resonance studies of h atoms adsorbed on frozen h2 surfaces

8
HAL Id: jpa-00220177 https://hal.archives-ouvertes.fr/jpa-00220177 Submitted on 1 Jan 1980 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. RESONANCE STUDIES OF H ATOMS ADSORBED ON FROZEN H2 SURFACES S. Crampton To cite this version: S. Crampton. RESONANCE STUDIES OF H ATOMS ADSORBED ON FROZEN H2 SURFACES. Journal de Physique Colloques, 1980, 41 (C7), pp.C7-249-C7-255. <10.1051/jphyscol:1980739>. <jpa-00220177>

Upload: ngohanh

Post on 11-Jan-2017

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: resonance studies of h atoms adsorbed on frozen h2 surfaces

HAL Id: jpa-00220177https://hal.archives-ouvertes.fr/jpa-00220177

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

RESONANCE STUDIES OF H ATOMS ADSORBEDON FROZEN H2 SURFACES

S. Crampton

To cite this version:S. Crampton. RESONANCE STUDIES OF H ATOMS ADSORBED ON FROZEN H2 SURFACES.Journal de Physique Colloques, 1980, 41 (C7), pp.C7-249-C7-255. <10.1051/jphyscol:1980739>.<jpa-00220177>

Page 2: resonance studies of h atoms adsorbed on frozen h2 surfaces

JOURNAL DE PHYSIQUE CoZZoque C7, suppZ&ment au n o 7, Tome 41, juiZZet 1980, page C7-24 9

RESONANCE S T U D I E S OF H ATOMS ADSORBED ON FROZEN H z SURFACES

S.B. Crampton

WiZZiams College, WiZZiamstown, Massachusetts 01267, USA.

Resum&.- Nous avons observe l a resonance hyperfine dans l l @ t a t fondamental d'atomes d'hydrogene contenus dans une ce l lu le de 5 cm de diametre interieurement recouverte en surface d'hydrogene mol@culaire solide. Le dephasage de l a resonance hyperfine pendant l e temps 00 les atomes sont adsorb& produit des deplacements de frequence qui varient d'un facteur 2 dans l a gamme de tem- perature a l lant de 3,7 a 4,6 K , ainsi que des taux de decroissance radiative qui varient d'un facteur 5 dans ce t t e m6me zone de temperature. Ces deplacements de frequence e t ces taux de de- croissance ont une grandeur e t une dependance en temperature qui s'expliquent bien en supposant une distr ibution non uniforme des energies d'adsorption sur l a surface, caracteris@e par une valeur moyenne de 38(8) K en accord avec l e s estimations theoriques qu'on peut f a i r e pour une surface reguliere. Si 1 'on extrapole l a valeur de 30 nanosec. mesuree a 4,2 K comme duree moyen- ne d'adsorption, on peut predire des durees d'adsorption trPs longues pour H sur H2 au-dessous de 1 K . L1@tude des taux de retour a 1 'Gquilibre des populations des niveaux montre 1 'existence des coll isions d'echange de spin electronique en surface entre atomes adsorbes, l a duree de ces coll isions etant longue devant l a pfriode hyperfine ; ceci suggere que l e s atomes sont par t ie l - lement mobiles sur l a surface. Les taux l e s plus bas observes pour l e retour i 1 'equil ibre des populations f ixent une limite inferieure de l 'ordre de 500 au nombre des coll isions atome-surface non suivies de recombinaison 5 4,2 K.

Abstract.- Observations are reported of the ground s t a t e hyperfine resonance of hydrogen atoms stored in a 5 cm. diameter bott le coated with frozen molecular hydrogen. Dephasing of the hyper- f ine resonance while the atoms are adsorbed produces frequency sh i f t s which vary by a factor of two over the temperature range 3.7 K to 4.6 K and radiative decay rates which vary by a factor of f ive over th i s range. The magnitudes and temperature dependences of the frequency sh i f t s and decay rates are consistent with a non-uniform distr ibution of surface adsorption energies with mean about 38(8) K, in agreement with theoretical estimates for a smooth surface. Extrapolation of the 30 nanosec. mean adsorption times a t 4.2 K predicts very long adsorption times fo r H on H, below 1 K . Studies of level population recovery rates provide evidence for surface electron spin exchange col 1 isions between adsorbed atoms with col 1 ision duration long compared to the hyperfine period, suggesting that the atoms are par t ia l ly mobile on the surface. The lowest rates observed for level population recovery s e t a lower l imit of about 500 atom-surface coll isions a t 4.2 K without recombination.

When a hydrogen atom approaches a smooth,

uniform plane of molecular hydrogen surface, i t

f ee l s a t f i r s t a weak van der Waals a t t rac t ion whose

potential energy is--in f i r s t approximation--the

simple sum of pairwise interactions with the

individual surface atoms or molecules. The f i r s t

figure shows schematically the at traction of an H

atom to a (100) surface plane of a molecular hydrogen

surface for the two extremes of minimum and maximum

binding, depending on the la tera l location of the

adatom above the surface plane. (The scales are

based on some numerical calcuTations done by Abel

Weinrib as part of his undergraduate thesis [I] a t

MIT in 1979.) Both potentials and potentials

having intermediate depths a t other la tera l

SURFACE PROBLEMS

Van Der Waals Adsorption of Adatom @

t o Van D er Waals Solid 5559 A. Weak B i n d i n g on (100) Surface Plaoe

B. Stronger Binding on (100) Surface Plane

positions are deep and broad enoughb support a t Figure 1.

leas t one bound s t a t e , shown w i t h binding energy EB.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980739

Page 3: resonance studies of h atoms adsorbed on frozen h2 surfaces

C7-250 JOURNAL DE PHYSIQUE

On t h i s simple p i c t u r e an atom approaching the

surface i s f i r s t accelerated by t h e van der Waals

a t t r a c t i o n , slams i n t o the sur face w i t h more than

thermal speed, loses most o f t h i s excess energy t o

the l a t t i c e , and i s caught i n the lowest l o c a l bound

state. While bound t o the sur face as a whole, i t

may be almost completely f r e e t o move l a t e r a l l y

along the surface, i f i t s energy i s greater than the

p o t e n t i a l b a r r i e r s i t meets l a t e r a l l y , o r i t may be

bound t o a surface s i t e so t i g h t l y t h a t i t i s ab le

t o migrate only very s lowly by tunnel ing through

l a t e r a l p o t e n t i a l b a r r i e r s t o neighboring s i t e s .

The actual p i c t u r e should be o f course in termediate

between these two extremes, w i t h the adatom moving

i n a p o t e n t i a l t h a t va r ies both w i t h he ight and

p e r i o d i c a l l y along the surface, so t h a t the re i s a

band s t r u c t u r e o f energy l e v e l s , a r e s t r i c t e d

m o b i l i t y depending on the band gap and the dens i t y

of s ta tes, and a work func t ion o r mean adsorpt ion

energy, Ea t h a t must be reacquired by the adatom i n

order t o be again desorbed t o the gas phase a f t e r

some adsorpt ion t ime ta.

According t o Weinrib, the energy f o r adsorpt ion

of H on H2 i s l i k e l y t o be d i f f e r e n t f o r the (100)

and (111) H p surface planes by as much as 5 t o 10 K.

I n add i t i on , the experimental surfaces are not smooth

and uniform. Vacancies, p o l a r i z a t i o n o f the surface

by the adsorbed atoms, d i s l o c a t i o n s and other imper-

f e c t i o n s a l l tend t o increase the b ind ing t o t h e

surface and may produce some number o f t i g h t b ind ing

s i t e s on a sur face on which the adatoms would be

otherwise h i g h l y mobi le.

The r e l a t i o n s h i p between mean adsorpt ion energy

Ea and the leng th o f t ime ta t h a t an atan i s bound

on a s i n g l e encounter i s simply i l l u s t r a t e d by

thermodynamics f o r the simple extremes o f t i g h t

binding, on the one hand, and canp le te ly f r e e

m o b i l i t y , u s u a l l y c a l l e d the two dimensional (2D) gas

on t h e other. We w i l l t r e a t these extremes on ly i n

the approximations o f low surface coverage and

adsorpt ion energy apprec iab ly greater than kT, as i s

reasonable f o r H on H2 around 4 K and f o r H on a

l i q u i d hel ium sur face about 0.2 K. For t h e two

dimensional gas the d e r i v a t i v e o r the f r e e energy

w i t h respect t o the number o f adsorbed atoms i s

w i t h the sur face dens i t y o f adatoms and A =

Jh2/2~mkT the thermal wavelength. S e t t i n g t h i s

equal t o t h e chemical p o t e n t i a l o f the gas above the

surface provides the r e l a t i o n

w i t h n the dens i t y o f atoms i n the gas phase. The

r a t e a t which gas atoms s t r i k e the sur face i s a n7

per u n i t sur face area, so t h a t the sur face dens i t y u

i s a l so r e l a t e d t o the gas dens i t y n by

1 = - n v t 4 aa

w i t h fa the mean sur face adsorpt ion t ime per

c o l l i s i o n and a 2 1 the accomodation c o e f f i c i e n t .

The r e l a t i o n s h i p between mean adsorpt ion energy Ea

and mean sur face dwel l t ime ta i s then found t o be

For -Ea l a r g e compared t o kT, fa i s long, surface

dens i t i es are large, and i n t e r a c t i o n s between

adsorbed atoms become common a t r e l a t i v e l y low gas

dens i t i es .

For example, f o r H adsorbed on H, a t 4.2 K,

-Ea = 38 K, fa = 3x10-*set., and u = 10-3 n. For

-Ea = 0.6 K a t T = 0.2 K, ta = 5x10-9 sec. and

o = l o m 5 n.

For t i g h t b ind ing t o So s i t e s per u n i t area

Page 4: resonance studies of h atoms adsorbed on frozen h2 surfaces

rmSoh4 -Ea/kT microwake r a d i a t i o n close i n frequency t o t h e H - t = - a ah (6) ground s t a t e hyper f ine frequency s t imu la te t h e atoms

which d i f f e r from t h e 2D case simply by a f a c t o r t o emi t r a d i a t i o n a t the ground s t a t e hyper f ine

frequency. H a l f o f t h e emi t ted r a d i a t i o n i s . S o ~ 2 . If the loca t ions o f maximum b ind ing o f H t o

coupled ou t o f t h e c a v i t y t o a rece ive r which the H2 (110) and (111) surface planes were t i g h t

detects and s to res the atom output i n what i s b ind ing s i tes , S,h2 2 10. But i f t i g h t b ind ing s i t e s

e f f e c t i v e l y a computer o f average transi.ents (CAT). are produced on ly because o f surface heterogeneties,

Soh2 should be much less than one. SCHEMATIC OF APPARATUS

Questions o f adsorpt ion energy Ea, mean sur face

dwel l t ime fa and surface m o b i l i t y are v i t a l t o the

product ion o f H+. Ea i s a v a i l a b l e as an a c t i v a t i o n H, INLET

energy t o d r i v e recombination reac t ions otherwise STAINLESS STEEL

LIQUID NITROGEN DEWAR i n h i b i t e d by the Boltzmann fac to r u,B/kT f o r H+ i n

la rge magnetic f i e l d . If the atoms are mobi le dur ing D 1 s s o c l a ~ o ~ RF COIL

ORIFICE long fa, t h e probabi 1 i t y of i n t e r a c t i o n s between atoms

wh i le adsorbed on the surface becomes h igh a t the gas

phase d e n s i t i e s needed t o produce H4. Our resonance COUPLING LWP

experiment [2,3] on r e l a t i v e l y unpolar ized H adsorbed Pl lcnowav~ CAVITV

on H, i n very low magnetic f i e l d provides an e x p l i c i t CAPACITIVE LOADING

example o f these problems. I t i s important t o b . 6 ~ 1 ~ 7 4 -

quest ions o f producing and observing t1.r f o r a t l e a s t F igure 2.

the f o l l o w i n g reasons: F igure 3 shows the average o f 500 successive

1. Any experimental arrangement t o cool H traces. The s o l i d l i n e i s a f i t o f the f u n c t i o n

atoms below 1 K i s l i k e l y t o inc lude a reg ion

i n which H atoms c o l l i d e w i t h Hz surfaces a t

4.2 K and below. H RESPONSETO 90" PULSE

2. H2 produced by recombinations may soak up A(t)

a d d i t i o n a l H t if n o t somehow removed. c n 3. S i m i l a r problems w i l l e x i s t f o r H+ on

l i q u i d hel ium f i l m s a t 0.2 K t o 0.3 K.

Our apparatus i s shown schemat ica l ly i n F igure

2. Hydrogen atoms produced by a l i qu id -n i t rogen- 1 cooled RF discharge pass through a 2 mm diameter I

- t n 2 s - AOC c o s w @)

o r i f i c e , then through a 1 cm I .D., 20 cm long pyrex

tube t o a fused quar tz storage b o t t l e . The tube and VARY -rlwuuL

storage b o t t l e a re cooled t o 3.5 t o 4.5 K and coated TEMPERATURE A,J n/Ts

(3.5K To 4.5K)

on t h e i n s i d e w i t h f rozen Hz. The storage b o t t l e $ E,. i,. R e c o r n b l n a t l ~ n

FLUX

i s i n a microwave c a v i t y i n which p e r i o d i c pulses o f w E,. i,. Recomb4nat!oo

Figure 3. 17

Page 5: resonance studies of h atoms adsorbed on frozen h2 surfaces

C7-252 JOURNAL DE PHYSIQUE

t o t h e experimental po ints . The res idua ls a re

t y p i c a l l y 0.1% o f Ao. The f i t t e d frequency i s the

di ' f ference between the pulse frequency and the

frequency o f the radi.at ing atoms; i t i s ad justed t o

some value convenient f o r d i s p l a y and f i . t t i ng , by

ad jus t ing the frequency o f the pulse. From a l i n e

l i k e t h i s one we would f i t a frequency t o about 1 Hz

p rec is ion and T, t o about 1%.

T, and the dev ia t ion o f I,I from the f r e e space

ground s t a t e H hyper f ine frequency wo are dominated

by d i s t o r t i o n o f the h y p e r f i ne resonance wh i le the

atoms are adsorbed. The e f f e c t s are la rge and

prov ide sens i t i ve , if only approximate, probes o f

Ea and fa. The advance o f phase o f the precessing

atomic e lec t ron s p i n i s a t the H ground s t a t e hyper-

f i ne frequency wo w h i l e corss ing the storage b o t t l e ,

b u t i t i s appreciably slower w h i l e adsorbed on the

surface. The n e t phase o f a p a r t i c u l a r atom a t t ime

t a f t e r a pulse i s re tarded i n p ropor t ion t o the

n e t t ime spent on the sur face a f t e r a pu lse up t o

t ime t. The aggregate r a d i a t i o n from a l l atoms

averages the cosines of the indivi.dua1 phases t o

g ive a t ime dependence t h a t i s very c l o s e l y approxi-

mated b y an exponen t ia l l y damped cosine. The

dev ia t ion o f the hyper f ine frequency w from i t s

f r e e space value var ies approximately as the mean

phase s h i f t per sur face c o l l i s i o n d iv ided by the

mean t ime f between surface c o l l i s i o n s , f o r small C

values o f g. As e increases t o the order of 1

radian, t h a t p r o p o r t i o n a l i t y drops o f f , because

the atoms w i t h l a r g e phase s h i f t s wash ou t o f the

average. 1/T2 var ies a t ;2 d i v ided by fc, and i t

a lso f a l l s o f f f o r l a r g e e u n t i l i t saturates a t

about l/fc,

An undergraduate t h e s i s s tudent and I have

done a Monte Car10 s imu la t ion o f var ious d i s t r i h u -

t i o n s o f i n t e r a r r i v a l t imes tc and adsorpt ion t imes

ta. We f i n d t h a t the expected frequency s h i f t s and

GZLay ra tes do scale w i t h the r a t e l / f c w i t h which

atoms make t r i p s a17 the way across t h e storage

b o t t l e , so t h a t we can scale t h e experimental

r e s u l t s from a range o f temperatures t o 4.2 K, i n

order t o compare them t o t h e Monte Car10 r e s u l t s

f o r a s i n g l e fc.

On t h e 2D gas model we i n f e r from our

comparison o f ca lcu la t ions t o experimental r e s u l t s

t h a t Ea 2 4 0 f 5 K from both the o v e r a l l s i z e o f fa

and i t s temperature dependence. The temperature

dependence i s n o t very s e n s i t i v e t o t h e assumptions

o f sur face smoothness and CY = 1, w h i l e t h e o v e r a l l

s i z e o f fa i s d i r e c t l y a f fected. We can conclude

t h a t these a re f a i r l y good assumptions, or , t h a t

t h e i r e f f e c t s counterbalance.

On the t i g h t b ind ing model we i n f e r t h a t Ea =

36 t 5 K from t h e o v e r a l l s i z e o f fa and i t s

temperature dependence, i f we assume t h a t each

minimum o f t h e sur face p o t e n t i a l provides t i g h t

b ind ing. These values overlap, and t h e actual

b ind ing made must be in termediate between these

extremes, so t h a t 38+ 5 K-seems reasonahle a t t h i s

time. This value i s cons is ten t wi th , al though

somewhat h igher than, t h e value expected f o r smooth,

un i form surfaces. I t suggests t h a t imper fect ions

i n the surface p l a y some r o l e b u t n o t an o v e r r i d i n g

r o l e . The imp l i ca t ions of t h i s r e s u l t f o r H+ work

are a lso n o t unexpected. Hz surfaces a t temperatures

below 1 K must be avoided. Once adsorbed, H atoms

w i l l remain adsorbed e f f e c t i v e l y forever . O f course,

i t may be poss ib le t o p a c i f y a reg ion o f H, sur face

by covering i t w i t h H4. We are n o t a b l e t o t e s t t h i s

idea i n our experiment, because the unpolar ized

atoms o f our experiment can recombine when they

c o l l i d e w h i l e adsorbed on t h e surface, making i t

d i f f i c u l t t o b u i l d up a monolayer.

In fo rmat ion about i n t e r a c t i o n s between H atoms

w h i l e adsorbed on H p surfaces has been obta ined by

moni tor ing the recovery o f the s igna l ampli tude

f o l l o w i n g a 180" pulse. A 180" pulse i n v e r t s t h e

Page 6: resonance studies of h atoms adsorbed on frozen h2 surfaces

l e v e l popu la t ion d i f fe rence on the hyper f ine F igure 4 shows the f a s t and slow l e v e l popul a-

t r a n s i t i o n . The response o f the atoms t o a 90" t i o n recovery ra tes p l o t t e d against s igna l amplitude

pulse some t ime tD l a t e r ind ica tes the degree t o f o r two recent runs a t two d i f f e r e n t temperatures,

which the l e v e l populat ion d i f fe rence has recovered 4.19 K and 3.85 K. The s c a t t e r i s considerably

t o i t s e q u i l i b r i u m value. I n p r a c t i c e we use a l a r g e r than the f i t t i n g e r r o r s o f i n d i v i d u a l po ints ,

sweep o f 8 such 180" pulses fo l lowed a t vary ing due main ly t o d r i f t o f the microwave c a v i t y frequency

delays by 90" pulses. The recovery r a t e i s n o t a and t h e d i f f i c u l t y o f f i t t i n g the two ra tes w i t h 8

simple exponential . We ob ta in good f i t s t o t h e data po in ts . The dependence i s approximately l i n e a r ,

form and o ther data from e a r l i e r runs a lso supports t h i s

l i n e a r i t y . The sur face coverage by atoms i s too low 2 - t ~ / T l s 1 -%/TI

A = A-11 - 2 ~ ( . ~ e + - e 3 ) ] (8) f o r the re t o be any appreciable th ree body c o l l i s i o n

ra te , so 1/T, must be l i n e a r i n t h e atom densi ty .

We have shown t h a t t h i s behavior i s p red ic ted by Consequently, we i n f e r t h a t t h e s igna l ampli tude i s

the theory of e l e c t r o n s p i n exchange c o l l i s i o n s l i n e a r i n the densi ty , and from t h a t p r o p o r t i o n a l i t y ,

between hydrogen atoms fo r the case of small l e v e l we i n f e r t h a t t h e s p i n temperature TS t h a t character-

populat ion d i f fe rences and a c o l l i s i o n t ime i zes the e q u i l i b r i u m hyper f ine t r a n s i t i o n l e v e l

comparable t o the 10-10 sec per iod o f the hyper- populat ion d i f f e r e n c e i s independent o f densi ty . As

f i n e i n t e r a c t i o n . It i s a lso p red ic ted by the t h e dens i t y changes, i n t e r a c t i o n s t h a t thermal ize

theory o f Marie Bouchiat f o r i n t e r a c t i o n s w i t h the l e v e l populat ions must therefore increase a t the

randomly o r i e n t e d spins o r equiva lent magnetic f i e lds , same r a t e as recombination increases.

prov ided t h a t t h e corre la t i .on t ime fo r the i n t e r -

a c t i o n i s comparable t o o r greater than t h e per iod

o f the hyper f ine i n t e r a c t i o n . We suspect t h a t t h i s

form o f the recovery r a t e w i l l f o l l o w f o r any i n t e r -

a c t i o n which mixes the upper th ree F=l ground s t a t e 1 -

hyper f ine l e v e l s a t a f a s t e r r a t e than i t couples

them t o the F=O ground s ta te . I n t h e f i t s E = .85, 625 1

LEVEL POPULATION RECOVERY RATES

due, we th ink , t o incomplete averaging o f the 180" 500..

pulse ampli tude by t h e atoms. l/TIF 2 1/Tls,

i n d i c a t i n g a c o r r e l a t i o n t i m e o f order 10-lO r e c o r

longer, depending on the con t r ibu t ions t o both ra tes

from mechanisms t h a t d r i v e a l l t r a n s i t i o n s w i t h equal

r a t e o r s imply recombine atoms. We are able t o f i t 0 120 240 360

-+-- a,?" - -

t he 2/3 c o e f f i c i e n t w i t h p rec is ion o f ahout 1% f o r SIGNAL A H P L I T U D L A _

our best signal-to-noise, b u t i n o t h e r cases we Figure 4.

s imply assume 2/3. We have confirmed the assumption Note t h a t t h e slopes increase markedly as the

t h a t t h e f a s t r a t e 1/TIF i s due t o m ix ing the F=l temperature i s lowered and the mean surface adsorp-

l e v e l s by app ly ing a d d i t i o n a l RF resonant a t t h e two t i o n t ime increases, increasing the frequency of two

F=l t r a n s i t i o n frequencies, in between t h e 780" and body i n t e r a c t i o n s on t h e surface.

90" pulses.

Page 7: resonance studies of h atoms adsorbed on frozen h2 surfaces

C7-254 JOURNAL DE PHYSIQUE

The difference between the f a s t and slow rates

we take to be equal to the spin exchange coll ision

ra te on the surface, mu1 tip1 ied by the fraction of

time H / f c the atoms spend on the surface. The

slow rate can include contributions from recombina-

tion and spin exchange coll isions on the surface

and from spin exchange coll isions in the gas phase.

The Figure 5 showssane evidence that places a lower

l imit on the amount of recombination. As the density

and the signal amp1 i tude increase, recombination

heats up the temperature of the molecular hydrogen

surface, lowering the mean adsorption time and the

frequency sh i f t s due to surface adsroption. The

frequency changes approximately quadratically with

density, as it should. Assuming tha t the tempera-

ture r i se s inferred from the frequency s h i f t change

are due simply to driving the heat of recombination

across 140 square centimeters of storage bot t le

envelope 1.5 mm thick places an upper l imit on the

amount of recombination. A t signal amplitude 750

the density i s about 1013 TS and the heat of

recombination i s about 1/8 watt, leading to an

upper l imit on the recombination ra te of

TS can be no lower than 4.2 K , so tha t l/TIR 25

sec -I. That i s only 1/10 of l/TIS a t signal

amplitude 750, which means that 9/10 of l/TIS must

be due to interactions such as spin exchange

col l i s ions , which do thermalize the spins, and TS

must be about 5 K o r less.

The gas phase spin exchange cross section has

been calculated [4] to be about 3x10-l7 cm2 a t 4.2 K ,

so that a t signal amplitude 750 about 40 sec-I out

of 250 sec-1 could be due to gas phase spin exchange

coll isions. The remaining 175 sec-I o r so must be

due to spin exchange coll isions on the surface.

Consequently, t he correlation time which character-

izes these coll isions must be jus t long enough to

RECOMBINATION RATES

VARIATION OF WALL SHIFT WITH DENSITY

RECOPlBINATION HEATS THE SURFACE AND LOWERS WALL SHIFT W - W o T I N PROPORTION TO THE RECOfUJIMTION M T E

425 1 f.. * '-. '.J.

reduce the slow surface coll ision ra te by about a

325

300

factor of two re la t ive to the f a s t surface coll ision

..

r a t e , or , j u s t about equal to the 10-lo sec inverse

o loo zbo 300 ioo sdo 600 loo soo

RECO~BINAT~ON RATESF AT A*= 750

Figure 5.

of the hyperf ine frequency . The density, spin temperature, and coll ision

ra te can be combined to give an estimate of the

range a of the exchange interaction on the surface

times the speed vm with which atoms migrate about

on the surface. From th i s data

I f the correlation time i s taken to be 2a/vm, V,

turns out to be about 1/50 of the f ree space thermal 0

velocity. & = 6 A , which i s the r ight order of

magnitude for the range of such slow coll isions.

The probability of a spin f l i p i s about one when

the integral over the interaction time of the

difference between the % u and lc molecular inter- 9

action energies i s about equal to h . Using these

numbers implies AE = .03 cm-1, which i s the molecular 0

energy difference a t about 8 A.

Recombination of unpolarized atoms on the

surface i s only 1/10 as frequent as spin exchange, 0

corresponding to an interaction length of about .5 A

Page 8: resonance studies of h atoms adsorbed on frozen h2 surfaces

o r less, presumably due t o the l a c k o f phase space

f o r t r a n f e r r r i n g the c o l l i s i o n momentum t o the

molecular hydrogen l a t t i c e .

The a1 t e r n a t i v e extreme o f t i g h t b ind ing t o a

simgle s i t e throughout the 4x10-*sec adsorpt ion

t ime i s n o t cons is ten t w i t h o u t data. The slow r a t e

would then have t o be due almost e n t i r e l y t o gas

phase sp in exchange c o l l i s i o n s , whose r a t e should

decrease as t h e temperature decreases, ins tead of

increasing as i n our data. The distances over which

atoms would have t o be able t o exchange e l e c t r o n

sp ins o r recombine would have t o be unreasonably

la rge . We conclude t h a t the atoms are able t o

migrate over the sur face a t speeds much lower than

the f r e e space thermal speeds.

To summarize our r e s u l t s and t h e i r imp l i ca t ions

f o r H research:

1. The energy w i t h which H atoms a r e adsrobed

on H2 surfaces i s o f t h e o rder o f o r on ly s l i g h t l y

l a r g e r than what i s t o be expected f o r a smooth,

uniform molecular hydrogen surface.

2. The r e s u l t i n g adsorpt ion times a re pro-

h i b i t i v e l y long f o r storage o f H above H, a t

temperatures below 1 K.

3. The atoms are mobi le on the surfaces a t

4.2 K and exchange e l e c t r o n spins w i t h each other

a t about t h e r a t e t o be expected from the exchange

i n t e r a c t i o n .

4. C o l l i s i o n s on t h e sur face lead t o re-

combination a t a r a t e much less than the e lec t ron

sp in exchange r a t e b u t nonetheless h igh enough t o

l i m i t the dens i t y o f H atoms t h a t can be s to red

o r t ranspor ted above a molecular hydrogen surface.

A t 4.2 K the p r o b a b i l i t y o f recombining per

c o l i i s i o n w i t h the sur face i s about 4x10-l6 t imes

the gas phase density, and i t should increase

exponential l y as the temperature i s lowered unless

the re i s a l a r g e Boltzmann f a c t o r t o i n h i b i t it.

5. I t would be i n t e r e s t i n g t o study o ther

surfaces us ing these techniques. Our own very

p re l im inary measurements i n d i c a t e t h a t D, surfaces

are somewhat worse than H, a t 4.2 K, bu t t h a t neon

surfaces a re somewhat b e t t e r . L i q u i d He3 and He4

surfaces seem p a r t i c u l a r l y promising, b u t they

r e q u i r e temperatures lower than those c u r r e n t l y

a v a i l a b l e t o us. -

1 . Abel Weinrib, Undergraduate Thesis, MIT,

1979 ( unpublished) . 2. S .B. Crampton, T.J.Greytak, D.Kleppner,

W.D.Phillips, D.A.Smith and H.Weinrib,

Phys. Rev. L e t t . 42, 1039 (1979).

3. G.H.Zimmerman 111, S.B.Crampton, J.S.French,

W.J.Hurlin and J.J.Krupczak, B u l l . Am. Phys.

SOC. 5, 14 (1980).

4. A.C.Allison, Phys. Rev. E, 2695 (1972).