research memorandum/67531/metadc64421/m... · dual propeller are relatively independent of blade...

46
RM L50D21 RESEARCH MEMORANDUM INVESTIGATION OF THE NACA 3-(3)(05) -05 EIGHT-BLADE DUAL-ROTATING PROPELLER AT FORWARD MACH NUMBERS T00.925 By Robert J. Platt, Jr. and Robert A. Shumaker Langley Aeronautical Laboratory Langley Air Force Base, Va. is+:.. h ' :; :d.;r.i& , i . ' :,: ' c, 7 >if F:?&-, ;jr' NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON June 19, 1950

Upload: others

Post on 13-Jul-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

RM L50D21

RESEARCH MEMORANDUM

INVESTIGATION OF THE NACA 3-(3)(05) -05 EIGHT-BLADE

DUAL-ROTATING PROPELLER AT FORWARD MACH

NUMBERS T 0 0 . 9 2 5

By Rober t J. Platt, Jr. and Robert A. Shumaker

Langley Aeronautical Laboratory Langley A i r Force Base, Va.

i s + : . . h':; : d . ; r . i & , i . ' :,: ' c, 7 >if F:?&- , ;jr'

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON June 19, 1950

Page 2: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss
Page 3: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

NACA RM LWD21

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

INVESTIGATION OF THE NACA 3-(3)(O?)-O? EIGHT-BLADE

DUAL-ROTATING PROPELW AT FORWARD MACH

NUMBERS TO 0.923

By Robert J . P l a t t , Jr. and Robert A . Shumaker

SUMMARY

Force tes t s were made on an NACA 3-( 3) ( 0 5 ) -05 e ight -b lade dua l - r o t a t i n g p r o p e l l e r i n t h e Langley 8- foot high-speed tunne l . The t e s t s covered a blade-angle range from 5 5 O t o 80° a t forward Mach numbers t o 0.925.

The r e s u l t s i n d i c a t e t h a t good e f f i c i e n c i e s can be obta ined a t high subsonic forward Mach numbers by opera t ion a t h igh b lade angles; a t a f r o n t - p r o p e l l e r blade-angle s e t t i n g of 75', t h e maximum e f f i c i e n c y was 87 percent a t a Mach n m b e r of 0.80, and 79 pe rcen t a t a Mach number of 0.85. L i t t l e or no e f f i c i e n c y ga in could be r e a l i z e d by increas ing t h e b lade angle beyond 73'.

INTRODUCTION

The NACA i s conducting a gene ra l i n v e s t i g a t i o n t o s tudy t h e e f f e c t s of compress ib i l i t y , des ign camber, b lade sweep, th ickness r a t i o , and dua l r o t a t i o n on p r o p e l l e r performance a t t r anson ic speeds. Resu l t s of t h e f i r s t t w o phases of t h i s i nves t iga t ion , dea l ing wi th t h e e f f e c t s of compress ib i l i t y and design camber on performance, were presented i n re ferences 1 and 2; b lade sweep, in re fe rences 3 and 4; and th ickness r a t i o , i n re ferences 5 and 6.

Seve ra l i n v e s t i g a t i o n s have been made t o s tudy t h e e f f e c t of d u a l r o t a t i o n on p r o p e l l e r performance, b u t a l l have been l i m i t e d t o low f o r - ward Mach numbers. Resu l t s of t hese i n v e s t i g a t i o n s show t h a t t h e maxi- mum e f f i c i e n c y of a dua l - ro t a t ing p r o p e l l e r i s g r e a t e r than t h a t of a comparable s i n g l e - r o t a t i n g p r o p e l l e r a t h igh values o f advance r a t i o ( r e fe rences 7 and 8 ) . much s m l l e r s l i p s t r eam r o t a t i o n losses of the dua l p r o p e l l e r .

This gain i n e f f i c i e n c y can be a t t r i b u t e d t o t h e

Page 4: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

2 NACA RM L50D21

The r e s u l t s of r e fe rence 9 i n d i c a t e t h a t t h e induced l o s s e s of a dua l p r o p e l l e r a r e r e l a t i v e l y independent of b lade load d i s t r i b u t i o n . A dua l p r o p e l l e r t h e r e f o r e could be designed t o c a r r y , without loss of e f f i c i e n c y , a g r e a t e r load on t h e inboard s e c t i o n s and a smal le r load on t h e outboard s e c t i o n s than would be requi red f o r an optimum s i n g l e - r o t a t i n g p r o p e l l e r . Such a d u a l p r o p e l l e r , operated a t a h igh advance r a t i o , should be w e l l s u i t e d f o r opera t ion a t h igh subsonic forward Mach numbers, s ince bo th t h e lower r o t a t i o n a l speed and reduced outboard loading would tend t o de lay t h e compress ib i l i t y loss. A p r o p e l l e r of /

t h i s type has been designed and t e s t e d by t h e NACA i n t h e Langley 8- foot high-speed tunnel .

Presented he re in a r e t h e f o r c e - t e s t r e s u l t s for t h e NACA 3-( 3) ( 0 5 ) -05 e ight -b lade d u a l - r o t a t i n g p r o p e l l e r f o r b lade angles from 55' t o 80° a t forward Mach numbers t o 0.925. Only a l i m i t e d a n a l y s i s of t h e fo rce - t e s t r e s u l t s i s presented a t t h i s t i m e t o expedi te pub l i ca t ion of t h e b a s i c p r o p e l l e r r e s u l t s . Large-scale p l o t s of t h e b a s i c p r o p e l l e r char- a c t e r i s t i c s ( f i g s . 6 and 7) a r e a v a i l a b l e on r eques t t o t h e NACA.

b

c Z

C

2d

cP

C pF

R cP

SYMBOLS

b lade s e c t i o n chord, f e e t

s e c t i o n l i f t c o e f f i c i e n t

design l i f t c o e f f i c i e n t

t o t a l power c o e f f i c i e n t

f r o n t power coeff i c i e n t

r e a r power c o e f f i c i e n t

( Pn:3D5)

( pn:D5)

Page 5: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

NACA RM LWD21 3

cT

D

h

J

M

n

P

R

T

T C

V

vO

( , c D 4 ) t o t a l t h r u s t c o e f f i c i e n t

p rope l l e r diameter, f e e t

maximum thickness of blade sec t ion , f e e t

(2) advance r a t i o

tunnel datum (forward) Mach number ( tunne l Mach number uncor- r ec t ed f o r tunnel-wall c o n s t r a i n t )

p rope l l e r r o t a t i o n a l speed, r p s

power absorbed by p rope l l e r , foot-pounds pe r second

(G) dynamic pressure, pounds pe r square f o o t

rad ius t o p rope l l e r t i p , f e e t

t h r u s t , pounds

(4 t h r u s t disc-loading c o e f f i c i e n t

tunnel-datum ve loc i ty ( tunne l ve loc i ty uncorrected f o r tunnel- wa l l c o n s t r a i n t ) , f e e t per second

equivalent f r e e - a i r ve loc i ty (tunnel-datum ve loc i ty cor rec ted f o r tunnel-wall c o n s t r a i n t ) , f e e t per second

Page 6: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

4

B s e c t i o n b lade angle , degrees

NACA RM LPD21

s e c t i o n b lade angle ’0.75R a t 0.75 t i p r ad ius , degrees

‘1 e f f i c i e n c y (y) m a x i m u m e f f i c iency ‘ma,

P a i r dens i ty , slugs pe r cubic f o o t

Sub s c r i p t s :

F f r o n t p r o p e l l e r

R r e a r p r o p e l l e r

APPARATUS

T e s t equipment. - The p r o p e l l e r dynamometer descr ibed i n r e fe rence 1 was modified t o permit a dua l p r o p e l l e r t o be t e s t e d . These modifica- t i o n s cons i s t ed of t h e removal of t h e f l e x i b l e coupling between t h e d r i v e s h a f t s of t h e two dynamometer uni ts , t h e add i t ion of a thrust-measuring u n i t t o t h e f r o n t dynamometer, and t h e add i t ion of a tachometer t o permit t h e measurement of t h e r o t a t i o n a l speed of each p r o p e l l e r . A ske tch of t h e 800-horsepower p r o p e l l e r dynamometer, which was i n s t a l l e d i n t h e Langley 8- foot high-speed tunnel , i s shown i n f i g u r e 1.

The var iable-frequency power r equ i r ed t o d r i v e t h e f o u r dynamometer motors was obtained from a s i n g l e motor-generator s e t . Therefore , d i f - f e r ences i n loading between t h e f r o n t and r e a r p r o p e l l e r s , coupled wi th d i f f e r e n c e s i n t h e motor c h a r a c t e r i s t i c s , r e s u l t e d i n unequal r o t a t i o n a l speeds of t h e two p r o p e l l e r s . This d i f f e r e n c e i n r o t a t i o n a l speed amounted t o a maximum of 1.7 pe rcen t .

P r o p e l l e r . - The 3-foot-diameter dua l - ro t a t ing p r o p e l l e r cons i s t ed of e i g h t b lades : f o u r i n t h e f r o n t p r o p e l l e r and f o u r of oppos i te hand i n t h e r e a r p r o p e l l e r . t h e p r o p e l l e r diameter was used. c e n t e r l i n e s was 6 inches.

A l a r g e sp inner wi th a diameter 36 percent of The d i s t ance between t h e p r o p e l l e r

The f r o n t and r e a r b l ades d i f f e r e d s l i g h t l y i n t w i s t , as shown by t h e blade-form curves of f i g u r e 2 . In o t h e r r e s p e c t s t h e design of t h e

Page 7: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

NACA RM L50D21

f r o n t and r e a r b lades w a s ident ica l . . NACA 16 - se r i e s a i r f o i l s ec t ions were used throughout. A photograph of a b lade is shown i n f i g u r e 3. The o f f s e t of t h e b lade a t t h e roo t was intended t o counterac t t h e torque-force bending moment a t t h e high b lade angle f o r which t h e pro- p e l l e r w a s designed.

The p r o p e l l e r was designed f o r an advance r a t i o of 7.13 and a t o t a l power c o e f f i c i e n t of 6.48. The t i p Mach number a t such a high advance r a t i o was only about 9 percent g r e a t e r than t h e forward Mach number. The design b lade angle of t h e p r o p e l l e r w a s approximately 77'.

The b lade loading f o r which t h e e ight -b lade dua l p r o p e l l e r w a s designed i s shown i n f igure 4. A l s o shown f o r comparison i s t h e mini- mum induced-energy-loss loading of an e ight -b lade s i n g l e - r o t a t i n g pro- p e l l e r a t t h e same advance r a t i o of 7.15. It is ev ident t h a t t he d u a l p r o p e l l e r was designed t o c a r r y more load on t h e inboard b lade sec t ions and less load outboard than would be c a r r i e d by a s i n g l e - r o t a t i n g pro- p e l l e r of minimum induced energy l o s s .

TESTS

Each run was made a t a f i x e d value of t unne l Mach number and b lade- angle s e t t i n g , with the r o t a t i o n a l speed var ied t o cover a range of advance r a t i o . The d i f f e rence i n b lade angle between t h e f r o n t and r e a r p r o p e l l e r s w a s chosen t o produce approximately equal power absorpt ion a t

Page 8: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

6

Forward M a d nmber , M

NACA RM L 3 0 D 2 1

53

.60 ~-

~ - -

peak eff ic iency. The range of blade angle and Mach number covered is given in t h e following tab le :

65 63.3 70 68.2 75 73 80 772

0*35 .

- - I

65

70

85

90

?F' 'R

55 53.7

55 53.7

55 53.7

55 53.7

Blade angle a t 0 . 7 y ( d e d

I 1

60 58.5

60 58.5

60 58.5 60 60

60 58.5

60 58.;

60 58.5 60 60

65 63.31.70 68.2173 73 I - - ---- 65 63.3 70 68.2 75 73 80 7 7 2

REDUCTION OF DATA

Propel le r t h r u s t . - The determination of the separate t h r u s t s of f r o n t and r e a r propel le rs would have required the measurement of the pressure e x i s t i n g between the frmt and r e a r spinners a t each operating condition. pickups proved unsuccessful; therefore , only the over -a l l t h r u s t could be determined. Propel le r t h r u s t as used herein i s defined as the sum

An attempt t o measure t h i s pressure with e l e c t r i c a l pressure

Page 9: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

NACA RM L P D 2 1 7

of t h e two a x i a l s h a f t f o r c e s produced by t h e sp inne r - to - t ip po r t ion of t h e b lades . T h e method used t o determine t h r u s t t a r e s and evalua te t h e p r o p e l l e r t h r u s t i s similar t o t h a t used f o r a s i n g l e - r o t a t i n g p r o p e l l e r a s descr ibed i n r e fe rence 1.

P r o p e l l e r torque.- The ind ica t ed torques of t h e f r o n t and rear pro- p e l l e r s were co r rec t ed f o r sp inner t a r e s . and dependent only on r o t a t i o n a l speed.

These c o r r e c t i o n s were small

Tunnel-wall co r rec t ion . - The d a t a (except f o r Mach number) have been co r rec t ed f o r t h e e f f e c t of tunnel -wal l c o n s t r a i n t on v e l o c i t y a t t h e p r o p e l l e r t e s t plane by t h e theory of r e fe rence 10. r e c t i o n i s shown i n f i g u r e 5. A few experimental checks of t h i s cor -

This v e l o c i t y cor -

r e c t i o n were made by t h e method of r e fe rence 1; good agreement was obtained.

RESULTS AND DISCUSSION

The o v e r - a l l p r o p e l l e r c h a r a c t e r i s t i c s a r e presented i n f i g u r e 6 f o r each t e s t value of tunnel-datum Mach number. f i c i e n t CT and t o t a l power c o e f f i c i e n t C p a r e based on t h e f r o n t - p r o p e l l e r r o t a t i o n a l speed. p l o t t e d a g a i n s t t h e advance r a t i o of t h e f r o n t p r o p e l l e r . of t h e f r o n t - p r o p e l l e r t i p Mach number with i t s advance r a t i o i s included i n t h e f i g u r e . A s used he re in , t h e tunnel-datum Mach number M i s n o t co r rec t ed f o r tunnel -wal l c o n s t r a i n t . The f r e e - a i r Mach number, however, can be obtained by applying t h e v e l o c i t y co r rec t ion , presented i n f i g - ure 5 , t o t h e tunnel-datum Mach number. The c o r r e c t i o n w i l l be a m a x i - mum a t a tunnel-datum Mach number of 0.925, a b lade angle of 6 5 O , and an advance r a t i o of 3.85. number i s 1.2 percent and t h e f r e e - a i r Mach number becomes 0.914.

The t o t a l t h r u s t coef-

These c o e f f i c i e n t s and t h e e f f i c i e n c y are The v a r i a t i o n

A t t h i s p o i n t , t h e c o r r e c t i o n t o t h e Mach

The ind iv idua l power c o e f f i c i e n t s of t h e d u a l p r o p e l l e r a r e shown i n f i g u r e 7. The f r o n t - p r o p e l l e r power c o e f f i c i e n t C i s based on

t h e f r o n t - p r o p e l l e r r o t a t i o n a l speed nF and p l o t t e d a g a i n s t t h e f r o n t -

p r o p e l l e r advance r a t i o JF. The r e a r - p r o p e l l e r power c o e f f i c i e n t is

pF

shown i n two forms: C i s based on nR and p l o t t e d aga ins t JR; pR

% and p l o t t e d a g a i n s t . The r e l a t i o n JF whereas C t i s based on pR

Page 10: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

8 NACA RM L50D21

between t h e t o t a l power c o e f f i c i e n t presented i n f i g u r e 6 and t h e ind i - v idua l power c o e f f i c i e n t s presented i n f i g u r e 7 i s

cp = cpF + CPRl The e f f e c t of forward Mach number on t h e maximum e f f i c i e n c y of t h e

d u a l p r o p e l l e r i s shown i n f i g u r e 8 f o r s e v e r a l b lade angles . Mach numbers t h e maximum e f f i c i e n c y i s about 90 percent for f r o n t - p r o p e l l e r blade-angle s e t t i n g s from 65' t o 7 5 O . e f f i c i e n c y of about 85 percent a t t h e h ighes t t e s t b lade angle of 80° i s probably t h e r e s u l t of an unfavorable geometry of t h e f o r c e vec to r s , which tends t o magnify t h e e f f e c t of p r o f i l e drag.

A t low

The r e l a t i v e l y low

A s has been shown previous ly f o r s i n g l e - r o t a t i n g p r o p e l l e r s , increas ing t h e b lade angle delays t o h igher Mach numbers t h e e f f i c i e n c y loss due t o compress ib i l i t y e f f e c t s . The r e s u l t s show, however, t h a t l i t t l e or no e f f i c i e n c y ga in can be r e a l i z e d by inc reas ing t h e f r o n t - p r o p e l l e r blade-angle s e t t i n g beyond 75'. angle s e t t i n g of 7 5 O , which i s very nea r t h e design angle , t h e maximum e f f i c i e n c y i s 87 percent a t a Mach number of 0.80 and 79 percent a t a Mach number of 0.85. angle e n t a i l s , however, a reduct ion i n t h e power which can be absorbed. This , of course, i s a r e s u l t of t h e low r o t a t i o n a l speed of t h e p r o p e l l e r .

For a f r o n t p r o p e l l e r b lade-

Operation of a p r o p e l l e r a t such a h igh b lade

The maximum e f f i c i ency i s p l o t t e d i n f i g u r e 9 aga ins t t h e f r o n t - p r o p e l l e r advance r a t i o JF Good e f f i c i e n c i e s a r e obta ined a t h igh va lues of advance r a t i o up t o forward Mach numbers as h igh a s 0.85. A t t h e h ighes t t e s t Mach numbers of 0.90 and 0.925, t h e d a t a i n d i c a t e t h a t opera t ion a t lower values of ad-vance r a t i o i s necessary f o r b e s t e f f i c i e n c y . This e f f e c t i s s i m i l a r t o t h a t p rev ious ly found f o r s i n g l e - r o t a t i n g p r o p e l l e r s .

for each t e s t value of forward Mach number.

The e f f e c t of small changes i n t h e r e a r - p r o p e l l e r b lade angle on t h e dua l -p rope l l e r c h a r a c t e r i s t i c s i s shown i n f i g u r e 10 f o r a f r o n t b lade angle of 75'. A t a Mach number of 0.70 t h e r e i s no measurable change i n f r o n t - p r o p e l l e r power c o e f f i c i e n t f o r t h e range of r e a r - p r o p e l l e r b lade angles inves t iga t ed . number of 0.90, t h e r e a r p r o p e l l e r does inf luence t h e f r o n t - p r o p e l l e r power absorp t ion ; a decrease i n t h e r e a r - p r o p e l l e r b lade angle causes a s l i g h t increase i n t h e f r o n t - p r o p e l l e r power c o e f f i c i e n t .

However, a t t h e s u p e r c r i t i c a l Mach

More l imi t ed d a t a of a s i m i l a r type a r e shown i n f i g u r e 11 f o r a f r o n t - p r o p e l l e r b lade angle of 60'. l i t t l e in f luence on t h e f r o n t - p r o p e l l e r power c o e f f i c i e n t a t a Mach number of 0.70. i t s e f f e c t i s pronounced.

The r e a r p r o p e l l e r appears t o have

However, a t t h e high s u p e r c r i t i c a l Mach number of 0.83,

Page 11: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

9 MACA RM LwD21

The d i f fe rences i n maximum ove r -a l l e f f i c i ency a t t he various r e a r - p rope l l e r blade-angle s e t t i n g s , shown i n f i g u r e s 10 and 11, a r e be l ieved t o be within t h e experimental accuracy.

CONCLUSIONS

Force- tes t r e s u l t s f o r t he NACA 3-( 3) ( 0 5 ) -05 eight-blade dua l pro- p e l l e r a t Mach numbers t o 0.925 ind ica ted the following conclusions:

1. Good e f f i c i e n c i e s were obtained a t high subsonic forward Mach numbers by operation a t high blade angles; a t a f ron t -p rope l l e r blade- angle s e t t i n g of 7 5 O , t he maximum e f f i c i ency was 87 percent a t a Mach number of 0.80 and 79 percent a t a Mach n m b e r of 0.85.

2. L i t t l e o r no e f f i c i ency gain could be r ea l i zed by increasing the blade angle beyond 75'.

Langley Aeronautical Laboratory National Advisory Committee f o r Aeronautics

Langley A i r Force Base, V a .

Page 12: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

10

REFERENCES

NACA RM L5OD21

1. Delano, James B . , and Camel , Melvin M . : Inves t iga t ion of t h e NACA 4-(5) (08)-03 Two-Blade Propel le r a t Forward Mach Numbers t o 0.925. NACA RM L ~ G O & , 1949

2. Delano, James B . , and Morgan, Francis G . , Jr.: Inves t iga t ion of t he NACA 4- (3) (08) -03 Two-Blade Propel le r a t Forward Mach Numbers t o 0.925. NACA E(M ~9106, 1949.

3. Delano, James B . , and Harrison, Daniel E . : I nves t iga t ion o f t h e NACA 4- (4) (06) -04 Two-Blade Propel le r a t Forward Mach Numbers t o 0.925. NACA RM L9107, 1949.

4. Delano, James B . , and Harrison, Daniel E . : I nves t iga t ion of t h e NACA 4 - (4 ) (06)-057-45A and NACA 4 - ( 4 ) (06) -057-45B Two-Blade Swept P rope l l e r s a t Forward Mach Numbers t o 0.925. NACA RM L9L05, 1950.

5. Delano, James B . , and Camnel, Melvin M . : Inves t iga t ion o f NACA 4-(0)(03)-045 and NACA 4-(0)(08)-045 Two-Blsde Propel le rs a t Forward Mach Numbers t o 0.925. NACA RM L9L06a, 1950.

6. Carmel, Melvin M . , and M i l i l l o , Joseph R . : I nves t iga t ion of t h e NACA 4-(0) (03) -045 Two-Blade Propel le r a t Forward Mach Numbers t o 0.925. NACA RM L5OA3la, 1950.

7. Biermann, David, and Hartman, Edwin P . : Wind-Tunnel Tes ts of Four- and Six-Blade Single- and Dual-Rotating Tractor Propel le rs . NACA Rep. 747, 1942.

8. Lesley, E . P . : Tandem A i r P rope l le rs - 11. NACA TN 822, 1941.

9. Gilman, Jean, Jr.: Wind-Tunnel Tes ts and Analysis o f Two lO-Foot-. Dicmeter Six-Blade Dual-Rotating Tractor P rope l l e r s Di f fe r ing i n P i t ch Di s t r ibu t ion . NACA TN 1634, 1948.

10. Young, A. D . : Note on the Application of t h e Linear Per turba t ion Theory t o Determine t h e Effec t of Compressibil i ty on Wind Tunnel Constraint on a Propel le r . RAE TN No. Aero. 1539, Nov. 1944. (Also ava i l ab le as R . & M. No. 2113, B r i t i s h A.R.C., 1944.)

Page 13: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

Tunnel w a l l r

Figure 1.- Test apparatus.

Page 14: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

.o

'5

. w

0

. Q'

2.02 s g *% i s 0

86

82

78

74

70

66

Blade staz%~7, v/R Figure 2.- Blade-form curves for NACA 3-(3) (O5)-O5 dual propeller.

'

Page 15: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

NACA RM L5OD21

Figure 3 - Photograph o f NACA 3- (3) ( 0 5 ) -05 p r o p e l l e r blade.

Page 16: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss
Page 17: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

/13

L O

.8

I

b Cr

.6

*4

2

0 ,2 .3 -4 0 '

5 / a d e

I I

t

Figure 4.- Comparison of design blade-loading of NACA 3-(3)(0>)-05 dua l propeller with blade-loading of optimum single-rotating propeller.

0 U iu

Page 18: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

bQG6

,992

8988

I 7 Y

Fi&e 3. - Tunnel-wall-interference correction for 3-foot-diameter propeller in Langley 8-foot high-speed tunnel.

Page 19: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

.

1.4

I .3

1.2

I . I

1.0

.9

I- O. .8 c C

0 .- .- 'c .7 0

c

.6 1 I-

.5

.4

14

13

12

I I

10

9

a * 8

7 Q)

0

L

$ 6 a"

5

4

- - I

0

1.5 LL

5 i

. t

1.0 2 $

.5 3 5 n

O F

I .oo

.75 F s

.50 :G c

w-

5 .25

0 0 2 4 6 8 10 12 14 16 18

Advance ratio, JF

(a) M = 0.35.

Figure 6.- Characteristics of NACA 3-(3)(05)-05 eight-blade dual-rotating propeller.

8 Iv P

Page 20: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

1.4

I .3

12

I. I

1.0

.9

I- 0 - .8 c c Q)

0 .- .- + .7 0

c cn

r 2 .6 I-

.5

.4

.3

.2

.I

0

14

13

12

I I

10

9

8

7

6

5

4

3

2

I

0 0 2 4

1.5 ,,- 5 c

L

1.0 2 G

.5 3 Zi CL

O F

1.00

.75 F >;

50 14 c

'c

5 .25

0 6 8 10 12 14 16 18

Advance ratio, JF

(b) M = 0.53.

Figure 6.- Continued.

Page 21: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

(

I .4

1.3

I .2

1 . 1

I .o

.9

I- 0

* .8 c c W

0 .- .- ‘c

.7 s 2 .6 4-

r t-

.5

.4

.3

.2

. I

0

14

13

12

I I

10

9

8

7

6

5

4

3

2

I

n

1.5 LL

I 4-

L

1.0 x $

.5 3 *

z CL

O F

1.00

75 1 s

.50 :4 0 c Q)

rc

;5 .25

0 = 0 2 4 6 8 10 12 14 16 18

Advance ratio, JF

( c ) M = 0.60.

Figure 6.- Continued.

!5 Ln 0 U Iu P

Page 22: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

I .4

1.3

I .2

1 . 1

I .o

.9

.8

.7

.6

.5

.4

.3

.2

.I

0

a 0

L 0) 3 a

14

13

12

I I

10

9

8

7

6

5

4

3

2

I

0 0 2 4 6 . 8 10 12 14 16 18

Advance ratio, JF

Iv 0

1.5 LL

z c

.5 3 z n

O F

1.00

.75 1 2;

50 14 E Q,

LL-

5 .25

r

( d ) M = 0.65.

Figure 6. - Continued.

0

.

Page 23: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

,

1.4

1.3

1.2

1 . 1 I I

1.0 10

.9 9

+ a 2 . 8 0 . 8 t 0)

0

c + t

0 .- .- .- .-

*-

- , . 7 % 7 0 0

.5 5

.4

.3

.2

_ I

8

4

0 2 4 6 8 10 12 14 16 18 Advance ratio, JF

( e ) M = 0.70.

Figure 6.- Continued.

Page 24: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

*<Loo = N (J)

'O!lDi a3UDApv

81 91 PI 01 8 9 P Z 0 1 W

I

2

P

S

9

L

8

6

01

I1

21

€I

PI

0

I'

Z'

€.

P.

G.

2 9' 2

L' % p. 3

8' &

1 0

1

--I

6'

0' I

I .I

Z'I

€. I

P' I

Page 25: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

a

Thr

ust

coef

ficie

nt,

CT

-

-

-

-

0-

iu

bb

in

is

,k

bo

io

o-

-

iu

ic

lb

Pow

er c

oeffi

cien

t, C

p

z II 0

a3 0 .

Page 26: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

I .4

1.3

! .2

1 . 1

1.0

14

13

12

I I

10

I- 0

w- a, 0

c In

-c 2

I-

9 9

a 0

u 0

1.5

4 8 I0 12 14 16 18 2 Advance ratio, JF

(h) M = 0.85.

Figure 6.- Continued.

Page 27: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

1.4

1.3

1.2

1 . 1

I .o

.9

.8

.7

.6

.5

.4

.3

.2

.I

0

a 0 c c a, .- Y- Lc

W

0 L W 3 a"

14

13

12

I I

10

9

8

7

6

5

4

3

2

I

0 0 2 4 6 8 10 12 14 16 18

Advance ratio, JF

(i) M = 0.90.

Figure 6.- Continued.

1.5 LL

z i

c

1.0 2

.5 3

Oi=

5 r" n

I .8D

.75 F s V c

.50:: rc

;5 .25

'0

t? Ln 0 U Tu t-

Page 28: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

I .4

1.3

1.2

1 . 1

I .o

.9

I- 0, .8 + c 0)

0 .- .- z .7 0

4- 2 .6 I- r

.5

.4

.3

.2

.I

0

14

13

12

I 1

10

9

< 8 + c 0 .- 5 7

$ 6 2

0

L

5

4

3

2

I

0

( 3 ) M = 0.925.

Figure 6. - Concluded.

F u1 0

Page 29: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

7

6

5

4

3

2

I

0

ratio based on nF Power coefficient and advance

0 2 4 6 8 10 12 14 16 18 Advance ratios, JF and JR

(a) M = 0.35.

Figure 7. - Individual power coefficient curves of NACA 3-( 3)(03)-05 eight-blade dual-rotating propeller.

H

b 0 U

Page 30: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

2 4 6 8 I 0 12 14 Advance ratios, Jp and dR

P

Page 31: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

7

6

5

2

0 tj rc

Page 32: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

7

6

5

4

3

2

I

0 0 2 6 10

Advance ratios, JF and JR

( d ) M = 0.65.

Figure 7.- Continued.

12 14 16

W 0

Page 33: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

7

6

5 of a 0 '13

0

$4 LL a 0

Advance ratios, JF and JR

(e) M = 0.70.

Figure ' . - Continued.

t? ul ,o U Iu I-J

Page 34: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

7

6

5 c1c n

0 -0

0

E4 0.

LL n 0 ui + (u

0

0)

0

0)

.- E 3

L

3 2

2

I

0 C

Adww fa&%+ and JR - -

( f ) M = 0.7'1:.

Figure 7.- Continued.

W Tu

t+ ul 0 U m t-l

I

Page 35: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

7

6

5 ar a

0 Q

0

ar a

a 0.

LL

0

4

3

H tn 0 U

b t

0

2

I

I

0

Advance ratios, JF and JR

(g) M = o.~o. Figure 7.- Continued,

Page 36: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

7

6

5

Power coefficient and ratio based on nF

____- Power coetficient and ratio based on n a

. . . . . . --, .. -. .. -. . . . . . . . . . .

. . , .

. , I . - . . .

LL a 0 vi c C

0

Q)

0

.- E 3

2

I

0 0 2 4 '0 12 14 16 18

Advance ratios. JF and JR

(h) M = 0.85. H L ' ul 0

P 8 Figure 7.- Continued,

Page 37: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

Advance rot'=, + and- JR

(i) M = 0.90.

Figure 7.- Continued.

- - _

Page 38: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

F

Q

,

Page 39: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

e C J

P Lf +- I .

_I_---.

1

Page 40: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

Figure 9.- Variation of maximum efficiency with advance r a t i o f o r NACA 3- (3) (05) -05 eight-blade dual propeller

Page 41: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

/

Advunce ruth,

(a) Individual power c o e f f i c i e n t s

Figure 10.- E f f e c t o f s m d l variations i n rear b lade angle f o r a f r o n t b lade angle o f 75'.

Page 42: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

. /

3

, JF

(b) Over-all propeller characteristics.

F i v e 10.- Concluded.

Page 43: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

58.5

Advance rat io, JF.

(a) Individual power coef f ic ien ts

Figure 11.- Effect of small variat ions in r e a r blade angle for a front blade angle of 60’.

Page 44: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

W

32 33 3 4 J5 36 37 38 357 40 41 42 43 32 3 3 J# J5 3'6 37 38 3 40 -

Advance rat io, JF

(b) Over-all propel ler characteristics.

Figure 11.- Concluded.

U

Page 45: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

Mach Number Ef fec t s - Propel le rs 1.5.2.5

Inves t iga t ion of t h e NACA 3 - ( 3 ) ( 0 5 ) - 0 3 Eight-Blade Dual-Rotating Propel le r a t Forward Mach Numbers t o 0.925.

By Robert J. P l a t t , Jr. and Robert A . Shumaker

NACA RM ~ 5 0 ~ 2 1 June 1950

P l a t t , Robert J., Jr., and Shumaker, Robert A.

Inves t iga t ion of t he NACA 3 - ( 3 ) ( 0 5 ) - 0 3 Eight-Blade Dual-Rotating Propel le r a t Forward Mach Numbers t o 0.925.

By Robert J. P l a t t , Jr. and Robert A. Shumaker

NACA RM L3OD21 June 1950

Propel le rs , Dual Rotation 1.3.2.7

Inves t iga t ion of t he NACA 3-(3) (03)-0> Eight-Blade Dual-Rotating Propel le r at Forward Mach Numbers t o 0.925.

By Robert J. P l a t t , Jr. and Robert A. Shumaker

NACA RM ~ 5 0 ~ 2 1 June 1950

Page 46: RESEARCH MEMORANDUM/67531/metadc64421/m... · dual propeller are relatively independent of blade load distribution. Adual propeller therefore could be designed to carry, without loss

Abstract

I

Force-test r e s u l t s are presented f o r t he NACA 3-( 3) ( O 5 ) - O 5 eight-blade dual propel le r , which was designed f o r a blade angle of a p p r o x h a t e l y 75'. The t e s t : covered a blade-angle range from 55' t o 80° a t Mach number: t o 0.925. Some da ta on t h e e f f e c t of small changes i n the rear -propel le r blade angle a r e included. Good e f f i c i enc ie s were obtained a t high subsonic Mach numbers by operation at high blade angles.

Ab s t ra'et

Force-test r e s u l t s a r e presented f o r the NACA 3-( 3)(05)-03 eight-blade dual propel le r , which w a s designed f o r a blade angle of approximate1 75'. The t e s t s covered a blade-angle range from 55' t o 80 a t Mach numbers t o 0.925. Some da ta on the e f f e c t of small changes i n the rear-prope.ller blade angle a r e included. Good e f f i c i e n c i e s were o b t a h e d a t high subsonic Mach numbers by operation a t high blade angles.

B

Abstract

Force- tes t r e s u l t s a r e presented f o r t he NACA 3-(3) (05) -05 eight-blade dual propel le r , which w a s designed f o r a blade angle of approximate1;Y 75'. The t e s t s covered a blade-angle range from 55' t o 80 a t Mach numbers t o 0.925. Some da ta on t h e e f f e c t of small changes i n t he rear -propel le r blade angle a r e included. Good e f f i c i e n c i e s were obtained a t high subsonic Mach numbers by operation a t high blade angles.

NACA RM ~ 5 0 ~ 2 1