resumen de la materia 1º prueba bqe

45
RESUMEN BIOQUÍMICA FUNDAMENTOS DE QUÍMICA La química estudia las transformaciones profundas que sufre la materia. La materia se clasifica en sustancias puras y mezclas. Las mezclas pueden ser homogéneas o heterogéneas (soluciones o disoluciones). Las sustancias puras se dividen en compuestos o elementos. Los compuestos están formados por átomos distintos, mientras que los elementos están formados por átomos iguales. La estequiometría es el estudio de las relaciones cuantitativas que existen entre las sustancias que intervienen en las reacciones químicas. El átomo es la menor cantidad de materia que puede reaccionar con otras partículas de materia. Se encuentra constituido por un núcleo central y una envoltura de electrones. Número atómico (Z): Número de protones que tiene un átomo, que es igual al número de electrones Número másico (A): Suma de protones más neutrones que tiene un átomo. Isótopos: Son átomos que tienen el mismo Z y distinto A. Los elementos son mezclas de isótopos. Mol: Cantidad de sustancia que contiene el Número de Avogadro (NA) de cualquier partícula. 1 mol corresponde a la masa atómica expresada en gramos o a la masa molecular expresada en gramos. Masa molar: Masa, en gramos, de 1 mol de átomos o la masa en gramos de 1 mol de moléculas. Reacción química: Proceso en el que por redistribución de los átomos, los elementos o compuestos iniciales producen otros distintos. Las sustancias iniciales que desaparecen total o parcialmente en la reacción química se conocen como reaccionantes. Las nuevas sustancias que se originan en la reacción química se conocen como productos. Las reacciones químicas se representan gráficamente a través de ecuaciones químicas. Ley de conservación de las masas (Lavoisier, 1785): Esta ley indica que: " la suma de las masas de las substancias que

Upload: paulina-olivares

Post on 26-Jul-2015

3.946 views

Category:

Travel


1 download

TRANSCRIPT

Page 1: Resumen de la materia 1º prueba BQE

RESUMEN BIOQUÍMICA

FUNDAMENTOS DE QUÍMICA

La química estudia las transformaciones profundas que sufre la materia. La materia se clasifica en sustancias puras y mezclas. Las mezclas pueden ser homogéneas o heterogéneas (soluciones o disoluciones). Las sustancias puras se dividen en compuestos o elementos. Los compuestos están formados por átomos distintos, mientras que los elementos están formados por átomos iguales.

La estequiometría es el estudio de las relaciones cuantitativas que existen entre las sustancias que intervienen en las reacciones químicas.

El átomo es la menor cantidad de materia que puede reaccionar con otras partículas de materia. Se encuentra constituido por un núcleo central y una envoltura de electrones.

Número atómico (Z): Número de protones que tiene un átomo, que es igual al número de electrones

Número másico (A): Suma de protones más neutrones que tiene un átomo.Isótopos: Son átomos que tienen el mismo Z y distinto A. Los elementos son mezclas

de isótopos.Mol: Cantidad de sustancia que contiene el Número de Avogadro (NA) de cualquier

partícula. 1 mol corresponde a la masa atómica expresada en gramos o a la masa molecular expresada en gramos.

Masa molar: Masa, en gramos, de 1 mol de átomos o la masa en gramos de 1 mol de moléculas.

Reacción química: Proceso en el que por redistribución de los átomos, los elementos o compuestos iniciales producen otros distintos. Las sustancias iniciales que desaparecen total o parcialmente en la reacción química se conocen como reaccionantes. Las nuevas sustancias que se originan en la reacción química se conocen como productos. Las reacciones químicas se representan gráficamente a través de ecuaciones químicas.

Ley de conservación de las masas (Lavoisier, 1785): Esta ley indica que: " la suma de las masas de las substancias que reaccionan es igual a la suma de las sustancias que se obtienen".

Reacciones redox o de oxidación - reducción: Reacciones químicas en las cuales se produce transferencia de electrones, siendo la oxidación y la reducción fenómenos simultáneos. Se pueden distinguir 2 semireacciones: La semireacción de oxidación (perdida de electrones) y la semireacción de reducción (ganancia de electrones).

Oxidación: reductor 1 - ne - oxidante 1

Reducción: oxidante 2 + ne+ reductor 2

Al elemento reductor se le conoce también como sustancia oxidada, es decir, se oxida (pierde electrones), mientras que al elemento oxidante se le conoce también como sustancia reducida, es decir, se reduce (gana electrones).

Soluciones o disoluciones: Son mezclas homogéneas monofásicas formadas por 2 o más componentes y de composición variable.

Soluto: Componente que se encuentra en menor proporción relativaSolvente: Componente que se encuentra en mayor proporción relativa o bien el

componente cuyo estado físico coincide con el de la solución obtenida.

Page 2: Resumen de la materia 1º prueba BQE

Concentración: Cantidad de soluto contenida en una determinada cantidad de solvente o solución.

Expresiones de concentración: Las que emplean unidades físicas son:a) % p/p : gramos de soluto en 100 gramos de soluciónb) % p/v : gramos de soluto en 100 mL de soluciónc) % v/v: mL de soluto en 100 mL de soluciónd) g/L : gramos de soluto en 1 litro de solucióne) ppm: partes de soluto en 106 partes de solución

Las expresiones de concentración que emplean unidades químicas:a) Molaridad: moles soluto en 1 litro de soluciónb) Normalidad: equivalentes gramo de soluto en 1 litro de soluciónc) Molalidad: moles de soluto en 1 kilo de solvented) Fracción molar: X soluto = moles soluto / moles totales

X solvente = moles solvente / moles totalesX soluto + X solvente = 1

TERMODINÁMICA

Los objetivos de la termodinámica son los siguientes:

a) Evaluar la capacidad de una determinada reacción química para transformar un reaccionante en producto. Es decir, evalúa la espontaneidad de una reacción química

b) Evaluar la medida en que los reaccionantes se transforman en productos , es decir, calcular la constante de equilibrio

Por lo tanto, se define la termodinámica como un método de análisis de los sistemas físico químicos, en base a la consideración de los intercambios energéticos entre un sistema y su medio ambiente con el objeto de llegar a predecir y manejar la direccionalidad de los cambios químicos.

Sistema: Porción del universo separada del resto por límites físicos o imaginarios con el objeto de someterla a estudio. Existen diferentes tipos de sistemas, a saber:

a) Cerrado: Solo intercambia energía con el medio ambiente. Ej.: un calefactorb) Abierto: Intercambia energía y materia con su medio ambiente. Ej.: la célulac) Aislado: No intercambia materia ni energía con el medio ambiente. Ej.: un termod) En equilibrio: Sus propiedades permanecen constantes a través del tiempo

Medio ambiente: Porción del universo que queda fuera de los límites del sistemaProceso termodinámico: Modo como se realiza el cambio termodinámico, desde un estado inicial a un estado finalFunciones de estado: Propiedades macroscópicas del sistema termodinámico, que permiten definir una condición particular de este. Sus valores son independientes del proceso, es decir, dependen solo de los estados inicial y final del proceso termodinámico. Ejemplos: Temperatura, volumen, presión, H, S, G, E, cantidad de reaccionantes y productos en la reacción química.

2

2

Page 3: Resumen de la materia 1º prueba BQE

Los procesos termodinámicos se pueden clasificar de acuerdo al modo como se realiza el cambio, a saber:

a) Proceso isotérmico: Se realiza a temperatura constanteb) Proceso isobárico: Se realiza a presión constantec) Proceso adiabático: Se produce sin intercambio de calor entre el sistema y el medio

ambiente

La energía de un sistema es la capacidad que este posee para realizar un trabajo, por lo cual es una propiedad del sistema, es decir, una función de estado. Existen dos formas de intercambiar energía: el calor y el trabajo.

El calor se define como la energía transferida entre un sistema y su medio ambiente a causa de la existencia de una diferencia de una función de estado.

El trabajo es otra manera de intercambiar energía entre el sistema y su medio ambiente, la cual es transferida en virtud de la existencia de un vínculo mecánico, químico o eléctrico.

Ninguna de estas dos formas de intercambiar energía son funciones de estados. La energía interna corresponde a la energía que está asociada con la estructura interna

del sistema. Es igual a la suma de muchas energías, como la energía de vibración de los átomos, la energía asociada a los enlaces químicos, etc. De esta energía interna solo se puede conocer su cambio (E).

El calor y el trabajo pueden expresarse en las mismas unidades, ya que representan formas de energía. Estas unidades son:

a) Caloría: La energía calórica necesaria para elevar en 1oC la masa de un gramo de agua, desde 14,5 oC a 15,5 oC.

b) Joule: Corresponde al trabajo que hay que realizar para mover un cuerpo en un metro, si este cuerpo ejerce una resistencia de un newton.

1 caloría = 4,18 Joule

El primer principio de la termodinámica establece que la energía del Universo no se puede crear ni destruir, sólo es posible que existan transformaciones de un tipo de energúia en otro.

La totalidad de la energía que posee un sistema se puede identificar con su energía interna. De acuerdo a esto

E = q - w

donde q: calor intercambiadow: trabajo intercambiado

La energía interna de un sistema puede aumentar o disminuir a causa de una interacción con el medio ambiente, intercambiando calor y/o trabajo.

La energía interna de un sistema resume toda la energía que posee el sistema, siendo una función de estado.

Como los valores absolutos de E no pueden ser calculados, lo que se evalúa es la variación que estos experimentan a causa del proceso, es decir

3

3

Page 4: Resumen de la materia 1º prueba BQE

E = E final - E inicial

Las reacciones químicas pueden trabajarse en condiciones de presión constante o en otros casos, que son los menos, a volumen constante. En el caso de una reacción a volumen constante el E es igual al trabajo (q) realizado por ese sistema. En el caso de reacciones que se desarrollan a presión constante el trabajo realizado por el sistema equivale al H (entalpía). La entalpía (H) se define como E + PV, donde E es la energía total del sistema, P es la presión y V el volumen. En palabras, la entalpía es un cambio de calor de una reacción a presión constante y permite medir el calor absorbido o liberado por un sistema.

Los cambios físicos o químicos realizados a presión constante, que liberan calor a su medio ambiente se denominan exotérmicos, y el signo de H es negativo. Aquellos que absorven calor se denominan endotérmicos y el signo del H es positivo.

Ley de Hess: Establece que el cambio de energía calórica que acompaña a una reacción química a volumen constante o a presión constante es independiente del número y de la naturaleza de los estados intermedios. El valor del trabajo a presión o temperatura constante depende del estado final e inicial del proceso químico.

Si una reacción procede en varias etapas, el calor de reacción (H) es igual a la suma algebraica de los contenidos calóricos de cada etapa.

Existen distintos tipos de entalpía, entre ellos tenemos:

a) Entalpía estándar (Ho): Entalpía de una substancia a condiciones estandar de presión, temperatura, estado físico y concentración.

b) Entalpía estandar de formación (Hof) Variación de la entalpía estandar que

acompaña a la formación de un mol de un compuesto a partir de sus elementos.c) Entalpía estándar de formación (Ho

r): Valor de Ho que posee una reacción cualquiera.

d) Entalpía estándar de combustión

Tanto en los fenómenos físicos como químicos , existen dos tendencias básicas que comandan el sentido en que un determinado sistema evoluciona, para lograr su estabilidad o equilibrio.

Estas son lograr condiciones de mínima energía y lograr condiciones de máxima probabilidad o máximo desorden.

El análisis de los sistemas químicos (reacciones químicas), en condiciones de presión y temperatura constantes, ha permitido concluir que estas dos tendencias tienen sus equivalentes en la termodinámica química, y ellas son:

a) La entalpía (H): Representa la energía total del sistemab) La entropía (S): Representa el grado de desorden molecular

Los procesos naturales que son espontáneos se producen debido a que la sumatoria de las dos tendencias (H y S), es favorable. Asimismo, un sistema se encuentra en equilibrio, cuando las dos tendencias se cancelan entre sí.

Por lo tanto, es factible utilizar como criterio de espontaneidad el valor de las variaciones de entalpía y entropía y de este modo predecir la dirección e n que ha de evolucionar un sistema en busca de su posición de equilibrio.

4

4

Page 5: Resumen de la materia 1º prueba BQE

Las reacciones químicas se pueden clasificar de acuerdo a su espontaneidad en:

a) Reacciones espontáneas: Tienen la tendencia a realizarse en el sentido de la transformación de reaccionantes en productos.

b) Reacciones no espontáneas: Tienen la tendencia a realizarse en el sentido de la transformación de productos a reaccionantes

c) Reacciones en equilibrio: No tienen tendencia a evolucionar

El segundo principio de la termodinámica puede ser enunciado desde el punto de vista de la entropía (desorden) del universo, o bien desde el punto de vista de la espontaneidad de las reacciones químicas.

El primer punto es incomodo debido a que necesita el calculo de la entropía del sistema y del medio ambiente. Por lo tanto, se prefiere tomar como criterio de espontaneidad una función termodinámica, que depende sólo del sistema, como es la energía libre. Esta función de estado, también llamada Energía de Gibbs (G), resume las dos tendencias naturales que impulsan un cambio termodinámico: la entropía y la entalpía, de la siguiente manera:

G = H - TS

El valor de G permite calificar la espontaneidad de una determinada reacción química, conforme a los siguientes criterios.

a) G = 0 Reacción en equilibriob) G < 0 Reacción espontaneac) G > 0 Reacción no espontanead) G < 0 Reacción endergónicae) G > 0 Reacción exergónica

Por lo tanto, el segundo principio de la termodinámica puede definirse como: "Una reacción química, que evoluciona espontáneamente, hacia su estado de equilibrio, tiene la capacidad de realizar un trabajo útil (G < 0), el cual se hace igual a cero, en el momento en que ella logra el equilibrio".

El G se encuentra definido en condiciones estándar de presión y temperatura; si estas condiciones varían el valor de G se modifica. Por consiguiente es necesario disponer de tablas con valores de "energía libre de formación estandar" (Go

f), o de datos para evaluarlas a partir de:

Gof = Ho

f - TSof

Las diferentes especies participantes en una reacción química tienen un determinado potencial químico o tendencia para originar productos o reaccionantes (G). Este potencial químico es dependiente de la:

a) Tendencia de las sustancias a reaccionar (Go)b) Concentración relativa de productos y reaccionantes, que existen en un momento dadoc) Temperatura

En condiciones estándar G = Go. En el equilibrio G es igual a cero. Por lo tanto

5

5

Page 6: Resumen de la materia 1º prueba BQE

Go = - RT ln Keq

donde R = 0,00831 KJ/mol oKT = temperatura (en grados Kelvin)Keq = Constante de equilibrio de la reacción

Conforme a lo enunciado, es posible impulsar una reacción química en un sentido u otro al modificar las concentraciones de reaccionantes o productos (Principio de Le Chatelier).

Un par de reacciones químicas, de las cuales una es no espontánea (componente endergónico) y la otra es espontánea (componente exergónico) y que poseen intermediarios comunes a través de los cuales, se realiza el acoplamiento o transferencia de la energía química, reciben el nombre de reacciones acopladas. Condición necesaria para un acoplamiento es que la suma algebraica de sus G sea menor que cero.

El tercer principio de la termodinámica establece que la entropía (desorden) de los cristales perfectos de todos los elementos y compuestos puros es cero a la temperatura del 0 absoluto. (0oK o -273 oC)

BIOMOLÉCULAS

1. ISOMERÍA

Con frecuencia compuestos de muy distinta naturaleza pueden representarse mediante la misma fórmula molecular. Estos compuestos denominados isómeros, difieren en el tipo de unión y la posición relativa de los átomos.

Los isómeros por lo tanto, son sustancias que tienen la misma formula global o molecular, pero diferente fórmula estructural.

Los isómeros se dividen en 2 grandes grupos: estructurales y estereoisómeros.

6

6

Page 7: Resumen de la materia 1º prueba BQE

a) Isómeros estructurales: llamada también isomeria plana, en que los isómeros se forman por diferencias en los enlaces.

b) Estereoisómeros: Compuestos que difieren en la posición relativa de los átomos en el espacio. Dentro de ellos tenemos:

b.1) Estereoisómeros geométricos: Compuestos con igual formula global, igual función química y diferente distribución espacial de sus sustituyentes debido a que no existe rotación libre de los átomos debido a la presencia de un enlace doble (isómeros cis y trans de los ácidos grasos).b.2) Estereoisómeros ópticos: Se manifiesta por la rotación óptica que ciertas moléculas le imparten al plano de la luz polarizada. Las moléculas que presentan esta propiedad se denominan moléculas ópticamente activas y son aquellas cuya forma geométrica no presenta elementos de simetría. La sustancia ópticamente activa que desvía el plano de la luz polarizada en un determinado número de grados hacia la derecha se denomina dextrógira y hacia la izquierda se denomina levógira. La actividad óptica es una consecuencia de la ausencia de los elementos de simetría y la presencia de uno o más carbonos asimétricos. El carbono asimétrico es aquel que está unido a 4 átomos o grupos de átomos diferentes.

b.2.1) Enantiómeros: Un compuesto con un C asimétrico tiene su correspondiente imagen de espejo, las que difieren en su configuración global y en su actividad óptica y tienen misma actividad química y física. La mezcla de cantidades iguales de 2 enantiómeros no presenta actividad óptica. A esta mezcla se le conoce como mezcla racemica. b.2.2) Diasteroisómeros: Isómeros ópticos con 2 o más carbonos asimétricos que no son espejos uno del otro. Presentan diferentes propiedades físicas. Dentro de esta clase destacan los epímeros, los cuales difieren solo en un carbono asimétrico, siendo de gran importancia en los hidratos de carbono. Además, destacan los anómeros los cuales difieren en la configuración del carbono 1. Si el OH del C-1 está bajo el plano del anillo, el isómero se denomina , y cuando el OH está ubicado sobre el plano del anillo se denomina .

2. HIDRATOS DE CARBONO

Compuestos orgánicos de origen biológico formados por carbono, hidrógeno y oxígeno que presentan una formula química global mínima igual a Cx(H20)n.

Corresponden químicamente a polihidroxialdehídos o polihidroxícetonas. Se forman en las plantas verde como resultado de la reacción de fijación del CO 2 y H2O mediante la utilización de la energía luminosa aprovechada por las plantas a través del proceso denominado fotosíntesis. En animales, se ingieren en la dieta o se forman a partir de compuestos de tres átomos de carbono (ácido láctico y pirúvico).

Se pueden clasificar de diversas formas:

7

7

Page 8: Resumen de la materia 1º prueba BQE

a) El número de unidades elementales que los constituyen (monómeros): monosacáridos, oligosacáridos y polisacáridos

b) Por el grupo funcional: aldehído o cetonac) Por el número de átomos de carbono que constituyen el monosacárido: triosas,

tetrosas, pentosas, hexosas y heptosas.d) Por la configuración relativa de la molécula de gliceraldehído (que sirve de

"estándar"): Hidratos de carbono de la serie D (si el OH se encuentra a la derecha del C asimétrico) y de la serie L (si el OH se encuentra a la izquierda del C asimétrico).

Configuración relativa con respecto a la molécula de gliceraldehido

Las moléculas de monosacáridos presentan uno o más centros asimétricos (carbonos asimétricos). Estos centros también se denominan centros quirales.

Proyección de Fischer

Es una representación simplificada en la cual los enlaces C-C y C-OH se representan por una línea vertical y horizontal respectivamente. Por convención, las líneas horizontales representan enlaces que salen de la página hacia el lector, y las líneas verticales representan enlaces que entran en la página y se alejan del lector.

Proyección de Fischer

Propiedades químicas

8

8

Proyección de Fischer de la Glucosa

Page 9: Resumen de la materia 1º prueba BQE

Las propiedades químicas de los hidratos de carbono derivan de los diferentes grupos funcionales que constituyen la molécula. Las más importantes son:

a) Oxidaciónb) Acetilaciónc) Reacciones de adición nucleofílicad) Formación de hemiacetales y acetales: formación de glicosidos, por ejemplo.e) Esterificación con ácido fosfórico

Estructura cíclica

Las triosas y tetrosas tienen estructura abierta, en cambio las pentosas, hexosas y los monosacáridos de mayor número de átomos de carbono, son capaces de ciclarse intramolecularmente, permaneciendo en equilibrio en solución acuosas formas de cadena abierta y cíclica. La ciclación se produce por reacción hemiacetálica interna entre el grupo carbonilo (COH) y alguno de los hidroxilos (OH) de la cadena. Los ciclos que forman estos monosacáridos son de 5 ó 6 vértices, de los cuales un vértice corresponde a un átomo de oxígeno.

Al realizarse la ciclación aparecen 2 isómeros ópticos llamados anómeros ( y dependiendo de la posición del OH del C-1).

La representación de los hidratos de carbono cíclicos se realiza a través de la llamada Proyección de Harworth. Para dibujar una de estas proyecciones deben seguirse las siguientes reglas:

a) Las aristas inferiores de la molécula están engrosadas, lo que significa que la posición real del anillo es perpendicular al plano de la hoja, de modo que los carbonos 2 y 3 quedan sobre el plano de la hoja y el carbono 5 queda detrás del plano de la hoja

b) Los grupos que están a la derecha en la proyección de Fisher (cadena abierta), están bajo el anillo en la proyección de Harworth, en cambio los que están a la izquierda están sobre el anillo

c) Las moléculas pertenecientes a la serie D (referente al gliceraldehído), tienen el CH 2OH sobre el anillo

d) Cuando el monosacárido es de la serie L, el CH2OH va bajo el anillo, y el OH del C-1 invierte su posición.

El fenómeno de mutarrotación es el fenómeno de interconversión que experimentan, en solución acuosa, los azucares; entre sus formas de cadena abierta y cíclicas, estableciéndose un equilibrio químico entre las dichas especies.

9

9

Page 10: Resumen de la materia 1º prueba BQE

Proyecciones de Harworth de la glucosa

Disacáridos

Los hidratos de carbono pueden formar acetales o glicósidos cuando el carbono anomérico de un azúcar cíclico reacciona con un alcohol. Si el alcohol proviene de otro azúcar, se forma un disacarido. Los enlaces glicosídicos más comunes son la o (1-4) y (1-6), en que el carbono 1 de una hexosa, se une al alcohol del carbono 4 o 6 de otra hexosa.

Polisacáridos

Los polisacáridos son polímeros naturales, derivados de los monosacáridos que se unen mediante enlaces glicosídicos. Los polisacáridos de mayor importancia biológica son el glucógeno, el almidón y la celulosa. Los dos últimos son sintetizados por las plantas y el primero por los animales. El glicógeno y el almidón son materiales de reserva energética de los animales y de las plantas respectivamente, en cambio la celulosa forma parte del tejido de sostén de los vegetales.

L hidrolísis completa del almidón da un único polisacárido: la -D-glucosa. Los almidones están compuestos por dos fracciones principales, las que pueden ser separadas mediante tratamiento con agua caliente. A saber:

a) Fracción soluble o amilosa, que corresponde al 20%b) Fracción insoluble o amilopectina, que corresponde al 80%

La amilosa es una estructura de cadenas lineales de -D-glucopiranosa unidas por enlaces glicosídicos (1-4).

La amilopectina posee una estructura ramificada, y cada 20 a 30 unidades de glucosa presenta cadenas laterales. Los elementos glicosídicos comprometidos son (1-4) en las cadenas lineales y (1-6) en los puntos de ramificación.

10

10

Page 11: Resumen de la materia 1º prueba BQE

El glicógeno es un polisacárido constituido por unidades de -D-Glucosa y de estructura muy similar a la amilopectina, solamente que es más compacta, pues tiene cadenas laterales que nacen cada 12 a 20 unidades de glucosa de la cadena lineal.

La celulosa es el tipo de polisacárido predominante en el reino vegetal y su función es estructural. Su unidad monomérica es la -D-glucosa unida mediante enlaces glucosídicos (1-4), es decir, formando cadenas lineales.

El aparato digestivo humano no dispone de las enzimas capaces de hidrolizar enlaces glicosídicos (1-4), sin embargo el almidón, que posee enlaces glicosídicos (1-4), es digerido pues existen las -glicosidasas.

Hidratos de carbono complejos

En muchos organismos algunos hidratos de carbono se encuentran formando parte de moléculas complejas, unidos covalentemente a lípidos (glicolípidos) o a proteínas (glicoproteínas). Uno de los glicolípidos más simples es el glucocerebrósido en que la glucosa está unida a esfingosina y a un ácido graso.

Los mucopolisacáridos están formados por polímeros de dos unidades de monosacáridos modificados asociados a proteínas, ellos forman parte de estructuras de sostén en el cartílago y otros tejidos denominadas proteoglicanos. Algunos ejemplos de estas unidades de mucopolisacáridos son el condroitín sulfato, ácido hialurónico y el keratán sulfato.

LÍPIDOS

Amplio y complejo grupo de moléculas orgánicas, de naturaleza aceitosa que se caracterizan por ser insolubles en agua y solubles en solventes polares. En general están constituidos por C, H y O; y algunos poseen además N, P y/o S.

11

11

Page 12: Resumen de la materia 1º prueba BQE

Funciones biológicas:

a) Asociarse a proteínas, formando la estructura básica de las membranas biológicasb) Principal forma de almacenamiento de energía para el organismoc) Sistema de transporte de material apolar en fluidos biológicosd) Poseen actividad biológica (vitaminas, hormonas esteroidales, prostaglandinas)

Clasificación

se ha realizado en base a su estructura y su comportamiento en medio alcalino

Lípidos complejos o saponificables: formados por 2 o más componentes, uno de los cuales corresponde a un ácido

graso. Se diferencian entre sí por la cadena principal a la cual está unido el ácido graso. Se hidrolizan en medio alcalino para generar jabones (sales de ácidos grasos). Ejemplos son os acilglicéridos, fosfolípidos, esfingolípidos y ceras.

Lípidos simples o no saponificables: No poseen ácidos grasos como componentes No se hidrolizan en presencia de un medio alcalino. Se destacan los esteroides, prostaglandinas y terpenos.

Acidos grasos

Son ácidos carboxílicos de fórmula general R-COOH R corresponde a una cadena hidrocarbonada lineal de 2 a 34 átomos de carbono, la cual

puede estar saturada (ácidos grasos saturados) o no saturada (ácidos grasos insaturados). No se encuentran en forma libre en las células, sino que esterificados en distintos tipos

de lípidos En el plasma se encuentra una pequeña fracción de ácidos grasos libres.

Acidos grasos saturados

Poseen sólo enlaces simples El punto de fusión aumenta al aumentar el número de átomos de carbono, y a partir de 8

átomos de carbono, son sólidos a temperatura ambiente.

Acidos grasos no saturados

Presentan uno o más dobles enlaces en la cadena hidrocarbonada. Difieren tanto en el número de átomos de carbono como en el número y posición de los

dobles enlaces.

12

12

Page 13: Resumen de la materia 1º prueba BQE

El punto de fusión de los ácidos grasos aumenta con el largo de la cadena y disminuye con la presencia de dobles enlaces.

Los ácidos grasos insaturados generalmente son líquidos a temperatura ambiente a diferencia de los saturados que son sólidos.

Isomería ácidos grasos:

Los ácidos grasos saturados tienen infinitas conformaciones, puesto que cada enlace simple posee completa libertad de rotación.

Los ácidos grasos insaturados tienen una rotación restringida por los dobles enlaces y por ello presentan isomería geométrica (cis-trans).

Propiedades físicas ácidos grasos

Los ácidos grasos son anfipáticos, es decir una región de su molécula es hidrofóbica y la otra es hidrofílica.

Los ácidos grasos son insolubles en agua, mientras que en soluciones diluídas de álcali, forman sales (jabón) las cuales se dispersan en forma de micelas.

En la micela, los ácidos grasos orientan la sección hidrofílica hacia la superficie de la micela, en contacto con el agua, mientras que la sección hidrofóbica se orienta hacia el interior de la micela.

Propiedades químicas de los ácidos grasos Reacciones de adición:

Se agrega un H2 en presencia de Niquel como catalizador. Este procedimiento es usado en la preparación de margarinas Otra reacción de adición es la halogenación.

Oxidación

Lípidos complejos o saponificables

Se producen por la esterificación entre un ácido graso y un alcohol.

Acilgliceridos: Llamados también acilgliceroles o grasas neutras. Pueden estar esterificados con 1,2 o 3 ácidos grasos; por lo que se denominan

mono, di o triacilgliceridos. A estos últimos también se les llama trigliceridos. El punto de fusión aumenta con el grado de saturación de los ácidos grasos. Todos los triglicéridos son insolubles en agua. Los mono y diacilgliceridos son relativamente solubles en agua al formar

estructuras micelares. Los trigliceridos tienen menos densidad que el agua, por lo tanto flotan.

Propiedades químicas acilgliceridos

Hidrólisis: Puede ocurrir en medio acido, básico o por enzimas.

13

13

Page 14: Resumen de la materia 1º prueba BQE

La hidrólisis en medio alcalino se conoce como saponificación, siendo el proceso por el cual se fabrican los jabones.

Reacciones de adición: Estas son hidrogenación, halogenación y oxidación. La hidrogenación permite que un aceite líquido se pueda transformar en una

sustancia semisólida (fabricación margarina) La oxidación es la causante del olor rancio de las grasas.

Fosfolípidos

Constituidos por una molécula de glicerol. Los grupos alcohól de los carbonos 1 y 2 del glicerol están unidos a diferentes ácidos

grasos y el OH del carbono 3 está unido a un ácido fosfórico. Los fosfolípidos se agrupan preferentemente en forma de bicapa lipídica Las colas hidrofóbicas interaccionan y las cabezas hidrofílicas se orientan hacia el

medio acuoso. La bicapa se encuentra en las membranas celulares A mayor cantidad de doble enlaces mayor fluidez de la membrana

Esfingolípidos

Lipidos complejos presentes en las membranas celulares. Glicolípidos: Lípidos que poseen azúcares en su estructura. Estos glicolípidos pueden ser cerebrósidos o gangliósidos.

Ceras

Esteres sólidos de ácidos grasos de cadena larga Pueden ser saturados como insaturados (14 a 36 carbonos).

Lípidos simples o no saponificables

Compuesto por los terpenos, esteroides y prostaglandinas

Terpenos

Derivan de una estructura básica de 5 átomos de carbono, el isopreno. Pueden ser lineales o cíclicos. Esteroides

Su precursor es una molécula llamada escualeno la que al ciclarse forma el colesterol. La estructura básica es el ciclopentanoperhidrofenantreno. Entre los esteroides más importantes se encuentran los ácidos biliares, hormonas

esteroidales, hormonas adrenocorticales, vitamina D2, etc. El precursor de todos estos compuestos es el colesterol. En el organismo, el colesterol cumple una serie de funciones importantes:

Es el intermediario en la biosíntesis de las hormonas esteroidales

14

14

Page 15: Resumen de la materia 1º prueba BQE

Se encuentra formando parte de la membrana celular y es transportado en el plasma sanguíneo unido a proteínas formando las llamadas lipoproteínas.

Es el precursor de las sales biliares

Prostaglandinas

Compuestos que abarcan ácidos de 20 átomos de C La estructura básica es el ácido prostanoico

AMINOACIDOS Y PROTEINAS

Proteínas

Macromoléculas orgánicas

15

15

Page 16: Resumen de la materia 1º prueba BQE

Constituidas por C, H, N, O y S Polímeros Unidad básica: aminoácidos

Aminoácidos

Compuestos orgánicos Poseen un grupo amino (NH2) y un grupo carboxílico (COOH) Además poseen un C asimétrico, un hidrogeno y un radical Aminoácidos se unen por el enlace peptídico Cadena polipeptídica: cientos de aminoácidos unidos en secuencia lineal Proteínas: cadenas polipeptídicas solas o unidas La proteína presenta siempre un grupo amino terminal y un carboxilo terminal

Propiedades físico - químicas de los aminoácidos

Los aminoácidos tienen actividad óptica También se pueden clasificar usando de molde el gliceraldehído Tienen configuración L

Bajo pH 2, los aminoácidos están protonados (catión) Entre pH 3 a 9 el aminoácido está en forma de zwitterión o ión dipolar El zwitterión tiene carga neta 0 Sobre pH 9 los aminoácidos están desprotonados (anión) Punto isoeléctrico: pH en el que un ión dipolar no migra en un campo eléctrico

Reacciones químicas aminoácidos

Existen reacciones químicas del grupo amino, del grupo carboxilo y reacciones biológicas

Reacciones grupo amino: usadas principalmente para cuantificar e identificar aminoácidos NH2 terminales. Ej.: Reactivo de Sanger, Ninhidrina

Reacciones grupo carboxilo: Son muy pocas. Sirven para identificar aminoácidos C terminales

Reacciones biológicas: Usan enzimas llamadas transaminasas o aminotransferasas

Proteínas

a) Estructura

Compuestas por uno o más polímeros lineales de aminoácidos, llamados polipéptidos Las proteínas se clasifican en simples o conjugadas (composición) También pueden clasificarse como fibrosas y globulares

a.1) Estructura primaria

Secuencia de aminoácidos en una cadena polipeptídica

a.2) Estructura secundaria

16

16

Page 17: Resumen de la materia 1º prueba BQE

La cadena polipeptídica se enrolla formando una espiral : -hélice. La espiral se mantiene por uniones puente de hidrógeno Es rígida estructuralmente Otra estructura secundaria: o estructura de hojas plegadas

a.3) Estructura terciaria

Corresponde a la organización espacial de las cadenas proteicas Uniones entre los grupos R laterales: Dan estabilidad Los tipos de uniones son de una amplia diversidad

a.4) Estructura cuaternaria

Proteínas oligoméricas: Constituidas por 2 o más cadenas polipeptídicas o protómeros Las uniones son debiles La estructura cuaternaria consiste en la asociación de protómeros por enlaces

b) Desnaturalización de las proteínas

Ocurre por agentes físicos o químicos Puede ser reversible o irreversible Se produce con respecto a la conformación tridimensional Algunos agentes desnaturalizantes: calor, pH, urea Hidrólisis: Se rompen los enlaces peptídicos que unen aminoácidos

ACIDOS NUCLEICOS

Macromoléculas Formadas por C, N, O, P e H Son el ácido desoxirribonucleico (ADN) y ribonucleico (ARN)

17

17

Page 18: Resumen de la materia 1º prueba BQE

Función: almacenar y transmitir la información genética

Estructura ácidos nucleicos

Se encuentran formados por nucleótidos Estas poseen bases nitrogenadas, azúcar y fosfato Bases nitrogenadas: Pueden ser puricas o pirimidinicas Bases puricas: Adenina (A) y guanina (G) Bases pirimidinicas: Citosina (C), timina (T) y uracilo (U) ADN: A,G,C,T ARN: A,G,C,U Azúcar: ADN: 2-desoxi-ribosa

ARN: D-ribosa Nucleósidos: Base nitrogenada + azúcar Nucleótidos: Nucleósido + fosfato Existen nucleótidos mono, di y trifosfato El ATP es un nucleótido: Adenosín-5'-trifosfato

ADN y ARN

Polímeros Su unidad básica es el nucleótido Unión de nucleótidos: Enlace fosfodiéster

ADN

Reglas de Chargaff: Establecen que

A G

T C

Esto es lo mismo que:

A + G

C + T

Watson y Crick propusieron un modelo de ADN El ADN posee 2 cadenas helicoidales enrolladas en torno a un eje común Las cadenas son antiparalelas Bases nitrogenadas: Hacia el interior de la doble hélice Por cada vuelta de la doble hélice se disponen 10 nucleotidos Existen puentes de hidrógenos entre bases complementarias A y T se unen por 2 puentes de hidrógeno G y C se unen por 3 puentes de hidrógeno

18

18

= 1 y = 1

= 1

Page 19: Resumen de la materia 1º prueba BQE

Las cadenas del ADN son complementarias Urea, calor: Desnaturalizan el ADN

ARN

Existen 3 tipos de ARN ARN mensajero ARN de transferencia ARN ribosomal Es una sola hebra de polirribonucleótidos Segmentos complementarios pueden formar hebras dobles intracadena

GLICOLISIS

Ruta de 10 pasos Convierte 1 molécula de glucosa en 2 de piruvato Se usan 2 moléculas de ATP

19

19

Page 20: Resumen de la materia 1º prueba BQE

5 primeras reacciones: Inversión de energía La glucosa (6 C) se rompe en 2 moléculas de 3 C 5 últimas reacciones: Generación de energía Las moléculas de 3 C se convierten en compuestos de gran energía Se producen 4 moles de ATP Rendimiento por mol de glucosa: - 2 moles ATP

- 2 moles piruvato- 2 NADH

Es un proceso anaerobio (El O2 no participa directamente) Sin embargo, para enseñanza, se divide en glicolisis aeróbica y anaeróbica

GLICOLISIS ANAEROBIA

Reducción de lactato a piruvato Se produce cuando el piruvato se genera a mayor velocidad que su velocidad de

oxidación en el Ciclo de Krebs

GLICOLISIS AEROBICA

El piruvato se oxida a acetil-CoA Este entra al ciclo de Krebs

ENZIMAS IMPORTANTES GLUCOLISIS

Reacción 1: Glucosa a glucosa-6-P, catalizada por la enzima hexoquinasa, la que presenta una alta especificidad para los azucares. Se inhibe por su producto: Glucosa-6-P

Reacción 2: Pasa de glucosa-6-P a fructosa-6-P por una fosfoglucoisomerasa Reacción 3: Fructosa-6-P a fructosa 1,6-bifosfato por la enzima fosfofructoquinasa Reacción 10: Paso de fosfoenolpiruvato a piruvato. Lugar de regulación metabólica ya

que la enzima piruvato quinasa se inhibe a concentraciones de ATP elevadas y se activa a concentraciones altas de fructosa 1,6-bifosfato

DESTINOS DEL PIRUVATO

Depende del estado de oxidación de la celula Depende además de si el NADH formado por la reacción 6 de la glicolisis se puede

reoxidar en las mitocondrias Si el NADH no se reoxida en cantidad suficiente se impulsa la reducción del piruvato,

que pasa a lactato

20

20

Glucosa

ATP

ADP

Page 21: Resumen de la materia 1º prueba BQE

GENERALIDADES CICLO DE KREBS

Ciclo de reacciones Tiene como función primordial formar transportadores electrónicos reducidos,

principalmente NADH

21

21

Glucosa - 6 - P

Fructosa - 6 - P

Fructosa 1,6 - difosfato

Fosfogliceraldehído Dihidroxiacetona - P

1,3 difosfoglicerato

3 - fosfoglicerato

2 - fosfoglicerato

Fosfoenolpiruvato

Piruvato

ATP

ADP

NAD+

PiNADH

ADP ATP

H2O

ADP ATP

*

Reacciones 1 a 3:

Activación de glucosa por fosforilación. Se invierten 2 ATP

Reacciones 4 y 5

Fragmentación de 1 azúcar-P de 6 C en 2 azúcares fosfatos de 3 C

Reacción 6Generación de 2 NADH y 1 compuesto de energía super elevada

Reacción 7Fosforilación a nivel De sustrato. Se generan 2 ATP

Reacciones 8 y 9Generación de 1 compuesto de energía super elevada ( y agua): Fosfoenolpiruvato

Reacción 10Fosforilación a nivel de sustrato. Se generan 2 ATP

Page 22: Resumen de la materia 1º prueba BQE

Estos transportadores luego se reoxidan en la cadena respiratoria mitocondrial El Ciclo de Krebs puede dividirse en las siguientes etapas Etapa 1: Se genera 1 fragmento activado de 2 carbonos, el grupo acetilo de la acetil-

coenzima A o AcetilCoA Etapa 2: Oxidación de estos 2 átomos de carbono en el Ciclo de Krebs Etapa 3: Transporte electrónico y fosforilación oxidativa

OXIDACIÓN DEL PIRUVATO

Piruvato Acetil-CoA: Enzima es la piruvato deshidrogenasa Grupo carboxilo del piruvato: se pierde como CO2

Los 2 carbonos restantes forman la porción acetilo de la acetil-CoA Se genera un NADH Los 2 carbonos restantes se activan En esta reacción intervienen 3 enzimas y 5 coenzimas Las 3 enzimas ensambladas forman un complejo multienzimático: Complejo piruvato

deshidrogenasa

CICLO DE KREBS

Consta de 2 fases Fase 1:

Se adhieren 2 C (Acetil-CoA) a un compuesto de 4 C (Oxalacetato) Se genera 1 anión orgánico (citrato) Se pierden 2 C en forma de CO2

Fase 2: Regeneración del oxalacetato

PASOS CICLO DE KREBS

Paso 1: Introducción de 2 átomos de carbono en forma de Acetil-CoA Paso 2: Isomerización del citrato Paso 3: Generación de CO2 y 1 deshidrogenasa ligada al NAD+

Paso 4: Generación de 1 segundo CO2 por un complejo multienzimático Paso 5: Fosforilación a nivel de sustrato Paso 6: Deshidrogenación dependiente de flavina Paso 7: Hidratación de un doble enlace C-C Paso 8: Deshidrogenación que regenera el oxalacetato

Generación de ATP: 4 moles Se generan compuestos como NADH y FADH2

Estos compuestos son de gran energía Estos compuestos viajan a la membrana mitocondrial Entran al proceso de fosforilación oxidativa En esta etapa se forman 3 moles de ATP por NADPH y 2 moles de ATP por FADH2

Esto genera 38 moles de ATP por cada mol de glucosa que entró al proceso desde glicolisis

En el caso de tomar el glicógeno para formar ATP, este pasa directamente a glucosa-6-P, por lo que se pierde 1 ATP menos, generando 39 moles de ATP.

22

22

Page 23: Resumen de la materia 1º prueba BQE

CADENA TRANSPORTADORA DE ELECTRONES

Sistema multienzimático ligado a membrana Transfiere electrones desde moléculas orgánicas al oxígeno Comprende dos procesos:

Los electrones son transportados a lo largo de la membrana, de un complejo de proteínas transportador ("carrier") a otro.

Los protones son translocados a través de la membrana, estos significa que son pasados desde el interior o matriz hacia el espacio intermembrana. Esto construye un gradiente de protones. El oxígeno es el aceptor terminal del electrón, combinándose con electrones e iones H+para producir agua.

Los protones vuelven a entrar en la matriz mitocondrial a través de los canales que forman el complejo enzimático de la ATP sintetasa.

La ATP sintetasa es un gran complejo proteico con canales para protones que permiten la re-entrada de los mismos

La síntesis de ATP se produce como resultado de la corriente de protones fluyendo a través de la membrana: ADP + Pi ---> ATP

23

23

Page 24: Resumen de la materia 1º prueba BQE

Ciclo de krebs, cadena transportadora de electrones y fosforilación oxidativa

LA ECUACIÓN DE LA RECTA

24

24

Page 25: Resumen de la materia 1º prueba BQE

Muchos de los fenómenos que se tratan en Química y Bioquímica se pueden expresar como una ecuación de la recta. Incluso relaciones complejas pueden ser transformadas en funciones lineales por un simple cambio en variables.

La ecuación de la recta se escribe como:

y= mx + b o y = ax + b o y= mx + n

El gráfico para una línea recta es el siguiente:

El valor de m (se conoce como pendiente), se calcula de la siguiente manera:

y y2 - y1

= x x2 - x1

El valor de b (se conoce como intercepto) se calcula despejando en la ecuación de la recta:

b = y - mx

Luego, con los valores de m y b se construye la ecuación.Si hay varios puntos disponibles, los valores de m y b pueden determinarse

graficando todos los datos y dibujando la "mejor" línea recta a través de los puntos y midiendo en el mismo gráfico la pendiente (m) y el intercepto (b). Esto se puede hacer también usando herramientas estadísticas como el método de los mínimos cuadrados y empleando los términos "recta de regresión", "coeficiente de regresión"(m) y "coeficiente de correlación"(r). A veces hay tendencia a extender la recta más allá del rango de observaciones (se llama extrapolación). Esto es peligroso y no se debe hacer.

Ejemplo

25

25

x1 x2

X

x

y1

y2

y

Y

b

m =

y

x

m =

Page 26: Resumen de la materia 1º prueba BQE

Los siguientes datos fueron obtenidos de un estudio de la relación entre el volumen (v) y temperatura (t) de un gas a presión constante:

V (mL) : 273,0 277,4 282,7 287,8 293,1 298,1T (oC) : 0,0 5,0 10,0 15,0 20,0 25,0

Determinar la ecuación de la recta:

y = mx +bt = mV + b

Se escogen cualquiera de 2 puntos y se hacen los cálculos:

y t (22,5 - 7,5)

x V (295,5 - 280,1)

b = t - mV = 22,5 - [(0,974)*(295,5)] = - 265 oC

Por lo tanto:

t = mV + bt = 0,974 V - 265

26

26

t = 15oC

V = 15,4 mL

m = = = = 0,974 oC/mL

Page 27: Resumen de la materia 1º prueba BQE

SISTEMA METRICO

UNIDADES DE LONGITUD

x 10 por cada lugar

Km – Hm – Dm – m - dm – cm - mm

27

27

Page 28: Resumen de la materia 1º prueba BQE

: 10 por cada lugar

1 Km = 1.000 m = 103 mMúltiplos: 1 Hm = 100 m = 102 m

1 Dm = 10 m = 101 m

1 m = 10 dm = 100 cm = 1.000 mm

1 dm = m = 0,1 m = 10-1 m = 10 cm

Submúltiplos: 1 cm = m = 0,01 m = 10-2 m = 10 mm

1 mm = m = 0,001 m = 10-3 m

UNIDADES DE SUPERFICIE

x 100 por cada lugar

Km2 – Hm2 – Dm2 – m2 - dm2 – cm2 - mm2

: 100 por cada lugar

1 Km2 = 1.000.000 m2 = 106 m2

Múltiplos: 1 Hm2 = 10.000 m2 = 104 m2

1 Dm2 = 100 m2 = 102 m2

1 m2 = 100 dm2 = 10.000 cm2 = 1.000.000 mm2

1 dm2 = m2 = 10-2 m2 = 100 cm2

Submúltiplos: 1 cm2 = m2 = 10-4 m2 = 100 mm2

1 mm2 = m2 = 10-6 m2

* 1 hectárea = 1há = 10.000 m2 = 1 Hm2 = 2,4709 acre

28

28

Page 29: Resumen de la materia 1º prueba BQE

UNIDADES DE VOLUMEN

x 1.000 por cada lugar

Km3 – Hm3 – Dm3 – m3 - dm3 – cm3 - mm3

: 1.000 por cada lugar

1 Km3 = 109 m3

Múltiplos: 1 Hm3 = 106 m3

1 Dm3 = 103 m3

1 m3 = 1.000 dm3 = 1.000.000 cm3 = 1.000.000.000 mm3

1 dm3 = m3 = 10-3 m3 = 1.000 cm3

Submúltiplos: 1 cm3 = m3 = 10-6 m3 = 1.000 mm3

1 mm3 = 10-9 m3

Además: 1 m3 = 1.000 litros1 dm3 = 1 litro1 cm3 = 1 mL

UNIDADES DE CAPACIDAD

x 10 por cada lugar

KL – HL – DL – L - dL – cL - mL

: 10 por cada lugar

1 KL = 1.000 L = 103 LMúltiplos: 1 HL = 100 L = 102 L

1 DL = 10 L

1 L = 10 dL = 100 cL = 1.000 Ml

1 dL = L = 10-1 L

Submúltiplos: 1 cL = L = 10-2 L

1 mL = L = 10-3 L

Además: 1 L = 1 dm3 (= ) 1.000 cm3

1 mL = 1 cm3

29

29

Page 30: Resumen de la materia 1º prueba BQE

UNIDADES DE MASA (PESO)

x 10 por cada lugar

Kg – Hg – Dg – g - dg – cg - mg

: 10 por cada lugar

1 kg = 1.000 g = 103 gMúltiplos: 1 Hg = 100 g = 102 g

1 Dg = 10 g

1 g = 10 dg = 100 cg = 1.000 mg

1 dg = g = 10-1 g

Submúltiplos: 1 cg = g = 10-2 g

1 mg = g = 10-3 g

Además: 1 kg de agua ocupa 1 dm3 o 1 litro1 gramo de agua ocupa 1 cm3 o 1 mL

30

30

Page 31: Resumen de la materia 1º prueba BQE

CONSTANTES FISICAS

1 Joule = 107 erg = 0,102 kpm = 0,239 cal ( = ) 0,24 cal

1 Newton = 1 Dina-grande = 1 estenio = 0,2248 libra-peso = 7,233 poundal = 102 pond =

0,102 kp

1 Kilopond = 1 kp = 9,8 Newton = 9,8 · 105 dinas = 2,205 libra-peso = 70,93 poundal =

1000 pond

1 kg-peso = 9,8 Newton

1 Kilopóndmetro = 1 kpm = 9,8 J = 9,8 · 107erg = 2,34 cal

1 cal = 4,18 J = 0,427 kpm = 1/252 BTU

1 BTU = 252 cal = 1055 J = 778 libra-pie

1 Kwh = 3600000 J = 860000 cal = 3413 BTU

1 utm (unidad técnica de masa) = 1 hyl = 1 geokilo = 9,81 kg

1 slug = 32,2 libras = 14,6 kg

1 kg = 2,21 libras = 0,102 utm = 0,0685 slug

1 libra = 453,6 g = 0,0311 slug

1 uma (unidad masa atómica) = 1,66 · 10-27 kg

1 atm = 76 cm Hg = 29,9 pulg Hg = 760 torr = 1,013 · 105 pascal = 14,7 libra/pulg.2

1 baria = 1 dina / cm2

1 eV (electrón volt) = 1,6 · 10-19 Joule = 1,6 · 10-12 erg

1 H.P. (Horse Power) = 76,04 kpm/seg = 550 libra-pie/seg = 746 watt = 178,2 cal/seg =

2545 BTU/hor

1 C.V. (Caballo de vapor) = 75 kpm/seg = 736 watt

g = aceleración de gravedad normal = 9,81 m/seg2 = 32,2 pie/seg2

Constante de los gases = R

R = 0,0821 L · atm / K · mol = 8,32 Joule / K · mol = 1,98 cal/K mol

Volumen molar = 22,415

Nº Avogadro . Loschmidt = 6,023 · 1023 partículas / mol

F = constante de Faraday =96.500

31

31

Page 32: Resumen de la materia 1º prueba BQE

G (Constante gravitación Universal) = 6,67 · 10-11

C = constante de Coulomb (=) 9 · 109

h (constante de Plank) = 6,63 · 10-34 Joule · seg

0 K (cero absoluto) = -273,15ºC

masa del electrón (en reposo) = 9,1 · 10-31 kg = 5,488 · 10-4uma

masa del protón = 1,67 · 10-27 kg = 1836,12 veces la masa del e- = 1,00759 uma

masa del átomo de H = 1,00814 uma

masa partícula alfa = 6,68 · 10-27 kg

carga del electrón = 1,6 · 10-19 C

carga partícula alfa = +32, · 10-19 C = + 2 e

carga específica del electrón = e/m = 1,76 · 1011 C/kg = 5,27 · 107

Helio (peso molecular) = 4,003

Argón (peso molecular) = 39,944

Aire (peso molecular asignado) = 28,8

32

32