retaining wall

31
concrete = 22 x 2,500,000 = 54,687,500 63% reinforcement = 1,302 x 25,000 = 32,547,380 37% Rp 87,234,880 ,- /m' reinforcement = 59.52 kg/m3-concrete 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

Upload: dewan

Post on 14-Apr-2016

37 views

Category:

Documents


7 download

DESCRIPTION

dinding penahan

TRANSCRIPT

Page 1: Retaining Wall

concrete = 22 x 2,500,000 = 54,687,500 63%

reinforcement = 1,302 x 25,000 = 32,547,380 37%

Rp 87,234,880 ,- /m'

reinforcement = 59.52 kg/m3-concrete

0.001.00

2.003.00

4.005.00

6.007.00

8.009.00

10.0011.00

12.0013.00

14.0015.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

Page 2: Retaining Wall

1 0.00 0.002 0.00 1.003 1.00 1.504 1.00 11.505 1.30 11.506 2.50 1.507 10.00 1.008 10.00 0.009 0.00 0.00

1 0.00 2.002 1.00 2.00

1 1.00 7.502 10.00 7.50

1 0.00 6.502 1.00 6.50

Page 3: Retaining Wall

302650898.xls-02/01/2016

Location : PERUM UNMUL

Top wall level = 79.00 mDinding Penahan River bed level = 69.50 m

Ground water level = 75.00 m

River water level = 74.00 m

Foundation level = 67.50 m

Dimension (unit length)

H = 11.50 m B = 10.00 m L = 1.00 m

= 1.20 m = 0.30 m = 0.00 m

= 7.50 m = 1.50 m = 1.00 m

= 11.50 m = 1.00 m = 0.50 m

= 2.00 m = 7.50 m = 6.50 m

q = 0.50 Kh = 0.18

Backfill soil = 2.50 = 1.00

= 1.80

= 2.00 = 0.00 (for stability analysis) = 30.0 = 6.84 (for structural analysis)

c = 0.00 = 0.00

Section of Retaining wall Foundation soil

= 1.00 Safety factor (normal) (seismic)

= 30.0 Overturning < B/6=1.92 B/3=3.33

= 0.00 Sliding > 2.00 1.25

Friction coefficient = 0.50 qmax > qa=qu/3 qae=qu/2

Uplift coefficient Allowable stress

= 1.00 = 60 90

Cover of bar = 1850 2775

Wall = 5.5 8.25

= 7 cm Young's modulus ratio

= 7 cm 24 16

Footing

= 7 cm

= 7 cm

b11

b12

b13

b21

b22

b23

h1

h31

h32

h4

hw1

hw2

t/m2

c t/m3 w t/m3

soil t/m3

sat t/m3 o

o o

t/m2 o

s' t/m3

B

o |e|c

B t/m2 fs

Reaction of foundation soil

U Compressive ca kg/cm2

Tensile sa kg/cm2

Shear a kg/cm2

d back

d front

d upper

d lower

b12

H=h1

h31

b21 b

23

q (t/m2)

h4

b11

b13

b22

h32

hw1

hw2

B

Page 4: Retaining Wall

302650898.xls-02/01/2016

STABILITY : Dinding PenahanS

Normal Condition Seismic Condition

a) Stability against overturning a) Stability against overturning

= 0.67 m < B/6 = 1.67 m OK! = 1.06 m < B/3 = 3.33 m OK!

b) Stability against sliding b) Stability against sliding

Fs = 2.04 > 2.00 OK! Fs = 1.27 > 1.25 OK!

= 26.88 < = 48.67 OK! = 29.91 < = 73.00 OK!

= 16.64 < = 48.67 OK! = 12.74 < = 73.00 OK!

|e| |e|

c) Reaction of foundation soil c) Reaction of foundation soil

q1 t/m2 q

a t/m2 q1 t/m2 q

ae t/m2

q2 t/m2 q

a t/m2 q2 t/m2 q

ae t/m2

Page 5: Retaining Wall

302650898.xls-02/01/2016

Stressing of Reinforcement and Concrete Name of Structure : Dinding Penahan Location : PERUM UNMUL

Normal Condition = 60

= 1850

= 5.5Young's modulus ratio = 24

Item Section A-A Section B-B Section C-C Section D-D100.0 100.0 100.0 100.0

h (cm) 78.0 150.0 150.0 150.07.0 back 7.0 back 7.0 lower 7.0 upper7.0 front 7.0 front 7.0 upper 7.0 lower

71.0 143.0 143.0 143.0

M (ton m) 7 108 12 108 S (ton) 5 31 23 21

Bar size and spacing (mm)

Bar (As1) D 25 - 200 D 25 - 100 D 25 - 200 D 25 - 200Section of Retaining wall Bar (As2) D 16 - 250 D 16 - 125 D 25 - 200 D 25 - 200

10 OK! 36 OK! 5 OK! 46 OK!467 OK! 1723 OK! 367 OK! 3342 NO!0.72 OK! 2.14 OK! 1.63 OK! 1.49 OK!

Seismic Condition = 90

= 2775

= 8.25Young's modulus ratio = 16

Item Section A-A Section B-B Section C-C Section D-D100.0 100.0 100.0 100.0

h (cm) 78.0 150.0 150.0 150.07.0 7.0 7.0 7.07.0 7.0 7.0 7.0

71.0 143.0 143.0 143.0

M (ton m) 10 163 13 162 S (ton) 8 46 26 27

Bar size and spacing (mm)

Bar (As1) D 25 - 200 D 25 - 100 D 25 - 200 D 25 - 200Section of Retaining wall Bar (As2) D 16 - 250 D 16 - 125 D 25 - 200 D 25 - 200

16 OK! 63 OK! 7 OK! 82 OK!659 OK! 2559 OK! 404 OK! 4953 NO!1.06 OK! 3.22 OK! 1.81 OK! 1.91 OK!

Allowable compressive stress (ca

) kg/cm2

Allowable tensile stress (sa

) kg/cm2

Allowable shearing stress (a) kg/cm2

b (cm)

d1 (cm) d2 (cm) d (cm)

Stress c Stress s Stress

Allowable compressive stress (ca

) kg/cm2

Allowable tensile stress (sa

) kg/cm2

Allowable shearing stress (a) kg/cm2

b (cm)

d1 (cm) d2 (cm) d (cm)

Stress c Stress s Stress

D C

BB

A A

CD

D C

BB

A A

CD

Page 6: Retaining Wall

Stability6/31

302650898.xls-02/01/2016

1. Design Data

1.1 Dimensions

B = 10.00 m H = 11.50 m

L = 1.00 m (unit length)

= 1.20 m = 7.50 m

= 0.30 m = 1.50 m

= 0.00 m = 1.00 m

= 11.50 m = 2.00 m

= 1.00 m = 7.50 m

= 0.50 m = 6.50 m

1.2 Parameters

q = 0.50

= 0.00 Section of Retaining Wall

= 2.50

= 1.00

Backfill soil Safety factor

= 1.80 = 1.00 Overturning

= 2.00 = 0.00 normal |e|<B/6=1.67m

c = 0.00 = 30.00 seismic |e|<B/3=3.33m

= 30.00 = 0.50 (Friction coefficient) Sliding

= (Uplift coefficient) normal 2.00

= 0.000 seismic 1.25

= 0.000 (for stability analysis) Reaction of foundation soil

= 6.843 (for structural analysis) normal

= 0.000 qa=qu/3

= 20.00 seismic

= 24.23 (for stability analysis in seismic condition, see Section 2.3) qae=qu/2

= 15.00

= 10.204 Kh = 0.18

2. Stability Calculation

2.1 Case 1 (Normal condition, with vertical live load)1.20

q = 0.50 0.30

0.00

11.50 10.00

0.50

7.50

2.00 6.50

1.00

7.50 1.50 1.00

Acting Load in Case 1

b11

b21

b12

b22

b13

b23

h1

h4

h31

hw1

h32 h

w2

t/m2 (for normal condition)

t/m2 (for seismic condition)

c t/m3

w t/m3

Foundation soil

soil t/m3 s' t/m3 (=

sat

w)

sat t/m3 c

B t/m2

t/m2 B

o

o

U fs >o fs >o

o qmax<qao (for stability analysis in normal condition, = )o (for structural analysis in normal condition, = 2/3 ) qmax<qaeo

o (for structural analysis in seismic condition, = 1/2 )o ( =Arc tan(Kh) )

t/m2

q (t/m2)b

12

b21

b22

b23

hw1

H=h1

h31

b11

b13

h32 h4

hw2

B

Pw1 Pa4

Pa2

Pa1

qa2

qa3qw1 qa4

Pa3

O

Pp1

qa1

qp1

7

1

10

12

9

2 3

5

6

8

4

11

Pw2

qw2qu2

Pu1Pu2

qu1

Page 7: Retaining Wall

Stability7/31

302650898.xls-02/01/2016

(1) Vertical Load

No. Description W X W x X1 1.00 x 7.50 x 2.50 18.750 6.250 117.192 1.50 x 1.50 x 2.50 5.625 1.750 9.843 1.00 x 1.00 x 2.50 2.500 0.500 1.254 0.50 x 0.50 x 7.50 x 2.50 4.688 5.000 23.445 0.50 x 0.50 x 1.00 x 2.50 0.625 0.333 0.216 0.50 x 10.00 x 1.20 x 2.50 15.000 2.100 31.507 10.00 x 0.30 x 2.50 7.500 1.150 8.638 0.50 x 10.00 x 0.00 x 2.50 0.000 1.000 0.009 0.50 x 10.00 x 1.20 x 1.80 10.800 2.100 22.6810 7.50 x 4.00 x 1.80 54.000 6.250 337.5011 7.50 x 6.00 x 2.00 90.000 6.250 562.5012 0.50 x 7.50 x 0.50 x 2.00 3.750 7.500 28.13q 0.50 x 8.70 4.350 5.650 24.58

T o t a l(1 to q) 217.588 1,167.45Pu1 7.50 x 10.00 x 0.50 x -1.00 -37.500 6.667 -250.00Pu2 6.50 x 10.00 x 0.50 x -1.00 -32.500 3.333 -108.33

Total ( 1 to Pu2) 147.588 809.11

(2) Horizontal Load

Coefficient of Active earth pressure

Ka =

(for stability analysis)

= 0.000 = 0.000

= 0.750 = 0.500

= 1.000 = 0.500

= 1.000 = 1.000

Ka = 0.333 for stability analysis

(for structural analysis)

= 6.843 = 20.000

= 0.845 = 0.766

= 0.986 = 0.500

= 0.892 = 0.993

Ka' = 0.350 for structural analysis

Coefficient of Passive earth pressure

Kp =

= 0.000 = 0.000

= 0.750 = 0.500

= 1.000 = 0.500= 1.000 = 1.000

Kp = 3.000

qa1 = Ka x q = 0.167 ton/m

qa2 = = 2.400 ton/mqa3 = qa1 + qa2 = 2.567 ton/m

qa4 = = 2.500 ton/m

qw 1 = = 7.500 ton/m

qw 2 = = 6.500 ton/m

qp1 = = 6.000 ton/m

o o

Cos2(-) Sin(+)

Cos2 SinCos(+) Cos

o o

Cos2(-) Sin(+)

Cos2 SinCos(+) Cos

o o

Cos2(+) Sin(+)

Cos2 SinCos(-) Cos

Ka x (h1- h

w1) x

soil

Ka x hw1

x (sat

- w)

hw1

x w

hw2

x w

Kp x h4 x (

sat -

w)

2

Cos2(-)

Cos2 x Cos(+) x 1+Sin(+) x Sin

Cos(+) x Cos

2

Cos2(+)

Cos2 x Cos(-) x 1 -Sin(+) x Sin

Cos(-) x Cos

Page 8: Retaining Wall

Stability8/31

302650898.xls-02/01/2016

No. Description H Y H x YPa1 0.167 x 4.00 0.667 9.500 6.33Pa2 2.400 x 4.00 x 0.50 4.800 8.833 42.40Pa3 2.567 x 7.50 19.250 3.750 72.19Pa4 2.500 x 7.50 x 0.50 9.375 2.500 23.44Pw1 7.500 x 7.50 x 0.50 28.125 2.500 70.31Pw2 -6.500 x 6.50 x 0.50 -21.125 2.167 -45.77Pp1 -6.000 x 2.00 x 0.50 -6.000 0.667 -4.00

T o t a l 35.092 164.90

(3) Stability Calculation

a) Stability against overturning a) -1 Without Uplift

B = 10.00 m

1,167.45 - 164.90X = = = 4.608 m

217.588

B 10.00e = - X = - 4.608 = 0.392 m < B/6 = 1.667 m OK !

2 2 a) -2 With Uplift

B = 10.00 m

809.11 - 164.90X = = = 4.365 m

147.588

B 10.00e = - X = - 4.365 = 0.635 m < B/6 = 1.667 m OK !

2 2

b) Stability against sliding b)-1 Without Uplift Sliding force : = 35.092 ton

Resistance : = 0.50 x 217.588 = 108.794 ton

0.50 )

HR 108.794Fs = = = 3.100 > 2.00 OK !

35.092 b)-2 With Uplift Sliding force : = 35.092 ton

Resistance : = 0.50 x 147.588 = 73.794 ton

0.5 )

HR 73.794Fs = = = 2.103 > 2.00 OK !

35.092

c) Reaction of foundation soil6 x e

q1,2 = x ) B B

217.588 6 x 0.392

q1 = x (1 + ) = 26.876 < qa = 48.667 OK !10.00 10.00

217.588 6 x 0.392

q2 = x (1 - ) = 16.641 < qa = 48.667 OK !10.00 10.00

Reaction of Foundation Soil in Case 1

16.641 -

26.876 -

W x X - H x Y

W

W x X - H x Y

W

H

HR = x W

(friction coefficient : =

H

H

HR = x W

(friction coefficient : =

H

W(1 +

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

in case, e > 0 in case, e < 0

Page 9: Retaining Wall

Stability9/31

302650898.xls-02/01/2016

(applicable) (not applicable)

Page 10: Retaining Wall

Stability10/31

302650898.xls-02/01/2016

2.2 Case 2 (Normal condition, without vertical live load)1.20

q = 0.50 0.30

0.00

11.50 10.00

0.50

7.50

2.00 6.50

1.00

7.50 1.50 1.00

Acting Load in Case 2

(1) Vertical Load

No. Description W X W x X1 1.00 x 7.50 x 2.50 18.750 6.250 117.19 2 1.50 x 1.50 x 2.50 5.625 1.750 9.84 3 1.00 x 1.00 x 2.50 2.500 0.500 1.25 4 0.50 x 0.50 x 7.50 x 2.50 4.688 5.000 23.44 5 0.50 x 0.50 x 1.00 x 2.50 0.625 0.333 0.21 6 0.50 x 10.00 x 1.20 x 2.50 15.000 2.100 31.50 7 10.00 x 0.30 x 2.50 7.500 1.150 8.63 8 0.50 x 10.00 x 0.00 x 2.50 0.000 1.000 0.00 9 0.50 x 10.00 x 1.20 x 1.80 10.800 2.100 22.68 10 7.50 x 4.00 x 1.80 54.000 6.250 337.50 11 7.50 x 6.00 x 2.00 90.000 6.250 562.50 12 0.50 x 7.50 x 0.50 x 2.00 3.750 7.500 28.13

T o t a l (1 to 12) 213.238 1142.87 Pu1 7.50 x 10.00 x 0.50 x -1.00 -37.500 6.667 -250.00 Pu2 6.50 x 10.00 x 0.50 x -1.00 -32.500 3.333 -108.33

Total ( 1 to Pu2) 143.238 784.54

(2) Horizontal Load

Coefficient of Active earth pressure

Ka = 0.333 (for stability analysis)

Ka ' = 0.350 (for structural analysis)

Coefficient of Passive earth pressure

Kp = 3.000

qa1 = Ka x q = 0.167 ton/m

qa2 = = 2.400 ton/m

qa3 = qa1 + qa2 = 2.567 ton/m

qa4 = = 2.500 ton/m

qw 1 = = 7.500 ton/m

qw2 = = 6.500 ton/m

qp1 = = 6.000 ton/m

No. Description H Y H x YPa1 0.167 x 4.00 0.667 9.500 6.33Pa2 2.400 x 4.00 x 0.50 4.800 8.833 42.40Pa3 2.567 x 7.50 19.250 3.750 72.19Pa4 2.500 x 7.50 x 0.50 9.375 2.500 23.44Pw1 7.500 x 7.50 x 0.50 28.125 2.500 70.31Pw2 -6.500 x 6.50 x 0.50 -21.125 2.167 -45.77Pp1 -6.000 x 2.00 x 0.50 -6.000 0.667 -4.00

t/m2

Ka x (h1- h

w1) x

soil

Ka x hw1

x (sat

- w)

hw1

x w

hw2

x w

Kp x h4 x (

sat -

w)

Pw1 Pa4

Pa2

Pa1

qa2

qa3qw1 qa4

Pa3

O

9

Pp1

qa1

qp1

7

1

10

12

2 3

5

6

8

4

11

Pw2

qw2qu2 Pu2

qu1

Pu1

Page 11: Retaining Wall

Stability11/31

302650898.xls-02/01/2016

T o t a l 35.092 164.90

Page 12: Retaining Wall

Stability12/31

302650898.xls-02/01/2016

(3) Stability Calculation

a) Stability against overturning a)-1 Without Uplift

B = 10.00 m

1,142.87 - 164.90X = = = 4.586 m

213.238

B 10.00e = - X = - 4.586 = 0.414 m < B/6 = 1.667 m OK !

2 2 a)-2 With Uplift

B = 10.00 m

784.54 - 164.90X = = = 4.326 m

143.238

B 10.00e = - X = - 4.326 = 0.674 m < B/6 = 1.667 m OK !

2 2

b) Stability against sliding b)-1 without Uplift Pressure Sliding force : = 35.092 ton

Resistance : = 0.50 x 213.238 = 106.619 ton

0.5 )

HR 106.619Fs = = = 3.04 > 2.00 OK !

35.092 b)-2 with Uplift Pressure Sliding force : = 35.092 ton

Resistance : = 0.50 x 143.238 = 71.619 ton

0.5 )

HR 71.619Fs = = = 2.04 > 2.00 OK !

35.092

c) Reaction of foundation soil

6 x eq1,2 = x )

B B

213.238 6 x 0.414

q1 = x (1 + ) = 26.621 < qa = 48.667 OK !10.00 10.00

213.238 6 x 0.414

q2 = x (1 - ) = 16.027 < qa = 48.667 OK !10.00 10.00

16.027 -

26.621 -

(applicable) (not applicable)

Reaction of Foundation Soil in Case 2

W x X - H x Y

W

W x X - H x Y

W

H

HR = x W

(friction coefficient : =

H

H

HR = x W

(friction coefficient : =

H

W(1 +

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

in case, e > 0 in case, e < 0

Page 13: Retaining Wall

Stability13/31

302650898.xls-02/01/2016

2.3 Case 3 (Seismic condition)1.20

0.30

0.00

11.50 10.00

0.50

7.50

2.00 6.50

1.00

7.50 1.50 1.00

Acting Load in Case 3

(1) Vertical Load = Same as Case 2

(2) Horizontal Load

= 30.00 = 0.000 (for stability analysis) = 10.204 = 0.00 = 6.843 (for structural analysis) =

q = 0.00 Kh = 0.18

Coefficient of Active earth pressure

Kae =

(for stability analysis)

= 0.000 = 24.23

= 0.177 = 0.500

= 0.354 then = 20.73

0.514 0.858

= 0.450

0.885 = 0.811

= 0.984 = 0.339

= 1.000 = 1.000

= 0.825

Kae = 0.438 (for stability analysis)

(for structural analysis)

= 6.843 = 15.00

0.950 = 0.707

= 0.984 = 0.339

= 0.986 = 0.993

0.848

o o o

o o ( Arc tan(Kh) )

t/m2 (for seismic condition)

o o

tan = Sin Sin ( + - )Sin Cos ( + - )

sin = Sin ( + )Sin

Sin (+ ) = Sin Sin Sin(+-) = Cos(+-)=

tan

Cos2(--)= Sin(Cos Sin(--)

Cos2 Cos(-)

Cos(+)

o o

Cos2(--)= Sin(Cos Sin(--)

Cos2 Cos(-)

Cos(+)=

2

Cos2()

Cos x Cos2 x Cos() x 1+Sin( x Sin()

Cos() x Cos()

Pa1

qa1

qa2qa3qw1

Pa2

Pa3Pw1

O

7

1

10

12

9

2 3

5

6

8

4

11

Pw2

qw2

Pp1

qp1Pu1

qu2 Pu2qu1

Page 14: Retaining Wall

Stability14/31

302650898.xls-02/01/2016

Kae = 0.491 (for structural analysis)

Coefficient of Passive earth pressure

Kpe =

= 0.000 = 24.23

0.885 = 0.101= 0.984 = 0.339

= 1.000 = 1.0000.970

Kpe = 1.406

qa1 = = 3.154 ton/mqa2 = qa2 = 3.154 ton/m

qa3 = = 3.285 ton/m

qw 1 = = 7.500 ton/m

qw 2 = = 6.500 ton/m

qp1 = = 2.812 ton/m

No. Description H Y H x Y1 0.18 x 18.75 3.375 0.500 1.692 0.18 x 5.63 1.013 0.750 0.763 0.18 x 2.50 0.450 0.500 0.234 0.18 x 4.69 0.844 1.167 0.985 0.18 x 0.63 0.113 1.167 0.136 0.18 x 15.00 2.700 4.833 13.057 0.18 x 7.50 1.350 6.500 8.788 0.18 x 0.00 0.000 4.833 0.00

Pw1 0.50 x 7.50 x 7.50 28.125 2.500 70.31Pw2 0.50 x -6.50 x 6.50 -21.125 2.167 -45.77Pa1 0.50 x 3.15 x 4.00 6.307 8.833 55.71pa2 3.15 x 7.50 23.652 3.750 88.70Pa3 0.50 x 3.285 x 7.50 12.319 2.500 30.80Pp1 -2.812 x 2.00 x 0.50 -2.812 2.000 -5.62

T o t a l 56.310 219.74

(3) Stability Calculation

a) Stability against overturning a)-1 Without Uplift

B = 10.00 m

1,142.87 - 219.74X = = = 4.329 m

213.238

B 10.00e = - X = - 4.329 = 0.671 m < B/3 = 3.333 m OK !

2 2

B = 10.00 m

784.54 - 219.74X = = = 3.943 m

143.238

B 10.00e = - X = - 3.943 = 1.057 m < B/3 = 3.333 m OK !

2 2

o o

Cos2(-)= Sin(Cos Sin(-)

Cos2 Cos(-)Cos()=

Kae x ( h1 - h

w1) x

soil

Kae x hw1

x (sat

- w)

hw1

x w

hw2

x w

Kp x h4 x (

sat -

w)

W x X - H x Y

W

a)-2 With Uplift

W x X - H x Y

W

2

Cos2()

Cos x Cos2 x Cos() x 1Sin( x Sin()

Cos() x Cos()

Page 15: Retaining Wall

Stability15/31

302650898.xls-02/01/2016

b) Stability against sliding b)-1 Without Uplift Sliding force : = 56.310 ton

Resistance : = 0.50 x 213.238 = 106.619 ton

0.50 )

HR 106.619Fs = = = 1.89 > 1.25 OK !

56.310 b)-2 With Uplift Sliding force : = 56.310 ton

Resistance : = 0.50 x 143.238 = 71.619 ton

0.50 )

HR 71.619Fs = = = 1.27 > 1.25 OK !

56.310

c) Reaction of foundation soil

(applicable)

6 x eq1,2 = x )

B B

213.238 6 x 0.671

q1 = x (1 + ) = 29.909 < qae = 73.000 OK !10.00 10.00

213.238 6 x 0.671

q2 = x (1 - ) = 12.739 < qae = 73.000 OK !10.00 10.00

(not applicable)

q1' = = = - qae = -3 x (B/2-|e|)

12.739

29.909 -

(applicable) (not applicable)

-

- -

(not applicable) (not applicable)

Reaction of Foundation Soil in Case 3

H

HR = x W

(friction coefficient : =

H

H

HR = x W

(friction coefficient : =

H

c-1) in case, |e| < B/6

W(1 +

t/m2 t/m2

t/m2 t/m2

c-2) in case, B/6 < |e| < B/3

2 x W

t/m2 t/m2

t/m2

t/m2 t/m2

in case, e > 0 and e < B/6 in case, e > 0 and B/6 < e < B/3

t/m2

t/m2 t/m2

in case, e < 0 and |e| < B/6 in case, e < 0 and B/6 < |e| < B/3

Page 16: Retaining Wall

Stability16/31

302650898.xls-02/01/2016

2.4 Bearing Capacity of soil

(1) Design Data

= 30.00 = 0.00 = 1.00

B = 10.00 m z = 2.00 m L = 1.00 m (unit length)

(2) Ultimate Bearing Capacity of soil, (qu) ######

Calculation of ultimate bearing capacity will be obtained by applying the following ### Terzaghi's formula : ###

###

qu = ######

Shape factor (Table 2.5 of KP-06) ###

= 1.00 = 0.50

Shape of footing : 1 (strip)

Shape of footing 1 strip 1.00 0.502 square 1.30 0.403 rectangular, B x L 1.11 0.40

(= 1.09 + 0.21 B/L)(B > L) (= 1.09 + 0.21 L/B)

4 circular, diameter = B 1.30 0.30

Bearing capacity factor (Figure 2.3 of KP-06, by Capper)

Nc = 36.0 Nq = 23.0 = 20.0

Nc Nq0 5.7 0.0 0.05 7.0 1.4 0.0

10 9.0 2.7 0.215 12.0 4.5 2.320 17.0 7.5 4.725 24.0 13.0 9.530 36.0 23.0 20.035 57.0 44.0 41.037 70.0 50.0 55.039 > 82.0 50.0 73.0

= 0.000

= 46.000

= 100.000

qu = 146.000

(3) Allowable Bearing Capacity of soil, (qa)

qa = qu / 3 = 48.667 (safety factor = 3 , normal condition)

qae = qu / 2 = 73.000 (safety factor = 2 , seismic condition)

B

o cB t/m2

s' t/m3 (=

sat

w)

( x c x Nc) + (soil

' x z x Nq) + ( x soil

x B x N)

(B < L)

N

N

( x c x Nc)

(soil

x z x Nq)

( x soil

x B x N)

t/m2

t/m2

t/m2

Page 17: Retaining Wall

Structure17/31

302650898.xls-02/01/2016

3. Structure Calculation

3.1 Normal Condition

(1) Wall 1.20

q = 0.50 0.30

0.00

10.00

0.9

6.00 5.00

0.50

1.00 1.00

7.50 1.50 1.00

Load Diagram on Wall in Normal ConditionKa = 0.350

= 6.843 = 20.00

= 0.892

= = 0.312

a) Section A - A

h = 4.00 m

qa1 = = 0.156 ton/m

qa2 = = 2.246 ton/m

No. Description Ha Y (from A-A) Ha x YPa1 0.156 x 4.00 0.624 2.000 1.248 Pa2 2.246 x 4.00 x 0.50 4.493 1.333 5.990

T o t a l 5.117 7.238

Sa = 5.117 ton Ma = 7.238 ton m

b) Section B - B

h = 4.00 m = 6.00 m = 5.00 m

qa1 = = 0.156 ton/m

qa2 = = 2.246 ton/mqa3 = qa1 + qa2 = 2.402 ton/m

qa4 = = 1.872 ton/m

qw1 = = 6.000 ton/m

qw2 = = 5.000 ton/m

No. Description Hb Y (from B-B) Ha x YPa1 0.156 x 4.00 0.624 8.000 4.992 Pa2 2.246 x 4.00 x 0.50 4.493 7.333 32.947 Pa3 2.402 x 6.00 14.414 3.000 43.243 Pa4 1.872 x 6.00 x 0.50 5.616 2.000 11.232 Pw1 6.000 x 6.00 x 0.50 18.000 2.000 36.000 Pw2 -5.000 x 5.00 x 0.50 -12.500 1.667 (20.833)

T o t a l 30.647 107.581

Sb = 30.647 ton Mb = 107.581 ton m

t/m2

o

o

cos (+)

Kha Ka x cos (+)

Kha

x q

Kha

x h x soil

hw1

hw2

Kha

x q

Kha

x h x soil

Kha

x hw2

x (sat

- w)

hw1

x w

hw2

x w

qa1

qa4 qa3qw1

Pw1 Pa4

Pa2

Pa1

qa2

Pa3 B

A

B

A

Pw2

qw2

Page 18: Retaining Wall

Structure18/31

302650898.xls-02/01/2016

(2) FootingCase 1 (with vertical live load) Case 2 (without vertical live load)

q = 0.50 q = 0.50

4.00 4.00

6.00 6.00

0.50 0.50

1.00 1.00

7.50 1.50 1.00 7.50 1.50 1.00

10.235

25.085 16.641 16.027

24.317 23.973

25.853 25.562

26.876 26.621

in case, e < 0 in case, e < 0

- - - -

- - - -

Load Diagram on Footing in Normal Case

a) Section C - C

Case 1 (with vertical live load)No. Description Hc X (from C-C) Hc x X1 1.000 x 1.00 x 2.50 2.500 0.500 1.250

0.500 x 1.00 x 2.50 x 0.50 0.625 0.333 0.2082 -25.853 x 1.00 -25.853 0.500 -12.926

-1.024 x 1.00 x 0.50 -0.512 0.667 -0.341 T o t a l -23.239 -11.809

Case 2 (without vertical live load)No. Description Hc X (from C-C) Hc x X1 1.000 x 1.00 x 2.50 2.500 0.500 1.250

0.500 x 1.00 x 2.50 x 0.50 0.625 0.333 0.2082 -25.562 x 1.00 -25.562 0.500 -12.781

-1.059 x 1.00 x 0.50 -0.530 0.667 -0.353 T o t a l -22.966 -11.676

Case 1 Sc = -23.239 ton Mc = -11.809 ton mCase 2 Sc = -22.966 ton Mc = -11.676 ton m

t/m2 t/m2

in case, e > 0 in case, e > 0

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2

t/m2 t/m2 t/m2 t/m2

t/m2 t/m2 t/m2 t/m2

1

1

C

C

D

D

4

3

26

1

C

C

D

D

3

4

3 1 3

4

5

4

62 2

6

26

Page 19: Retaining Wall

Structure19/31

302650898.xls-02/01/2016

b) Section D - D

Case 1 (with vertical live load)No. Description Hd X (from D-D) Hd x Y3 1.000 x 7.50 x 2.50 18.750 3.750 70.313

0.500 x 7.50 x 2.50 x 0.50 4.688 2.500 11.7194 4.000 x 7.50 x 1.80 54.000 3.750 202.500

6.000 x 7.50 x 2.00 90.000 3.750 337.5000.500 x 7.50 x 2.00 x 0.50 3.750 5.000 18.750

5 0.500 x 7.50 3.750 3.750 14.0636 -16.641 x 7.50 -124.808 3.750 -468.028

-7.676 x 7.50 x 0.50 -28.786 2.500 -71.965 T o t a l 21.344 114.851

Case 2 (without vertical live load)No. Description Hd X (from D-D) Hd x Y3 1.000 x 7.50 x 2.50 18.750 3.750 70.313

0.500 x 7.50 x 2.50 x 0.50 4.688 2.500 11.7194 4.000 x 7.50 x 1.80 54.000 3.750 202.500

6.000 x 7.50 x 2.00 90.000 3.750 337.5000.500 x 7.50 x 2.00 x 0.50 3.750 5.000 18.750

6 -16.027 x 7.50 -120.203 3.750 -450.759-7.946 x 7.50 x 0.50 -29.796 2.500 -74.489

T o t a l 21.189 115.533

Case 1 Sd = 21.344 ton Md = 114.851 ton mcase 2 Sd = 21.189 ton Md = 115.533 ton m

3.2 Seismic Condition

(1) Wall 1.20

0.30

0.00

10.00

10.50

6.00 5.00

0.50

1.00 1.00

7.50 1.50 1.00

Load diagram on Wall for Seismic caseKae = 0.491

= 6.843 = 15.00

= 0.928

= = 0.456 Kh = 0.18

a) Section A - A

h = 4.00 m

qa1 = = 3.281 t/mNo. Description Hae Y (from A-A) Hae x Y1 0.500 x 4.000 x 0.480 x 2.500 x 0.180 0.432 1.333 0.576 2 4.000 x 0.300 x 2.500 x 0.180 0.540 2.000 1.080 3 0.500 x 4.000 x 0.000 x 2.500 x 0.180 0.000 1.333 0.000

Pa1 3.281 x 4.000 x 0.500 6.563 1.333 8.750 T o t a l 7.535 10.406

Sae = 7.535 ton Mae = 10.406 ton m

o

o

cos (+)

Khea Kae x cos (+)

Khae

x h x soil

2

Pa2

Pa1

qa2

qa1

qa3

Pa3

A A

B B

1 3

Pw1 Pw2

qw2qw1

Page 20: Retaining Wall

Structure20/31

302650898.xls-02/01/2016

b) Section B - B

h = 4.00 m = 6.00 m = 5.00 m

qa1 = = 3.535 t/mqa2 = qa1 = 3.535 t/m

qa3 = = 2.734 t/m

qw1 = = 6.000 ton/m

qw2 = = 5.000 ton/m

No. Description Hbe Y (from B-B) Hbe x YPa1 3.535 x 4.00 x 0.50 7.070 7.333 51.850Pa2 3.535 x 6.00 21.211 3.000 63.634Pa3 2.734 x 6.00 x 0.50 8.203 2.000 16.407Pw1 6.000 x 6.00 x 0.50 18.000 2.000 36.000Pw2 -5.000 x 5.00 x 0.50 -12.500 1.667 -20.833

1 0.500 x 10.00 x 1.20 x 2.50 x 0.18 2.700 3.333 9.0002 10.000 x 0.30 x 2.50 x 0.18 1.350 5.000 6.7503 0.500 x 10.00 x 0.00 x 2.50 x 0.18 0.000 3.333 0.000

T o t a l 46.035 162.807

Sbe = 46.035 ton Mbe = 162.807 ton m

(2) Footing

4.00 4.00

6.00 6.00

0.50 0.50

1.00 1.00

7.50 1.50 1.00 7.50 1.50 1.00

12.739 -

25.617

28.192 -

29.909 -

in case, e < 0 and |e| < B/6

- - - -

- - -

Load Diagram on Footing in Seismic Case

hw1

hw2

Khae

x h x soil

Khae

x hw1

x ( sat

- w)

hw1

x w

hw2

x w

in case, e < B/6 in case, B/6 < e < B/3

in case, e > 0 ande < B/6 in case, e > 0 and B/6 < e < B/3

t/m2 t/m2

t/m2

t/m2 t/m2

t/m2 t/m2

in case, e < 0 and B/6 < |e| < B/3

t/m2 t/m2 t/m2 t/m2

t/m2 t/m2 t/m2

D

1

1

C

C

D

D

2

4

5

3 1

C

C

D

D

2

3

4

3 1 3

4 4

6

62

2

6

Page 21: Retaining Wall

Structure21/31

302650898.xls-02/01/2016

a) Section C - C

No. Description Hce X (from C-C) Hce x X1 1.000 x 1.00 x 2.50 2.500 0.500 1.250

0.500 x 1.00 x 2.50 x 0.50 0.625 0.333 0.2082 -28.192 x 1.00 -28.192 0.500 -14.096

-1.717 x 1.00 x 0.50 -0.859 0.667 -0.572 T o t a l -25.926 -13.210

Sce = -25.926 ton Mce = -13.210 ton m

b) Section D - D

No. Description Hde X (from D-D) Hde x X3 1.000 x 7.50 x 2.50 18.750 3.750 70.313

0.500 x 7.50 x 2.50 x 0.50 4.688 2.500 11.7194 10.000 x 7.50 x 1.92 144.000 3.750 540.000

0.500 x 7.50 x 2.00 x 0.50 3.750 5.000 18.7505 -12.739 x 7.50 -95.543 3.750 -358.284

-12.878 x 7.50 x 0.50 -48.291 2.500 -120.727 T o t a l 27.354 161.770

Sde = 27.354 ton Mde = 161.770 ton m

3.3 Design Bending Moment and Shear Force

(1) Bending moment and shear force in each case

Description Bending Moment Shear ForceNormal Seismic Normal Seismic

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Section A - A 7.238 7.238 10.406 5.117 5.117 7.535 Section B - B 107.581 107.581 162.807 30.647 30.647 46.035 Section C - C 11.809 11.676 13.210 23.239 22.966 25.926 Section D - D 114.851 115.533 161.770 21.344 21.189 27.354

(2) Design bending moment and shear force

Description Bending Moment Shear ForceNormal Seismic Normal Seismic

Section A - A 7.238 10.406 5.117 7.535 Section B - B 107.581 162.807 30.647 46.035 Section C - C 11.809 13.210 23.239 25.926 Section D - D 107.581 161.770 21.344 27.354

Notes: --

Moment at Section C-C < Moment at Section B-BMoment at Section D-D < Moment at Section B-B

Page 22: Retaining Wall

4. Wooden Pile (Not applicable for this Project)

4.1 Bearing Capacity of a Pile

(1) Design data

Diameter of wooden pile D = 40.0 cm Length of pile L = 6.00 m

Area of pile section A = = 0.126 Perimeter of pile = = 1.257 m SPT N-Value = 30

Ni : Average N value in a soil layer = 30

fi : friction of soil = 0.20 x Ni = 6.00

(2) Ultimate vertical bearing capacity, (qu)

qu == ( 40 x 30.0 x 0.126 )+( 1.257 x 6.00 x 6.0 )= 150.796 + 45.239 = 196.035 ton/pile

(3) Ultimate vertical bearing capacity, (qu)

qa = qu/n = 196.035 / 3 = 65.345 ton/pile

(safety factor : n = 3)

4.2 Allowable horizontal bearing capacity

Horizontal bearing capacity depend on displacement of a pile

(1) Design data

Class of timber (pile) : III Class

E = 80,000 (Young's modulus) = Allowable horizontal displacement = 0.01 mN = SPT N-value is assumed as = 30

I = = 125,663.7 (I : Moment of Inertia for a pile)64

(2) Horizontal bearing capacity of one pile (Ha)

= 0.20 E = 28 x N

Kh =

= 0.20 x( 28 x 30.0 )x( 40.0 = 10.562

Kh x D 10.562 x 40.0 = = = 0.010 cm

4 EI 4 x 80,000 x 125,663.7

Kh x D 10.562 x 40.0 Ha = x = x 1 = 41,730.94

0.010= 41.731

1/4 x x D2 m2

x D

t/m2

(40 x N x A) + ( x fi x li)

kg/cm2

x D4

cm4

x E x D-3/4

)-3/4 kg/cm

4 4

Page 23: Retaining Wall

(3) Allowable horizontal bearing capacity due to the stress of a pile itself

Ha =

= Allowable stress of timber III class = 75.00

W = = 6,283.19 ; (W : section modulus of a pile)32

Ma = x W = 75.00 x 6,283.19 = 471,238.9 kg cm

Ha == 2 x 0.010 x 471,238.9 = 9,541.95 kg/pile = 9.542 ton/pile

Allowable horizontal bearing capacity acting on the pile top depend upon the allowable stress of pile itself.

4.3 Spacing of Pile (1) For horizontal load

Ha = 9.542 ton/pile ; (Ha : Horizontal load carried by pile)

Hr = H - Hf = = 56.310 - 79.196 = -22.886 ton/m

Ha 9.542 Spacing of pile = = = -0.42 m

Hr -22.886

Spacing of pile = -0.42 m (center to center) by horizontal force

(2) For vertical load

V = 217.588 ton/m : Vertical load carried by pile

qa = 65.345 ton/pile : Allowable vertical bearing capacity of a pile

qa 65.345 Spacing of pile = = = 0.30 m

V 217.588

= 6.00 m ),

Vp = ### ton/m : Vertical load carried by pile

qa = 65.345 ton/pile : Allowable vertical bearing capacity of a pile

qa 65.345 Spacing of pile = = = -0.37 m

Vp -176.410

= 6.00 m ),

2 x x Ma

kg/cm2

x D3

cm3

2 x x Ma

H - V x tan(2/3)

Spacing of pile can be determined 0.75 m for a pile ( 150, L

Spacing of pile can be determined 1.50 m for a pile ( 150, L

Page 24: Retaining Wall

cm

kg

ton

m2

kg/cm3

Page 25: Retaining Wall

ton/pile

ton/m

m ),

m ),

Page 26: Retaining Wall

Re-bar 26/31

302650898.xls-02/01/2016

Reinforcement Bar Arrangement and Stress

Normal Condition Name of Structure : Dinding Penahan Location : PERUM UNMUL

Wall (upper) Wall (lower) Footing (toe) Footing (heel)

back front back front upper upperBending moment M kgfcm 723,843 10,758,139 1,180,908 10,758,139 Shearing force (joint) S kgf 5,117 30,647 23,239 21,344 Axial force N kgf 0 0 0 0

Height of member h cm 78.0 150.0 150.0 150.0Covering depth d' cm 7.0 7.0 7.0 7.0Effective height d cm 71.0 143.0 143.0 143.0Effective width b cm 100.0 100.0 100.0 100.0Young's modulus ratio n - 24 24 24 24

Required R-bar Asreq cm2 6.20 45.72 4.87 44.3443.81

R-bar arrangement 25~200 16~250 25~100 16~125 25~200 25~200 25~200 25~200?

Reinforcement As cm2 24.54 8.04 49.09 16.08 24.54 24.54 24.54 24.54Perimeter of R-bar U cm 39.27 ok 78.54 ok 39.27 ok 39.27 ok

Dist. from neutral axis x cm 23.62 47.45 35.57 35.57

Compressive stress kgf/cm2 9.7 35.7 5.1 46.1Allowable stress kgf/cm2 60.0 60.0 60.0 60.0

ok ok ok okTensile stress kgf/cm2 467 1,723 367 3,342 Allowable stress kgf/cm2 1,850 1,850 1,850 1,850

ok ok ok checkShearing stress at joint kgf/cm2 0.72 2.14 1.63 1.49Allowable stress kgf/cm2 5.50 5.50 5.50 5.50

ok ok ok ok

Resisting Moment Mr kgfcm 2,807,924 13,748,467 5,358,172 6,389,792 Mr for compression Mrc kgfcm 2,807,924 14,771,164 7,105,412 11,447,882 x for Mrc cm 20 44 28 33

kgf/cm2 2,435 2,693 3,413 4,049 Mr for tensile Mrs kgfcm 3,281,008 13,748,467 5,358,172 6,389,792 x for Mrs cm 25 55 33 39

kgf/cm2 68 59 42 34 Distribution bar (>As/6 and >Asmin) 4.09 1.34 8.18 2.68 4.09 4.09 4.09 4.09

16~250 16~200 16~125 16~200 16~200 16~200 16~200 16~200Reinforcement As cm2 8.04 10.05 16.08 10.05 10.05 10.05 10.05 10.05

ok ok ok ok ok ok ok ok

Minimum requirement of distribution bar As min = 4.50 cm2

Section A-A Section B-B Section C-C Section D-Dlower lower

cca

ssa

a

s for Mrc

c for Mrs

Page 27: Retaining Wall

Re-bar 27/31

302650898.xls-02/01/2016

Reinforcement Bar Arrangement and Stress

Seismic ConditionName of Structure : Dinding PenahanLocation : PERUM UNMUL

Wall (upper) Wall (lower) Footing (toe) Footing (heel)

back front back frontBending moment M kgfcm 1,040,639 16,280,685 1,321,000 16,177,031 Shearing force (joint) S kgf 7,535 46,035 25,926 27,354 Axial force N kgf 0 0 0 0

Height of member h cm 78.0 150.0 150.0 150.0Covering depth d' cm 7.0 7.0 7.0 7.0Effective height d cm 71.0 143.0 143.0 143.0Effective width b cm 100.0 100.0 100.0 100.0Young's modulus ratio n - 16 16 16 16

Required R-bar Asreq cm2 5.83 45.27 3.58 43.81

R-bar arrangement 25~200 16~250 25~100 16~125 25~200 25~200 25~200 25~200?

Reinforcement As cm2 24.54 8.04 49.09 16.08 24.54 24.54 24.54 24.54Perimeter of R-bar U cm 39.27 78.54 39.27 39.27

Dist. from neutral axis x cm 20.01 40.19 29.82 29.82

Compressive stress kgf/cm2 16.2 62.5 6.7 81.6Allowable stress kgf/cm2 90.0 90.0 90.0 90.0

ok ok ok okTensile stress kgf/cm2 659 2,559 404 4,953 Allowable stress kgf/cm2 2,775 2,775 2,775 2,775

ok ok ok checkShearing stress at joint kgf/cm2 1.06 3.22 1.81 1.91Allowable stress kgf/cm2 8.25 8.25 8.25 8.25

ok ok ok ok

Resisting Moment Mr kgfcm 3,390,872 17,311,334 7,353,625 8,915,539 Mr for compression Mrc kgfcm 3,390,872 17,311,334 8,311,642 13,248,763 x for Mrc cm 17 36 23 27

kgf/cm2 3,025 3,304 4,173 4,922 Mr for tensile Mrs kgfcm 4,447,680 18,933,061 7,353,625 8,915,539 x for Mrs cm 20 43 26 31

kgf/cm2 112 99 73 60

Distribution bar (>As/6 and >Asmin) 16~250 16~200 16~125 16~200 16~200 16~200 16~200 16~200Reinforcement As cm2 8.04 10.05 16.08 10.05 10.05 10.05 10.05 10.05

Minimum requirement of distribution bar As min = 4.50 cm2

Reference: Assumed requirement of reinforcement bar Normal ConditionRequired R-bar Asreqo cm2 5.92 46.21 4.67 46.18Dist. from neutral axis cm 14.62 51.44 19.12 51.25

a -213.00 -429.00 -429.00 -429.00b -563.42 -8373.90 -919.19 -8373.90c 40003.06 1197468.06 131444.67 1197468.06

-10630 -232397 -35998 -223789 nol(check) check check check check

Reference: Assumed requirement of reinforcement bar Seismic ConditionRequired R-bar Asreqo cm2 5.60 45.69 3.44 45.38Dist. from neutral axis cm 12.17 43.75 13.73 43.61

a -213.00 -429.00 -429.00 -429.00b -360.00 -5632.24 -456.99 -5596.38c 25560.35 805409.89 65350.23 800282.11

-8550 -178269 -19228 -176905 nol(check) check check check check

= 7.85 t/m3 = 0.785 kg/cm2-m

Wall (upper) Wall (lower) Footing (toe) Footing (heel)

Section A-A Section B-B Section C-C Section D-Dlower upper upper lower

cca

ssa

a

s for Mrc

c for Mrs

xo

xo

s

Section A-A Section B-B Section C-C Section D-D

Page 28: Retaining Wall

Re-bar 28/31

302650898.xls-02/01/2016

Data of Reinforcement Bar

Sectional Perimeter Arrangement Area PerimeterArea

(mm) (cm2) (cm) (cm2) (cm)12 1.131 3.770 12@125 9.05 30.16

12@150 7.54 25.13 Footing (heel)12@250 4.52 15.0812@300 3.77 12.57 upper

16 2.011 5.027 16@125 16.08 40.21 #REF!16@150 13.40 33.51 #REF!16@250 8.04 20.11 0 16@300 6.70 16.76

19 2.835 5.969 19@125 22.68 47.75 125.019@150 18.90 39.79 7.019@250 11.34 23.88 118.019@300 9.45 19.90 100.0

22 3.801 6.912 22@125 30.41 55.29 2422@150 25.34 46.0822@250 15.21 27.65 #REF!22@300 12.67 23.04 #REF!

25 4.909 7.854 49.09 78.54 25~200 25~20025@150 32.72 52.36 #REF!25@250 19.63 31.42 24.54 24.5425@300 16.36 26.18 39.27 ok

32 8.042 10.053 32~125 64.34 80.4232@150 53.62 67.02 31.8632@250 32.17 40.2132@300 26.81 33.51 Calculation Check #REF!

12@250 + 16@250 12,16@125 12.56 35.19 12.56 35.19 60.012,19@125 15.86 38.96 15.86 38.96 #REF!12,22@125 19.73 42.73 19.73 42.73 #REF!12,25@125 24.15 46.50 24.15 46.50 1,850 12,32@125 36.69 55.29 36.69 55.29 #REF!16,19@125 19.38 43.99 19.38 43.99 #REF!16,22@125 23.25 47.76 23.25 47.76 5.5016,25@125 27.67 51.53 27.67 51.53 #REF!16,32@125 40.21 60.32 40.21 60.32 19,22@125 26.55 51.53 26.55 51.53 3,623,270 19,25@125 30.97 55.30 30.97 55.30 3623270.4819,32@125 43.51 64.09 43.51 64.09 22 22,25@125 34.84 59.07 34.84 59.07 2673.9931722,32@125 47.38 67.86 47.38 67.86 4,289,501 25,32@125 51.80 71.63 51.80 71.63 27

12@300 + 16@300 12,16@150 10.47 29.33 10.47 29.33 59 12,19@150 13.22 32.47 13.22 32.47 4.09 4.0912,22@150 16.44 35.61 16.44 35.61 16~200 16~30012,25@150 20.13 38.75 20.13 38.75 10.05 6.7012,32@150 30.58 46.08 30.58 46.08 ok ok16,19@150 16.15 36.66 16.15 36.66 16,22@150 19.37 39.80 19.37 39.80 16,25@150 23.06 42.94 23.06 42.94 16,32@150 33.51 50.27 33.51 50.27

Section E-Elower

25@75

Page 29: Retaining Wall

Re-bar 29/31

302650898.xls-02/01/2016

19,22@150 22.12 42.94 22.12 42.94 19,25@150 25.81 46.08 25.81 46.08

19,32@150 36.26 53.41 36.26 53.41 22,25@150 29.03 49.22 29.03 49.22 22,32@150 39.48 56.55 39.48 56.55 25,32@150 43.17 59.69 43.17 59.69

Footing (heel)

#REF!#REF!

0

125.07.0

118.0100.0

16

#REF!

25~200 25~200#REF!24.54 24.5439.27

26.77

#REF!90.0

#REF!#REF!

2,775 #REF!

#REF!8.25

#REF!

4,706,450 4,706,450 19 3,405 5,815,251 22 95

16~200 16~30010.05 6.70

Section E-Eupper lower

Page 30: Retaining Wall

302650898.xls-02/01/2016

Reinforcement Bar Arrangement( Dinding Penahan )

1.20 0.30 0.00

+ 79.00

D25~2004.00

D16~20011.50

D16~2007.50 D25~200 + 69.50

0.50

1.00+ 67.50

D13~400D16~200 D25~200

7.50 1.50 1.00

10.00

Section of Retaining wall

D

A A

B BC

CD

Page 31: Retaining Wall

12th Oct, Stability AnalysisUplift pressure are added for stability analysis.

Reinforcement Bar ArrangementReinforcement bar for Footing (heel) are collected.

Jan. 7, '03 Stability

(distributed width of reaction of foundation soil)

Structure

(distributed width of reaction of foundation soil)

Calculation formula in case of (B/6 < e < B/3) under seismic condition are corrected.

Calculation formula in case of (B/6 < e < B/3) under seismic condition are corrected.