resonance x-ray refectvity — a tool to extract valence profles ......ue46-pgm1 beamline at bessy...

32
Resonance X-ray refectvity — a tool to extract valence profles and atomic scatering factors Dresden, December 2018 Volodymyr Zabolotnyy

Upload: others

Post on 24-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Resonance X-ray refectvity — a tool to extract valence profles and atomic scatering factors

Dresden, December 2018

Volodymyr Zabolotnyy

Page 2: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Experimental Setup

Image http://www.is.mpg.de

Image http://www.is.mpg.de

Page 3: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

RSXS Endstation

1. (Resonant) Soft X-ray Scattering (RSXS) / X-Ray reflectometry- 10-motion UHV diffractometer (4-circle diffractometer + x,y,z and detector motions)- Detectors: Channeltron, Photodiode, with multiple slits and filters, 2D Micro-Channelplate (MCP), Polarization Analyzer, Multi-channel Scaler, Electrometer.

2. X-ray Absorption Spectroscopy (XAS) - by total electron yield (TEY), total fluorescence yield (TFY)

3. Magnetic Circular Dichroism (MCD)- full polarization control of the incoming beam.

REIX beamline at CLS

CLS, Canada

RSXS Scattering Chamber

In-Vacuum Diffractometer He4 closed cycle cryostat

Permanentmagnet

Page 4: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Selected Applications

• Resonant diffraction from magnetic, charge, and orbital order superstructures

• Spectroscopy of electronic ordering phenomena

• Magnetization states of single molecular magnets

• Element-specific magnetic hysteresis loops

UE46-PGM1 beamline at BESSY

CLS, Canada

Page 5: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Calculatng refectvity from a stack

A. Single interface Fresnel equations ⇒ B. Thick sample iterative Parrat approach ⇒

Page 6: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Calculatng refectvity from a stack

incident σ

incident πreflected σ

reflected π

transmitted σ

transmitted π

incident σ

M

C. Thick sample, arbitrary polarization+anisotropic ε(z) matrix approach⇒

Continuity condition:

SUBSTRATE

SURFACE

Page 7: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

12

10

8

6

4

2

0

(1-n

) 1

0-3

302520151050

distnce (Å)

Where does element sensitvity comes from?

cO~χO (E)

cFe~χFe(E)

n−1=∑a

2π ca r0

k 2( f ' (E )+if ' ' (E))

sum over chemical elements atomic concentration in mol/cm³

atomic scattering length

n−1=∑a

ca~χa(E)

Lab-based of single-energy reflectivity measurements cannot be element sensitive.

R(qz)n(z)

Page 8: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

``

Where does element sensitvity arise from?

100806040200distance (Å)

0.16

0.12

0.08

0.04

0.00Co

nce

ntra

tion

(m

ol/c

m³)

O Cu

10-10

10-8

10-6

10-4

10-2

100

0.60.40.20.01/Å

E = 926.0eV

10-10

10-8

10-6

10-4

10-2

100

0.60.40.20.01/Å

E = 500.0eV

20151050-5

1000

900

800

700

600

Page 9: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

“Habitable zone„ for sof X-ray refectvity

█ K- edges█ L-edges█ M-edges

Page 10: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Optcal constants

1. Theoretical calculation away from resonances

● Chantler et al. AIP 652, 370 (2003) ● Chantler et al. J Phys Chem Ref Data 24, 71 (1995)● Chantler et al. J Phys Chem Ref Data 29, 597 (2000)

2. Total Electron Yield used as absorption

next most red 563 pages:

fit regions fit regions

Kramers– Kronig

Page 11: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

R(qz)

12

10

8

6

4

2

0

(1-n

) 1

0-3

302520151050

distnce (Å)

Where the vicious circle begin...

cO~χO (E)

cFe~χFe(E)

wanted, but close to impossible n−1=∑a

ca~χa (E)

n(z)R(qz) n(z)

optimize & try again

trivial and rarely needed

Page 12: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Fitting R(q) to chemical profles

Totally unrestricted fit:

1) 4 elements2) 300Å thik sample (3Å x100 slices)3) Elemental concentration in the range 0–0.100cm³ at Δc = 0.005cm³ resolution (5%)

Size of the “phase space” 400 fit parameters, each with 20 levels = 20400

~ 2 x 10520

0.030

0.025

0.020

0.015

0.010

0.005

0.000

Co

nce

ntr

atio

n (

mo

l/cm

³)

200150100500distance (Å)

d

σc

Parametrization in terms of Roughness σ, thickness d, concentration c, brings the number of “free” fit parameters typically below 3 x 3 layers x 4 elements = 36

20⇒ 36 ~7 x 10

46 distinct points in “phase space” with plenty of local minima.

⇒ Necessity of sophisticated fit methods.

Page 13: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Fitness profle

Commonly used gradient descent methods are not suitable to fit reflectivity data, due to large number of local minima and strong non-linearity

parameter 1 para

met

er 2

Page 14: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Fitting approaches:

Some modification of an Evolution algorithms appear to be the most suited to fit reflectivity data.

Page 15: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Fitting R(q) to chemical profles

RemagX (S. Macke)

Simulation:● Parrat formalism ● Matrix formalism

Fit:● Evolution ● Simplex ● Levenberg&Marquardt

Own code under IgorPro

Simulation:● Parrat formalism ● Coupling with theory (Quanty)

Fit:● Evolution+dynamic mutation

● direct import of SPECS data ● preprocessing (cutting, resampling, backround)

Page 16: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Fitting R(q) to chemical profles

Param. distribution in the populationTime convergence of χ²(p1, ...pN)

Overview of all experimental and simulated spectraAtomic conc. profiles dcσ-model

Page 17: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

“Real life” example: ZnO/Fe3O4

10-5

10-4

10-3

10-2

10-1

Det

/Mon

itor

0.300.200.10

1/Å 10-5

10-4

10-3

10-2

10-1

100

Det

/Mon

itor

0.200.150.100.05

1/Å 10-6

10-4

10-2

100

Det

/Mon

itor

0.200.150.100.05

1/Å

10-6

10-4

10-2

100

Det

/Mon

itor

0.250.200.150.100.05

1/Å 10-6

10-4

10-2

100

Det

/Mon

itor

0.250.200.150.100.05

1/Å10

-5

10-4

10-3

10-2

10-1

100

Det

/Mon

itor

0.300.200.100.00

1/Å

10-5

10-4

10-3

10-2

10-1

Det

/Mon

itor

0.300.200.10

1/Å 10-6

10-5

10-4

10-3

10-2

10-1

Det

/Mon

itor

0.40.30.20.1

1/Å 10-6

10-4

10-2

Det

/Mon

itor

0.40.30.20.1

1/Å

10-6

10-4

10-2

Det

/Mon

itor

0.40.30.20.1

1/Å 10-6

10-4

10-2

Det

/Mon

itor

0.50.40.30.20.1

1/Å 10-6

10-4

10-2

Det

/Mon

itor

0.50.40.30.20.1

1/Å

Sc_15E = 650.0eVchi = 0.0014

Sc_16E = 350.0eVchi = 0.0038

Sc_17E = 400.0eVchi = 0.0024

Sc_18E = 450.0eVchi = 0.0020

Sc_19E = 500.0eVchi = 0.0060

Sc_20E = 550.0eVchi = 0.0084

Sc_21E = 600.0eVchi = 0.0008

Sc_24E = 750.0eVchi = 0.0007

Sc_25E = 800.0eVchi = 0.0011

Sc_26E = 850.0eVchi = 0.0011

Sc_27E = 900.0eVchi = 0.0013

Sc_28E = 950.0eVchi = 0.0011

Sc_29E = 1000.0eVchi = 0.0008

Sc_34E = 709.6eVchi = 0.0043

Sc_35E = 719.7eVchi = 0.0017

Sc_36E = 721.6eVchi = 0.0027

Sc_37E = 723.2eVchi = 0.0021

Sc_38E = 561.0eVchi = 0.0020

Sc_40E = 650.0eVchi = 0.0015

Sc_52E = 250.0eVchi = 0.0080

Sc_53E = 300.0eVchi = 0.0041

Sc_64E = 710.0eVchi = 0.0049

Sc_76E = 720.0eVchi = 0.0013

Sc_77E = 721.0eVchi = 0.0006

Sc_78E = 722.0eVchi = 0.0006

Sc_79E = 723.0eVchi = 0.0019

Sc_80E = 724.0eVchi = 0.0026

Sc_81E = 725.0eVchi = 0.0025

Sc_82E = 726.0eVchi = 0.0023

Sc_83E = 727.0eVchi = 0.0022

Sc_84E = 728.0eVchi = 0.0020

Sc_85E = 729.0eVchi = 0.0019

Sc_86E = 730.0eVchi = 0.0018

Sc_90E = 541.0eVchi = 0.0021

Sc_91E = 547.5eVchi = 0.0013

0.10

0.08

0.06

0.04

0.02

0.00

Co

nce

ntr

atio

n (

mo

l/cm

³)

200150100500distance (Å)

Fe O Zn C

Off-resonance spectra, E = 350–1000eVFe optical constants, Chantler

Chemical profile

30

25

20

15

10

5

0

-51000900800700600500400300

Energy (eV)

Fe f' f''

Page 18: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

“Real life” example: ZnO/Fe3O4

0.10

0.08

0.06

0.04

0.02

0.00

Co

nce

ntr

atio

n (

mo

l/cm

³)

200150100500distance (Å)

Fe O Zn C

on-resonance spectra, E = 700–730eVFe optical constants, Chantler

Chemical profile

30

25

20

15

10

5

0

-51000900800700600500400300

Energy (eV)

Fe f' f''

10-6

10-5

10-4

10-3

10-2

10-1

Det/M

onito

r

0.40.30.20.1

1/Å 10-6

10-5

10-4

10-3

10-2

10-1

Det/M

onito

r

0.40.30.20.1

1/Å10

-6

10-5

10-4

10-3

10-2

10-1

De

t/Monito

r

0.40.30.20.1

1/Å

10-6

10-5

10-4

10-3

10-2

10-1

Det/M

onito

r0.40.30.20.1

1/Å 10-6

10-5

10-4

10-3

10-2

10-1

Det/M

onito

r

0.40.30.20.1

1/Å 10-6

10-5

10-4

10-3

10-2

10-1

De

t/Monito

r

0.40.30.20.1

1/Å

0.0001

0.001

0.01

0.1

Det/M

onito

r

0.200.150.100.05

1/Å0.0001

0.001

0.01

0.1

Det/M

onito

r

0.40.30.20.1

1/Å0.0001

0.001

0.01

0.1

De

t/Monito

r

0.250.200.150.100.05

1/Å

10-6

10-5

10-4

10-3

10-2

10-1

Det/M

onito

r

0.40.30.20.1

1/Å10

-6

10-5

10-4

10-3

10-2

10-1

Det/M

onito

r

0.40.30.20.1

1/Å10

-6

10-5

10-4

10-3

10-2

10-1

De

t/Monito

r

0.40.30.20.1

1/Å

Sc_24E = 750.0eVchi = 0.0008

Sc_34E = 709.6eVchi = 0.0213

Sc_35E = 719.7eVchi = 0.0031

Sc_36E = 721.6eVchi = 0.0055

Sc_37E = 723.2eVchi = 0.0052

Sc_64E = 710.0eVchi = 0.0213

Sc_76E = 720.0eVchi = 0.0026

Sc_77E = 721.0eVchi = 0.0025

Sc_78E = 722.0eVchi = 0.0027

Sc_79E = 723.0eVchi = 0.0044

Sc_80E = 724.0eVchi = 0.0064

Sc_81E = 725.0eVchi = 0.0070

Sc_82E = 726.0eVchi = 0.0068

Sc_83E = 727.0eVchi = 0.0062

Sc_84E = 728.0eVchi = 0.0054

Sc_85E = 729.0eVchi = 0.0047

Sc_86E = 730.0eVchi = 0.0041

Page 19: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

“Real life” example: ZnO/Fe3O4

0.10

0.08

0.06

0.04

0.02

0.00

Co

nce

ntr

atio

n (

mo

l/cm

³)

200150100500distance (Å)

Fe O Zn C

on-resonance spectra, E = 700–730eVFe optical constants, corrected

Chemical profile

80

60

40

20

0

-20

-40

-601000900800700600500400300

Energy (eV)

Fe f' f''

10-5

10-4

10-3

10-2

10-1

Det

/Mon

itor

0.40.30.20.1

1/Å10

-5

10-4

10-3

10-2

10-1

Det

/Mon

itor

0.40.30.20.1

1/Å10

-5

10-4

10-3

10-2

10-1

Det

/Mon

itor

0.40.30.20.1

1/Å

0.0001

0.001

0.01

0.1

Det

/Mon

itor

0.200.150.100.05

1/Å0.0001

0.001

0.01

0.1

Det

/Mon

itor

0.40.30.20.1

1/Å0.0001

0.001

0.01

0.1

Det

/Mon

itor

0.250.200.150.100.05

1/Å

10-5

10-4

10-3

10-2

10-1

Det

/Mon

itor

0.40.30.20.1

1/Å10

-5

10-4

10-3

10-2

10-1

Det

/Mon

itor

0.40.30.20.1

1/Å10

-5

10-4

10-3

10-2

10-1

100

Det

/Mon

itor

0.40.30.20.1

1/Å

10-5

10-4

10-3

10-2

10-1

100

Det

/Mon

itor

0.40.30.20.1

1/Å10

-5

10-4

10-3

10-2

10-1

100

Det

/Mon

itor

0.40.30.20.1

1/Å10

-5

10-4

10-3

10-2

10-1

Det

/Mon

itor

0.40.30.20.1

1/Å

Sc_24E = 750.0eVchi = 0.0007

Sc_34E = 709.6eVchi = 0.0043

Sc_35E = 719.7eVchi = 0.0017

Sc_36E = 721.6eVchi = 0.0027

Sc_37E = 723.2eVchi = 0.0021

Sc_64E = 710.0eVchi = 0.0049

Sc_76E = 720.0eVchi = 0.0013

Sc_77E = 721.0eVchi = 0.0006

Sc_78E = 722.0eVchi = 0.0006

Sc_79E = 723.0eVchi = 0.0019

Sc_80E = 724.0eVchi = 0.0026

Sc_81E = 725.0eVchi = 0.0025

Sc_82E = 726.0eVchi = 0.0023

Sc_83E = 727.0eVchi = 0.0022

Sc_84E = 728.0eVchi = 0.0020

Sc_85E = 729.0eVchi = 0.0019

Sc_86E = 730.0eVchi = 0.0018

Page 20: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Ozan190 – O terminated

0.10

0.08

0.06

0.04

0.02

0.00

conce

ntr

atio

n (

mol/c

m³)

200150100500

distance (Å)

Zn O Fe

σ(Zn) = σ(Fe) independent from σ(O)

Surface contaminaton effectively accounted

by oxygen

Page 21: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

0.10

0.08

0.06

0.04

0.02

0.00

con

cent

ratio

n (

mo

l/cm

³)

250200150100500

distance (Å)

Zn O Fe

Ozan194 – Zn terminated

σ(Zn) = σ(Fe) independent from σ(O)

Surface contaminaton effectively accounted

by oxygen

11Å

Page 22: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Comparison to STEM

O terminated Zn terminated

exfoliation?

O. Kirilmaz et al. in preparation

Page 23: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Optcal constants

1. Theoretical calculation away from resonances

● Chantler et al. AIP 652, 370 (2003) ● Chantler et al. J Phys Chem Ref Data 24, 71 (1995)● Chantler et al. J Phys Chem Ref Data 29, 597 (2000)

2. Total Electron Yield used as absorption

next most red 563 pages:

fit regions fit regions

Kramers– Kronig

Page 24: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Hydrogen atom

f2 → σabs → transition rate → matrix element

0.4 0.6 0.8 1.0 1.20.0

0.2

0.4

0.6

0.8

1.0

Energy (Ry)

f 2(e

/ato

m)

Analytical expressions for f2(E) can be derived:

Comparison to C.T. Chanter data:

10-10

10-8

10-6

10-4

10-2

100

f 2(e

/ato

m)

101

102

103

104

105

Energy (eV)

Chantleranalytical

Comparison to experimental polarizability:

H atom is a suitable test system, since its discrete and continuous spectrum of is known analytically

Total mass attenuation coefficients [µ/ ρ]tot silver.

C. Q. Tran et al., J. Phys B 38, 89 (2005)

2p

3p

4p

1s

∞p

1 2 5 10

0.01

0.05

0.10

0.50

1

f 2(e

/ato

m)

Energy (Ry)

Page 25: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Theoretcal optcal constants

Crystal/Ligand field cluster calculation

M. W. Haverkort et al. PRB 85, 165113 (2012)

================================================================= written by Maurits W. Haverkort ======== with contributions from: ======== Yi Lu, Robert Green and Sebastian Macke ======== (C) 1995-2015 All rights reserved ======== www.quanty.org ======== Beta version, be critical and report errors!!! ===================================================================== Version compiled at: Mar 14 2015 at 10:24:16 ===================================================================== When used in scientific publications please cite ======== Phys. Rev. B 85, 165113 (2012) ======== Phys. Rev. B 90, 085102 (2014) ======== Euro Phys. Lett. 108, 57004 (2014) =================================================================

2.0

1.5

1.0

0.5

0.0

f''(

E)

(a

rb.

u.)

3020100-10-20

Comparison to experimental polarizability:

~

Page 26: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

NiO – Theory restricted ft

10-5

10-4

10-3

10-2

10-1

100

R(q

)

0.40.30.20.1Momentum q (1/Å)

0.40.30.20.1 0.40.30.20.1 0.40.30.20.1 0.40.30.20.1 0.40.30.20.1

E = 855.1eV E = 856.3eV E = 859.3eV E = 866.7eV E = 870.2eV E = 870.9eV

10-5

10-4

10-3

10-2

10-1

R(q

)

0.40.30.20.1

1/Å

0.250.05

1/Å

0.300.200.10

1/Å

0.40.30.20.1

1/Å

0.50.40.30.20.1

1/Å

0.200.10

1/Å

E = 800.0eV E = 700.0eV E = 600.0eV E = 900.0eV E = 1000.0eV E = 500.0eV

Momentum q (1/Å)

860840 860840 860840 860840 860840 880860840

th = 5.0°tth = 10.0°

th = 10.0°tth = 20.0°

th = 12.5°tth = 25.0°

th = 15.0°tth = 30.0°

th = 17.5°tth = 35.0°

th = 20.0°tth = 40.0.°

R(q

)

Energy (eV)

Page 27: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

0.10

0.05

0.00

Con

cent

ratio

n (m

ol/c

m³)

120100806040200z(Å)

NiOMgC

off-resona nton-resona nt

150

100

50

0870860850

Energy (eV)

Experimental f2(E)Theoretical f2(E)

f 2(E

)

150

100

50

0870860850

Energy (eV)

NiO NiO

NiO, Measured R(E, q) NiO, Model R(E, q)

undershoot in TEY at L3

q, (

1/Å

)

overshoot in TEY at L2

NiO – Theory restricted ft

K. Fürsich, V. Zabolotnyy, E Schierle et al. PRB 97, 165126 (2018)

Page 28: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

M. Neupane et al. Nat Comm 4, 2991 (2013)

● Mixed valent system● Kondo insulator● Topologically protected ingap surface state

Heming et al. B 90, 195128 (2014)

Disrupted stoichiometry at the cleaved surface?

SmB6 — Intro

Page 29: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

SmB6 – samples

Often samples with polished surfaces are used for resonant x-ray experiments

Surface contaminated and unstable

It is too rough for reflectivity

We use floating-zone samples, cut in rods, pre-oriented

Cleavage in fast entry at 10-8 mBar, transfer to 2*10-10 mBar in reflectivity chamber

Cleaves along (100) even if cut along (111) Surface size ~ 1mm x 1mm Sufficiently large terraces (beam ~ 100 mm)

No indications of oxygen in TEY spectrum

Page 30: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

SmB6 – a multivalent system

Page 31: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

SmB6 – a multivalent system

V. Zabolotnyy, K. Fürsich, R. J. Green et al. PRB 97, 205416 (2018)

Page 32: Resonance X-ray refectvity — a tool to extract valence profles ......UE46-PGM1 beamline at BESSY CLS, Canada Calculatng refectvity from a stack A. Single interface Fresnel equations

Thank you for your atentonQuestons are welcome.

Acknowledgements and contributions:

K. Fürshich,A. Tcakaev, M. Dettbarn, B. Katter Uni WürzburgChul-Hee Min, O. KirilmazF. Reinert, V. Hinkov

R. Green University of British Columbia, Vancouver

M. Haverkort MPI for CPS, Dresden/Uni Heidelberg

D. Inosov TU-Dresden

R Suatro Canadian Light SourceFeizhou He

E. Schierle BESSYC. Schüssler-Langeheine

E. Weschke

Support through