respiratory monitoring peter c. rimensberger pediatric and neonatal icu university hospital of...

37
Volume Change Volume Change Time Time Gas Flow Gas Flow Pressure Difference Pressure Difference Basic Mechanism of PPV O 2 CO 2 Gas Exchange Respiratory Monitoring

Upload: lambert-patterson

Post on 20-Jan-2016

238 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Volume ChangeVolume ChangeVolume ChangeVolume Change

TimeTimeTimeTime

Gas FlowGas FlowGas FlowGas Flow

Pressure DifferencePressure DifferencePressure DifferencePressure Difference

Basic Mechanism of PPV

O2

CO2

Gas Exchange

Respiratory Monitoring

Page 2: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Pressure – Flow – Time - Volume

. V o

r V

P or V

Loops

V /

P /

V. t

Curves

on the ventilator display

- to assess patient-ventilator synchrony

- to get some information on respiratory mechanics under dynamic conditions (!)

- to detect erroneus ventilator settings

- to guide in the search for optimal ventilator settings

Page 4: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

The Pressure-Volume Curve: Useful at bedside?

How to monitor at bedside?

1) PV-tools +/-

Page 5: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Assessment of Static P-V Curve

Super-syringe method: Stepwise inflation from a big syringe with multiple occlusions at each volume to record recoil pressure

– Time consuming– Cumbersome to perform– Difficult to standardize– Patient must be paralyzed– Great risk of oxygen desaturation

Volume

Pressure

Volume

Pressure

Page 6: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Jonson B AJRCCM 1999;159:1172–1178 Rimensberger PC Crit Care Med 1999; 27:1946-52

Downie JM et al. AJRCCM e- publ February 5, 2004

Is the static PV-curve useful?

Page 7: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Pressure measurements under dynamic conditions

ETT 3 mm OD

Sondergaard S Ped Research 2002; 51: 339-45

Page 8: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Monitoring of the dynamic cycle: Is it better?

Kárason S Acta Anaesthesiol Scand 2001; 45: 173

Kárason S Acta Anaesthesiol Scand 2000; 44: 571

0.8 Pmax Pmax

Volume

Pressure

Cdyn

C20

Overdistention Index: C20/Cdyn

Page 9: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Lung protection and the open lung concept 

How to monitor at bedside?

1) PV-tools +/-

2) O2-response?

Brazelton TB Crit Care Med 2001; 29:2349

Page 10: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Lichtwarck-Aschoff M AJRCCM 2000; 182:2125-32

The oxygen response (limitations)

P/F-ratio, oxygen delivery and Crs during PEEP steps

Page 11: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

The oxygenation response: Can it be used?

PEEP andVt effects in ALI

"static" compliance:

static PIP (Pplat) - PEEP

tidal volumeCst =

Recruitment Overdistension

Burns D J Trauma 2001;51:1177-81

Page 12: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Constant VT : Plateau - PEEP []

20

0

15

5

15

10

15

15

25

20

Prevalentrecruitment

Balance

Prevalentoverdistention

PEEP [cm H2O]

0

10

20

30

40

50

Air

way

pre

ssu

re [

cmH

2O]

PEEP

Plateau

L. Gattinoni, 2003

Page 13: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Constant VT : PaCO2 and PaO2

Prevalentrecruitment

Balance

Prevalentoverdistention

0 5 10 15 20

PEEP [cmH2O]

0

20

40

60

80

100

[mm

Hg

]PaCO2

PaO2

L. Gattinoni, 2003

Page 14: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

O2-improvement = Shunt improvement =

PaO2

VA

PaCO2

a) recruitment

PaO2

PaCO2

VA

b) flow diversion

L. Gattinoni, 2003

Page 15: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

PEEP 0

2

1

2

1

PEEP 20

1

1

1

1

1

1

Prevalent overinflation = dead space effect

PaO2 and PaCO2 increase

L. Gattinoni, 2003

Page 16: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Oxygenation

CO2-response

PEEP 10

PEEP 15

PEEP 20

PEEP 25

PEEP titration

Overdistention starts

Page 17: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

The open lung concept: Maximum dynamic compliance and best oxygenation at the least pressure required

25/10

Steps of 5 cmH2O to 40/25 25/10

Overinflation starts

Overinflation ends

Pressure control ventilation

Page 18: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Continuous blood gas monitoring during HFO

CDP: 13

CollapseOverdistention

12 11 10 9 11

Page 19: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

PCO2 cascade

PvCO2 PaCO2

PvCO2

VCO2PcCO2

PACO2

Ventilated/perfused lung

Alveolar VD/VT

PETCO2

Anatomic VD/VT

PECO2

L. Gattinoni, 2003

Page 20: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Ideal gas exchange

Alveolar PCO2 =

Arterial PCO2

Alveolar PCO2

= End-tidal PCO2

NO SHUNT NO ALVEOLAR VD/VT

End-tidal PCO2

Arterial PCO2

= 1

Page 21: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Single breath CO2-tracing

Modified from “The Single breath test for carbon dioxide” by Roger Fletcher (1986)

Phase I CO2-free = gas from airwaysPhase II Rapid S-shape upswing = washout of convective airway with alveolar gas

Phase III Alveolar gas – called plateau but ascends gradually due to

a) sequential emptying of lung regions with different V/Q-ratios

b) within units V/Q mismatching secondary to incomplete gas mixing

c) the continual release of CO2 into the alveoli during expiration

Page 22: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

CO2 in ventilatory monitoring

etCO2 endtidal value

FeCO2 fraction of CO2 in expired gas

VCO2 minute elimination (”production”)

VTCO2 tidal elimination

Page 23: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Volumetric Capnography (NICOVolumetric Capnography (NICO22))

Single Breath CO2 AnalysisSingle Breath CO2 Analysis

Validated against a metabolic analyzer by Kallet et al, Resp Care 2005and used in many studies for dead space fraction measurements

Page 24: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Volumetric CapnographyVolumetric CapnographySingle Breath CO2 AnalysisSingle Breath CO2 Analysis

CO2 and Volumeinstead of

CO2 and TimeCapnogram

Page 25: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Volumetric CapnographyVolumetric CapnographySingle Breath CO2 AnalysisSingle Breath CO2 Analysis

I

III

II

Page 26: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Optimum End Expiratory Airway Pressure in Patients with Acute Pulmonary Failure

Suter PM, Fairley HB, Isenberg MD. NEJM 1975

Best PEEP corresponds to the lowest dead space fraction and the highest compliance

Indicator of Lung OverdistensionIndicator of Lung OverdistensionDuring PEEP TitrationDuring PEEP Titration

Page 27: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Effects of PEEP on Dead Space and its Partitions in ALIBeydon L, et al. Inten Care Med 2002

Anatomic dead space increased slightly with PEEP

Alveolar dead space did not vary systematically with PEEP

In individual patients a decrease or increase of alveolar dead space paralleled a positive or negative response to PEEP in regards to oxygenation

Indicator of Lung Overdistension During PEEP Titration

0

10

20

30

40

50

60

0 2.5 5 7.5 10PEEP

PE

RC

EN

T

VD phsy % VD anat % VD alv %

Page 28: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

VT 207 117 239 120 263 117PIP / PEEP 25/6 24/12 40/12 15/8 40/12 17/10Cdyn 11.1 9.6 8.6 18.5 9.6 17.3

Page 29: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Lung protection and the open lung concept 

How to monitor at bedside?

1) PV-tools +/-

2) O2- + CO2-response

3) Chest CT and imaging methods?

Gattinoni L AJRCCM 2001; 164:1701–1711

Page 30: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Information from CT studies: Lung heterogeneity and intratidal collapse and decollapse

In heterogeneous lung injury inflation behaviour is heterogeneous

Adapted from Suter P NEJM 1975; 292:284-289 PA = 15 cmH2O

PA = 35 cmH2O

Page 31: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

CT to assure more homogenoeus lung volume distribution

BarabsBarbas C Curr Opin Crit Care 2005;11:18–28

Page 32: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

CT-aerationpoorly areated

poorly areatednormal

normal

At ZEEP and2 PEEP levels

Diffuse CT-attenuations

Focal CT-attenuations

Rouby JJ AJRCCM 2002;165:1182-6

- and how to detect overdistention?

Page 33: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Volumedistribution

Frerichs I, Dargaville P, Rimensberger PC Intensive Care Med 2003; 29:2312-6

Electrical Impedance Tomography (EIT)

Frerichs I et al. J Appl Physiol 2002; 93: 660–666

Page 34: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Volumedistribution

Tidal volumedistribution

Frerichs I, Dargaville P, Rimensberger PC Intensive Care Med 2003; 29:2312-6

Page 35: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

EIT to assure more homogenoeus lung volume distribution

BarabsBarbas C Curr Opin Crit Care 2005;11:18–28

Page 36: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

Concepts of respiratory monitoring in the ICU

Control system Diagnostic tool

To avoid errors / incidents

To improve understanding of lung disease and

ventilator-patient interaction

Biomechanical properties of lung and airways

To improve outcome

1. Assure gas transfer/exchange2. Assure Vt-delivery (V-t / V-t /

P-t curve characteristics)

.

Page 37: Respiratory monitoring Peter C. Rimensberger Pediatric and Neonatal ICU University Hospital of Geneva Switzerland

1. Flow-, Volume- and Pressure-measurements

2. Pressure-volume methods: static vs. dynamic

observe dynamic compliance changes

3. Gas exchange response: pO2 and pCO2

4. Lung-Volume measurement methods:

RIP, dilution methods, CT / MRI / EIT

5. Tidal-volume distribution: EIT

From classical respiratory monitoring to tracking thoracic volume changes during ventilation maneuvers