research in high energy physics - phenomenologyshri/mytalks/imsc-gradorient-feb2014.pdf · hep...

68
HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology Shrihari Gopalakrishna Institute of Mathematical Sciences (IMSc), Chennai Graduate Student Talk IMSc Feb 2014

Upload: others

Post on 12-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Research in High Energy Physics - Phenomenology

Shrihari Gopalakrishna

Institute of Mathematical Sciences (IMSc), Chennai

Graduate Student Talk

IMSc

Feb 2014

Page 2: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Introduction

High Energy Physics - Phenomenology

Study of the Fundamental Particles, Physical Laws and

Organizing Principles in Nature & their Experimental

Tests

Page 3: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Introduction

HEP - Phenomenology @ IMSc

Faculty Members

D. Indumathi

M.V.N Murthy

Nita Sinha

Rahul Sinha

Ravindran

Rajasekaran

Shrihari Gopalakrishna

Post-doctoral Fellows

Hijam Zeen Devi

Rahul Srivastava

Saurabh Gupta

Sunanda Patra

Tapasi Ghosh

Graduate Students

Arithra Biswas

Dibyakrupa Sahoo

Dhargyal

Rusa Mandal

Soumya Sadhukhan

Tanmoy Modak

Tuhin Subhra Mukherjee

INO Graduate Students

Lakshmi S. Mohan

Meghana K.K.

Kanishka Rawat

HRI Graduate Students

Maguni Mahakhud

Narayan Rana

Taushif Ahmed

Recent Alumni

Diganta Das (Dortmund)

Saveetha (IMSc)

Subhadip Mitra (Orsay/Paris)

Sumantha Pal (Edinburgh)

Tanumoy Mandal (HRI)

Pheno Club Email List : [email protected] sign-up for announcements

Page 4: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Strucutre of the SM

The Building Blocks

[particleadventure.org]

Added Higgs in 2012Composites:

Page 5: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Strucutre of the SM

Standard Model (SM) theoretical structure

Gauge Theory, Relativistic Quantum Field Theory (QFT)

SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge group (Internal Symmetry)

Strong, Weak, Electromagnetic Interactions

Eg: EM (QED) is U(1) gauge symmetry

Some Gauge Symmetries Spontaneously broken ⇒ Massive Weak gauge bosons

The Englert-Brout-Higgs-Guralnik-Hagen-Kibble Mechanism

Page 6: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Strucutre of the SM

Standard Model (SM) theoretical structure

Gauge Theory, Relativistic Quantum Field Theory (QFT)

SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge group (Internal Symmetry)

Strong, Weak, Electromagnetic Interactions

Eg: EM (QED) is U(1) gauge symmetry

Some Gauge Symmetries Spontaneously broken ⇒ Massive Weak gauge bosons

The Englert-Brout-Higgs-Guralnik-Hagen-Kibble Mechanism

Page 7: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Strucutre of the SM

Spontaneous Symmetry Breaking (SSB)

SSB : Microscopic laws symmetric, but ground state is NOT

Analogy: Spontaneous Magnetization in Condensed Matter Systems

[Fig by F. Heylighen]

Higgs Mechanism in QFT

L is invariant under Gauge Symmetry, but nonzero VacuumExpectation Value (VEV) of Higgs field breaks EW symmetry

Page 8: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Strucutre of the SM

The Higgs Mechanism in the SM

L ⊃ (DµH)† DµH + µ2H†H − λ4!

(H†H)2

Spontaneous Breaking of Electroweak Symmetry

〈H〉= 1√2

(0v

)6= 0 (The E-B-Higgs-G-H-K Mechanism)

Give masses to W± , Z (γ massless)

Generates fermion masses

LYuk ⊃ −λuQHuR − λdQHdR − λeLHeR + h.c.

Under SU(3)c ⊗ SU(2)L ⊗ U(1)Y :

H = (1, 2)1/2

Q ≡(

uLdL

)= (3, 2)1/6 ; uR = (3, 1)2/3

L ≡(νLeL

)= (1, 2)−1/2 ; eR = (1, 1)−1

Complex Yukawa couplings λ =⇒ CP violation

Unitarize WW scattering [Lee, Quigg, Thacker, 1977]

But, mass of a fundamental scalar is not protected against getting largequantum correction. We’ll come back to this ...

Page 9: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Strucutre of the SM

The Higgs Mechanism in the SM

L ⊃ (DµH)† DµH + µ2H†H − λ4!

(H†H)2

Spontaneous Breaking of Electroweak Symmetry

〈H〉= 1√2

(0v

)6= 0 (The E-B-Higgs-G-H-K Mechanism)

Give masses to W± , Z (γ massless)

Generates fermion masses

LYuk ⊃ −λuQHuR − λdQHdR − λeLHeR + h.c.

Under SU(3)c ⊗ SU(2)L ⊗ U(1)Y :

H = (1, 2)1/2

Q ≡(

uLdL

)= (3, 2)1/6 ; uR = (3, 1)2/3

L ≡(νLeL

)= (1, 2)−1/2 ; eR = (1, 1)−1

Complex Yukawa couplings λ =⇒ CP violation

Unitarize WW scattering [Lee, Quigg, Thacker, 1977]

But, mass of a fundamental scalar is not protected against getting largequantum correction. We’ll come back to this ...

Page 10: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Strucutre of the SM

The Large Hadron Collider (LHC)

Seen the Higgs. Continue searching for more ...

Page 11: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Strucutre of the SM

Higgs Production @ LHC

LHC is a p − p collider

P

P p contains partons: g , u, d , u, d , ...

x ≡√s√

S=14TeVParton momentum is fraction of

√S :

parton distribution function (pdf)

pp → h→ γγ @ LHC

σ(gg → h)

λf

f

Γ(h→ γγ)

λf

f W

W

Page 12: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Strucutre of the SM

Higgs Production @ LHC

LHC is a p − p collider

P

P p contains partons: g , u, d , u, d , ...

x ≡√s√

S=14TeVParton momentum is fraction of

√S :

parton distribution function (pdf)

pp → h→ γγ @ LHC

σ(gg → h)

λf

f

Γ(h→ γγ)

λf

f W

W

Page 13: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Strucutre of the SM

LHC Higgs Measurements

Page 14: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology
Page 15: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Strucutre of the SM

Are we done?

I don’t think so ...

Page 16: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Strucutre of the SM

Are we done?

I don’t think so ...

Page 17: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Why BSM Physics?

Motivation for Physics Beyond the Standard Model (BSM)

Observational

What is the observed Dark Matter?

What generates the Baryon Asymmetry of the Universe (BAU)?

What generates the neutrino masses?

Theoretical

SM hierarchy problem (Higgs sector): MEW MPl

SM flavor problem: me mt

Explained by new dynamics?

Extra dimensions (Warped (AdS), Flat)SupersymmetryStrong dynamicsLittle Higgs

Page 18: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Why BSM Physics?

Hierarchy problem in detail

LHC (and LEP) tell us that the Higgs boson is light mh = 126 GeV

L ⊃ 12µ

2 H†H − λ4!

(H†H

)2No symmetry protecting the Higgs mass!

tL, tR

−i yt√

2

h hδm2

h = − 3y2t

16π2 Λ2

tL, tR

−i yt√

2

h h

(Λ is momentum cut-off, say Mpl)

Quadratic divergence in the Higgs sector

Page 19: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

BSM Physics Possibilities

New physics possibilities

Belief that some new physics cures these problems

Look for these at the LHC

Supersymmetry[SG,Yuan,2004]

Extra-dimensions : (Warped or Flat)[Mandal, Mitra, Moreau, SG, Tibrewala 2011, 13][Agashe, Davoudiasl, SG, Han, Huang, Perez, Si, Soni

”2007, 08,

10] [Cao, SG, Yuan, 2003]

Strong dynamics (Note AdS-CFT correspondence)

Little Higgs

Neutrino mass connection and lepton number violation[EDM with Triplet Higgs: de Gouvea, SG, 2005]

Dark Matter candidates[SG, Jung, Lee, Wells, 2008, 09]

Page 20: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

BSM Physics Possibilities

New physics possibilities

Belief that some new physics cures these problems

Look for these at the LHC

Supersymmetry[SG,Yuan,2004]

Extra-dimensions : (Warped or Flat)[Mandal, Mitra, Moreau, SG, Tibrewala 2011, 13][Agashe, Davoudiasl, SG, Han, Huang, Perez, Si, Soni

”2007, 08,

10] [Cao, SG, Yuan, 2003]

Strong dynamics (Note AdS-CFT correspondence)

Little Higgs

Neutrino mass connection and lepton number violation[EDM with Triplet Higgs: de Gouvea, SG, 2005]

Dark Matter candidates[SG, Jung, Lee, Wells, 2008, 09]

Page 21: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

BSM Physics Possibilities

Precision Probes of BSM

In addition to Collider probes, New Physics can also be probed in:

Precision Electroweak Probes (S, T, Zbb)W,Z, γ

Flavor Changing Neutral Currents (FCNC)

K 0K 0 mixing, b → sγ , b → s `+`− , b → s s s, K → πνν, b → τνX , ...Relaxed with flavor alignment : MFV, flavor symmetries

(g − 2)µ, EDM, ...

Generally result in bound : MBSM & few − 100 TeV

Page 22: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Supersymmetry

SUPERSYMMETRY

Page 23: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Supersymmetry

Supersymmetry (SUSY)

Reviews: [Wess & Bagger]

Symmetry: Fermions ⇔ BosonsQ |Φ〉 = |Ψ〉 ; Q |Ψ〉 = |Φ〉Qα is a spinorial charge

SUSY algebra:Qα, Qβ

= 2σ

µ

αβPµ

Qα,Qβ

=Qα, Qβ

= 0

[Pµ,Qα] =[Pµ, Qα

]= 0

Under a SUSY transformation

δξφ =√

2ξψ

δξψ =i√

2σm ξ∂mφ+√

2ξF

δξF =i√

2ξσm∂mψ

δξAmn =i[(ξσn∂mλ+ ξσn∂mλ

)− (n↔ m)

]δξλ =iξD + σmnξAmn

δξD =ξσm∂mλ− ξσm∂mλ

Page 24: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Supersymmetry

Supersymmetry (SUSY)

Reviews: [Wess & Bagger]

Symmetry: Fermions ⇔ BosonsQ |Φ〉 = |Ψ〉 ; Q |Ψ〉 = |Φ〉Qα is a spinorial charge

SUSY algebra:Qα, Qβ

= 2σ

µ

αβPµ

Qα,Qβ

=Qα, Qβ

= 0

[Pµ,Qα] =[Pµ, Qα

]= 0

Under a SUSY transformation

δξφ =√

2ξψ

δξψ =i√

2σm ξ∂mφ+√

2ξF

δξF =i√

2ξσm∂mψ

δξAmn =i[(ξσn∂mλ+ ξσn∂mλ

)− (n↔ m)

]δξλ =iξD + σmnξAmn

δξD =ξσm∂mλ− ξσm∂mλ

Page 25: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Supersymmetry

Consequences

Solution to gauge hierarchy problem

tL, tR

−i yt√

2

h h +tL, tR

−iy2t2

h h

= 0

Λ2 divergence cancelled [Romesh Kaul, ’81, ’82] [Witten]

(Similarly W±,Z divergences cancelled by λ)

Lightest SUSY Particle (LSP) stable dark matter (if Rp conserved)

Gauge Coupling Unification - SUSY SO(10) GUTIncludes νR ⇒ Neutrino mass via seesaw

Page 26: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Supersymmetry

Consequences

Solution to gauge hierarchy problem

tL, tR

−i yt√

2

h h +tL, tR

−iy2t2

h h

= 0

Λ2 divergence cancelled [Romesh Kaul, ’81, ’82] [Witten]

(Similarly W±,Z divergences cancelled by λ)

Lightest SUSY Particle (LSP) stable dark matter (if Rp conserved)

Gauge Coupling Unification - SUSY SO(10) GUTIncludes νR ⇒ Neutrino mass via seesaw

Page 27: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

SUSY breaking

SUSY breaking

Exact SUSY =⇒ Mψ = Mφ ; MA = Mλ

So experiment =⇒ SUSY must be broken

Supersymmetrize the SM + SUSY breaking → Minimal SupersymmtricStandard Model (MSSM)

Page 28: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

MSSM

125 GeV Higgs in the MSSM

At 1-loop [Haber, Hempfling, Hoang, 1997]

m2h ≈ m2

Z cos2(2β) +3g2

2 m4t

8π2m2W

[ln(

mt1mt2

m2t

)+

X2t

mt1mt2

(1− X2

t12mt1

mt2

)]where Xt = At − µ cotβ

mh = 125 GeV needs sizable loop contribution

Hard! Needs large mt1mt2

or large X 2t

But δm2Hu≈ 3g2

2 m4t

8π2m2W

[ln(

mt1mt2

m2t

)+

X2t

2mt1mt2

(1− X2

t6mt1

mt2

)]So fine-tuning necessary to keep m2

Z correct“Little hierarchy problem”

Page 29: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

Mass scales [GeV]0 200 400 600 800 1000 1200 1400

0χ∼ l → l

~

0

χ∼ 0

χ∼ν τττ → ±χ∼ 2

0χ∼

0

χ∼ 0

χ∼ν τ ll→ ±χ∼ 2

0χ∼

0χ∼

0χ∼ H W →

2

0χ∼ ±χ∼

0χ∼

0χ∼ W Z →

2

0χ∼ ±χ∼

0χ∼0χ∼νν-l+ l→ -χ∼+χ∼

0χ∼

0χ∼ν lll → ±χ∼

2

0χ∼

0χ∼ bZ → b

~0

χ∼ tW → b~

0χ∼ b → b

~

H G)→ 0χ∼(0χ∼ t b → t~)0χ∼ W → ±χ∼ b (→ t~)0χ∼ W→ +χ∼ b(→ t~0χ∼ t → t~0χ∼ t → t~

0χ∼ q → q~

0χ∼ q → q~

))0

χ∼ W→ ±χ∼ t(→ b~

b(→ g~)

0χ∼γ →

2

0χ∼ qq(→ g~

)0

χ∼ W→±χ∼|0

χ∼γ→2

0χ∼ qq(→ g~

)0χ∼ W→±χ∼ qq(→ g~)

0χ∼ Z →

2

0χ∼ qq (→ g~

)0χ∼ ν± l→ ±χ∼ qq(→ g~)0χ∼ t→ t~ t(→ g~)0χ∼ |0χ∼ W→±χ∼ qq(→ g~)

0χ∼ |

0χ∼ τ τ →

2

0χ∼ qq(→ g~

)0

χ∼-

l+

l→2

0χ∼ qq (→ g~

0χ∼ tt → g~

0χ∼ bb → g~

0χ∼ qq → g~

0χ∼ qq → g~

SUS-13-006 L=19.5 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-13-011 L=19.5 /fbx = 0.25

x = 0.50x = 0.75

SUS-13-008 L=19.5 /fb

SUS-12-001 L=4.93 /fb

SUS-11-010 L=4.98 /fb

SUS-13-006 L=19.5 /fbx = 0.05

x = 0.50x = 0.95

SUS-13-006 L=19.5 /fb

SUS-13-012 SUS-12-028 L=19.5 11.7 /fb

SUS-12-005 SUS-11-024 L=4.7 /fb

SUS-12-028 L=11.7 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-13-014 L=19.5 /fb

SUS-13-004 SUS-13-007 SUS-13-008 SUS-13-013 L=19.4 19.5 /fb

SUS-13-013 L=19.5 /fbx = 0.20

x = 0.50

SUS-13-004 SUS-12-024 SUS-12-028 L=19.3 19.4 /fb

SUS-12-001 L=4.93 /fb

SUS-13-012 SUS-12-028 L=19.5 11.7 /fb

SUS-12-010 L=4.98 /fb x = 0.25x = 0.50x = 0.75

SUS-12-005 SUS-11-024 L=4.7 /fb

SUS-13-008 SUS-13-013 L=19.5 /fb

SUS-13-017 L=19.5 /fb

SUS-12-004 L=4.98 /fb

SUS-13-006 L=19.5 /fb

SUS-11-011 L=4.98 /fb

SUS-13-011 SUS-13-004 L=19.5 19.3 /fb left-handed topunpolarized top

right-handed top

SUS-11-024 SUS-12-005 L=4.7 /fb

SUS-11-021 SUS-12-002 L=4.98 4.73 /fbx = 0.25

x = 0.50x = 0.75

SUS-13-006 L=19.5 /fb x = 0.05x = 0.50

x = 0.95

SUS-13-006 L=19.5 /fb

SUS-11-030 L=4.98 /fb

glui

no p

rodu

ctio

nsq

uark

stop

sbot

tom

EW

K g

augi

nos

slep

ton

Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeVSUSY 2013

= 7 TeVs

= 8 TeVs

lspm⋅-(1-x)

motherm⋅ = xintermediatem

For decays with intermediate mass,

Only a selection of available mass limits*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit

Page 30: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

MSSM

stop mass [GeV]

100 200 300 400 500 600 700 800

LSP

mas

s [G

eV]

0

50

100

150

200

250

300

350

400

450

500

W

=m1

0χ∼

-mt~

m

t

=m1

0χ∼

-mt~

m

SUSY 2013 = 8 TeVs

CMS Preliminary

productiont~-t

~

)1

0χ∼ t →t~ (-1SUS-13-004 0-lep+1-lep (Razor) 19.3 fb

)1

0χ∼ t →t~ (-1SUS-13-011 1-lep (leptonic stop)19.5 fb

, x=0.25)1

+χ∼ b →t~ (-1SUS-13-011 1-lep (leptonic stop)19.5 fb

Observed

ExpectedW

=m1

0χ∼

-m1

±χ∼m

gluino mass [GeV]

600 700 800 900 1000 1100 1200 1300 1400 1500

LSP

mas

s [G

eV]

0

100

200

300

400

500

600

700

800

900

ObservedSUSYtheory

σObserved -1 Expected

m(g

luin

o) - m

(LSP) =

2 m

(top)

m(g

luin

o) - m

(LSP) =

m(W

) + m

(top)

Nov 2013 = 8 TeVs

CMS Preliminary1

0χ∼ t t →g~ production, g~-g~

-1) 19.4 fbT+HTESUS-12-024 0-lep (-1SUS-13-004 0+1-lep (razor) 19.3 fb

-1 6) 19.4 fb≥jets

SUS-13-007 1-lep (n-1SUS-13-016 2-lep (OS+b) 19.7 fb-1SUS-13-013 2-lep (SS+b) 19.5 fb

-1SUS-13-008 3-lep (3l+b) 19.5 fb

[GeV]0

2χ∼

= m±1

χ∼m100 200 300 400 500 600 700 800

[G

eV]

0 1χ∼m

100

200

300

400

500

600

700

800

900Observed limits)ν∼/Ll

~, (via ±

1χ∼ 0

2χ∼ → pp

)ν∼/Ll~

, (via -

1χ∼ +

1χ∼ → pp

)Rl~

, (via ±1

χ∼ 0

2χ∼ → pp

)Rτ∼, (via ±1

χ∼ 0

2χ∼ → pp

)0

1χ∼)(W

0

1χ∼ (Z → ±

1χ∼ 0

2χ∼ → pp

)0

1χ∼)(W

0

1χ∼ (H → ±

1χ∼ 0

2χ∼ → pp

-1 = 19.5 fbint

= 8 TeV, LsCMS Preliminary

0

1χ∼

+ 0.5m±

1χ∼

= 0.5ml~

m

01χ∼

= m±

1χ∼mZ

+ m0

1χ∼ = m

±1χ∼m H

+ m0

1χ∼ = m

±1χ∼m

SUS-13-006

SUS-13-017

Page 31: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Extra Dimension

EXTRA DIMENSION(S)

Page 32: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Extra Dimension

Warped Extra Dimensions (WED, RS)

SM in background 5D warped AdS space [Randall, Sundrum 99]

ds2 = e−2k|y|(ηµνdxµdxν) + dy 2

Z2 orbifold fixed points:

Planck (UV) Brane

TeV (IR) Brane

R : radius of Ex. Dim.

k : AdS curvature scale (k . Mpl )

πR0

y

y=0

y=πR

UV

IR

Hierarchy prob soln:

IR localized Higgs : MEW ∼ ke−kπR : Choose kπR ∼ 34

Gauge Theory Dual may be a composite Higgs model

Page 33: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Extra Dimension

Equivalent 4D theory

5D (compact) field ↔“Infinite” tower of 4D fields

Look for this tower at the LHC

SM

1st KK

2nd KK

Example:b

q′

q

t

ℓ+

W+(1) b

W+ν

Page 34: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Extra Dimension

Warped Ex-Dim at LHC

Look for heavy Kaluza-Klein (KK) states : KK Gluon, Graviton, W, ZLEP precision electroweak constraints ⇒ V ′ & 2TeV

Example: W ′ → XX pp →W ′ → tb →Wbb → `νbb

0.0001

0.001

0.01

0.1

1

1 1.5 2 2.5 3 3.5 4 4.5 5MW ′ [TeV]

BR(W ′L+ → X X)

tL b-

W+ hTL b

-

χL t-L Z W+

u d-

νe e+

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Diff

. cro

ss s

ectio

n [p

b/G

eV]

MTtb

pp → t b− : MT

2 TeV3 TeV4 TeV

SM

[Agashe, SG, Han, Huang, Soni, 2008]

Page 35: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

q* (qg), dijetq* (qW)q* (qZ)

q* , dijet pairq* , boosted Z

e*, Λ = 2 TeVμ*, Λ = 2 TeV

0 1 2 3 4 5 6Z’SSM (ee, µµ)

Z’SSM (ττ)Z’ (tt hadronic) width=1.2%

Z’ (dijet)Z’ (tt lep+jet) width=1.2%

Z’SSM (ll) fbb=0.2G (dijet)

G (ttbar hadronic)G (jet+MET) k/M = 0.2

G (γγ) k/M = 0.1G (Z(ll)Z(qq)) k/M = 0.1

W’ (lν)W’ (dijet)

W’ (td)W’→ WZ(leptonic)

WR’ (tb)WR, MNR=MWR/2

WKK μ = 10 TeVρTC, πTC > 700 GeV

String Resonances (qg)s8 Resonance (gg)

E6 diquarks (qq)Axigluon/Coloron (qqbar)

gluino, 3jet, RPV0 1 2 3 4 5 6

gluino, Stopped Gluinostop, HSCP

stop, Stopped Gluinostau, HSCP, GMSB

hyper-K, hyper-ρ=1.2 TeVneutralino, cτ<50cm

0 1 2 3 4 5 6

Ms, γγ, HLZ, nED = 3Ms, γγ, HLZ, nED = 6Ms, ll, HLZ, nED = 3Ms, ll, HLZ, nED = 6

MD, monojet, nED = 3MD, monojet, nED = 6MD, mono-γ, nED = 3MD, mono-γ, nED = 6

MBH, rotating, MD=3TeV, nED = 2MBH, non-rot, MD=3TeV, nED = 2

MBH, boil. remn., MD=3TeV, nED = 2MBH, stable remn., MD=3TeV, nED = 2

MBH, Quantum BH, MD=3TeV, nED = 20 1 2 3 4 5 6Sh. Rahatlou 1

LQ1, β=0.5LQ1, β=1.0LQ2, β=0.5LQ2, β=1.0

LQ3 (bν), Q=±1/3, β=0.0LQ3 (bτ), Q=±2/3 or ±4/3, β=1.0

stop (bτ)0 1 2 3 4 5 6

b’ → tW, (3l, 2l) + b-jetq’, b’/t’ degenerate, Vtb=1

b’ → tW, l+jetsB’ → bZ (100%)T’ → tZ (100%)

t’ → bW (100%), l+jetst’ → bW (100%), l+l

0 1 2 3 4 5 6C.I. Λ , Χ analysis, Λ+ LL/RRC.I. Λ , Χ analysis, Λ- LL/RR

C.I., µµ, destructve LLIMC.I., µµ, constructive LLIM

C.I., single e (HnCM)C.I., single µ (HnCM)

C.I., incl. jet, destructiveC.I., incl. jet, constructive

0 5 10 15

HeavyResonances

4thGeneration

Compositeness

LongLived

LeptoQuarks

Extra Dimensions & Black Holes

Contact Interactions

95% CL EXCLUSION LIMITS (TEV)CMS EXOTICA

Page 36: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Extra Dimension

ATLAS Extra Dimensions Limits (Moriond 2013)

Page 37: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

New Fermions?

Fourth (Chiral) Generation

SM has 3 generations. Why not a fourth generation?LHC strongly disfavors 4th Generation!

Reason: In a Chiral theory Mf and f f h both given by λf

gg → h→ γγ altered too much due to heavy Q4 with large λQ4

σ(gg → h)

λf

f

Γ(h→ γγ)

λf

f W

W

Page 38: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

New Fermions?

Vectorlike Fermions

Vector Like (VL) fermions: ψL , ψR : conjugate reps ofSU(3)c ⊗ SU(2)L ⊗ U(1)Y

Can write L ⊃ −MVLψψ consistent with SM Gauge Symmetryso don’t need large λ for large Mf

Vectorlike fermions Chiral (4-gen) fermions

M ok with Gauge Symmetry M only after EWSB i.e. 〈H〉

can be arbitrarily heavy Landau pole in Yukawa coupling

CC + NC tree-level decays only CC tree-level decays

loops decoupling some loops nondecoupling

Page 39: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

New Fermions?

Vectorlike fermion Probes

How do we look for ψVL directly @ LHC?

t′, b′, χ Signatures [SG, Mandal, Mitra, Moreau, Tibrewala, 2011, ’13]

How do the ψVL modify 1-loop Higgs production and decay @ LHC?[S.Ellis, Godbole, SG, Wells, Ongoing]

How do the ψVL modify precision EW observables (LEP)?[S.Ellis, Godbole, SG, Wells, Ongoing]

Page 40: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

New Fermions?

b′ Single Production - II

[SG, T.Mandal, S.Mitra, R.Tibrewala, arXiv:1107.4306]

Single Production : bg → b′Z → bZZ → bjj``

æ

æ

ææ

æ æ

400 600 800 1000 1200 1400 1600

0.0

0.2

0.4

0.6

0.8

1.0

Mb2HGeVL

Κb2bZ

Σ = 0.1 fb

1

10

100

1000

æ

æ

ææ

æ

500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

Mb2HGeVL

Κb2bZ

L = 3000 fb-1

100

10

1

Cuts:

Rapidity: −2.5 < yb,j,Z < 2.5,Transverse momentum: pT b,j,Z > 0.1Mb2

,

Invariant mass cuts:MZ − 10 GeV < Mjj < MZ + 10 GeV,0.95Mb2

< M(bZ) OR (bjj) < 1.05Mb2.

Page 41: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Dark Matter

Dark Matter Candidates from BSM

Page 42: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Dark Matter

Observations tell us

Flat on large scales

Expansion is Accelerating

95% is unknown dark matter + dark energy

What is it?? The DARK SIDE rules!

Page 43: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Dark Matter

Observations tell us

Flat on large scales

Expansion is Accelerating

95% is unknown dark matter + dark energy

What is it??

The DARK SIDE rules!

Page 44: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Dark Matter

Observations tell us

Flat on large scales

Expansion is Accelerating

95% is unknown dark matter + dark energy

What is it?? The DARK SIDE rules!

Page 45: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Dark Matter

What is the dark sector?

Dark Matter

Astrophysical objects? (Disfavoured)

MAssive Compact Halo Objects (MACHO) or Black Holes or . . .

Particle dark matter? More on this...

Hot or Warm or Cold Dark Matter (CDM)

Dark energy

Page 46: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Dark Matter

What is the dark sector?

Dark Matter

Astrophysical objects? (Disfavoured)

MAssive Compact Halo Objects (MACHO) or Black Holes or . . .

Particle dark matter? More on this...

Hot or Warm or Cold Dark Matter (CDM)

Dark energy

Page 47: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Particle DM Candidates

Particle DM Possibilities

LSP - Lightest Supersymmetric Particle

SuperWIMP - Gravitino (SUSY partner of graviton)

E-WIMP - Right-handed sneutrino (partner of neutrino)

WIMPzilla - Extremely massive particle

LKP - Lightest Kaluza-Klein Particle - Extra space dimensions

LTP - Lightest T-odd Particle - Little-higgs theory with Z2

Hidden sector DM

Your candidate here

Page 48: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Particle DM Candidates

Particle DM Possibilities

LSP - Lightest Supersymmetric Particle

SuperWIMP - Gravitino (SUSY partner of graviton)

E-WIMP - Right-handed sneutrino (partner of neutrino)

WIMPzilla - Extremely massive particle

LKP - Lightest Kaluza-Klein Particle - Extra space dimensions

LTP - Lightest T-odd Particle - Little-higgs theory with Z2

Hidden sector DM

Your candidate here

Page 49: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Particle DM Candidates

Particle Dark Matter (DM)

Self-Annihilation cross-section gives present DM Relic density

SM

ψ

ψ

Ω0h2 = 10−29xf

(eV−2

〈σv〉

)

Doesn’t apply to Non-thermal DM [Rt Sneutrino DM & LHC Signatures: de Gouvea, SG, Porod, 06]

Page 50: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Particle DM Candidates

Particle Dark Matter (DM)

Self-Annihilation cross-section gives present DM Relic density

SM

ψ

ψ

Ω0h2 = 10−29xf

(eV−2

〈σv〉

)Doesn’t apply to Non-thermal DM [Rt Sneutrino DM & LHC Signatures: de Gouvea, SG, Porod, 06]

Page 51: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

DM Detection

Dark Matter Detection

Direct Detection

DM directly intereacts with a detector

Indirect Detection

Look for products of DM-DM annihilation

Collider Detection

DM carries away invisible momentum

Page 52: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

DM Detection

Direct Detection

ψ

φSM

φH

ψ

NN

WIMP Mass [GeV/c2]

Cro

ss−

sect

ion [

cm2]

(norm

alis

ed t

o n

ucl

eon)

131206083800

http://dmtools.brown.edu/ Gaitskell,Mandic,Filippini

101

102

103

10−50

10−48

10−46

10−44

10−42

10−40

10−38

Xenon10T, G3 expected sensitivity (2013)

LUX (2014/15) 300d projection (SI, 90% CL median expected)

LUX (2013) 85d 118kg (SI, 95% CL)

XENON100, 2012, 225 live days (7650 kg−days), SI

CRESST II commissioning run (2009) extended to low masses

CDMSII−Si (Silicon), c58 95% CL , SI (2013)

DAMA, 2000, NaI−0 to 4 combined, 58,000kg−days, 3sigma, SI

CoGeNT, 2013, WIMP region of interest, SI

DATA listed top to bottom on plot

Page 53: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

DM Detection

Direct Detection

ψ

φSM

φH

ψ

NN

WIMP Mass [GeV/c2]

Cro

ss−

sect

ion [

cm2]

(norm

alis

ed t

o n

ucl

eon)

131206083800

http://dmtools.brown.edu/ Gaitskell,Mandic,Filippini

101

102

103

10−50

10−48

10−46

10−44

10−42

10−40

10−38

Xenon10T, G3 expected sensitivity (2013)

LUX (2014/15) 300d projection (SI, 90% CL median expected)

LUX (2013) 85d 118kg (SI, 95% CL)

XENON100, 2012, 225 live days (7650 kg−days), SI

CRESST II commissioning run (2009) extended to low masses

CDMSII−Si (Silicon), c58 95% CL , SI (2013)

DAMA, 2000, NaI−0 to 4 combined, 58,000kg−days, 3sigma, SI

CoGeNT, 2013, WIMP region of interest, SI

DATA listed top to bottom on plot

Page 54: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

DM Detection

Hidden Sector Dark Matter at LHC

[SG, Lee, Wells:2009]

100 200 300 400 500 600 700

0.5

1.0

1.5

2.0

2.5

3.0

MΨ HGeVL

Κ 11

WDM =0.3

0.2

0.1

100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

mh HGeVL

BR

WW

bb

ΨΨ

ZZ

tt

Look for LHC signal in pp → jj + /ET

Page 55: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

DM Detection

Neutrino Mass Generation

Page 56: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

DM Detection

Neutrino Mass Generation

Questions

What is the scale of mν

Is the ν a DIRAC or MAJORANA particle? (Is L# good?)

Which mass spectrum?

m

m m

m

m

m

m

1

1

2

32

3

1,2,3

NORMAL INVERTED DEGENERATE

Is there CP violation in the lepton sector?

Possible Answers

Dirac ν : Add νR with TINY (10−12) Yukawa coupling

Type I seesaw: Add νR and a BIG (1011 GeV) mass

Type II seesaw: Add SU(2) triplet scalar ξ with TINY (0.1 eV) VEV

Type III seesaw: Add SU(2) triplet fermion Ξ

Extra dimensions: Add BULK νR with BRANE coupling to νL

Page 57: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

DM Detection

Neutrino Mass Generation

Questions

What is the scale of mν

Is the ν a DIRAC or MAJORANA particle? (Is L# good?)

Which mass spectrum?

m

m m

m

m

m

m

1

1

2

32

3

1,2,3

NORMAL INVERTED DEGENERATE

Is there CP violation in the lepton sector?

Possible Answers

Dirac ν : Add νR with TINY (10−12) Yukawa coupling

Type I seesaw: Add νR and a BIG (1011 GeV) mass

Type II seesaw: Add SU(2) triplet scalar ξ with TINY (0.1 eV) VEV

Type III seesaw: Add SU(2) triplet fermion Ξ

Extra dimensions: Add BULK νR with BRANE coupling to νL

Page 58: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

HEP Pheno The Standard Model Beyond the SM

Conclusions

Conclusions

Standard Model has shortcomings

Observational: DM, BAU, ν massTheoretical: Gauge (& flavor) hierarchy problem

Beyond the Standard Model physics to resolve these

Supersymmetry, Extra dimension(s), Strong dynamics, Little Higgs, ...

Which (if any) of these realized in Nature?

Desperately seeking experimental guidanceExperiments poised for discovery?

LHC7,8 constraints already nontrivial.LHC14 high luminosity run crucialDM Direct, Indirect, Collider detectionFlavor and precision probes (Belle)

Page 59: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

BACKUP SLIDES

BACKUP SLIDES

Page 60: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

MSSM fields

To every SM particle, add a superpartner (spin differs by 1/2)

Matter fields (Chiral Superfields)

(SU(3), SU(2))U(1) Components

Q (3, 2)1/6 (qL, qL, FQ ) ; qL =

(uLdL

); qL =

(uLdL

)Uc (3, 1)−2/3 (u∗R , u

cR , FU )

Dc (3, 1)1/3 (d∗R , dcR , FD )

L (1, 2)−1/2 ( ˜L, `L, FL) ; ˜

L =

(νLeL

); `L =

(νLeL

)Ec (1, 1)1 (e∗R , e

cR , FE )

(Nc ) (1, 1)0 (ν∗R , νcR , FN )

Gauge fields(Vector Superfields)

Components

SU(3) (gµ, g,D3)

SU(2) (Wµ, W ,D2)

U(1) (Bµ, B,D1)

Higgs fields (Chiral Superfields)

(SU(3), SU(2))U(1) Components

Hu (1, 2)1/2 (hu , hu , FHu ) ; hu =

(h+uh0u

); hu =

(h+uh0u

)Hd (1, 2)−1/2 (hd , hd , FHd

) ; hd =

(h0d

h−d

); hd =

(h0d

h−d

)

Page 61: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

AdS/CFT Correspondence

AdS/CFT Correspondence [Maldacena, 1997]

A classical supergravity theory in AdS5 × S5 at weak coupling is dual to a4D large-N CFT at strong coupling

The CFT is at the boundary of AdS [Witten 1998; Gubser, Klebanov, Polyakov 1998]

ZCFT [φ0] = e−ΓAdS [φ0]

S ⊃∫

d4x OCFT (x)φ0(x)

Eg: 〈O(x1)O(x2)〉 = δ2ZCFT [φ0]δφ0(x1)δ(x2)

with ZCFT given by the RHS

ΓAdS [φ] supergravity eff. action

φ(y , x) is a solution of the EOM (δΓ = 0)

for given bndry value φ0(x) = φ(y = y0, x)

Page 62: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

4D Duals of Warped Models

[Arkani-Hamed, Porrati, Randall, 2000; Rattazzi, Zaffaroni, 2001]

Dual of Randall-Sundrum model RS1 (SM on IR Brane)

Planck brane =⇒ UV Cutoff; Dynamical gravity in the 4D CFTTeV (IR) brane =⇒ IR Cutoff; Conformal invariance broken below a TeV

All SM fields are composites of the CFT

Dual of Warped Models with Bulk SM

UV localized fields are elementaryIR localized fields (Higgs) are composite

4D dual is Composite Higgs model [Georgi, Kaplan 1984]Shares many features with Walking Extended Technicolor

Partial Compositeness

AdS dual is weakly coupled and hence calculable!

KK states are dual to composite resonances

Page 63: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

U(1)X Hidden sector

Coupled to SM (us) via the Higgs [SG, Jung, Lee, Wells:2008, 2009]

Accidental Z2 symmetry : ψ → −ψ , SM → SM

So ψ cosmologically stable =⇒ Dark Matter

Bµ Xµ

φSM φH

ψSM

Direct Detection? Hidden sector signature at the LHC?

Page 64: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

Particle Physics and the Universe

Page 65: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

Evidence for Dark Matter (DM)

No Big Bang

1 2 0 1 2 3

expands forever

-1

0

1

2

3

2

3

closed

recollapses eventually

Supernovae

CMB

Clusters

open

flat

Knop et al. (2003)Spergel et al. (2003)Allen et al. (2002)

Supernova Cosmology Project

Ω

ΩΛ

M

Bullet Cluster [Hubble+Chandra, NASA, ESA, CXC, M. Bradac (UCSB), and S. Allen (Stanford)]

Ω0 = 0.222± 0.02 [PDG ’08]

Page 66: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

DM at Colliders II

Example: Supersymmetry

tR , bR , g

(Yt)

`+

bL

(YN)

Hu

tR

NR

(Yb)

`+

tL

NR

Hd

(YN)

X

Hu

bR

LSP leads to “missing momentum”

Page 67: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

Explaining SM (gauge & mass) hierarchies (WED)

Bulk Fermions explain SM mass hierarchy [Gherghetta, Pomarol 00][Grossman, Neubert 00]

S(5) ⊃∫d4x dy

cψ k Ψ(x, y) Ψ(x, y)

Fermion bulk mass (cψ parameter) controls f ψ(y) localization

h

q

χ Rt

3

f

f

0

1

RS-GIM keeps FCNC under control

For details, see our review: [Davoudiasl, SG, Ponton, Santiago, New

J.Phys.12:075011,2010. arXiv:0908.1968 [hep-ph]]

Page 68: Research in High Energy Physics - Phenomenologyshri/mytalks/IMSc-GradOrient-Feb2014.pdf · HEP Pheno The Standard Model Beyond the SM Research in High Energy Physics - Phenomenology

CMS Resonances Limits (Moriond 2013)