  is  a  prodrug   that   needs   to   be   metabolized   by   3A4   into   a   form   that   is   an   H1  antihistamine.   Erythromycin   blocks   this   conversion,   leaving   Seldane   in   the  parent   (prodrug)   form,   which   is   toxic   and   causes   life   threatening   cardiac  arrthymias  

ii.   SSRIs   and   codeine:   SSRIs   inhibit   conversion   of   codeine   to   morphine   by   2D6.  Patient  gets  little  to  no  pain  relief.  

e.   Genetic  differences  

a.   2D6:  extensive  metabolizers  (lots  of  2D6)  and  poor  metabolizers  (not  enough  2D6)  

i.   Example:   death   of   baby   due   to   mother   taking   codeine   during   breastfeeding,  mother   was   an   extensive   metabolizer   and   converted   too   much   codeine   to  morphine  

b.   Atypical   pseudocholinesterase.   Example:   succinylcholine   toxicity   due   to   prolonged  paralysis  since  patient  lacks  normal  form  of  pseudocholinesterase  

Topic  #4:  Cholinergics  

a)   Events   at   the   synapse   –   differences   between   adrenergic   (S)   and   cholinergic   (C)   branches   of  autonomic  nervous  system  

i)   Neurotransmitter  released  

(1)   Preganglionic:  ACh  for  both  (S)  and  (C)  

(2)   Postganglionic:  NE  (S),  ACh  (C)  

ii)   Inactivation  of  neurotransmitter  

Study  Sheet  for  Exam  #1  

/Users/michaelthompson/Desktop/outline_of_testable_facts-for exam 1 .docx  

(1)   Reuptake  into  presynaptic  terminal  (S),  enzymatic  breakdown  in  synaptic  cleft(C)  

b)   Results  of  sympathetic    vs  parasympathetic    activation  

i)   Sympathetic:  fight  vs.  flight  

ii)   Parasympathetic:  maintain  homeostasis  

iii)   Organ  specific  responses  

(1)   Eye:  miosis  (papillary  constriction)  (C),  mydriasis  (papillary  dilation)  (S)  

(2)   CV:  speed  up  (S),  slow  down  (C)  

(3)   GI  tract:  slow  down  (S),  speed  up  (C)  

(4)   Blood  vessels:  constrict  (S),  dilate  (C)  

(5)   Respiratory:  open  airways  (S),  constrict  airways  (C)  

c)   Cholinergic  drugs:  direct-­‐acting  vs.  indirect-­‐acting  

i)   Direct  acting  mimetic  (stimulates  receptor  directly  as  agonist)  

(1)   Pilocarpine,  evoxac,  bethanechol    

ii)   Indirect  acting  mimetic    (does  not  act  on  receptor,  but  prolongs  ACh  action  in  synapse)  

(1)   Cholinesterase   inhibitors:   neostigmine,   physostigmine,   ambenonium,   echothiophate,  edrophonium,  Aricept  

(2)   Spider  venom:  causes  excessive  Ach  release  

iii)   Direct  acting  lytic  (competitive  receptor  antagonists)  

(1)  Muscarinic  receptors:  Atropine,  scopolamine  

(2)   Nicotinic  receptors:  NMJ  –  blockers:  curare  type  (non-­‐depolarizing),  SUX  (depolarizing),  snake  venom    

iv)   Indirect  acting  lytic  

(1)   Botox:  blocks  Ach  release  

 

Study  Sheet  for  Exam  #1  

/Users/michaelthompson/Desktop/outline_of_testable_facts-for exam 1 .docx  

v)   Clinical  uses  of  cholinergic  acting  drugs  

(1)   Agonists  

(a)   stimulate  salivation:  pilocarpine,  cevemilene  (Evoxac)  

(b)   reduce   intraocular   pressure   in   glaucoma:   pilocarpine,   reversible   cholinesterase  inhibitors  like  physostigmine,  neostigmine  

(c)   myasthenia   gravis:   reversible   cholinesterase   inhibitors   like   physostigmine,  neostigmine  

(d)   nerve   gas   (Sarin),   insecticides   (Malathion):   both   are   nonreversible   cholinesterase  inhibitors  

(e)   Alzheimer’s   Disease:   Aricept,   Rivastigmine   –   used   to   prolong   action   of   Ach   to  enhance   cognitive   functioning   in   Alzheimer’s   –   only   works   as   long   as   there   are  functioning  cholinergic  neurons  

(2)   Antagonists  

(a)   Muscarinic:  

(i)   Eye  exams:  atropine  analogues  used  to  dilate  pupils  (mydriasis)  

(ii)   Block  vagal  reflex:  atropine  

(iii)  Motion  sickness:  scopolamine  transdermal  patch  behind  ear  

(iv)  Reduce  salivation:  atropine  analogues  like  Pro-­‐Banthine  

(v)   Overactive  bladder:  oxybutynin  (Ditropan)  

(b)   Nicotinic  

(i)   Induce   general   skeletal   muscle   paralysis:   d-­‐tubocurarine   (non-­‐depolarizing  competitive  receptor  block),  succinylcholine  (SUX)  –  depolarizing  NMJ  blocker  

(ii)   Localized   paralysis   to   treat  wrinkles,   TMD   pain:   BOTOX   (prevents   ACh   release  from   presynaptic   terminal   by   blocking   Ca++   influx   in   presynaptic   terminal,  causing  localized  muscle  paralysis  at  site  of  injection))  

(3)   Adverse  side  effects  

(a)   Signs/symptoms  of  cholinergic  overstimulation  

Study  Sheet  for  Exam  #1  

/Users/michaelthompson/Desktop/outline_of_testable_facts-for exam 1 .docx  

(i)   Muscarinic   –   “SLUDE”:   excessive   salivation,   lacrimation,   urination,   diarrhea,  emesis  

(ii)   Nicotinic-­‐  paralysis  

(b)   Symptoms  of  cholinergic  (muscarinic)blockade  

(i)   “Mad  as  a  hatter,  hot  as  hell,  dry  as  a  bone,  blind  as  a  bat”  

(4)   Drug:Drug  interactions:  

(a)   Muscarinic   antagonists:   additive  CNS  depression,   xerostomia  with  drugs   that  have  anticholinergic  side  effects:  TCAs,  H1-­‐antihistamines  

vi)   Direct  Acting  Neuromuscular  Junction  Blocking  Agents:  

(1)   Action:    

(a)   interruption  of  the  nervous  impulse  at  the  skeletal  neuromuscular  junction  by  direct  antagonist   action   on   the   nicotinic   post-­‐synaptic   receptor,   resulting   in   muscular  paralysis  

(2)  Medical  Use:  

(a)    as   adjuncts   to   general   anesthesia   to   relax   the   abdominal   skeletal   wall   muscular  during  abdominal  surgery,  allowing  less  general  anesthesia  to  be  used  

(3)   In  Dentistry:  

(a)   to   aid   endotracheal   intubation   during   general   anesthesia,   in   trismus   to   permit  opening   of   the   jaw   for   diagnosis   and   treatment,   in   mandibular   fractures   to   relax  muscles  so  that  bone  fragments  can  be  manipulated  

(4)   Non-­‐depolarizing:  Curare-­‐type  

(a)   Agents:  d-­‐tubocurarine,  pancuronium,  vecuronium,  rocuronium    

(b)   Action:  competitive  receptor  block  prevents  ACh  from  binding  to  nicotinic  end-­‐plate  receptor.  Action  is  reversible  by  increasing  the  concentration  of  ACh  at  the  receptor  by  giving  an  anticholinesterase  such  as  physostigmine  or  neostigmine    

(5)   Depolarizing:  Succinylcholine  type  

(a)   Agents:  Succinylcholine,  Decamethonium    

Study  Sheet  for  Exam  #1  

/Users/michaelthompson/Desktop/outline_of_testable_facts-for exam 1 .docx  

(b)   Action:   these   agents   do   not   act   by   receptor   block,   but   by   prolonged   receptor  stimulation  that  leads  to  depolarization  of  the  neuron  and  an  inability  to  repolarize  and   fire   again.   Thus   there   is   a   brief   period   of   muscle   stimulation   or   fasiculatiion  prior   to   paralysis.   This   action   can’t   be   reversed   by   an   anticholinesterase;   the  blocking  drug  itself  must  be  removed  

(c)   Remember   that   some   patients   have   atypical   pseudocholinesterase,   and   thus   the  usually  brief  action  of  succinylcholine  will  be  prolonged  

(6)   Indirect-­‐Acting  NMJ-­‐Blocking  Agents:  

(a)   Botulinum  Toxin  (Botox)  

(i)   Action:  blocks  ACh  release  by   interfering  with  extracellular  Ca++   ion   influx   into  the  presynaptic  nerve  terminal,  which   is  needed  for  ACh  to  be  released,  so  no  stimulation   of   nicotinic   receptors,   thus   causing   muscle   relaxation,   reducing  muscle  contraction,  wrinkles.  

(ii)   Dental  Use:  

1.   Oromandibular  Dystonia:    

2.    Jaw   closure   dystonia   including   bruxism,   related   dental   problems,   and  associated  pain  can  be  controlled  with  BTX  injections  into  the  masseter  and  temporalis  muscles  bilaterally.  In  more  severe  forms  weakening  the  internal  pterygoids  will  also  be  required.