responsive systems comparison method: dynamic insights into...

27
Responsive Systems Comparison Method: Dynamic Insights into Designing a Satellite Radar System Adam M. Ross, Hugh L. McManus, Donna H. Rhodes, Daniel E. Hastings, and Andrew Long September 16, 2009 Track 43 MIL-4: Systems of Systems Analysis for NSS: Answer the Why question AIAA Space 2009

Upload: others

Post on 19-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Responsive Systems Comparison Method: Dynamic Insights into Designing a Satellite

    Radar System

    Adam M. Ross, Hugh L. McManus, Donna H. Rhodes, Daniel E. Hastings, and Andrew Long

    September 16, 2009

    Track 43 MIL-4: Systems of Systems Analysis for NSS: Answer the Why question

    AIAA Space 2009

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 2

    Outline

    • Motivation• Review of Responsive Systems

    Comparison Method (RSC)• Design Tradespace Evaluation• Multi-Epoch Analysis• Discussion

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 3

    Motivation

    • System designers and architects often face changes in…– User needs– Available technologies– Political and technical contexts

    • Classical “scenario analysis” can be too opportunistic, qualitative, or sparse

    • Lack of value-centric approaches results in point designs with questionable value delivery to stakeholders

    • Structured method needed to characterize, analyze, and represent a wide variety of possible futures to identify “value robust” designs

    Note: This paper is a “part 2” of last year’s AIAA Space paper*This paper presents the application of Responsive Systems Comparison (RSC) Method through “Multi-Epoch Analysis”

    *Ross, A.M., McManus, H.L., Long, A., Richards, M.G., Rhodes, D.H., and Hastings, D.E., "Responsive Systems Comparison Method: Case Study in Assessing Future Designs in the Presence of Change," AIAA Space 2008, San Diego, CA, September 2008.

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 4

    The RSC Method

    RSC consists of seven processes:1. Value-Driving Context Definition2. Value-Driven Design Formulation3. Epoch Characterization4. Design Tradespace Evaluation5. Multi-Epoch Analysis6. Era Construction7. Lifecycle Path Analysis

    • Processes consist of discrete set of activities

    • Some feedback between processes is possible

    • Some processes can occur in parallel to save time

    Using Multi-Attribute Tradespace Exploration, Epoch-Era Analysis, and other approaches, a coherent set of processes were developed into the RSC method

    Focus of talk

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 5

    Case Application: Satellite Radar System (SRS)

    Critical issue in national security space– Unique all-weather surveillance capability– Opportunity for impact given ongoing studies– Rich multi-dimensional tradespace

    Unit-of-analysis: SR architecture– Radar payload– Constellation of satellites– Communications network

    To assess potential satellite radar system architectures for providing the United States Military a global, all-weather, on-demand capability to image

    static, and track moving, ground targets; supporting tactical military operations; and maximizing cost-effectiveness across many possible futures

    Case Application Goal: (CBO 2007)

    24 hour, all weather on-demand “Visibility and Tracking”over things that can be observed

    In order to develop RSC, a test case was selected with requisite complexity…

    Satellite Radar System (SRS) Value Proposition:

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 6

    Satellite Radar SystemProgram Manager

    comptroller

    Nation

    SI&E 

    SRS Enterprise Boundary

    Capital(non‐fungible assets)

    Capital(non‐fungible assets)

    National Security Strategy/PolicyNational Security Strategy/Policy

    Resources(fungible assets)

    Resources(fungible assets)

    RadarProductRadarProduct

    DNI

    NGAJ2

    Military

    USD(I)

    ExtendedSRS

    Enterprise

    SRS Context

    OMBCongress

    Which SRS Architecture?

    R&DR&D Comm/GrndComm/Grnd

    Infra‐

    Struct.

    Process 1: Value-Driving Context Definition

    Evaluation Perspective: Given distributions of future uncertainties, how does Satellite Radar Program Manager select the “best” architecture?

    DoD/IC stakeholderschanging tasking priorities

    Dynamic threat environment

    Funding instability

    Uncertain technology availabilityUncertain ground/relay infrastructure

    How does one account for exogenous uncertainties?

    – Policy– Funding– Infrastructure– Environment

    Enterprise boundary helps to define “context”

    A “Satellite Radar Program Manager” is chosen as a “supra-decision maker” who

    must represent all interests in order to have

    a successful program

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 7

    None, long-lead, sparesConstellation OptionYes, NoTugable1x, 2x, 4x base fuelManeuver CapabilityYes, NoTactical Communication AbleRelay, Direct downlinkCommunication Downlink8 Walker IDsConstellation Configuration800, 1200, 1500 [km]AltitudeMechanical, AESAAntenna Type10, 40, 100, 200 [m2]Physical Antenna Area0.5, 1, 2 [GHz]Radar Bandwidth1.5, 10, 20 [kW]Peak Transmit Power

    Definition RangeVariable Name

    None, long-lead, sparesConstellation OptionYes, NoTugable1x, 2x, 4x base fuelManeuver CapabilityYes, NoTactical Communication AbleRelay, Direct downlinkCommunication Downlink8 Walker IDsConstellation Configuration800, 1200, 1500 [km]AltitudeMechanical, AESAAntenna Type10, 40, 100, 200 [m2]Physical Antenna Area0.5, 1, 2 [GHz]Radar Bandwidth1.5, 10, 20 [kW]Peak Transmit Power

    Definition RangeVariable Name

    DES

    IGN

    VAR

    IAB

    LES

    Process 2: Value-Driven Design Formulation

    Design-Value Mapping (DVM) ensures design decisions drive value delivery

    Design-space:Designer-controlled parameters

    that define a system concept

    Value-space: Concept-neutral evaluation criteria specified

    by decision makers

    Design-Value Mapping (DVM): Ensures alignment between

    Value-space and Design-space

    Peak Transmit Power 1.5 10 20 [KW] 9 9 9 3 1 1 9 9 9 0 1 9 9 9 9 96Radar Bandwidth .5 1 2 [GHz] 9 9 3 3 1 1 9 9 9 0 1 3 3 3 3 66Physical Antenna Area 10 40 100 200 [m^2] 9 9 9 3 1 1 9 9 9 1 1 9 9 9 9 97Antenna Type Mechanical vs. AESA 9 9 9 3 3 1 9 9 9 1 1 9 9 9 9 99Satellite Altitude 800 1200 1500 [km] 9 9 3 9 9 3 9 9 9 9 3 1 1 1 1 85Constellation Type 8 Walker IDs 0 0 1 9 9 3 0 0 3 9 3 9 9 9 9 73Comm. Downlink Relay vs. Downlink 0 0 0 0 0 9 0 0 0 0 9 9 9 3 9 48Tactical Downlink Yes vs. No 0 0 0 0 3 9 0 0 0 0 9 9 9 3 9 51Maneuver Package 1x, 2x, 4x 1 1 1 1 1 0 1 1 1 1 0 9 3 3 3 27Constellation Option none, long-lead, spare 0 0 0 0 0 0 0 0 0 0 0 9 9 9 9 36

    Bas

    elin

    e Sch

    edule

    Act

    ual

    Sch

    edule

    (Era

    )

    To

    tal

    Imp

    act

    Tracking Imaging

    Min

    . D

    isce

    rnab

    le V

    eloci

    ty

    Num

    ber

    of

    Tar

    get

    Box

    es

    Tar

    get

    ID

    Tim

    e

    Tar

    get

    Tra

    ck L

    ife

    Tra

    ckin

    g L

    aten

    cy

    Mission

    ATTRIBUTES

    ScheduleProgrammaticsCost

    Definition RangeVariable Name Min

    imum

    Tar

    get

    RC

    S

    DE

    SIG

    N V

    AR

    IAB

    LE

    S

    Bas

    elin

    e Cost

    Act

    ual

    Cost

    s (E

    ra)

    Imag

    ing L

    aten

    cy

    Res

    olution (

    Pro

    xy)

    Tar

    get

    s per

    Pas

    s

    Fiel

    d o

    f R

    egar

    d

    Rev

    isit F

    requen

    cy

    Attribute Name units range (U=0 to U=1)Minimum Target RCS m^2 1000 --> 0Min. Discernable Velocity m/s 50 --> 5Number of Target Boxes # 1 --> 10Target Acquisition Time min 120 --> 10Target Track Life min 0 --> 60Tracking Latency min 240 --> 0Resolution m 5 --> 0.01Targets per Pass # 1 --> 10^5Field of Regard km^2 1000 --> 10^6Revisit interval min 300 --> 10Imaging Latency min 720 --> 60Geo-Location Accuracy m 500 --> 50

    Baseline Cost $BDeviation from Cost %Baseline Schedule yearsDeviation from Schedule years

    Tra

    ckin

    gPr

    ogra

    mIm

    agin

    g

    ATT

    RIB

    UTE

    S

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 8

    None, long-lead, sparesConstellation OptionYes, NoTugable1x, 2x, 4x base fuelManeuver CapabilityYes, NoTactical Communication AbleRelay, Direct downlinkCommunication Downlink8 Walker IDsConstellation Configuration800, 1200, 1500 [km]AltitudeMechanical, AESAAntenna Type10, 40, 100, 200 [m2]Physical Antenna Area0.5, 1, 2 [GHz]Radar Bandwidth1.5, 10, 20 [kW]Peak Transmit Power

    Definition RangeVariable Name

    None, long-lead, sparesConstellation OptionYes, NoTugable1x, 2x, 4x base fuelManeuver CapabilityYes, NoTactical Communication AbleRelay, Direct downlinkCommunication Downlink8 Walker IDsConstellation Configuration800, 1200, 1500 [km]AltitudeMechanical, AESAAntenna Type10, 40, 100, 200 [m2]Physical Antenna Area0.5, 1, 2 [GHz]Radar Bandwidth1.5, 10, 20 [kW]Peak Transmit Power

    Definition RangeVariable Name

    DES

    IGN

    VAR

    IAB

    LES

    Process 2: Value-Driven Design Formulation

    Design-Value Mapping (DVM) ensures design decisions drive value delivery

    Design-space:Designer-controlled parameters

    that define a system concept

    Value-space: Concept-neutral evaluation criteria specified

    by decision makers

    Design-Value Mapping (DVM): Ensures alignment between

    Value-space and Design-space

    Peak Transmit Power 1.5 10 20 [KW] 9 9 9 3 1 1 9 9 9 0 1 9 9 9 9 96Radar Bandwidth .5 1 2 [GHz] 9 9 3 3 1 1 9 9 9 0 1 3 3 3 3 66Physical Antenna Area 10 40 100 200 [m^2] 9 9 9 3 1 1 9 9 9 1 1 9 9 9 9 97Antenna Type Mechanical vs. AESA 9 9 9 3 3 1 9 9 9 1 1 9 9 9 9 99Satellite Altitude 800 1200 1500 [km] 9 9 3 9 9 3 9 9 9 9 3 1 1 1 1 85Constellation Type 8 Walker IDs 0 0 1 9 9 3 0 0 3 9 3 9 9 9 9 73Comm. Downlink Relay vs. Downlink 0 0 0 0 0 9 0 0 0 0 9 9 9 3 9 48Tactical Downlink Yes vs. No 0 0 0 0 3 9 0 0 0 0 9 9 9 3 9 51Maneuver Package 1x, 2x, 4x 1 1 1 1 1 0 1 1 1 1 0 9 3 3 3 27Constellation Option none, long-lead, spare 0 0 0 0 0 0 0 0 0 0 0 9 9 9 9 36

    Bas

    elin

    e Sch

    edule

    Act

    ual

    Sch

    edule

    (Era

    )

    To

    tal

    Imp

    act

    Tracking Imaging

    Min

    . D

    isce

    rnab

    le V

    eloci

    ty

    Num

    ber

    of

    Tar

    get

    Box

    es

    Tar

    get

    ID

    Tim

    e

    Tar

    get

    Tra

    ck L

    ife

    Tra

    ckin

    g L

    aten

    cy

    Mission

    ATTRIBUTES

    ScheduleProgrammaticsCost

    Definition RangeVariable Name Min

    imum

    Tar

    get

    RC

    S

    DE

    SIG

    N V

    AR

    IAB

    LE

    S

    Bas

    elin

    e Cost

    Act

    ual

    Cost

    s (E

    ra)

    Imag

    ing L

    aten

    cy

    Res

    olution (

    Pro

    xy)

    Tar

    get

    s per

    Pas

    s

    Fiel

    d o

    f R

    egar

    d

    Rev

    isit F

    requen

    cy

    Attribute Name units range (U=0 to U=1)Minimum Target RCS m^2 1000 --> 0Min. Discernable Velocity m/s 50 --> 5Number of Target Boxes # 1 --> 10Target Acquisition Time min 120 --> 10Target Track Life min 0 --> 60Tracking Latency min 240 --> 0Resolution m 5 --> 0.01Targets per Pass # 1 --> 10^5Field of Regard km^2 1000 --> 10^6Revisit interval min 300 --> 10Imaging Latency min 720 --> 60Geo-Location Accuracy m 500 --> 50

    Baseline Cost $BDeviation from Cost %Baseline Schedule yearsDeviation from Schedule years

    Tra

    ckin

    gPr

    ogra

    mIm

    agin

    g

    ATT

    RIB

    UTE

    S

    Peak Transmit Power 1.5 10 20 [KW] 9 9 9 3 1 1 9 9 9 0 1 9 9 9 9 96Radar Bandwidth .5 1 2 [GHz] 9 9 3 3 1 1 9 9 9 0 1 3 3 3 3 66Physical Antenna Area 10 40 100 200 [m^2] 9 9 9 3 1 1 9 9 9 1 1 9 9 9 9 97Antenna Type Mechanical vs. AESA 9 9 9 3 3 1 9 9 9 1 1 9 9 9 9 99Satellite Altitude 800 1200 1500 [km] 9 9 3 9 9 3 9 9 9 9 3 1 1 1 1 85Constellation Type 8 Walker IDs 0 0 1 9 9 3 0 0 3 9 3 9 9 9 9 73Comm. Downlink Relay vs. Downlink 0 0 0 0 0 9 0 0 0 0 9 9 9 3 9 48Tactical Downlink Yes vs. No 0 0 0 0 3 9 0 0 0 0 9 9 9 3 9 51Maneuver Package 1x, 2x, 4x 1 1 1 1 1 0 1 1 1 1 0 9 3 3 3 27Constellation Option none, long-lead, spare 0 0 0 0 0 0 0 0 0 0 0 9 9 9 9 36

    Bas

    elin

    e Sch

    edule

    Act

    ual

    Sch

    edule

    (Era

    )

    To

    tal

    Imp

    act

    Tracking Imaging

    Min

    . D

    isce

    rnab

    le V

    eloci

    ty

    Num

    ber

    of

    Tar

    get

    Box

    es

    Tar

    get

    ID

    Tim

    e

    Tar

    get

    Tra

    ck L

    ife

    Tra

    ckin

    g L

    aten

    cy

    Mission

    ATTRIBUTES

    ScheduleProgrammaticsCost

    Definition RangeVariable Name Min

    imum

    Tar

    get

    RC

    S

    DE

    SIG

    N V

    AR

    IAB

    LE

    S

    Base

    line

    Cos

    t

    Act

    ual

    Cost

    s (E

    ra)

    Imag

    ing L

    aten

    cy

    Res

    olu

    tion (

    Pro

    xy)

    Tar

    get

    s per

    Pas

    s

    Fiel

    d o

    f R

    egar

    d

    Rev

    isit F

    requen

    cy

    1-3-9 scoring is intended to capture first order strength

    of interaction in order to quickly focus on important

    trades for analysis

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 9

    Process 3: Epoch Characterization

    Epoch variables allow for parameterization of some “context” drivers for system value

    Level 1 – SAR < GMTILevel 2 – SAR = GMTILevel 3 – SAR > GMTI

    3Imaging vs. Tracking Mission PrioritiesNational Security Strategy/Policy

    Use tradespace to vary “costs”naBudget ConstraintsResources

    Level 1 – AvailableLevel 2 – Not available

    2Collaborative AISR Assets

    Radar Product

    Capital

    Exogenous Uncertainty Category

    Epoch Variable Number of Steps

    Units/Notes

    Epoch Vector

    Radar Technology Level

    3 Level 1 (Mature), TRL = 9 Level 2 (Medium), TRL = 6 Level 3 (Advanced), TRL = 4

    Communication Infrastructure

    2 Level 1 – No Backbone + AFSCN Ground Sites

    Level 2 – WGS + AFSCN Ground Sites

    Operations Plans 9 Lookup table of geographic region & target op. plans

    Environment 2 Level 1 – No jammingLevel 2 – Hostile jamming

    Epochs defined by specifying needs and context through Epoch Variables

    – Enumerate hundreds of contexts – Analogous to design variables

    648Future

    Contexts

    648Future

    Contexts

    Satellite Radar SystemProgram Manager

    comptroller

    Nation

    SI&E 

    SRS Enterprise Boundary

    Capital(non‐fungible assets)

    Capital(non‐fungible assets)

    National Security Strategy/PolicyNational Security Strategy/Policy

    Resources(fungible assets)

    Resources(fungible assets)

    RadarProductRadarProduct

    DNI

    NGAJ2

    Military

    USD(I)

    ExtendedSRS

    Enterprise

    SRS Context

    OMBCongress

    Which SRS Architecture?

    R&DR&D Comm/GrndComm/Grnd

    Infra‐

    Struct.

    Epoch: A time period with a fixed context and set of needs; characterized by static constraints,

    design concepts, available technologies, and articulated attributes (Ross 2006)

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 10

    Process 3: Epoch Characterization

    Epoch variables allow for parameterization of some “context” drivers for system value

    Level 1 – SAR < GMTILevel 2 – SAR = GMTILevel 3 – SAR > GMTI

    3Imaging vs. Tracking Mission PrioritiesNational Security Strategy/Policy

    Use tradespace to vary “costs”naBudget ConstraintsResources

    Level 1 – AvailableLevel 2 – Not available

    2Collaborative AISR Assets

    Radar Product

    Capital

    Exogenous Uncertainty Category

    Epoch Variable Number of Steps

    Units/Notes

    Epoch Vector

    Radar Technology Level

    3 Level 1 (Mature), TRL = 9 Level 2 (Medium), TRL = 6 Level 3 (Advanced), TRL = 4

    Communication Infrastructure

    2 Level 1 – No Backbone + AFSCN Ground Sites

    Level 2 – WGS + AFSCN Ground Sites

    Operations Plans 9 Lookup table of geographic region & target op. plans

    Environment 2 Level 1 – No jammingLevel 2 – Hostile jamming

    Epochs defined by specifying needs and context through Epoch Variables

    – Enumerate hundreds of contexts – Analogous to design variables

    648Future

    Contexts

    648Future

    Contexts

    Satellite Radar SystemProgram Manager

    comptroller

    Nation

    SI&E 

    SRS Enterprise Boundary

    Capital(non‐fungible assets)

    Capital(non‐fungible assets)

    National Security Strategy/PolicyNational Security Strategy/Policy

    Resources(fungible assets)

    Resources(fungible assets)

    RadarProductRadarProduct

    DNI

    NGAJ2

    Military

    USD(I)

    ExtendedSRS

    Enterprise

    SRS Context

    OMBCongress

    Which SRS Architecture?

    R&DR&D Comm/GrndComm/Grnd

    Infra‐

    Struct.

    Epoch: A time period with a fixed context and set of needs

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 11

    Process 3: Epoch Characterization

    Epoch variables allow for parameterization of some “context” drivers for system value

    Level 1 – SAR < GMTILevel 2 – SAR = GMTILevel 3 – SAR > GMTI

    3Imaging vs. Tracking Mission PrioritiesNational Security Strategy/Policy

    Use tradespace to vary “costs”naBudget ConstraintsResources

    Level 1 – AvailableLevel 2 – Not available

    2Collaborative AISR Assets

    Radar Product

    Capital

    Exogenous Uncertainty Category

    Epoch Variable Number of Steps

    Units/Notes

    Epoch Vector

    Radar Technology Level

    3 Level 1 (Mature), TRL = 9 Level 2 (Medium), TRL = 6 Level 3 (Advanced), TRL = 4

    Communication Infrastructure

    2 Level 1 – No Backbone + AFSCN Ground Sites

    Level 2 – WGS + AFSCN Ground Sites

    Operations Plans 9 Lookup table of geographic region & target op. plans

    Environment 2 Level 1 – No jammingLevel 2 – Hostile jamming

    Epochs defined by specifying needs and context through Epoch Variables

    – Enumerate hundreds of contexts – Analogous to design variables

    Enterprise scoping exercise informed the types of “epoch variables” encountered by program

    648Future

    Contexts

    648Future

    Contexts

    Satellite Radar SystemProgram Manager

    comptroller

    Nation

    SI&E 

    SRS Enterprise Boundary

    Capital(non‐fungible assets)

    Capital(non‐fungible assets)

    National Security Strategy/PolicyNational Security Strategy/Policy

    Resources(fungible assets)

    Resources(fungible assets)

    RadarProductRadarProduct

    DNI

    NGAJ2

    Military

    USD(I)

    ExtendedSRS

    Enterprise

    SRS Context

    OMBCongress

    Which SRS Architecture?

    R&DR&D Comm/GrndComm/Grnd

    Infra‐

    Struct.

    Epoch: A time period with a fixed context and set of needs

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 12

    Process 4: Design Tradespace Evaluation

    Compares system designs on a common, quantitative basis– Uses computer-based models to compare thousands of designs– Avoids limits of local point solutions– Maps structure of stakeholder value onto design space– Simulation can be used to account for design uncertainties

    (i.e., cost, schedule, performance uncertainty bubbles)

    Design tradespaces provide high-level insights into system-level trade-offs. Detailed system-level design would follow-on preferred system concept decisions

    Each point represents a feasible solution

    Epoch Variables

    Design Variables Attributes

    Model(s)

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 13

    Typical Tradespace: Utility vs. Cost

    EPOCH 171

    Each point is anevaluated design

    Some good value solutions?

    • Color shows additional information; in this case, antenna area

    • Larger area (100 m2) gives better utility at higher cost

    • Medium size (40 m2) works, cheaper

    • Smallest area in DV (10 m2) does not appear -small antennas do not satisfy minimum user needs in this case

    Visualizations used to get quick insights into key trades, which may be context dependent

    Epoch 171No AISR avail, WGS availNo jamming, TRL 9 techTARGETS: Mid East, AsiaImaging mission (primary)

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 14

    Process 5: Multi-Epoch Analysis

    • Cross-epoch analysis

    • Within-epoch analysis

    • Identifying Passive Value Robust designs

    • Identifying changeable designs

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 15

    Cross-Epoch Analysis: Tradespace Yield

    0 100 200 300 400 500 600 700 800 900 10000

    5

    10

    15

    20

    25

    30

    35

    40Tradespace Yield by Percent for Evaluated Epochs

    Epoch Number

    Per

    cent

    Yie

    ld (

    %)

    0 5 10 15 20 25 30 35 400

    5

    10

    15

    20

    25Tradespace Yield Distribution by Frequency

    Percent Yield (%)

    Fre

    quen

    cy

    Yield = feasible designs / total designs per tradespace* (in %)

    *For the SRS case study, total designs per tradespace = 23,328

    Epochs with demanding target sets

    Epochs with collaborative AISR assets

    Observations• No epoch with more than 36% yield

    • Most epochs with 18-20% yield

    Possible low yield causes: poor design enumeration, demanding constraints, difficult attribute range expectations

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 16

    Within-Epoch Analysis:Tradespace Yield

    Tracking mission attributes

    Low attribute importance

    Many designs disqualified!

    “Easy”attribute

    Distribution of designs across attribute ranges shows the impact of “easy” and “hard” expectations

    Relaxing attribute range constraints may make many otherwise

    attractive designs feasible

    Especially for low attribute importance

    One third of tradespace

    disqualified!

    Also low attribute

    importance

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 17

    Calculating Pareto Trace to Identify Passive Value Robust Designs

    1 2 3 4 5 6 7 8

    x 107

    0.65

    0.7

    0.75

    0.8

    0.85Epoch 171 Only Valid Designs

    Lifecycle Cost

    Imag

    e U

    tility

    Find non-dominated solutions within a given epoch (Pareto Set)

    Higher Pareto Trace designs are more passively value robust

    0 1 2 3

    x 104

    0

    20

    40

    60

    80

    100

    Par

    eto

    Tra

    ce

    D es ign ID

    im age v. c os t

    3350 3400 34500

    20

    40

    60

    80

    100

    120

    Par

    eto

    Tra

    ce

    D es ign ID

    im age v. c os t

    P T

    Identify designs with high Pareto Trace for further investigation

    e.g. “design 3435” is in 67% of Pareto Sets

    Pareto Trace Number# Pareto Sets containing design

    (measure of passive robustness)

    Num

    of d

    esig

    ns

    Pareto Trace Number

    Util

    ity

    EpochCos

    t

    Pareto Trace Number# Pareto Sets containing design

    (measure of passive robustness)

    Num

    of d

    esig

    ns

    Pareto Trace Number

    Num

    of d

    esig

    ns

    Pareto Trace Number

    Util

    ity

    EpochCos

    t

    Util

    ity

    EpochCos

    t

    Across many epochs, track number of times solution appears in Pareto Set

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 18

    Finding “Compromises” Across Missions and Stakeholders

    Discover “best” alternatives for individual missions, as well as “efficient” compromises

    1 2 3 4 5 6 7 8

    x 107

    0.65

    0.7

    0.75

    0.8

    0.85Epoch 171 Only Valid Designs

    Lifecycle Cost

    Imag

    e U

    tility

    1 2 3 4 5 6 7 8

    x 107

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9Epoch 171 Only Valid Designs

    Lifecycle Cost

    Tra

    ck U

    tility

    34356027

    21701

    21697

    13929

    13925

    13921

    6038

    3758

    3446

    21701

    21697

    13929

    13925

    13921

    6038

    3758

    3446

    6153

    6149

    6145

    1285

    6153

    6149

    6145

    1285

    6003

    5967

    3887

    3883

    3877

    3519

    3483

    3411

    3375

    6003

    5967

    3887

    3883

    3877

    3519

    3483

    3411

    3375

    1287 3433 3434 3436 3445 3757 6025 6026 6028 6037 3363 3399 3447 3555 3559 3879 5955 5991

    6029 3769 6147 6469 6741

    Imaging Tracking

    Joint

    Compromise

    Pareto Efficient Sets Imaging Mission

    Tracking Mission

    Method provides quantitative approach for discovering “best”mission-specific designs, as well as “efficient” (benefit at cost) compromises across missions and stakeholders

    “Best” for mission

    “Best” for mission

    “Efficient”compromise

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 19

    Diving Deeper onto Select Designs

    Colored by increasing peak power*

    * Similar effect due to increased antenna aperture

    Colored by increasing radar bandwidth

    • Utility can be decomposed into individual stakeholder values

    • Decomposition provides insights into key system design tradeoffs across missions

    Focused tradespace of ~9,000 designs around single design

    Design 3435

    Tracking Mission

    Imaging Mission

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 20

    Defined 8 System Transition Paths (Rules)1. Redesign (Design Phase)2. Redesign (Build Phase)3. Redesign (Test Phase)4. Add satellites to constellation (Ops Phase)5. Alter altitude with on-orbit fuel (Ops Phase)6. Alter altitude through tug (Ops Phase)7. Alter inclination with on-orbit fuel (Ops Phase)8. Alter inclination through tug (Ops Phase)

    Calculating Filtered Outdegree to Identify Changeable Designs

    One can identify “changeable” designs and design choices (real options) by determining the filtered outdegree at a given acceptable transition “cost” threshold

    Filtered Outdegree# outgoing arcs from design at acceptable “cost”

    (measure of changeability)

    102

    104

    106

    108

    0

    0.5

    1

    1.5

    2

    2.5x 10

    4

    Delta Cost

    Ou

    tdeg

    ree

    Design 3435, All Epochs, All Rules

    Ep63Ep171Ep193Ep202Ep219Ep258Ep279Ep282Ep352Ep387Ep494Ep495Ep519Ep525Ep711Ep773Ep819Ep843Ep849Ep877Ep879

    In some cases…“changeability” goes to zero

    Variation in design “changeability”in response to context change

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 21

    Defined 8 System Transition Paths (Rules)1. Redesign (Design Phase)2. Redesign (Build Phase)3. Redesign (Test Phase)4. Add satellites to constellation (Ops Phase)5. Alter altitude with on-orbit fuel (Ops Phase)6. Alter altitude through tug (Ops Phase)7. Alter inclination with on-orbit fuel (Ops Phase)8. Alter inclination through tug (Ops Phase)

    Calculating Filtered Outdegree to Identify Changeable Designs

    One can identify “changeable” designs and design choices (real options) by determining the filtered outdegree at a given acceptable transition “cost” threshold

    Filtered Outdegree# outgoing arcs from design at acceptable “cost”

    (measure of changeability)

    102

    104

    106

    108

    0

    0.5

    1

    1.5

    2

    2.5x 10

    4

    Delta Cost

    Ou

    tdeg

    ree

    Design 3435, All Epochs, All Rules

    Ep63Ep171Ep193Ep202Ep219Ep258Ep279Ep282Ep352Ep387Ep494Ep495Ep519Ep525Ep711Ep773Ep819Ep843Ep849Ep877Ep879

    In some cases…“changeability” goes to zero

    Variation in design “changeability”in response to context change

    Quantification and specification of “ilities” can be made explicit using RSC (e.g. flexibility, adaptability, scalability,

    survivability, etc.)

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 22

    Changeability Across the Lifecycle

    0 0.5 1 1.5 2 2.5

    x 104

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    Design Num

    Filt

    ered

    Out

    degr

    ee

    Filtered Outdegree, Epoch 171, Design Phase

    0 0.5 1 1.5 2 2.5

    x 104

    0

    500

    1000

    1500

    2000

    2500

    Design Num

    Filt

    ered

    Out

    degr

    ee

    Filtered Outdegree, Epoch 171, Build Phase

    0 0.5 1 1.5 2 2.5

    x 104

    0

    500

    1000

    1500

    Design Num

    Filt

    ered

    Out

    degr

    ee

    Filtered Outdegree, Epoch 171, Test Phase

    0 0.5 1 1.5 2 2.5

    x 104

    0

    5

    10

    15

    20

    25

    30

    35

    Design Num

    Filt

    ered

    Out

    degr

    ee

    Filtered Outdegree, Epoch 171, Operate Phase

    Notional system lifecycle

    Design Build Integrate & Test Operate

    Path E

    nablersD

    esign Variables

    3

    5

    1

    0

    0

    20

    1

    0

    100

    10

    4

    800

    16805

    133Constellation Option (1=nothing, 3=spares built)

    466Maneuver package (4=baseline, 5=x2, 6=x4)

    111Tugable (1=yes)

    000Tactical Comm (0=yes)

    100Comm Arch (0=backbone, 1=ground)

    102020Peak Power (kW)

    211Radar Bandwidth (GHz)

    000Ant Type (0=AESA)

    4010040Ant Area (m^2)

    101010Tx Freq (GHz)

    344Walker ID (53deg, 4=20 sats, 5 planes; 3=10 sats, 5 planes)

    1500800800Orbit Alt (km)

    34351680916701

    Path E

    nablersD

    esign Variables

    3

    5

    1

    0

    0

    20

    1

    0

    100

    10

    4

    800

    16805

    133Constellation Option (1=nothing, 3=spares built)

    466Maneuver package (4=baseline, 5=x2, 6=x4)

    111Tugable (1=yes)

    000Tactical Comm (0=yes)

    100Comm Arch (0=backbone, 1=ground)

    102020Peak Power (kW)

    211Radar Bandwidth (GHz)

    000Ant Type (0=AESA)

    4010040Ant Area (m^2)

    101010Tx Freq (GHz)

    344Walker ID (53deg, 4=20 sats, 5 planes; 3=10 sats, 5 planes)

    1500800800Orbit Alt (km)

    34351680916701

    0.525.538.2100Best across171

    0.423.638.210016805171

    0.525.527.010016701171

    0.20.30.041003435171

    OperateTestBuildDesignDesign #Epoch

    Phase

    Changeability decreases as design moves through lifecycle

    Highly changeable designs per phase can be identified and features investigated

    Time

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 23

    Identifying “Interesting” Designs

    Path E

    nablersD

    esign Variables

    3

    5

    1

    0

    0

    20

    1

    0

    100

    10

    4

    800

    16805

    133Constellation Option (1=nothing, 3=spares built)

    466Maneuver package (4=baseline, 5=x2, 6=x4)

    111Tugable (1=yes)

    000Tactical Comm (0=yes)

    100Comm Arch (0=backbone, 1=ground)

    102020Peak Power (kW)

    211Radar Bandwidth (GHz)

    000Ant Type (0=AESA)

    4010040Ant Area (m^2)

    101010Tx Freq (GHz)

    344Walker ID (53deg, 4=20 sats, 5 planes; 3=10 sats, 5 planes)

    1500800800Orbit Alt (km)

    34351680916701

    Path E

    nablersD

    esign Variables

    3

    5

    1

    0

    0

    20

    1

    0

    100

    10

    4

    800

    16805

    133Constellation Option (1=nothing, 3=spares built)

    466Maneuver package (4=baseline, 5=x2, 6=x4)

    111Tugable (1=yes)

    000Tactical Comm (0=yes)

    100Comm Arch (0=backbone, 1=ground)

    102020Peak Power (kW)

    211Radar Bandwidth (GHz)

    000Ant Type (0=AESA)

    4010040Ant Area (m^2)

    101010Tx Freq (GHz)

    344Walker ID (53deg, 4=20 sats, 5 planes; 3=10 sats, 5 planes)

    1500800800Orbit Alt (km)

    34351680916701

    16701 16805

    16809

    3435

    Most passive value robust (3435)Most changeable (16701) Both passive value robust and changeable

    designs can be identified in any epoch

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 24

    Discussion

    Insight 1: Quantitative investigation of “requirement” effect– Ease or difficulty in achieving “acceptable” levels– Identification of overly constraining expectations

    Insight 2: Quantify “value robust” and correlate to design features– Pareto Trace metric to identify value robust designs (across

    enumerated epochs)– Filtered Outdegree metric to identify changeable designs (for

    unknown epochs or for evolving systems)– Identify useful design features for real options

    Insight 3: Quantify key system tradeoffs– Illustrate tensions between missions– Identify good “compromise” design alternatives

    Caution: Specific insights into SRS more illustrative than prescriptive(very low fidelity model used)

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 25

    Next Steps

    • RSC method refinement on-going

    • Application of Process 6 (Era Construction) and Process 7 (Lifecycle Path Analysis) in current research (aim to publish next year)

    • Advanced metrics and approaches for incorporating survivability, SoS design, and valuing destinations for changeability

  • Thank you.Questions?

    Stay tuned for follow-up publications with results…

  • seari.mit.edu © 2009 Massachusetts Institute of Technology 27

    Tradespace NetworkTradespace NetworkTradespace Network

    DV Transition RulesDV Transition Rules

    Context(Epoch Vector)

    Context(Epoch Vector)

    Epoch VariablesEpoch Variables

    EPOCH CHARACTERIZATION

    MULTI‐EPOCH ANALYSIS

    Sample

    Epoch Transition RulesEpoch Transition Rules

    ErasEras

    Path CalculatorPath Calculator

    Cost-Utility TrajectoriesCostCost--Utility TrajectoriesUtility Trajectories

    Path SelectionRules

    Path SelectionRules

    ERA CONSTRUCTION

    LIFECYCLE PATH ANALYSIS

    Overall Model Architecture

    ModelModel

    Design VectorDesign Vector

    AttributesAttributes

    MissionMission

    VALUE‐DRIVEN DESIGNFORUMULATION

    UtilityUtility

    CostCost

    TradespaceTradespaceTradespace

    Sample

    Value RobustnessValue RobustnessValue RobustnessSurvivabilitySurvivabilitySurvivability FlexibilityFlexibilityFlexibility

    Epoch DataEpoch DataEpoch Data

    2

    3

    5

    6

    7DESIGN TRADESPACE

    EVALUATION

    4

    VALUE‐DRIVING CONTEXTDEFINITION

    1