retrieval of vegetation biophysical parameters by

34
Retrieval of vegetation biophysical Retrieval of vegetation biophysical parameters by inverting parameters by inverting hyperspectral hyperspectral , , multiangular multiangular CHRIS/PROBA Data from SPARC CHRIS/PROBA Data from SPARC 2003 2003 D’Urso D’Urso G., Dini L., Vuolo F., Alonso L. G., Dini L., Vuolo F., Alonso L.

Upload: others

Post on 27-Nov-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Retrieval of vegetation biophysical parameters by

Retrieval of vegetation biophysical Retrieval of vegetation biophysical parameters by inverting parameters by inverting

hyperspectralhyperspectral, , multiangularmultiangularCHRIS/PROBA Data from SPARC CHRIS/PROBA Data from SPARC

20032003

D'UrsoD'Urso G., Dini L., Vuolo F., Alonso L.G., Dini L., Vuolo F., Alonso L.

Page 2: Retrieval of vegetation biophysical parameters by

ITAP, Albacete

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid

Universitá degli Studi di Napoli �Federico II�, Italy

University of Thessaly, Greece

INRA-CSE, Avignon

Laboratoire du Télédétection et SIRS, Tunisia

Meteo-France

European Spatial Agency (ESA)

University of Valencia - Remote Sensing Unit

University of Valencia - Global Change Unit

University of Valencia - Solar Radiation Unit

University of Valencia � GPDS

University of Castilla-La Mancha

Institute of Regional Development (IDR), Albacete

SPARC SPARC campaigncampaign((BarraxBarrax, 12, 12--14 14 JulyJuly 2003)2003)

Page 3: Retrieval of vegetation biophysical parameters by

AimAim ::

Assessment of retrieval accuracy by using :- RT models vs. empirical approaches (i.e. veget. Indexes)- multi-angular and/or super spectral info

Retrieval of canopy parameters (in particular LAI) from E.O. data for :- calculation of crop transpiration and soil evaporation (P-M approach)- soil water balance simulations (input forcing)

Page 4: Retrieval of vegetation biophysical parameters by

FIELD DATA

Page 5: Retrieval of vegetation biophysical parameters by

LAI measurements

113 Elementary Sampling Units

(24 data samples each ESU)

b

bb

b bb

bb b

b bbb

bbb b

bbbbbbbb

bb bbb

b

bb

bb bb

bbb

bb

bb

bbbbbb

bbbbb

b

bbbbbbbbbbb

bbbbbb

bb

b

bbb

bbb

bbbbbb

bbbbb

bbbbbb

b

bb b bb

b

bbb

bbb

Page 6: Retrieval of vegetation biophysical parameters by

LAI measurements

7 types of crop:

alfalfacornsugarbeetonionsgarlicpotatopapaver

0%

2%

4%

6%

8%

10%

12%

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7 3

3.3

3.6

3.9

4.2

4.5

4.8

5.1

5.4

5.7 6

6.3

LAI

avg = 3.07; std = 1.45

Page 7: Retrieval of vegetation biophysical parameters by

LAI = 1.32

LAI = 2.49

LAI = 3.72

Page 8: Retrieval of vegetation biophysical parameters by

Alfalfa, LAI = 3.72

Sugarbeet, LAI = 3.78

Corn, LAI = 3.84

Page 9: Retrieval of vegetation biophysical parameters by

Chlorophyll MeasurementsGood correlation between laboratory and field measurements for different crops

i.e. 4000+ valid chlorophyll measurements

0.010

0.020

0.030

0.040

0.050

0.060

0.070

1 10 100 1000

Chlorophyll Units

2 )

Clor.A1 (mg/cm2)Clor.C1 (mg/cm2)Clor.B1 (mg/cm2)Clor.W1 (mg/cm2)Clor.G1 (mg/cm2)Clor.ON1 (mg/cm2)Clor.P1 (mg/cm2)

Chl

orop

hyll

(mg/

cm2 )

Page 10: Retrieval of vegetation biophysical parameters by

S6S6

S5S5

S3S3

S0S0

WW

AA

Sampling Points for Radiometric Calibration

Page 11: Retrieval of vegetation biophysical parameters by

Sampling Points for Radiometric Calibration

targets: soil, vegetation

radiometers inter-comparison at Las Tiesas14 july

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

300 400 500 600 700 800 900 1000 1100

wavelength (nm)

refle

ctan

ce

Page 12: Retrieval of vegetation biophysical parameters by

LAI,LIDF,HOT,Esky

ModelsModels parametersparametersPROSPECT requires:PROSPECT requires:!! Leaf Leaf mesophyllmesophyll structure, Nstructure, N!! Chlorophyll Chlorophyll a+ba+b content, Cab content, Cab (mg cm(mg cm--22))!! Equivalent water thickness, Equivalent water thickness, CwCw (gcm(gcm--2)2)!! Dry matter content, Cm Dry matter content, Cm (gcm(gcm--2).2).

SailHSailH requires:requires:!! Leaf Area Index: LAILeaf Area Index: LAI!! Leaf inclination distribution function: Leaf inclination distribution function:

LIDF LIDF !! Leaf Leaf relectancerelectance and and trasmittancetrasmittance

(PROSPECT)(PROSPECT)!! Soil spectral reflectance, which is Soil spectral reflectance, which is

assumed to be Lambertianassumed to be Lambertian!! Solar zenith (Solar zenith (qqss) and azimuth angle () and azimuth angle (YYss) ) !! View zenith (View zenith (qqvv) and azimuth angle () and azimuth angle (YYvv))!! Fraction of incident diffuse skylight Fraction of incident diffuse skylight

expressed in terms of visibility, expressed in terms of visibility, EskyEsky!! KuuskKuusk hot spot size parameters, shot spot size parameters, s

Page 13: Retrieval of vegetation biophysical parameters by

FORWARD SIMULATION

Page 14: Retrieval of vegetation biophysical parameters by

Alfalfa measured groundreflectance (ASD ASD FieldSpecFieldSpec) and PROSPECT/SAILH simulated reflectance byusing different background measured spectra.

Data from SPARC 2003

Soil reflectance: ground measurement

FIELD MEASUREMENTSFIELD MEASUREMENTS

0

0,1

0,2

0,3

0,4

0,5

0,6

300 400 500 600 700 800 900 1000 1100

wavelength (nm)

refle

ctan

ce

soil (5-1.001)soil (5-2.001)soil (5-3.001)soil (5-4.001)soil (5-5.001)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

300 400 500 600 700 800 900 1000 1100

wavelength (nm)

refle

ctan

cesoil (6.001)

soil (6-2.001)

soil (6-4.001)

soil (6-5.001)

Best fit soil

RRMSE=0.0207

Page 15: Retrieval of vegetation biophysical parameters by

Soil Analsysis for CHRIS/PROBA reflectance simulation on Barrax site.

CHRIS max soilreflectance

CHRIS min soilreflectance

Ground measurement

CHRIS mean soilreflectance

1 Chris/proba bands

Ref

lect

ance

0.7

0.6

0.5

0.4

0.2

0.3

0.1

0101 20 30 5040 60

Page 16: Retrieval of vegetation biophysical parameters by

+55: VZA= 55.99°; VAA= 26.11°+36: VZA= 38.78°; VAA= 37.98º0: VZA= 19.40°; VAA= 102.40º-36: VZA= 39.15°; VAA= 165.44º-55: VZA= 56.24°; VAA= 177.06º

SUN ZENITH ANGLE= 22.4°SUN AZIMUTH ANGLE= 134.7°

[0º]

+55: VZA= 57.29°; +36: VZA= 42.44°; VAA= 339.44º0: VZA= 27.4°; VAA= 285.27º-36: VZA= 42.53°; VAA= 231.22º-55: VZA= 57.4°; VAA= 216.91º

SUN ZENITH ANGLE= = 19.8°SUN AZIMUTH ANGLE= 148.3°

12th of July Acquisition

14th of July Acquisition

Page 17: Retrieval of vegetation biophysical parameters by

+36° 0°

12/07/2003

+36° 0°

14/07/2003

Alfalfa: Forward

Page 18: Retrieval of vegetation biophysical parameters by

+55° 0°

Potatoes: Forward

+55° 0°

12/07/2003

14/07/2003

Page 19: Retrieval of vegetation biophysical parameters by

MODELINVERSION

Page 20: Retrieval of vegetation biophysical parameters by

Inversion algorithm - 1PEST-ASP using Gauss-Marquardt-Levenberg estimation techniquePEST runs the PROSAILH model, compares the model results with the target values (observed reflectance values), adjustsselected parameters using optimisation algorithm and runs the model as many times as is necessary in order to determine the optimal set of adjustable parameters

Page 21: Retrieval of vegetation biophysical parameters by

Inversion algorithm - 2

Parametersestimate

( LAI )

• LUT (look-up table) using RRMSE (relative mean square error)

+55+36 0 -36 -55

+55+36 0 -36 -55

[ ]

[ ]∑∑

∑∑

= =

= =

−= 5

1

62

1

2

5

1

62

1

2

),(

j imeas

j iestmeas

ij

(j,i)ρ (j,i)ρRRMSE

ρ

(Privette, 1994)

Page 22: Retrieval of vegetation biophysical parameters by

PEST-ASP theory

( )( ) ( )( )0000 bbJccQbbJcc t −−−−−−=Φ• Objective function :

Where:

• b0 : parameters vector to be upgraded

• b : parameter vector upgraded

• c0 = PROSAILH ( b0 ) : model calculated observations vector

• c : experimental observation vector

• J : Jacobian matrix of PROSAILH

• Q : Observation weigths matrix

( ) ( )01

0 ccQJIQJJbb tt −+=− −α• Algorithm by which the system parameter vector is estimated :

Marquardt-LevenbergWhere:

I : Identity matrix

α: Marquardt parameter

Page 23: Retrieval of vegetation biophysical parameters by

Parameters rangePROSPECT N=[1 � 3 ]Cab=[10 � 110]Cw=0.022Cm=[0.001 � 0.02]SAILHLAI=[0.3 � 8]HOT=[0.0001 � 1]LIDFS=[1 2 3 4 5 6 7 8 9 10 11 12 13]Esky=0.13

Initial parameters vector estimatePROSPECTN=1Cab=10Cw=0.022Cm=0.001SAILHLAI=0.4HOT=0.05LIDFS=1Esky=0.13

PEST-ASP settings

Contours of equalΦΦΦΦ

Initial parameterestimation

Parameter # 1

Parameter # 2

Page 24: Retrieval of vegetation biophysical parameters by

PEST-ASP results ILAI PEST ASP

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00

Measured LAI

Estim

ated

LA

I

LAITheor.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

Measured LAI

Estim

ated

LA

I AlfalfaPotatoesCornSugarbeetOnionTheor.

Potatoes

Alfalfa

RRMSE = 0.40

Page 25: Retrieval of vegetation biophysical parameters by

PEST-ASP results II

Alfalfa1 < N < 2

LIDFS Plagiophile

Meas. Estim.

LAI:3.24 3.30

Cab: 63 27(25-35)

+55 +36 0-36 -55

A priori A priori knowledgeknowledge

Page 26: Retrieval of vegetation biophysical parameters by

PEST-ASP results II

Potatoes1 < N < 1.6

HOT < 0.0027

LIDFS Uniform

Meas. Estim.

LAI: 5.20 5.10

Cab: 35 14(10-14)

+55 +36 0-36 -55

A priori A priori knowledgeknowledge

Page 27: Retrieval of vegetation biophysical parameters by

PEST-ASP results IIA priori A priori knowledgeknowledge

SugarbeetN = 1.5

HOT < 0.6Meas. Estim.

LAI: 4.08 4.05

+55 +36 0-36 -55

Page 28: Retrieval of vegetation biophysical parameters by

PEST-ASP results IIA priori A priori knowledgeknowledge

0

1

2

3

4

5

6

7

8

0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00

Measured LAI

Estim

ated

LA

I

- 15%

+15%

RRMSE = 0.11

Potatoes

Sug. Beet

Alfalfa

Page 29: Retrieval of vegetation biophysical parameters by

585000

Simulatedspectral profiles

Points in the parameter space are uniformely taken:

PROSPECT N=[1.5 1.7 … 2.5]Cab=[10 15 … 70]Cw=0.011Cm=[0.002 0.004 … 0.02]SAILHLAI=[1 1.2 … 6.8]HOT=[0.05 0.15 … 0.5]LIDFS=[Planophile; Plagiophile; Extremophile; Erectophile; Spherical]Esky=0.13

Geometry of illumination and observation was fixedby time of acquisition and Chris/PROBA orbit

CHRIS/PROBA 12/07/2003 Barrax

Image extracted spectral profile

Estimated parameters (LAI)

RRMSE minimum

Look-up table theory and settings

Page 30: Retrieval of vegetation biophysical parameters by

0

1

2

3

4

5

6

7

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

Measured LAI

Estim

ated

LA

I

LAITheor.

Look-up table results

0

1

2

3

4

5

6

7

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

Measured LAI

Estim

ated

LA

I AlfalfaPotatoesOnionCornSugar beetTheor

Potatoes

Alfalfa

RRMSE = 0.55

Page 31: Retrieval of vegetation biophysical parameters by

+ 55 + 36 0- 36 - 55

AlfalfaLAI Estim. 1.8

LAI Meas. 1.9

Look-up table Alfalfa

Page 32: Retrieval of vegetation biophysical parameters by

Look-up table Potatoes

+55+36 0 -36 -55

PotatoesLAI Estim. 2.6

LAI Meas. 5.6

Page 33: Retrieval of vegetation biophysical parameters by

Conclusion

• LAI WAS ESTIMATED WITH AN ACCURACY OF AROUND 15% FOR CROPS CLOSE TO THE TURBID MEDIUM HYPOTHESIS

• PEST IS A GOOD TOOL TO ESTIMATE LAI OF SOME CROPS (ALFALFA AND POTATOES) WITH LITTLE A PRIORI KNOWLEDGE. PROBABILY FOR DIFFERENT CROPS (CORN, ONION) IT IS NEEDED TO ADD MORE A PRIORI KNOWLEDGE TO AVOID “ILL-POSED INVERSION PROBLEM”

• LUT PROBABILY NEED FINEST AND BETTER PARAMETERS SPACE SAMPLING TO BETTER ESTIMATE BIOPHYSICAL PARAMETERS

Page 34: Retrieval of vegetation biophysical parameters by

Future steps

• WE HAVE TO BETTER DEFINE A PRIORI KNOWLEDGE FOR CORN, ONION, WHEAT

• WE NEED TO BETTER UNDERSTAND THE INFLUENCE OF THE SOIL IN THE RADIOMETRIC SIGNAL FOR MULTI-ANGULAR AND HYPERSPECTRAL SATELLITE DATA ON VEGETATION WITH DIFFERENT LAI.

• WE HAVE TO TEST DIFFERENT INVERSION ALGORITHMS (NEURAL NETWORKS, GENETHIC ALG.)