research article synthesis, characterization, and...

11
Hindawi Publishing Corporation Organic Chemistry International Volume 2013, Article ID 582079, 10 pages http://dx.doi.org/10.1155/2013/582079 Research Article Synthesis, Characterization, and Biological Activity of 4-(2-Hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols Derivatives Chandrashekhar P. Pandhurnekar, 1 Ekta M. Meshram, 2 Himani N. Chopde, 3 and Rameshkumar J. Batra 1 1 Department of Applied Chemistry, Shri Ramdeobaba College of Engineering and Management, Nagpur, Maharashtra 440 013, India 2 Department of Applied Chemistry, Guru Nanak Institute of Engineering and Technology, Kalmeshwar, Nagpur, Maharashtra 440 001, India 3 Department of Applied Chemistry, G. H. Raisoni Academy of Engineering and Technology, Nagpur, Maharashtra 440 016, India Correspondence should be addressed to Chandrashekhar P. Pandhurnekar; [email protected] Received 15 April 2013; Accepted 17 June 2013 Academic Editor: William Setzer Copyright © 2013 Chandrashekhar P. Pandhurnekar et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. With the aim of synthesizing new heterocyclic compounds and exploring biological potency, new series of chalcones, that is, 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one and their pyrimidine derivatives, that is, 4-(2-hydroxy-5-(aryl- diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols were synthesized using different aromatic amines and salicylaldehyde as starting moieties. e structures of newly synthesized compounds were confirmed using different spectroscopic techniques such as IR, 1 H-NMR, 13 C-NMR, and mass spectral analysis, and elemental analysis. e newly synthesized pyrimidines derivatives were screened for their in vitro antibacterial and antifungal activities. It was observed that some of the newly synthesized compounds had shown promising activity against several bacterial and fungal stains. Anti-bacterial activity and anti-fungal activity studies revealed that pyrimidine derivatives consisting of nitro group in their molecular structure possess better activity than their corresponding chalcones. 1. Introduction Chalcones (1,3-diaryl-2-propen-1-ones), one of the major classes of natural products belonging to the flavonoid family, have been recently the subjects of great interest for their interesting pharmacological activities [1, 2]. In fact, the pharmacological properties of chalcones are due to the presence of both ,-unsaturation and an aromatic ring [3]. Many biological activities have been attributed to this group, such as cytotoxic [4, 5], antimalarial [6, 7], antileishmanial [8, 9], anti-inflammatory [10, 11], anti-HIV [12], antifungal [13], antioxidant [14], and as tyrosine kinase inhibitors [15]. Due to their abundance in plants and ease of synthesis, this class of compounds has generated great interest for possible therapeutic uses [16, 17]. Of the many methods available for the synthesis of chalcones, the most widely used method is the base catalyzed Claisen-Schmidt reaction [18] in which the condensation of a ketone with an aldehyde is carried out in the presence of aqueous NaOH [19], Ba(OH) 2 [20], KOH, and so forth. e acid catalyzed methodologies include the use of silica sulfuric acid [21], AlCl 3 , dry HCl, and so forth [22]. Chalcone derivatives are very versatile as physiologically active compounds and substrates for the evaluation of various organic syntheses. Chalcones are valuable intermediates in the synthesis of many active pharmaceutical drugs like biosynthesis of flavonoids and Auwers synthesis of flavones [23]. Pyrimidine and its derivatives are most important nitro- gen based heterocycles which play a vital role in many life processes [24]. e ring system is present in nucleic acids and

Upload: others

Post on 12-Nov-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Synthesis, Characterization, and ...downloads.hindawi.com/journals/oci/2013/582079.pdfand p-acetophenone or p-nitroacetophenone (.moL) were added to ethanol (mL) and

Hindawi Publishing CorporationOrganic Chemistry InternationalVolume 2013 Article ID 582079 10 pageshttpdxdoiorg1011552013582079

Research ArticleSynthesis Characterization and Biological Activity of4-(2-Hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-olsDerivatives

Chandrashekhar P Pandhurnekar1 Ekta M Meshram2

Himani N Chopde3 and Rameshkumar J Batra1

1 Department of Applied Chemistry Shri Ramdeobaba College of Engineering and Management Nagpur Maharashtra 440 013 India2Department of Applied Chemistry Guru Nanak Institute of Engineering and Technology Kalmeshwar NagpurMaharashtra 440 001 India

3 Department of Applied Chemistry G H Raisoni Academy of Engineering and Technology Nagpur Maharashtra 440 016 India

Correspondence should be addressed to Chandrashekhar P Pandhurnekar chand2783gmailcom

Received 15 April 2013 Accepted 17 June 2013

Academic Editor William Setzer

Copyright copy 2013 Chandrashekhar P Pandhurnekar et al This is an open access article distributed under the Creative CommonsAttribution License which permits unrestricted use distribution and reproduction in any medium provided the original work isproperly cited

With the aim of synthesizing new heterocyclic compounds and exploring biological potency new series of chalcones that is3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one and their pyrimidine derivatives that is 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols were synthesized using different aromatic amines and salicylaldehyde as startingmoieties The structures of newly synthesized compounds were confirmed using different spectroscopic techniques such as IR1H-NMR 13C-NMR and mass spectral analysis and elemental analysis The newly synthesized pyrimidines derivatives werescreened for their in vitro antibacterial and antifungal activities It was observed that some of the newly synthesized compounds hadshown promising activity against several bacterial and fungal stains Anti-bacterial activity and anti-fungal activity studies revealedthat pyrimidine derivatives consisting of nitro group in their molecular structure possess better activity than their correspondingchalcones

1 Introduction

Chalcones (13-diaryl-2-propen-1-ones) one of the majorclasses of natural products belonging to the flavonoid familyhave been recently the subjects of great interest for theirinteresting pharmacological activities [1 2] In fact thepharmacological properties of chalcones are due to thepresence of both 120572120573-unsaturation and an aromatic ring [3]Many biological activities have been attributed to this groupsuch as cytotoxic [4 5] antimalarial [6 7] antileishmanial[8 9] anti-inflammatory [10 11] anti-HIV [12] antifungal[13] antioxidant [14] and as tyrosine kinase inhibitors [15]Due to their abundance in plants and ease of synthesis thisclass of compounds has generated great interest for possibletherapeutic uses [16 17] Of the many methods available for

the synthesis of chalcones the most widely used method isthe base catalyzed Claisen-Schmidt reaction [18] in which thecondensation of a ketone with an aldehyde is carried out inthe presence of aqueous NaOH [19] Ba(OH)

2[20] KOH

and so forth The acid catalyzed methodologies include theuse of silica sulfuric acid [21] AlCl

3 dry HCl and so forth

[22] Chalcone derivatives are very versatile as physiologicallyactive compounds and substrates for the evaluation of variousorganic syntheses Chalcones are valuable intermediates inthe synthesis of many active pharmaceutical drugs likebiosynthesis of flavonoids and Auwers synthesis of flavones[23]

Pyrimidine and its derivatives are most important nitro-gen based heterocycles which play a vital role in many lifeprocesses [24]The ring system is present in nucleic acids and

2 Organic Chemistry International

their derivatives (willardiine tingitanine) [25] such as severalvitamins (vitaminB1) antibiotics (bacimethrin sparsomycinbleomycin) [26] alkaloids (heteromines crambescins man-zacidins variolins meridianins psammopemmins) [27 28]toxins [29] coenzymes uric acid and purines Pyrimidineand its derivatives represents one of the important classes ofheterocyclic system which is associated with the wide rangeof biological and pharmacological activities such as anticon-vulsant [30] antimicrobial [31] anti-inflammatory [32] anti-HIV [33] antitubercular [34] antitumor [35] antineoplastic[36] antimalarial [37] diuretic [38] and cardiovascularagents Pyrimidine compounds are also used as hypnoticdrugs for the nervous system [39] calcium-sensing receptorantagonists [40] and also for antagonists of the human A

2Aadenosine receptor [41]

In view of the variety of pharmacological propertiesexhibited by chalcones and pyrimidines we plannedto synthesize new series of chalcones and pyrimidinederivatives In the present communication we thusreport here the synthesis of series of chalcones that is3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one following Claisen-Schmidt condensation reactionpathway and their pyrimidine derivatives that is 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols(Scheme 1) Different aromatic aldehydes were synthesizedas depicted earlier [42] The structures of newly synthesizedchalcones and pyrimidines compounds were confirmedusing spectroscopic techniques such as 1H-NMR 13C-NMR IR and Mass spectroscopy and elemental analysisThe results of anti-bacterial and antifungal activities havealso been reported here The current investigations revealthat pyrimidine analogs exhibit better antibacterial andantifungal activities than the parent chalcone analogues

2 Experimental

The chemicals and solvents were of AR grade and were usedwithout further purification Melting points were taken inopen capillaries on TOSHNIWAL melting point apparatusand are uncorrected IR spectra were recorded on ShimadzuDr-8031 instrument in KBr pallets Elemental analyses werecarried out using a Perkin-Elmer CHN elemental analyzermodel 2400 1H-NMR and 13C-NMR spectra of the syn-thesized compounds were recorded on a Bruker-Avance(300MHz) and Varian-Gemini (200MHz) spectrophotome-ter using CDCl

3solvent and TMS as an internal standard

EI-MS spectra were determined on a LCQ ion trap massspectrometer (Thermo Fisher San Jose C A USA) equippedwith an EI source

21 General Procedure for the synthesis of 2-Hydroxy-5-((aryl)diazenyl)benzaldehyde (1andash1e) Aromatic amines(001moL) was added in conc HCl (5mL) and boiled for 10minutes The resulting solution was then cooled to 0ndash5∘Cin ice bath Aqueous sodium nitrite (NaNO

2) (001moL

10mL) solution in the cold condition was added in dropwisemanner to this solution The reaction mixture was thenvigorously stirred The temperature of the reaction mixture

was maintained within 0ndash5∘C for at least 1 hour to obtaindiazonium chloride solution

The resulting diazonium solution was then poured slowlyto alkaline suspension of salicylaldehyde in water (10mL001moL) with continuous stirring keeping temperaturewithin 0ndash5∘CThepHof the reactionmixturewasmaintainedwithin 8 to 10 by simultaneous addition of 10 aqueoussodium hydroxide solution The resulting reaction mixturewas kept unstirred for overnight The obtained solid precipi-tate was filtered using Whatman filter paper number 40 andrecrystallized using ethanol

211 Characterization Data of 2-Hydroxy-5-(p-tolyldiazen-yl)benzaldehyde (1a) Brownish Powder Yield 8716 mp115∘C IR (KBr) cmminus1 1480 (N=N) 1730 (aldehydic C=O)2850 (aldehydic HndashC=) 2890 (Ar-CH

3) 3450 (Ar-OH) 1H-

NMR (CDCl3) 120575 235 (s 3H Ar-CH

3) 510 (s 1H Ar-OH)

710 (s 1H Ar-CH) 730 (m 2H Ar-CH) 790 (d 2H Ar-CH) 810 (d 1H Ar-CH) 830 (s 1H Ar-CH) 1030 (s 1HAr-CHO) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1946

1640 1497 1458 1406 1302 1294 1293 1240 1229 12281185 1167 (13 aromatic carbon) 213 (CH

3) Anal Calcd for

C14H12N2O2() C 6999 H 503 N 1166 Found () C

6960 H 490 N 1140 MS 119898119911 24029 (100 M+) 12110(50) 11900 (40) 9300 (30) 9110 (30) 2900 (10)2800 (20)

212 Characterization Data of 2-Hydroxy-5-((2-nitroph-enyl)diazenyl)benzaldehyde (1b) Brownish Powder Yield7871 mp 124∘C IR (KBr) cmminus1 1340 (Ar-NO

2) 1430

(N=N) 1720 (aldehydic C=O) 2840 (aldehydic HndashC=) 3030(Ar-OH) 1H-NMR (CDCl

3) 120575 520 (s 1H Ar-OH) 730 (s

1H Ar-CH) 770ndash820 (m 6H Ar-CH) 1020 (s 1H Ar-CHO) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1946 1640

1476 1458 1439 1351 1318 1302 1242 1240 1239 11851167 (13 aromatic carbon) Anal Calcd for C

13H9N3O4()

C 5757 H 334 N 1549 Found () C 5740 H 310 N 1520MS119898119911 27118 (100M+) 15010 (40) 12200 (50) 12120(30) 9310 (20) 7710 (30) 4500 (10) 2920 (20)2810 (10)

213 Characterization Data of 2-Hydroxy-5-((3-nitroph-enyl)diazenyl)benzaldehyde (1c) Brownish Powder Yield8959 mp 120∘C IR (KBr) cmminus1 1320 (Ar-NO

2) 1420

(N=N) 1710 (aldehydic C=O) 2830 (aldehydic HndashC=) 3040(Ar-OH) 1H-NMR (CDCl

3) 120575 540 (s 1H Ar-OH) 750 (s

1H Ar-CH) 790ndash830 (m 6H Ar-CH) 1040 (s 1H Ar-CHO) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1946 1640

1526 1482 1458 1318 1302 1292 1267 1240 1185 11731165 (13 aromatic carbon) Anal Calcd for C

13H9N3O4()

C 5757 H 334 N 1549 Found () C 5730 H 320 N 1510MS119898119911 27120 (100M+) 15110 (60) 12210 (50) 12100(40) 9300 (10) 7720 (20) 4510 (10) 2910 (10)2800 (10)

214 Characterization Data of 2-Hydroxy-5-((4-nitroph-enyl)diazenyl)benzaldehyde (1d) Greenish Powder Yield

Organic Chemistry International 3

NN

C

O

CO

HC

NN

C

O

C NN

N N

C CHO

HC

NN

C NN

N N

C

O

Ar-NH2 +

CHO

CHO

OH OH

OH

OH

NaNO2

HCl 0ndash5∘C Ar

H3C

EtOH NaOHStirring 12 hrs

OH

HC

HOAr

Ar

Ar Ar

H2N NH2EtOH NaOHReflux 16 hrs

OH OH

HOHO HO O2N

EtOH NaOH

Reflux 16 hrs NH2H2N

COCH3

EtOH NaOHStirring 12 hrs

O2N

O2N

(1andash1e)

(2andash2e) (3andash3e)

(4andash4e) (5andash5e)

Where Ar- for compounds (a) -C6H4-CH3 (b) 2-NO2-C6H4- (c) 3-NO2-C6H4- (d) 4-NO2-C6H4- (e) -C6H5

Scheme 1

9032 mp 146∘C IR (KBr) cmminus1 1340 (Ar-NO2) 1400

(N=N) 1700 (aldehydic C=O) 2345 (aldehydic HndashC=) 2920(Ar-OH) 1H-NMR (CDCl

3) 120575 530 (s 1H Ar-OH) 760 (s

1H Ar-CH) 790ndash820 (m 6H Ar-CH) 1010 (s 1H Ar-CHO) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1945 1642

1558 1506 1452 1304 1243 1242 1241 1208 1207 11831165 (13 aromatic carbon) Anal Calcd for C

13H9N3O4()

C 5757 H 334 N 1549 Found () C 5740 H 320 N 1530MS119898119911 27130 (100M+) 15090 (70) 12180 (40) 12110(60) 9310 (30) 7710 (30) 4500 (20) 2920 (10)2810 (20)

215 Characterization Data of 2-Hydroxy-5-(ph-enyldiazenyl)benzaldehyde (1e) Yellowish Powder Yield

4 Organic Chemistry International

7305 mp 110∘C IR (KBr) cmminus1 1440 (N=N) 1740(aldehydic C=O) 2820 (aldehydic HndashC=) 3010 (Ar-OH)1H-NMR (CDCl

3) 120575 520 (s 1H Ar-OH) 710 (d 1H

Ar-CH) 750 (t 3H Ar-CH) 790ndash810 (m 3H Ar-CH)840 (s 1H Ar-CH) 1030 (s 1H Ar-CHO) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1947 1643 1526 1456 1308

1305 1296 1295 1241 1232 1231 1187 1165 (13 aromaticcarbon) Anal Calcd for C

13H10N2O2() C 6902 H 446

N 1238 Found () C 6900 H 430 N 1210 MS119898119911 22620(100 M+) 12130 (60) 10510 (50) 9320 (40) 7720(30) 2910 (20) 2820 (10)

22 General Procedure for the Synthesis of Chalcones (2andash2e3andash3e) To synthesize the chalcone derivatives in the firststep 2-hydroxy-5-((aryl)diazenyl)benzaldehyde (001moL)and p-acetophenone or p-nitroacetophenone (001moL)were added to ethanol (30mL) and then mixed thoroughlyat the room temperature In this mixture 10mL of 20aqueous NaOH solution was added slowly The reactionmixture was stirred over the magnetic stirrer for at least 12hours The reaction mixture was then kept for overnight Itwas then poured into beaker containing crushed ice Theexcess of alkali in the reaction mixture was neutralized andthe reaction mixture was then slightly acidified by dropwiseaddition of dilute hydrochloric acid solution The chalconederivative that is 3-(2-hydroxy-5-((aryl)diazenyl)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2andash2e) and 3-(2-hydroxy-5-((aryl) diazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3andash3e) gets precipitated out and wasfiltered using Whatman filter paper number 40 The crudechalcone product was recrystallized using ethanol

221 Characterization Data of 3-(2-Hydroxy-5-(p-tolyldi-azenyl)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2a)Yellowish Powder Yield 7785 mp 130∘C IR (KBr) cmminus11490 (N=N) 1590 (C=C) 1680 (C=O) 2850 (Ar-CH

3) 3410

(Ar-OH) 1H-NMR (CDCl3) 120575 230 (s 3H Ar-CH

3) 490

(s 2H 2Ar-OH) 680ndash690 (m 3H Ar-CH) 720ndash730 (t3H Ar-CH) 740 (d 2H Ar-CH) 760ndash780 (m 6H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895 1640 1592

1497 1453 1416 1405 1313 1312 1304 1293 1292 12391226 1229 1212 1204 1163 1161 1167 1165 1164 (22aromatic carbon) 215 (CH

3) Anal Calcd for C

22H18N2O3

() C 7373 H 506 N 782 Found () C 7320 H 490 N770 MS119898119911 35830 (100 M+) 21108 (54) 14705 (46)12106 (15) 9110 (12) 93 (33) 2806 (21) 2610 (10)

222 Characterization Data of 3-(2-Hydroxy-5-((2-ni-trophenyl)diazenyl)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2b) Brownish Powder Yield 6705 mp 142∘C IR(KBr) cmminus1 1320 (Ar-NO

2) 1440 (N=N) 1580 (C=C) 1680

(C=O) 3030 (Ar-OH) 1H-NMR (CDCl3) 120575 510 (s 2H

2Ar-OH) 680 (t 3H Ar-CH) 740 (d 1H C=CH) 760ndash770(m 7H Ar-CH) 820 (d 1H C=CH) 13C-NMR (100MHzCDCl

3-d6 120575 ppm) 1896 1642 1594 1475 1451 1439 1412

1352 1316 1312 1311 1304 1244 1238 1212 1235 12041166 1163 1161 1162 (21 aromatic carbon) Anal Calcd forC21H15N3O5() C 6473 H 388 N 1079 Found () C

6470 H 370 N 1060 MS 119898119911 38938 (100 M+) 24210(65) 14708 (40) 12105 (13) 12210 (40) 9310 (14)2808 (21) 2610 (8)

223 Characterization Data of 3-(2-Hydroxy-5-((3-nitro-phenyl)diazenyl)phenyl)-1-(4-hydroxy phenyl)prop-2-en-1-one(2c) Brownish Powder Yield 7346 mp 164∘C IR (KBr)cmminus1 1310 (Ar-NO

2) 1460 (N=N) 1570 (C=C) 1690 (C=O)

3010 (Ar-OH) 1H-NMR (CDCl3) 120575 520 (s 2H 2Ar-OH)

690 (t 3H Ar-CH) 760 (d 1H C=CH) 780ndash810 (m 7HAr-CH) 830 (d 1H C=CH) 13C-NMR (100MHz CDCl

3-

d6 120575 ppm) 1896 1646 1591 1523 1485 1455 1413

1314 1312 1311 1302 1295 1265 1234 1215 1203 11711167 1164 1163 1162 (21 aromatic carbon) Anal Calcd forC21H15N3O5() C 6473 H 388 N 1079 Found () C

6460 H 360 N 1040 MS 119898119911 38941 (100 M+) 24200(85) 15010 (40) 14710 (40) 12210 (40) 12110 (15)9310 (16) 7700 (10) 4510 (20) 2800 (5) 2600 (10)

224 Characterization Data of 3-(2-Hydroxy-5-((4-nitro-phenyl)diazenyl)phenyl)-1-(4-hydroxy phenyl)prop-2-en-1-one(2d) Brownish Powder Yield 7697 mp 188∘C IR (KBr)cmminus1 1330 (Ar-NO

2) 1500 (N=N) 1580 (C=C) 1660 (C=O)

3270 (Ar-OH) 1H-NMR (CDCl3) 120575 530 (s 2H 2Ar-OH)

660 (t 3H Ar-CH) 740 (d 1H C=CH) 770ndash810 (m 7HAr-CH) 850 (d 1H C=CH) 13C-NMR (100MHz CDCl

3-

d6 120575 ppm) 1894 1644 1592 1554 1503 1453 1414

1315 1314 1304 1244 1243 1236 1208 1206 1204 11661165 1164 1163 1161 (21 aromatic carbon) Anal Calcd forC21H15N3O5() C 6473 H 388 N 1079 Found () C

6440 H 370 N 1060 MS 119898119911 38910 (100 M+) 24190(70) 15100 (40) 14700 (50) 12190 (30) 12100 (20)9290 (20) 7710 (12) 4500 (15) 2810 (10) 2610(13)

225 Characterization Data of 3-(2-Hydroxy-5-(phenyld-iazenyl)phenyl)-1-(4-hydroxy phenyl)prop-2-en-1-one (2e)Greenish Powder Yield 7406 mp 122∘C IR (KBr)cmminus1 1450 (N=N) 1550 (C=C) 1680 (C=O) 3020 (Ar-OH)1H-NMR (CDCl

3) 120575 520 (s 2H 2Ar-OH) 680ndash740 (m

10H Ar-CH) 770 (s 1H Ar-CH) 790 (d 2H Ar-CH) 840(d 1H C=CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1895 1646 1595 1523 1454 1413 1314 1316 1308 13021294 1293 1235 1235 1232 1211 1204 1167 1165 11641163 (21 aromatic carbon) Anal Calcd for C

21H16N2O3

() C 7324 H 468 N 813 Found () C 7330 H 450 N810 MS119898119911 34432 (100 M+) 14710 (60) 19708 (40)12110 (20) 9390 (50) 7720 (30) 2630 (10)

226 Characterization Data of 3-(2-Hydroxy-5-(p-tol-yldiazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3a)Brownish Powder Yield 7902 mp 152∘C IR (KBr)cmminus1 1350 (Ar-NO

2) 1510 (N=N) 1600 (C=C) 1680 (C=O)

2850 (Ar-CH3) 3380 (Ar-OH) 1H-NMR (CDCl

3) 120575 230

(s 3H Ar-CH3) 510 (s 1H Ar-OH) 680ndash720 (m 4H

Ar-CH) 730 (s 1H C=CH) 740 (s 1H C=CH) 770ndash780(t 3H Ar-CH) 810 (d 2H Ar-CH) 840 (d 2H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895 1592 1536

Organic Chemistry International 5

1494 1452 1443 1412 1403 1307 1306 1292 1291 12431241 1235 1226 1222 1215 1203 1164 1163 (21 aromaticcarbon) 215 (CH

3) Anal Calcd for C

22H17N3O4() C

6821 H 442 N 1085 Found () C 6820 H 430 N 1070MS 119898119911 38710 (100 M+) 21120 (60) 17610 (40)15000 (20) 12110 (40) 9320 (40) 9110 (30) 2800(20) 2608 (10)

227 Characterization Data of 3-(2-Hydroxy-5-((2-ni-trophenyl)diazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one(3b) Brownish Powder Yield 734 mp 160∘C IR (KBr)cmminus1 1340 (Ar-NO

2) 1430 (N=N) 1550 (C=C) 1640 (C=O)

3140 (Ar-OH) 1H-NMR (CDCl3) 120575 510 (s 1H Ar-OH)

690 (d 1H Ar-CH) 740 (d 1H C=CndashH) 760ndash780 (m 8HAr-CH) 810 (d 1H C=CH) 840 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1898 1596 1535 1476 1453

1441 1437 1413 1354 1315 1306 1305 1246 1243 12421237 1234 1214 1203 1167 1162 (21 aromatic carbon)Anal Calcd for C

21H14N4O6() C 6029 H 337 N 1339

Found () C 6020 H 330 N 1310 MS 119898119911 41825 (100M+) 24210 (60) 17620 (50) 15010 (40) 12210 (30)12100 (20) 9310 (10) 7710 (30) 4500 (10) 2810(10) 2600 (10)

228 Characterization Data of 3-(2-Hydroxy-5-((3-ni-trophenyl)diazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one(3c) Reddish Powder Yield 6801 mp 200∘C IR (KBr)cmminus1 1320 (Ar-NO

2) 1410 (N=N) 1570 (C=C) 1660 (C=O)

3120 (Ar-OH) 1H-NMR (CDCl3) 120575 530 (s 1H Ar-OH)

660 (d 1H Ar-CH) 720 (d 1H C=CndashH) 740ndash760 (m 8HAr-CH) 820 (d 1H C=CH) 860 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1895 1594 1534 1522 1484

1454 1443 1417 1318 1307 1306 1293 1265 1247 12451237 1218 1204 1171 1165 1164 (21 aromatic carbon) AnalCalcd for C

21H14N4O6() C 6029 H 337 N 1339 Found

() C 6010 H 310 N 1320 MS 119898119911 41830 (100 M+)24200 (70) 17600 (50) 12200 (40) 12110 (30) 9310(10) 2800 (10) 2790 (10)

229 Characterization Data of 3-(2-Hydroxy-5-((4-ni-trophenyl)diazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one(3d) Greenish Powder Yield 7081 mp 245∘C IR (KBr)cmminus1 1340 (Ar-NO

2) 1500 (N=N) 1590 (C=C) 1670 (C=O)

3250 (Ar-OH) 1H-NMR (CDCl3) 120575 490 (s 1H Ar-OH)

620 (d 1H Ar-CH) 710 (d 1H C=CndashH) 730ndash750 (m 8HAr-CH) 810 (d 1H C=CH) 830 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1898 1591 1557 1536 1504

1454 1445 1414 1309 1306 1247 1246 1245 1241 12371216 1208 1204 1203 1169 1161 (21 aromatic carbon)Anal Calcd for C

21H14N4O6() C 6029 H 337 N 1339

Found () C 6020 H 320 N 1330 MS 119898119911 41840 (100M+) 24220 (80) 17610 (70) 130 (50) 12220 (40)12110 (30) 10500 (20) 9300 (10) 4500 (10) 2820(10) 2740 (10)

2210 Characterization Data of 3-(2-Hydroxy-5-(phe-nyldiazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one (3e)Brownish Powder Yield 8062 mp 155∘C IR (KBr) cmminus1

1310 (Ar-NO2) 1450 (N=N) 1580 (C=C) 1660 (C=O) 3150

(Ar-OH) 1H-NMR (CDCl3) 120575 520 (s 1H Ar-OH) 670

(s 1H Ar-CH) 740 (t 3H Ar-CH) 760 (s 1H CH=CH)770ndash790 (m 6H Ar-CH) 810 (s 1H CH=CH) 830 (d2H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895

1595 1539 1529 1458 1447 1418 1307 1306 1305 12941292 1245 1244 1238 1235 1233 1219 1206 1168 1165(21 aromatic carbon) Anal Calcd for C

21H15N3O4() C

6756 H 405 N 1125 Found () C 6740 H 400 N 1120MS 119898119911 37334 (100 M+) 19710 (60) 17600 (50) 150(60) 12200 (50) 12100 (40) 9310 (20) 2810 (10)2710 (10) 2600 (10)

23 General Procedure for the Synthesis of Pyrimidines(4andash4e 5andash5e) A mixture of chalcone (001moL) and urea(001moL) was prepared in 30mL ethanol To this solution10mL 20 aqueous NaOH solution was addedThe resultingmixture was then refluxed on water bath for at least 16 hoursThe mixture was then cooled to room temperature andpoured into the beaker containing crushed ice The solidproduct of pyrimidine derivatives that is 4-(2-hydroxy-5-((aryl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ols (4andash4e) or 4-(2-hydroxy-5-((aryl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ols (5andash5e) gets precipitated outThe solid obtained was filtered using Whatman filter paperno 40 and recrystallized using ethanol

231 Characterization Data of 4-(2-Hydroxy-5-(p-tolyldi-azenyl)phenyl)-6-(4-hydroxyphenyl)-pyrimidin-2-ol (4a)Yellowish Powder Yield 6518 mp 174∘C IR (KBr)cmminus1 1490 (N=N) 1610 (C=N) 2900 (Ar-CH

3) 3430 cmminus1

(Ar-OH) 1H-NMR (CDCl3) 120575 240 (s 3H Ar-CH

3) 510

(s 3H 3Ar-OH) 660 (s 1H Ar-CH) 680ndash730 (m 7HAr-CH) 770ndash790 (m 4H Ar-CH) 13C-NMR (100MHzCDCl

3-d6 120575 ppm) 1627 1604 1585 1576 1549 1495

1456 1408 1299 1298 1289 1286 1285 1248 1238 12241226 1209 1168 1167 1163 (21 aromatic carbon) 954 (Cpyrimidine) 216 (CH

3) Anal Calcd for C

23H18N4O3()

C 6934 H 455 N 1406 Found () C 6930 H 450 N 1400MS 119898119911 39842 (100 M+) 27920 (80) 11910 (60)18700 (50) 9510 (30) 9310 (20) 9100 (10) 7900(10) 6810 (20) 2820 (10)

232 Characterization Data of 4-(2-Hydroxy-5-((2-nitroph-enyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol(4b) Brownish Powder Yield 5458 mp 210∘C IR(KBr) cmminus1 1310 (Ar-NO

2) 1420 (N=N) 1670 (C=N)

3030 (Ar-OH) 1H-NMR (CDCl3) 120575 490 (s 3H 3Ar-OH)

660ndash690 (m 4H Ar-CH) 730 (d 2H Ar-CH) 770ndash840(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1607 1624 1582 1579 1546 1477 1456 1438 1357 13191288 1283 1281 1247 1246 1236 1234 1206 1166 11651162 (21 aromatic carbon) 952 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6140 H 330 N 1610 MS 119898119911 42934 (100 M+) 30720(70) 18700 (50) 12210 (50) 12000 (40) 9520 (30)9300 (20) 7910 (10) 7720 (20) 4510 (10) 6800(10) 2810 (10)

6 Organic Chemistry International

233 Characterization Data of 4-(2-Hydroxy-5-((3-ni-trophenyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4c) Brownish Powder Yield 5962 mp 224∘CIR (KBr) cmminus1 1320 (Ar-NO

2) 1430 (N=N) 1640 (C=N)

3010 (Ar-OH) 1H-NMR (CDCl3) 120575 470 (s 3H 3Ar-OH)

640ndash660 (m 4H Ar-CH) 740 (d 2H Ar-CH) 760ndash820(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1628 1609 1583 1571 1544 1529 1481 1457 1312 12941288 1287 1284 1264 1242 1238 1203 1179 1165 11611163 (21 aromatic carbon) 959 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6130 H 320 N 1620 MS 119898119911 42928 (100 M+) 27910(60) 18720 (40) 15010 (30) 12220 (50) 9510 (30)9320 (10) 7920 (20) 7710 (10) 4500 (10) 6810(10) 2810 (10)

234 Characterization Data of 4-(2-Hydroxy-5-((4-ni-trophenyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4d) Brownish Powder Yield 6387 mp 240∘CIR (KBr) cmminus1 1340 (Ar-NO

2) 1450 (N=N) 1650 (C=N)

3400 (Ar-OH) 1H-NMR (CDCl3) 120575 480 (s 3H 3Ar-OH)

630ndash650 (m 4H Ar-CH) 720 (d 2H Ar-CH) 750ndash790(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1622 1604 1584 1573 1554 1546 1502 1457 1289 12881283 1243 1242 1241 1232 1209 1208 1207 1166 11631162 (21 aromatic carbon) 951 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6150 H 340 N 1630 MS 119898119911 42941 (100 M+) 27920(70) 18710 (50) 15000 (40) 12210 (40) 9500 (20)9310 (20) 7910 (10) 7700 (10) 4510 (10) 6820(20) 2800 (10)

235 Characterization Data of 4-(2-Hydroxy-5-(phenyldi-azenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4e)Yellowish Powder Yield 6049 mp 170∘C IR (KBr)cmminus1 1330 (Ar-NO

2) 1440 (N=N) 1650 (C=N) 3070 (Ar-

OH) 1H-NMR (CDCl3) 120575 450 (s 3H 3Ar-OH) 660ndash680

(m 4H Ar-CH) 730 (d 2H Ar-CH) 740ndash790 (m 7HAr-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1626

1601 1589 1577 1548 1523 1454 1308 1297 1294 12861285 1281 1247 1239 1237 1234 1201 1168 1167 1162(21 aromatic carbon) 956 (C pyrimidine) Anal Calcd forC22H16N4O3() C 6874 H 420 N 1458 Found () C

6860 H 410 N 1430 MS 119898119911 38432 (100 M+) 27910(70) 18710 (60) 10510 (40) 9520 (20) 9310 (10)7900 (10) 7720 (10) 4510 (10) 6810 (20) 2810(10)

236 Characterization Data of 4-(2-Hydroxy-5-(p-tol-yldiazenyl)phenyl)-6-(4-nitrophenyl)-pyrimidin-2-ol (5a)Brownish Powder Yield 7026 mp 165∘C IR (KBr) cmminus11350 (Ar-NO

2) 1490 (N=N) 1600 (C=N) 2900 (Ar-CH

3)

3390 (Ar-OH) 1H-NMR (CDCl3) 120575 240 (s 3H Ar-CH

3)

520 (s 2H 2Ar-OH) 670 (s 1H Ar-CH) 680 (d 2HAr-CH) 730 (d 2H Ar-CH) 750ndash770 (m 8H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1625 1604 1573

1546 1496 1478 1457 1418 1405 1294 1292 1262 12611243 1242 1232 1231 1229 1228 1207 1166 (21 aromatic

carbon) 959 (C pyrimidine) 212 (CH3) Anal Calcd for

C23H17N5O4() C 6463 H 401 N 1639 Found () C

6440 H 400 N 1620 MS 119898119911 42710 (100 M+) 30810(80) 18700 (60) 12210 (50) 11900 (40) 9510 (30)9300 (10) 9110 (20) 7910 (10) 7710 (10) 4590(30) 6800 (10) 2800 (20)

237 Characterization Data of 4-(2-Hydroxy-5-((2-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5b)Reddish Powder Yield 6518 mp 214∘C IR (KBr) cmminus11320 (Ar-NO

2) 1430 (N=N) 1630 (C=N) 3130 (Ar-OH)

1H-NMR (CDCl3) 120575 530 (s 2H 2Ar-OH) 650 (s 1H

Ar-CH) 680 (d 1H Ar-CH) 770ndash790 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1624 1603 1575

1543 1479 1475 1457 1437 1415 1353 1317 1265 12641246 1248 1247 1243 1239 1238 1206 1163 (21 aromaticcarbon) 954 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5740 H 300N 1820 MS 119898119911 45810 (100 M+) 30820 (70) 21610(40) 22200 (50) 15000 (60) 12200 (30) 9500(20) 9310 (20) 7900 (10) 6820 (20)

238 Characterization Data of 4-(2-Hydroxy-5-((3-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5c)Brownish Powder Yield 5433mp 239∘C IR (KBr) cmminus11330 (Ar-NO

2) 1410 (N=N) 1650 (C=N) 3030 (Ar-OH)

1H-NMR (CDCl3) 120575 520 (s 2H 2Ar-OH) 640 (s 1H

Ar-CH) 690 (d 1H Ar-CH) 760ndash790 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1622 1606 1573

1546 1525 1488 1474 1456 1419 1319 1299 1267 12661261 1248 1247 1245 1234 1207 1174 1168 (21 aromaticcarbon) 951 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5750 H 290N 1810 MS 119898119911 45838 (100 M+) 24210 (60) 21620(50) 12210 (40) 12120 (20) 9510 (20) 9300 (10)7910 (20) 6810 (10)

239 Characterization Data of 4-(2-Hydroxy-5-((4-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5d)Brownish Powder Yield 6187 mp 250∘C IR (KBr) cmminus11320 (Ar-NO

2) 1450 (N=N) 1670 (C=N) 3420 (Ar-OH)

1H-NMR (CDCl3) 120575 540 (s 2H 2Ar-OH) 620 (s 1H

Ar-CH) 670 (d 1H Ar-CH) 750ndash780 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1621 1607 1557

1575 1546 1508 1477 1456 1418 1269 1268 1249 12481244 1243 1242 1235 1209 1207 1206 1169 (21 aromaticcarbon) 957 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5730 H 310N 1830 MS 119898119911 45846 (100 M+) 24220 (80) 21610(60) 12220 (50) 12110 (10) 9520 (10) 9320 (10)7920 (10) 7710 (20) 6820 (20)

2310 Characterization Data of 4-(2-Hydroxy-5-(ph-enyldiazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5e)Yellowish Powder Yield 7422 mp 160∘C IR (KBr) cmminus11310 (Ar-NO

2) 1420 (N=N) 1670 (C=N) 3080 (Ar-OH)

1H-NMR (CDCl3) 120575 490 (s 2H 2Ar-OH) 670 (s 1H

Ar-CH) 710 (d 1H Ar-CH) 750ndash780 (m 11H Ar-CH)

Organic Chemistry International 7

Table 1 Antibacterial and anti-fungal activity of newly synthesized chalcone derivatives (2andash2e 3andash3e) and pyrimidine derivatives (4andash4e5andash5e)

Compound (500 120583gdisk)

Average value of zone of inhibition in mmAntimicrobial Activity

Gram Positive Gram Negative Antifungal activityS aureus B subtilis P vulgaris E coli C albicans A niger

2a mdash mdash mdash mdash mdash mdash2b 10 08 13 12 11 132c 11 06 16 14 12 162d 6 8 10 08 08 102e mdash 4 mdash mdash mdash mdash3a mdash mdash 5 4 mdash mdash3b 13 10 14 14 16 153c 12 13 16 15 17 183d 8 14 12 10 12 133e mdash 5 mdash 4 5 44a 4 3 6 8 8 104b 14 13 17 14 16 174c 15 08 19 18 18 204d 10 12 12 14 16 204e 7 6 8 10 14 125a 5 6 9 8 12 145b 29 18 24 26 22 255c 22 24 26 24 20 275d 13 15 16 12 24 215e 12 10 15 16 16 15Ciprofloxacin 30 26 32 31 mdash mdashFluconazole mdash mdash mdash mdash 24 26ldquomdashrdquo represent ldquoinactiverdquo

13C-NMR (100MHz CDCl3-d6 120575 ppm) 1624 1609 1577

1548 1525 1476 1457 1415 1308 1298 1295 1269 12671244 1243 1241 1238 1235 1234 1209 1168 (21 aromaticcarbon) 953 (C pyrimidine) Anal Calcd for C

22H15N5O4

() C 6392 H 366 N 1694 Found () C 6380 H 350N 1680 MS 119898119911 41336 (100 M+) 21620 (70) 19710(40) 12210 (60) 12100 (30) 9500 (20) 9310 (30)7720 (20) 6810 (10)

24 Biological Activity The newly synthesized compoundswere examined for antibacterial and antifungal activity usingwell diffusion method against the panel of different grampositive and gram negative bacterial stains and fungi stainsDifferent bacterial stains used for the screeningwere S aureus(gram Positive) B subtilis (gram Positive) P vulgaris (gramNegative) and E coli (gram Negative) Antifungal activitiesof these compounds were also tested against C albicans andA niger The stains for antibacterial and antifungal activitieswere obtained from Department of Microbiology S F SCollege Nagpur The stock solutions of pyrimidine deriva-tives or standard drug in dimethyl sulfoxide (100120583gmL)were

prepared for the study The sterilized petri dishes and agarmedium were used in the present work The antibacterialactivities of compounds were evaluated by measuring thezone of inhibition on nutrient agar plate Muller Hinton agarwas used in the anti-bacterial study whereas SabouraudrsquosDextrose agar was used for the anti-fungal activity studyThecomposition of nutrient agar medium to culture the bacterialstrains used in the present study was as follows Peptone(10 gm) agar powder (20 gm) sodium chloride powder(10 gm) beaf extract (5 gm) and distilled water (1000mL)The pH of the nutrient agar medium was adjusted to 72 Thenutrient agar medium was mixed well and was autoclaved at15 lbs pressure at 120∘C for at least 15 minutes

In the sterilized agar medium 10mL of one-day-oldbacterialfungal cultures were added Bacterial or fungalculture were inoculated into nutrient broth and incubatedat 37 plusmn 2∘C on rotary shaker at 100 rpm After 36-hourincubation bacterial suspensions were used for further testsThis media were poured in petri dishes and allowed toset Two wells were created using a 5mm cork borer Inthis well 01mL of test samplestandards were filled All thenutrient agar plates were incubated at 37∘C for 24 hours in

8 Organic Chemistry International

anti-bacterial study and at 37∘C for 48 hours in anti-fungalactivity study The plates were observed for clear zone ofinhibition Then diameters of the zone of inhibition for thesecompounds were measured The biological activities weretested for at least three times for all the compounds againstall microorganisms and average value has been reported hereThe results of antimicrobial activity and antifungal activity ofthe test compounds have been collected in Table 1

3 Results and Discussion

A new series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one (2andash2e 3andash3e) and pyrimidines derivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols (4andash4e 5andash5e)were synthesized as depicted in Scheme 1 In the first stepdifferent azo-aldehydes (1andash1e) were prepared by the reactionof aromatic amines with salicylaldehyde in equimolarcondition Typical procedure of synthesis of chalcones(2andash2e 3andash3e) in the present work involves the reaction ofequimolar quantities of various substituted azo-aldehydeswith either 4-nitroacetophenone or p-acetophenone inethanolic alkaline medium Pyrimidine derivatives (4andash4e 5andash5e) were obtained by refluxing newly synthesizedsubstituted chalcones and urea in ethanol in presence ofaqueous NaOH solution and then cooling the reactionmixture in crushed ice The newly synthesized compoundswere characterized on the basis of their spectroscopic data(1H-NMR 13C-NMR IR and Mass) and elemental analysisIn elemental analysis the percentage of the nitrogenhydrogen and carbon was found to be experimentallyequivalent to the calculated values in all compounds Ingeneral compounds 1andash1e have shown aldehydic C=O peakwithin the range of 1700-1700 cmminus1 whereas aldehydic HndashC=peaks approximately within 2820 up to 2850 cmminus1 The 1H-NMR spectra have shown the peaks of protons present in thecompounds at their appropriate 120575 values whereas 13C-NMRconfirmed the numbers of C atoms in the newly synthesizedcompounds In the LCMS of the synthesized compoundspeaks for molecular ion peak were observed at its respectivemolecular mass The newly synthesized chalcones andpyrimidines were evaluated for in vitro antibacterial andantifungal activities against various gram positive gramnegative bacteria and fungal species The results have beencollected in Table 1 Ciprofloxacin as the standard drugwas tested against bacterial strains whereas Fluconazoleas the standard drug was tested against fungal strains forcomparison with newly synthesized compounds The closesurvey of values indicates that the chalcones compound(2andash2e 3andash3e) exhibited varied range zone of inhibitiondepending upon the substituent on the ring structure Mostof the compounds have shown moderate to good biologicalactivity against the bacterial and fungal strains Compounds5a and 5b have shown excellent activity against both grampositive and gram negative bacterial strains as comparedto standard drug Ciprofloxacin Compounds 5b 5c and5d have shown excellent activity against as compared tostandard drug Fluconazole

4 Conclusion

A series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one and pyrimidinesderivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols were successfully synthesized All the newlysynthesized compoundswere characterized spectroscopicallyand using analytical techniques such as 1H-NMR 13C-NMRIR and mass and elemental analysis Anti-bacterial activitystudies reveal that compounds 5b and 5c have shown thehighest activity among all newly synthesized compoundsas compared to standard drug whereas compounds 5b 5cand 5d have shown the highest antifungal activity amongall newly synthesized compounds as compared to standarddrug

References

[1] T Narender S Shweta K Tanvir M Srinivasa Rao K Sri-vastava and S K Puri ldquoPrenylated chalcones isolated fromCrotalaria genus inhibits in vitro growth of the human malariaparasite Plasmodium falciparumrdquo Bioorganic and MedicinalChemistry Letters vol 15 no 10 pp 2453ndash2455 2005

[2] Z Nowakowska ldquoA review of anti-infective and anti-inflammatory chalconesrdquo European Journal of MedicinalChemistry vol 42 no 2 pp 125ndash137 2007

[3] M Ceylan and E Findik ldquoSynthesis and characterization ofnew chalcone derivatives from cis-bicyclo[320]hept-2-en-6-onerdquo Synthetic Communications vol 39 no 6 pp 1046ndash10542009

[4] H O Saxena U Faridi J K Kumar et al ldquoSynthesis of chalconederivatives on steroidal framework and their anticancer activi-tiesrdquo Steroids vol 72 no 13 pp 892ndash900 2007

[5] R J Anto K Sukumaran G KuttanMNA Rao V Subbarajuand R Kuttan ldquoAnticancer and antioxidant activity of syntheticchalcones and related compoundsrdquo Cancer Letters vol 97 no 1pp 33ndash37 1995

[6] J N Domınguez C Leon J Rodrigues N G De DomınguezJ Gut and P J Rosenthal ldquoSynthesis and evaluation ofnew antimalarial phenylurenyl chalcone derivativesrdquo Journal ofMedicinal Chemistry vol 48 no 10 pp 3654ndash3658 2005

[7] A Valla B Valla D Cartier et al ldquoNew syntheses andpotential antimalarial activities of new lsquoretinoid-like chalconesrsquordquoEuropean Journal of Medicinal Chemistry vol 41 no 1 pp 142ndash146 2006

[8] S F Nielsen S B Christensen G Cruciani A Kharazmiand T Liljefors ldquoAntileishmaniai chalcones statistical designsynthesis and three-dimensional quantitative structure-activityrelationship analysisrdquo Journal of Medicinal Chemistry vol 41no 24 pp 4819ndash4832 1998

[9] P Boeck C A Bandeira Falcao P C Leal et al ldquoSynthesisof chalcone analogues with increased antileishmanial activityrdquoBioorganic and Medicinal Chemistry vol 14 no 5 pp 1538ndash1545 2006

[10] K V Sashidhara M Kumar R K Modukuri et al ldquoSynthesisand anti-inflammatory activity of novel biscoumarin-chalconehybridsrdquoBioorganic andMedicinal Chemistry Letters vol 21 no15 pp 4480ndash4484 2011

Organic Chemistry International 9

[11] H-M Yang H-R Shin S-H Cho et al ldquoStructural require-ment of chalcones for the inhibitory activity of interleukin-5rdquoBioorganic and Medicinal Chemistry vol 15 no 1 pp 104ndash1112007

[12] S Cheenpracha C Karalai C Ponglimanont S Subhadhi-rasakul and S Tewtrakul ldquoAnti-HIV-1 protease activity ofcompounds from Boesenbergia panduratardquo Bioorganic andMedicinal Chemistry vol 14 no 6 pp 1710ndash1714 2006

[13] L Svetaz A Tapia S N Lopez et al ldquoAntifungal chalconesand new caffeic acids esters from Zuccagnia punctata actingagainst soybean infecting fungirdquo Journal of Agricultural andFood Chemistry vol 52 no 11 pp 3297ndash3300 2004

[14] B P Bandgar B S Hote N A Dhole and R N GaccheldquoSynthesis and biological evaluation of novel series of chalconederivatives as inhibitors of cyclooxygenase and LPS-inducedTNF-120572 with potent antioxidant propertiesrdquo Medicinal Chem-istry Research vol 21 pp 2292ndash2299 2011

[15] O Nerya R Musa S Khatib S Tamir and J Vaya ldquoChalconesas potent tyrosinase inhibitors the effect of hydroxyl positionsand numbersrdquo Phytochemistry vol 65 no 10 pp 1389ndash13952004

[16] K V Sashidhara A Kumar M Kumar J Sarkar and SSinha ldquoSynthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agentsrdquo Bioorganic andMedicinal Chemistry Letters vol 20 no 24 pp 7205ndash7211 2010

[17] C THsieh T JHsiehM El-Shazly et al ldquoSynthesis of chalconederivatives as potential anti-diabetic agentsrdquo Bioorganic ampMedicinal Chemistry Letters vol 22 pp 3912ndash3915 2012

[18] S Wattanasin and W S Murphy ldquoAn improved procedure forthe preparation of chalcones and related enonesrdquo Synthesis vol1980 pp 647ndash650 1980

[19] T Narender K Venkateswarlu B V Nayak and S Sarkar ldquoAnew chemical access for 31015840 -acetyl-41015840 -hydroxychalcones usingborontrifluoride-etherate via a regioselective Claisen-Schmidtcondensation and its application in the synthesis of chalconehybridsrdquo Tetrahedron Letters vol 52 no 44 pp 5794ndash57982011

[20] A Garcia-Raso J A Garcia-Raso R Mestres and J V Sinis-terra ldquoMechanism of Michael addition of ethyl acetoacetate tochalcone catalyzed by activated Ba(OH)

2rdquoReactionKinetics and

Catalysis Letters vol 28 no 2 pp 365ndash371 1985

[21] J R Patel M H Malani and B Z Dholakiya ldquoSilica sulfuricacid-catalyzed Claisen-Schmidt condensation of 134 trisub-stituted pyrrole 25 dione to chalconesrdquo Research on ChemicalIntermediates vol 38 pp 2371ndash2381 2012

[22] KV Sashidhara J N Rosaiah andAKumar ldquoIodine-catalyzedmild and efficient method for the synthesis of chalconesrdquoSynthetic Communications vol 39 no 13 pp 2288ndash2296 2009

[23] A K Verma and R Pratap ldquoChemistry of biologically impor-tant flavonesrdquo Tetrahedron vol 68 pp 8523ndash8538 2012

[24] MH Bukhari H L SiddiquiMAhmad THussain andMGMoloney ldquoSynthesis and anti-bacterial activities of some novelpyrazolobenzothiazine-based chalcones and their pyrimidinederivativesrdquo Medicinal Chemistry Research vol 21 pp 2885ndash2895 2011

[25] E A Bell and R G Foster ldquoStructure of lathyrinerdquo Nature vol194 no 4823 pp 91ndash92 1962

[26] F Tanaka S Takeuchi N Tanaka H Yonehara H Umezawaand Y J Sumiki ldquoBacimethrin a new antibiotic produced by Bmegatheriumrdquo Journal of Antibiotics A vol 14 pp 161ndash162 1961

[27] R G S Berlinck J C Braekman D Daloze et al ldquoPolycyclicguanidine alkaloids from the marine sponge Crambe crambeandCa++ channel blocker activity of crambescidin 816rdquo Journalof Natural Products vol 56 no 7 pp 1007ndash1015 1993

[28] Y-L Lin R-L Huang C-M Chang and Y-H Kuo ldquoTwonew puriniums and three new pyrimidines fromHeterostemmabrowniirdquo Journal of Natural Products vol 60 no 10 pp 982ndash985 1997

[29] I Ohtani R E Moore and M T C Runnegar ldquoCylindrosper-mopsin a potent hepatotoxin from the blue-green alga Cylin-drospermopsis raciborskiirdquo Journal of the American ChemicalSociety vol 114 pp 7941ndash7942 1992

[30] N Jiang XQDeng F N Li and Z S Quan ldquoSynthesis of novel7-substituted-5-phenyl-[1 2 4]triazolo[1 5-a] pyrimidines withanticonvulsant activityrdquo Iranian Journal of PharmaceuticalResearch vol 11 pp 799ndash806 2012

[31] M Ungureanu C C Moldoveanu A Poeata G Drochioiu MPetrovanu and I Mangalagiu ldquoNew pyrimidine compoundswith in vitro antimicrobial or antifungal activityrdquo AnnalesPharmaceutiques Francaises vol 56 pp 181ndash183 1998

[32] A E-G E Amr N M Sabry and M M Abdulla ldquoSynthe-sis reactions and anti-inflammatory activity of heterocyclicsystems fused to a thiophene moiety using citrazinic acid assynthonrdquo Monatshefte fur Chemie vol 138 no 7 pp 699ndash7072007

[33] N Fujiwara T Nakajima Y Ueda H Fujita and H KawakamildquoNovel piperidinylpyrimidine derivatives as inhibitors of HIV-1 LTR activationrdquo Bioorganic and Medicinal Chemistry vol 16no 22 pp 9804ndash9816 2008

[34] L Ballell R A Field G A C Chung and R J YoungldquoNew thiopyrazolo[34-d]pyrimidine derivatives as anti-mycobacterial agentsrdquo Bioorganic and Medicinal ChemistryLetters vol 17 no 6 pp 1736ndash1740 2007

[35] E Wagner K Al-Kadasi M Zimecki and W Sawka-Dobrowolska ldquoSynthesis and pharmacological screening ofderivatives of isoxazolo[45-d]pyrimidinerdquo European Journal ofMedicinal Chemistry vol 43 no 11 pp 2498ndash2504 2008

[36] A Tiwari W R Waud and R F Struck ldquoDetermination of thephamacophore of penclomedine a clinically-evaluated antitu-mor pyridine derivativerdquo Bioorganic and Medicinal Chemistryvol 10 no 11 pp 3593ndash3598 2002

[37] K Gorlitzer S Herbig and R D Walter ldquoIndeno[12-d]pyrimidin-4-yl-aminesrdquo Pharmazie vol 52 no 9 pp 670ndash672 1997

[38] I V Ukrainets I A Tugaibei N L Bereznyakova V NKravchenko and A V Turov ldquo4-Hydroxy-2-quinolones 144Alkyl- arylalkyl- and arylamides of 2-hydroxy-4-oxo-4H-pyrido[12-a]pyrimidine-3-carboxylic acid and their diureticpropertiesrdquo Chemistry of Heterocyclic Compounds no 5 pp718ndash729 2008

[39] S Q Wang L Fang X J Liu and K Zhao ldquoDesign synthesisand hypnotic activity of pyrazolo[15-a]pyrimidine derivativesrdquoChinese Chemical Letters vol 15 no 8 pp 885ndash888 2004

[40] W Yang Z Ruan Y Wang et al ldquoDiscovery and structure-activity relationships of trisubstituted pyrimidinespyridines as

10 Organic Chemistry International

novel calcium-sensing receptor antagonistsrdquo Journal of Medici-nal Chemistry vol 52 no 4 pp 1204ndash1208 2009

[41] R J Gillespie S J Bamford R Botting et al ldquoAntagonistsof the human A2A adenosine receptor 4 Design synthesisand preclinical evaluation of 7-aryltriazolo[45-d]pyrimidinesrdquoJournal of Medicinal Chemistry vol 52 no 1 pp 33ndash47 2009

[42] H A Deshpande H N Chopde C P Pandhurnekar and RJ Batra ldquoSynthesis characterization and testing of biologicalactivity of some novel chalcones derivatives of coumarinrdquoChemical Science Transactions vol 2 pp 621ndash627 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 2: Research Article Synthesis, Characterization, and ...downloads.hindawi.com/journals/oci/2013/582079.pdfand p-acetophenone or p-nitroacetophenone (.moL) were added to ethanol (mL) and

2 Organic Chemistry International

their derivatives (willardiine tingitanine) [25] such as severalvitamins (vitaminB1) antibiotics (bacimethrin sparsomycinbleomycin) [26] alkaloids (heteromines crambescins man-zacidins variolins meridianins psammopemmins) [27 28]toxins [29] coenzymes uric acid and purines Pyrimidineand its derivatives represents one of the important classes ofheterocyclic system which is associated with the wide rangeof biological and pharmacological activities such as anticon-vulsant [30] antimicrobial [31] anti-inflammatory [32] anti-HIV [33] antitubercular [34] antitumor [35] antineoplastic[36] antimalarial [37] diuretic [38] and cardiovascularagents Pyrimidine compounds are also used as hypnoticdrugs for the nervous system [39] calcium-sensing receptorantagonists [40] and also for antagonists of the human A

2Aadenosine receptor [41]

In view of the variety of pharmacological propertiesexhibited by chalcones and pyrimidines we plannedto synthesize new series of chalcones and pyrimidinederivatives In the present communication we thusreport here the synthesis of series of chalcones that is3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one following Claisen-Schmidt condensation reactionpathway and their pyrimidine derivatives that is 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols(Scheme 1) Different aromatic aldehydes were synthesizedas depicted earlier [42] The structures of newly synthesizedchalcones and pyrimidines compounds were confirmedusing spectroscopic techniques such as 1H-NMR 13C-NMR IR and Mass spectroscopy and elemental analysisThe results of anti-bacterial and antifungal activities havealso been reported here The current investigations revealthat pyrimidine analogs exhibit better antibacterial andantifungal activities than the parent chalcone analogues

2 Experimental

The chemicals and solvents were of AR grade and were usedwithout further purification Melting points were taken inopen capillaries on TOSHNIWAL melting point apparatusand are uncorrected IR spectra were recorded on ShimadzuDr-8031 instrument in KBr pallets Elemental analyses werecarried out using a Perkin-Elmer CHN elemental analyzermodel 2400 1H-NMR and 13C-NMR spectra of the syn-thesized compounds were recorded on a Bruker-Avance(300MHz) and Varian-Gemini (200MHz) spectrophotome-ter using CDCl

3solvent and TMS as an internal standard

EI-MS spectra were determined on a LCQ ion trap massspectrometer (Thermo Fisher San Jose C A USA) equippedwith an EI source

21 General Procedure for the synthesis of 2-Hydroxy-5-((aryl)diazenyl)benzaldehyde (1andash1e) Aromatic amines(001moL) was added in conc HCl (5mL) and boiled for 10minutes The resulting solution was then cooled to 0ndash5∘Cin ice bath Aqueous sodium nitrite (NaNO

2) (001moL

10mL) solution in the cold condition was added in dropwisemanner to this solution The reaction mixture was thenvigorously stirred The temperature of the reaction mixture

was maintained within 0ndash5∘C for at least 1 hour to obtaindiazonium chloride solution

The resulting diazonium solution was then poured slowlyto alkaline suspension of salicylaldehyde in water (10mL001moL) with continuous stirring keeping temperaturewithin 0ndash5∘CThepHof the reactionmixturewasmaintainedwithin 8 to 10 by simultaneous addition of 10 aqueoussodium hydroxide solution The resulting reaction mixturewas kept unstirred for overnight The obtained solid precipi-tate was filtered using Whatman filter paper number 40 andrecrystallized using ethanol

211 Characterization Data of 2-Hydroxy-5-(p-tolyldiazen-yl)benzaldehyde (1a) Brownish Powder Yield 8716 mp115∘C IR (KBr) cmminus1 1480 (N=N) 1730 (aldehydic C=O)2850 (aldehydic HndashC=) 2890 (Ar-CH

3) 3450 (Ar-OH) 1H-

NMR (CDCl3) 120575 235 (s 3H Ar-CH

3) 510 (s 1H Ar-OH)

710 (s 1H Ar-CH) 730 (m 2H Ar-CH) 790 (d 2H Ar-CH) 810 (d 1H Ar-CH) 830 (s 1H Ar-CH) 1030 (s 1HAr-CHO) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1946

1640 1497 1458 1406 1302 1294 1293 1240 1229 12281185 1167 (13 aromatic carbon) 213 (CH

3) Anal Calcd for

C14H12N2O2() C 6999 H 503 N 1166 Found () C

6960 H 490 N 1140 MS 119898119911 24029 (100 M+) 12110(50) 11900 (40) 9300 (30) 9110 (30) 2900 (10)2800 (20)

212 Characterization Data of 2-Hydroxy-5-((2-nitroph-enyl)diazenyl)benzaldehyde (1b) Brownish Powder Yield7871 mp 124∘C IR (KBr) cmminus1 1340 (Ar-NO

2) 1430

(N=N) 1720 (aldehydic C=O) 2840 (aldehydic HndashC=) 3030(Ar-OH) 1H-NMR (CDCl

3) 120575 520 (s 1H Ar-OH) 730 (s

1H Ar-CH) 770ndash820 (m 6H Ar-CH) 1020 (s 1H Ar-CHO) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1946 1640

1476 1458 1439 1351 1318 1302 1242 1240 1239 11851167 (13 aromatic carbon) Anal Calcd for C

13H9N3O4()

C 5757 H 334 N 1549 Found () C 5740 H 310 N 1520MS119898119911 27118 (100M+) 15010 (40) 12200 (50) 12120(30) 9310 (20) 7710 (30) 4500 (10) 2920 (20)2810 (10)

213 Characterization Data of 2-Hydroxy-5-((3-nitroph-enyl)diazenyl)benzaldehyde (1c) Brownish Powder Yield8959 mp 120∘C IR (KBr) cmminus1 1320 (Ar-NO

2) 1420

(N=N) 1710 (aldehydic C=O) 2830 (aldehydic HndashC=) 3040(Ar-OH) 1H-NMR (CDCl

3) 120575 540 (s 1H Ar-OH) 750 (s

1H Ar-CH) 790ndash830 (m 6H Ar-CH) 1040 (s 1H Ar-CHO) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1946 1640

1526 1482 1458 1318 1302 1292 1267 1240 1185 11731165 (13 aromatic carbon) Anal Calcd for C

13H9N3O4()

C 5757 H 334 N 1549 Found () C 5730 H 320 N 1510MS119898119911 27120 (100M+) 15110 (60) 12210 (50) 12100(40) 9300 (10) 7720 (20) 4510 (10) 2910 (10)2800 (10)

214 Characterization Data of 2-Hydroxy-5-((4-nitroph-enyl)diazenyl)benzaldehyde (1d) Greenish Powder Yield

Organic Chemistry International 3

NN

C

O

CO

HC

NN

C

O

C NN

N N

C CHO

HC

NN

C NN

N N

C

O

Ar-NH2 +

CHO

CHO

OH OH

OH

OH

NaNO2

HCl 0ndash5∘C Ar

H3C

EtOH NaOHStirring 12 hrs

OH

HC

HOAr

Ar

Ar Ar

H2N NH2EtOH NaOHReflux 16 hrs

OH OH

HOHO HO O2N

EtOH NaOH

Reflux 16 hrs NH2H2N

COCH3

EtOH NaOHStirring 12 hrs

O2N

O2N

(1andash1e)

(2andash2e) (3andash3e)

(4andash4e) (5andash5e)

Where Ar- for compounds (a) -C6H4-CH3 (b) 2-NO2-C6H4- (c) 3-NO2-C6H4- (d) 4-NO2-C6H4- (e) -C6H5

Scheme 1

9032 mp 146∘C IR (KBr) cmminus1 1340 (Ar-NO2) 1400

(N=N) 1700 (aldehydic C=O) 2345 (aldehydic HndashC=) 2920(Ar-OH) 1H-NMR (CDCl

3) 120575 530 (s 1H Ar-OH) 760 (s

1H Ar-CH) 790ndash820 (m 6H Ar-CH) 1010 (s 1H Ar-CHO) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1945 1642

1558 1506 1452 1304 1243 1242 1241 1208 1207 11831165 (13 aromatic carbon) Anal Calcd for C

13H9N3O4()

C 5757 H 334 N 1549 Found () C 5740 H 320 N 1530MS119898119911 27130 (100M+) 15090 (70) 12180 (40) 12110(60) 9310 (30) 7710 (30) 4500 (20) 2920 (10)2810 (20)

215 Characterization Data of 2-Hydroxy-5-(ph-enyldiazenyl)benzaldehyde (1e) Yellowish Powder Yield

4 Organic Chemistry International

7305 mp 110∘C IR (KBr) cmminus1 1440 (N=N) 1740(aldehydic C=O) 2820 (aldehydic HndashC=) 3010 (Ar-OH)1H-NMR (CDCl

3) 120575 520 (s 1H Ar-OH) 710 (d 1H

Ar-CH) 750 (t 3H Ar-CH) 790ndash810 (m 3H Ar-CH)840 (s 1H Ar-CH) 1030 (s 1H Ar-CHO) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1947 1643 1526 1456 1308

1305 1296 1295 1241 1232 1231 1187 1165 (13 aromaticcarbon) Anal Calcd for C

13H10N2O2() C 6902 H 446

N 1238 Found () C 6900 H 430 N 1210 MS119898119911 22620(100 M+) 12130 (60) 10510 (50) 9320 (40) 7720(30) 2910 (20) 2820 (10)

22 General Procedure for the Synthesis of Chalcones (2andash2e3andash3e) To synthesize the chalcone derivatives in the firststep 2-hydroxy-5-((aryl)diazenyl)benzaldehyde (001moL)and p-acetophenone or p-nitroacetophenone (001moL)were added to ethanol (30mL) and then mixed thoroughlyat the room temperature In this mixture 10mL of 20aqueous NaOH solution was added slowly The reactionmixture was stirred over the magnetic stirrer for at least 12hours The reaction mixture was then kept for overnight Itwas then poured into beaker containing crushed ice Theexcess of alkali in the reaction mixture was neutralized andthe reaction mixture was then slightly acidified by dropwiseaddition of dilute hydrochloric acid solution The chalconederivative that is 3-(2-hydroxy-5-((aryl)diazenyl)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2andash2e) and 3-(2-hydroxy-5-((aryl) diazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3andash3e) gets precipitated out and wasfiltered using Whatman filter paper number 40 The crudechalcone product was recrystallized using ethanol

221 Characterization Data of 3-(2-Hydroxy-5-(p-tolyldi-azenyl)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2a)Yellowish Powder Yield 7785 mp 130∘C IR (KBr) cmminus11490 (N=N) 1590 (C=C) 1680 (C=O) 2850 (Ar-CH

3) 3410

(Ar-OH) 1H-NMR (CDCl3) 120575 230 (s 3H Ar-CH

3) 490

(s 2H 2Ar-OH) 680ndash690 (m 3H Ar-CH) 720ndash730 (t3H Ar-CH) 740 (d 2H Ar-CH) 760ndash780 (m 6H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895 1640 1592

1497 1453 1416 1405 1313 1312 1304 1293 1292 12391226 1229 1212 1204 1163 1161 1167 1165 1164 (22aromatic carbon) 215 (CH

3) Anal Calcd for C

22H18N2O3

() C 7373 H 506 N 782 Found () C 7320 H 490 N770 MS119898119911 35830 (100 M+) 21108 (54) 14705 (46)12106 (15) 9110 (12) 93 (33) 2806 (21) 2610 (10)

222 Characterization Data of 3-(2-Hydroxy-5-((2-ni-trophenyl)diazenyl)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2b) Brownish Powder Yield 6705 mp 142∘C IR(KBr) cmminus1 1320 (Ar-NO

2) 1440 (N=N) 1580 (C=C) 1680

(C=O) 3030 (Ar-OH) 1H-NMR (CDCl3) 120575 510 (s 2H

2Ar-OH) 680 (t 3H Ar-CH) 740 (d 1H C=CH) 760ndash770(m 7H Ar-CH) 820 (d 1H C=CH) 13C-NMR (100MHzCDCl

3-d6 120575 ppm) 1896 1642 1594 1475 1451 1439 1412

1352 1316 1312 1311 1304 1244 1238 1212 1235 12041166 1163 1161 1162 (21 aromatic carbon) Anal Calcd forC21H15N3O5() C 6473 H 388 N 1079 Found () C

6470 H 370 N 1060 MS 119898119911 38938 (100 M+) 24210(65) 14708 (40) 12105 (13) 12210 (40) 9310 (14)2808 (21) 2610 (8)

223 Characterization Data of 3-(2-Hydroxy-5-((3-nitro-phenyl)diazenyl)phenyl)-1-(4-hydroxy phenyl)prop-2-en-1-one(2c) Brownish Powder Yield 7346 mp 164∘C IR (KBr)cmminus1 1310 (Ar-NO

2) 1460 (N=N) 1570 (C=C) 1690 (C=O)

3010 (Ar-OH) 1H-NMR (CDCl3) 120575 520 (s 2H 2Ar-OH)

690 (t 3H Ar-CH) 760 (d 1H C=CH) 780ndash810 (m 7HAr-CH) 830 (d 1H C=CH) 13C-NMR (100MHz CDCl

3-

d6 120575 ppm) 1896 1646 1591 1523 1485 1455 1413

1314 1312 1311 1302 1295 1265 1234 1215 1203 11711167 1164 1163 1162 (21 aromatic carbon) Anal Calcd forC21H15N3O5() C 6473 H 388 N 1079 Found () C

6460 H 360 N 1040 MS 119898119911 38941 (100 M+) 24200(85) 15010 (40) 14710 (40) 12210 (40) 12110 (15)9310 (16) 7700 (10) 4510 (20) 2800 (5) 2600 (10)

224 Characterization Data of 3-(2-Hydroxy-5-((4-nitro-phenyl)diazenyl)phenyl)-1-(4-hydroxy phenyl)prop-2-en-1-one(2d) Brownish Powder Yield 7697 mp 188∘C IR (KBr)cmminus1 1330 (Ar-NO

2) 1500 (N=N) 1580 (C=C) 1660 (C=O)

3270 (Ar-OH) 1H-NMR (CDCl3) 120575 530 (s 2H 2Ar-OH)

660 (t 3H Ar-CH) 740 (d 1H C=CH) 770ndash810 (m 7HAr-CH) 850 (d 1H C=CH) 13C-NMR (100MHz CDCl

3-

d6 120575 ppm) 1894 1644 1592 1554 1503 1453 1414

1315 1314 1304 1244 1243 1236 1208 1206 1204 11661165 1164 1163 1161 (21 aromatic carbon) Anal Calcd forC21H15N3O5() C 6473 H 388 N 1079 Found () C

6440 H 370 N 1060 MS 119898119911 38910 (100 M+) 24190(70) 15100 (40) 14700 (50) 12190 (30) 12100 (20)9290 (20) 7710 (12) 4500 (15) 2810 (10) 2610(13)

225 Characterization Data of 3-(2-Hydroxy-5-(phenyld-iazenyl)phenyl)-1-(4-hydroxy phenyl)prop-2-en-1-one (2e)Greenish Powder Yield 7406 mp 122∘C IR (KBr)cmminus1 1450 (N=N) 1550 (C=C) 1680 (C=O) 3020 (Ar-OH)1H-NMR (CDCl

3) 120575 520 (s 2H 2Ar-OH) 680ndash740 (m

10H Ar-CH) 770 (s 1H Ar-CH) 790 (d 2H Ar-CH) 840(d 1H C=CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1895 1646 1595 1523 1454 1413 1314 1316 1308 13021294 1293 1235 1235 1232 1211 1204 1167 1165 11641163 (21 aromatic carbon) Anal Calcd for C

21H16N2O3

() C 7324 H 468 N 813 Found () C 7330 H 450 N810 MS119898119911 34432 (100 M+) 14710 (60) 19708 (40)12110 (20) 9390 (50) 7720 (30) 2630 (10)

226 Characterization Data of 3-(2-Hydroxy-5-(p-tol-yldiazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3a)Brownish Powder Yield 7902 mp 152∘C IR (KBr)cmminus1 1350 (Ar-NO

2) 1510 (N=N) 1600 (C=C) 1680 (C=O)

2850 (Ar-CH3) 3380 (Ar-OH) 1H-NMR (CDCl

3) 120575 230

(s 3H Ar-CH3) 510 (s 1H Ar-OH) 680ndash720 (m 4H

Ar-CH) 730 (s 1H C=CH) 740 (s 1H C=CH) 770ndash780(t 3H Ar-CH) 810 (d 2H Ar-CH) 840 (d 2H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895 1592 1536

Organic Chemistry International 5

1494 1452 1443 1412 1403 1307 1306 1292 1291 12431241 1235 1226 1222 1215 1203 1164 1163 (21 aromaticcarbon) 215 (CH

3) Anal Calcd for C

22H17N3O4() C

6821 H 442 N 1085 Found () C 6820 H 430 N 1070MS 119898119911 38710 (100 M+) 21120 (60) 17610 (40)15000 (20) 12110 (40) 9320 (40) 9110 (30) 2800(20) 2608 (10)

227 Characterization Data of 3-(2-Hydroxy-5-((2-ni-trophenyl)diazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one(3b) Brownish Powder Yield 734 mp 160∘C IR (KBr)cmminus1 1340 (Ar-NO

2) 1430 (N=N) 1550 (C=C) 1640 (C=O)

3140 (Ar-OH) 1H-NMR (CDCl3) 120575 510 (s 1H Ar-OH)

690 (d 1H Ar-CH) 740 (d 1H C=CndashH) 760ndash780 (m 8HAr-CH) 810 (d 1H C=CH) 840 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1898 1596 1535 1476 1453

1441 1437 1413 1354 1315 1306 1305 1246 1243 12421237 1234 1214 1203 1167 1162 (21 aromatic carbon)Anal Calcd for C

21H14N4O6() C 6029 H 337 N 1339

Found () C 6020 H 330 N 1310 MS 119898119911 41825 (100M+) 24210 (60) 17620 (50) 15010 (40) 12210 (30)12100 (20) 9310 (10) 7710 (30) 4500 (10) 2810(10) 2600 (10)

228 Characterization Data of 3-(2-Hydroxy-5-((3-ni-trophenyl)diazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one(3c) Reddish Powder Yield 6801 mp 200∘C IR (KBr)cmminus1 1320 (Ar-NO

2) 1410 (N=N) 1570 (C=C) 1660 (C=O)

3120 (Ar-OH) 1H-NMR (CDCl3) 120575 530 (s 1H Ar-OH)

660 (d 1H Ar-CH) 720 (d 1H C=CndashH) 740ndash760 (m 8HAr-CH) 820 (d 1H C=CH) 860 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1895 1594 1534 1522 1484

1454 1443 1417 1318 1307 1306 1293 1265 1247 12451237 1218 1204 1171 1165 1164 (21 aromatic carbon) AnalCalcd for C

21H14N4O6() C 6029 H 337 N 1339 Found

() C 6010 H 310 N 1320 MS 119898119911 41830 (100 M+)24200 (70) 17600 (50) 12200 (40) 12110 (30) 9310(10) 2800 (10) 2790 (10)

229 Characterization Data of 3-(2-Hydroxy-5-((4-ni-trophenyl)diazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one(3d) Greenish Powder Yield 7081 mp 245∘C IR (KBr)cmminus1 1340 (Ar-NO

2) 1500 (N=N) 1590 (C=C) 1670 (C=O)

3250 (Ar-OH) 1H-NMR (CDCl3) 120575 490 (s 1H Ar-OH)

620 (d 1H Ar-CH) 710 (d 1H C=CndashH) 730ndash750 (m 8HAr-CH) 810 (d 1H C=CH) 830 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1898 1591 1557 1536 1504

1454 1445 1414 1309 1306 1247 1246 1245 1241 12371216 1208 1204 1203 1169 1161 (21 aromatic carbon)Anal Calcd for C

21H14N4O6() C 6029 H 337 N 1339

Found () C 6020 H 320 N 1330 MS 119898119911 41840 (100M+) 24220 (80) 17610 (70) 130 (50) 12220 (40)12110 (30) 10500 (20) 9300 (10) 4500 (10) 2820(10) 2740 (10)

2210 Characterization Data of 3-(2-Hydroxy-5-(phe-nyldiazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one (3e)Brownish Powder Yield 8062 mp 155∘C IR (KBr) cmminus1

1310 (Ar-NO2) 1450 (N=N) 1580 (C=C) 1660 (C=O) 3150

(Ar-OH) 1H-NMR (CDCl3) 120575 520 (s 1H Ar-OH) 670

(s 1H Ar-CH) 740 (t 3H Ar-CH) 760 (s 1H CH=CH)770ndash790 (m 6H Ar-CH) 810 (s 1H CH=CH) 830 (d2H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895

1595 1539 1529 1458 1447 1418 1307 1306 1305 12941292 1245 1244 1238 1235 1233 1219 1206 1168 1165(21 aromatic carbon) Anal Calcd for C

21H15N3O4() C

6756 H 405 N 1125 Found () C 6740 H 400 N 1120MS 119898119911 37334 (100 M+) 19710 (60) 17600 (50) 150(60) 12200 (50) 12100 (40) 9310 (20) 2810 (10)2710 (10) 2600 (10)

23 General Procedure for the Synthesis of Pyrimidines(4andash4e 5andash5e) A mixture of chalcone (001moL) and urea(001moL) was prepared in 30mL ethanol To this solution10mL 20 aqueous NaOH solution was addedThe resultingmixture was then refluxed on water bath for at least 16 hoursThe mixture was then cooled to room temperature andpoured into the beaker containing crushed ice The solidproduct of pyrimidine derivatives that is 4-(2-hydroxy-5-((aryl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ols (4andash4e) or 4-(2-hydroxy-5-((aryl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ols (5andash5e) gets precipitated outThe solid obtained was filtered using Whatman filter paperno 40 and recrystallized using ethanol

231 Characterization Data of 4-(2-Hydroxy-5-(p-tolyldi-azenyl)phenyl)-6-(4-hydroxyphenyl)-pyrimidin-2-ol (4a)Yellowish Powder Yield 6518 mp 174∘C IR (KBr)cmminus1 1490 (N=N) 1610 (C=N) 2900 (Ar-CH

3) 3430 cmminus1

(Ar-OH) 1H-NMR (CDCl3) 120575 240 (s 3H Ar-CH

3) 510

(s 3H 3Ar-OH) 660 (s 1H Ar-CH) 680ndash730 (m 7HAr-CH) 770ndash790 (m 4H Ar-CH) 13C-NMR (100MHzCDCl

3-d6 120575 ppm) 1627 1604 1585 1576 1549 1495

1456 1408 1299 1298 1289 1286 1285 1248 1238 12241226 1209 1168 1167 1163 (21 aromatic carbon) 954 (Cpyrimidine) 216 (CH

3) Anal Calcd for C

23H18N4O3()

C 6934 H 455 N 1406 Found () C 6930 H 450 N 1400MS 119898119911 39842 (100 M+) 27920 (80) 11910 (60)18700 (50) 9510 (30) 9310 (20) 9100 (10) 7900(10) 6810 (20) 2820 (10)

232 Characterization Data of 4-(2-Hydroxy-5-((2-nitroph-enyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol(4b) Brownish Powder Yield 5458 mp 210∘C IR(KBr) cmminus1 1310 (Ar-NO

2) 1420 (N=N) 1670 (C=N)

3030 (Ar-OH) 1H-NMR (CDCl3) 120575 490 (s 3H 3Ar-OH)

660ndash690 (m 4H Ar-CH) 730 (d 2H Ar-CH) 770ndash840(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1607 1624 1582 1579 1546 1477 1456 1438 1357 13191288 1283 1281 1247 1246 1236 1234 1206 1166 11651162 (21 aromatic carbon) 952 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6140 H 330 N 1610 MS 119898119911 42934 (100 M+) 30720(70) 18700 (50) 12210 (50) 12000 (40) 9520 (30)9300 (20) 7910 (10) 7720 (20) 4510 (10) 6800(10) 2810 (10)

6 Organic Chemistry International

233 Characterization Data of 4-(2-Hydroxy-5-((3-ni-trophenyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4c) Brownish Powder Yield 5962 mp 224∘CIR (KBr) cmminus1 1320 (Ar-NO

2) 1430 (N=N) 1640 (C=N)

3010 (Ar-OH) 1H-NMR (CDCl3) 120575 470 (s 3H 3Ar-OH)

640ndash660 (m 4H Ar-CH) 740 (d 2H Ar-CH) 760ndash820(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1628 1609 1583 1571 1544 1529 1481 1457 1312 12941288 1287 1284 1264 1242 1238 1203 1179 1165 11611163 (21 aromatic carbon) 959 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6130 H 320 N 1620 MS 119898119911 42928 (100 M+) 27910(60) 18720 (40) 15010 (30) 12220 (50) 9510 (30)9320 (10) 7920 (20) 7710 (10) 4500 (10) 6810(10) 2810 (10)

234 Characterization Data of 4-(2-Hydroxy-5-((4-ni-trophenyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4d) Brownish Powder Yield 6387 mp 240∘CIR (KBr) cmminus1 1340 (Ar-NO

2) 1450 (N=N) 1650 (C=N)

3400 (Ar-OH) 1H-NMR (CDCl3) 120575 480 (s 3H 3Ar-OH)

630ndash650 (m 4H Ar-CH) 720 (d 2H Ar-CH) 750ndash790(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1622 1604 1584 1573 1554 1546 1502 1457 1289 12881283 1243 1242 1241 1232 1209 1208 1207 1166 11631162 (21 aromatic carbon) 951 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6150 H 340 N 1630 MS 119898119911 42941 (100 M+) 27920(70) 18710 (50) 15000 (40) 12210 (40) 9500 (20)9310 (20) 7910 (10) 7700 (10) 4510 (10) 6820(20) 2800 (10)

235 Characterization Data of 4-(2-Hydroxy-5-(phenyldi-azenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4e)Yellowish Powder Yield 6049 mp 170∘C IR (KBr)cmminus1 1330 (Ar-NO

2) 1440 (N=N) 1650 (C=N) 3070 (Ar-

OH) 1H-NMR (CDCl3) 120575 450 (s 3H 3Ar-OH) 660ndash680

(m 4H Ar-CH) 730 (d 2H Ar-CH) 740ndash790 (m 7HAr-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1626

1601 1589 1577 1548 1523 1454 1308 1297 1294 12861285 1281 1247 1239 1237 1234 1201 1168 1167 1162(21 aromatic carbon) 956 (C pyrimidine) Anal Calcd forC22H16N4O3() C 6874 H 420 N 1458 Found () C

6860 H 410 N 1430 MS 119898119911 38432 (100 M+) 27910(70) 18710 (60) 10510 (40) 9520 (20) 9310 (10)7900 (10) 7720 (10) 4510 (10) 6810 (20) 2810(10)

236 Characterization Data of 4-(2-Hydroxy-5-(p-tol-yldiazenyl)phenyl)-6-(4-nitrophenyl)-pyrimidin-2-ol (5a)Brownish Powder Yield 7026 mp 165∘C IR (KBr) cmminus11350 (Ar-NO

2) 1490 (N=N) 1600 (C=N) 2900 (Ar-CH

3)

3390 (Ar-OH) 1H-NMR (CDCl3) 120575 240 (s 3H Ar-CH

3)

520 (s 2H 2Ar-OH) 670 (s 1H Ar-CH) 680 (d 2HAr-CH) 730 (d 2H Ar-CH) 750ndash770 (m 8H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1625 1604 1573

1546 1496 1478 1457 1418 1405 1294 1292 1262 12611243 1242 1232 1231 1229 1228 1207 1166 (21 aromatic

carbon) 959 (C pyrimidine) 212 (CH3) Anal Calcd for

C23H17N5O4() C 6463 H 401 N 1639 Found () C

6440 H 400 N 1620 MS 119898119911 42710 (100 M+) 30810(80) 18700 (60) 12210 (50) 11900 (40) 9510 (30)9300 (10) 9110 (20) 7910 (10) 7710 (10) 4590(30) 6800 (10) 2800 (20)

237 Characterization Data of 4-(2-Hydroxy-5-((2-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5b)Reddish Powder Yield 6518 mp 214∘C IR (KBr) cmminus11320 (Ar-NO

2) 1430 (N=N) 1630 (C=N) 3130 (Ar-OH)

1H-NMR (CDCl3) 120575 530 (s 2H 2Ar-OH) 650 (s 1H

Ar-CH) 680 (d 1H Ar-CH) 770ndash790 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1624 1603 1575

1543 1479 1475 1457 1437 1415 1353 1317 1265 12641246 1248 1247 1243 1239 1238 1206 1163 (21 aromaticcarbon) 954 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5740 H 300N 1820 MS 119898119911 45810 (100 M+) 30820 (70) 21610(40) 22200 (50) 15000 (60) 12200 (30) 9500(20) 9310 (20) 7900 (10) 6820 (20)

238 Characterization Data of 4-(2-Hydroxy-5-((3-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5c)Brownish Powder Yield 5433mp 239∘C IR (KBr) cmminus11330 (Ar-NO

2) 1410 (N=N) 1650 (C=N) 3030 (Ar-OH)

1H-NMR (CDCl3) 120575 520 (s 2H 2Ar-OH) 640 (s 1H

Ar-CH) 690 (d 1H Ar-CH) 760ndash790 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1622 1606 1573

1546 1525 1488 1474 1456 1419 1319 1299 1267 12661261 1248 1247 1245 1234 1207 1174 1168 (21 aromaticcarbon) 951 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5750 H 290N 1810 MS 119898119911 45838 (100 M+) 24210 (60) 21620(50) 12210 (40) 12120 (20) 9510 (20) 9300 (10)7910 (20) 6810 (10)

239 Characterization Data of 4-(2-Hydroxy-5-((4-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5d)Brownish Powder Yield 6187 mp 250∘C IR (KBr) cmminus11320 (Ar-NO

2) 1450 (N=N) 1670 (C=N) 3420 (Ar-OH)

1H-NMR (CDCl3) 120575 540 (s 2H 2Ar-OH) 620 (s 1H

Ar-CH) 670 (d 1H Ar-CH) 750ndash780 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1621 1607 1557

1575 1546 1508 1477 1456 1418 1269 1268 1249 12481244 1243 1242 1235 1209 1207 1206 1169 (21 aromaticcarbon) 957 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5730 H 310N 1830 MS 119898119911 45846 (100 M+) 24220 (80) 21610(60) 12220 (50) 12110 (10) 9520 (10) 9320 (10)7920 (10) 7710 (20) 6820 (20)

2310 Characterization Data of 4-(2-Hydroxy-5-(ph-enyldiazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5e)Yellowish Powder Yield 7422 mp 160∘C IR (KBr) cmminus11310 (Ar-NO

2) 1420 (N=N) 1670 (C=N) 3080 (Ar-OH)

1H-NMR (CDCl3) 120575 490 (s 2H 2Ar-OH) 670 (s 1H

Ar-CH) 710 (d 1H Ar-CH) 750ndash780 (m 11H Ar-CH)

Organic Chemistry International 7

Table 1 Antibacterial and anti-fungal activity of newly synthesized chalcone derivatives (2andash2e 3andash3e) and pyrimidine derivatives (4andash4e5andash5e)

Compound (500 120583gdisk)

Average value of zone of inhibition in mmAntimicrobial Activity

Gram Positive Gram Negative Antifungal activityS aureus B subtilis P vulgaris E coli C albicans A niger

2a mdash mdash mdash mdash mdash mdash2b 10 08 13 12 11 132c 11 06 16 14 12 162d 6 8 10 08 08 102e mdash 4 mdash mdash mdash mdash3a mdash mdash 5 4 mdash mdash3b 13 10 14 14 16 153c 12 13 16 15 17 183d 8 14 12 10 12 133e mdash 5 mdash 4 5 44a 4 3 6 8 8 104b 14 13 17 14 16 174c 15 08 19 18 18 204d 10 12 12 14 16 204e 7 6 8 10 14 125a 5 6 9 8 12 145b 29 18 24 26 22 255c 22 24 26 24 20 275d 13 15 16 12 24 215e 12 10 15 16 16 15Ciprofloxacin 30 26 32 31 mdash mdashFluconazole mdash mdash mdash mdash 24 26ldquomdashrdquo represent ldquoinactiverdquo

13C-NMR (100MHz CDCl3-d6 120575 ppm) 1624 1609 1577

1548 1525 1476 1457 1415 1308 1298 1295 1269 12671244 1243 1241 1238 1235 1234 1209 1168 (21 aromaticcarbon) 953 (C pyrimidine) Anal Calcd for C

22H15N5O4

() C 6392 H 366 N 1694 Found () C 6380 H 350N 1680 MS 119898119911 41336 (100 M+) 21620 (70) 19710(40) 12210 (60) 12100 (30) 9500 (20) 9310 (30)7720 (20) 6810 (10)

24 Biological Activity The newly synthesized compoundswere examined for antibacterial and antifungal activity usingwell diffusion method against the panel of different grampositive and gram negative bacterial stains and fungi stainsDifferent bacterial stains used for the screeningwere S aureus(gram Positive) B subtilis (gram Positive) P vulgaris (gramNegative) and E coli (gram Negative) Antifungal activitiesof these compounds were also tested against C albicans andA niger The stains for antibacterial and antifungal activitieswere obtained from Department of Microbiology S F SCollege Nagpur The stock solutions of pyrimidine deriva-tives or standard drug in dimethyl sulfoxide (100120583gmL)were

prepared for the study The sterilized petri dishes and agarmedium were used in the present work The antibacterialactivities of compounds were evaluated by measuring thezone of inhibition on nutrient agar plate Muller Hinton agarwas used in the anti-bacterial study whereas SabouraudrsquosDextrose agar was used for the anti-fungal activity studyThecomposition of nutrient agar medium to culture the bacterialstrains used in the present study was as follows Peptone(10 gm) agar powder (20 gm) sodium chloride powder(10 gm) beaf extract (5 gm) and distilled water (1000mL)The pH of the nutrient agar medium was adjusted to 72 Thenutrient agar medium was mixed well and was autoclaved at15 lbs pressure at 120∘C for at least 15 minutes

In the sterilized agar medium 10mL of one-day-oldbacterialfungal cultures were added Bacterial or fungalculture were inoculated into nutrient broth and incubatedat 37 plusmn 2∘C on rotary shaker at 100 rpm After 36-hourincubation bacterial suspensions were used for further testsThis media were poured in petri dishes and allowed toset Two wells were created using a 5mm cork borer Inthis well 01mL of test samplestandards were filled All thenutrient agar plates were incubated at 37∘C for 24 hours in

8 Organic Chemistry International

anti-bacterial study and at 37∘C for 48 hours in anti-fungalactivity study The plates were observed for clear zone ofinhibition Then diameters of the zone of inhibition for thesecompounds were measured The biological activities weretested for at least three times for all the compounds againstall microorganisms and average value has been reported hereThe results of antimicrobial activity and antifungal activity ofthe test compounds have been collected in Table 1

3 Results and Discussion

A new series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one (2andash2e 3andash3e) and pyrimidines derivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols (4andash4e 5andash5e)were synthesized as depicted in Scheme 1 In the first stepdifferent azo-aldehydes (1andash1e) were prepared by the reactionof aromatic amines with salicylaldehyde in equimolarcondition Typical procedure of synthesis of chalcones(2andash2e 3andash3e) in the present work involves the reaction ofequimolar quantities of various substituted azo-aldehydeswith either 4-nitroacetophenone or p-acetophenone inethanolic alkaline medium Pyrimidine derivatives (4andash4e 5andash5e) were obtained by refluxing newly synthesizedsubstituted chalcones and urea in ethanol in presence ofaqueous NaOH solution and then cooling the reactionmixture in crushed ice The newly synthesized compoundswere characterized on the basis of their spectroscopic data(1H-NMR 13C-NMR IR and Mass) and elemental analysisIn elemental analysis the percentage of the nitrogenhydrogen and carbon was found to be experimentallyequivalent to the calculated values in all compounds Ingeneral compounds 1andash1e have shown aldehydic C=O peakwithin the range of 1700-1700 cmminus1 whereas aldehydic HndashC=peaks approximately within 2820 up to 2850 cmminus1 The 1H-NMR spectra have shown the peaks of protons present in thecompounds at their appropriate 120575 values whereas 13C-NMRconfirmed the numbers of C atoms in the newly synthesizedcompounds In the LCMS of the synthesized compoundspeaks for molecular ion peak were observed at its respectivemolecular mass The newly synthesized chalcones andpyrimidines were evaluated for in vitro antibacterial andantifungal activities against various gram positive gramnegative bacteria and fungal species The results have beencollected in Table 1 Ciprofloxacin as the standard drugwas tested against bacterial strains whereas Fluconazoleas the standard drug was tested against fungal strains forcomparison with newly synthesized compounds The closesurvey of values indicates that the chalcones compound(2andash2e 3andash3e) exhibited varied range zone of inhibitiondepending upon the substituent on the ring structure Mostof the compounds have shown moderate to good biologicalactivity against the bacterial and fungal strains Compounds5a and 5b have shown excellent activity against both grampositive and gram negative bacterial strains as comparedto standard drug Ciprofloxacin Compounds 5b 5c and5d have shown excellent activity against as compared tostandard drug Fluconazole

4 Conclusion

A series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one and pyrimidinesderivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols were successfully synthesized All the newlysynthesized compoundswere characterized spectroscopicallyand using analytical techniques such as 1H-NMR 13C-NMRIR and mass and elemental analysis Anti-bacterial activitystudies reveal that compounds 5b and 5c have shown thehighest activity among all newly synthesized compoundsas compared to standard drug whereas compounds 5b 5cand 5d have shown the highest antifungal activity amongall newly synthesized compounds as compared to standarddrug

References

[1] T Narender S Shweta K Tanvir M Srinivasa Rao K Sri-vastava and S K Puri ldquoPrenylated chalcones isolated fromCrotalaria genus inhibits in vitro growth of the human malariaparasite Plasmodium falciparumrdquo Bioorganic and MedicinalChemistry Letters vol 15 no 10 pp 2453ndash2455 2005

[2] Z Nowakowska ldquoA review of anti-infective and anti-inflammatory chalconesrdquo European Journal of MedicinalChemistry vol 42 no 2 pp 125ndash137 2007

[3] M Ceylan and E Findik ldquoSynthesis and characterization ofnew chalcone derivatives from cis-bicyclo[320]hept-2-en-6-onerdquo Synthetic Communications vol 39 no 6 pp 1046ndash10542009

[4] H O Saxena U Faridi J K Kumar et al ldquoSynthesis of chalconederivatives on steroidal framework and their anticancer activi-tiesrdquo Steroids vol 72 no 13 pp 892ndash900 2007

[5] R J Anto K Sukumaran G KuttanMNA Rao V Subbarajuand R Kuttan ldquoAnticancer and antioxidant activity of syntheticchalcones and related compoundsrdquo Cancer Letters vol 97 no 1pp 33ndash37 1995

[6] J N Domınguez C Leon J Rodrigues N G De DomınguezJ Gut and P J Rosenthal ldquoSynthesis and evaluation ofnew antimalarial phenylurenyl chalcone derivativesrdquo Journal ofMedicinal Chemistry vol 48 no 10 pp 3654ndash3658 2005

[7] A Valla B Valla D Cartier et al ldquoNew syntheses andpotential antimalarial activities of new lsquoretinoid-like chalconesrsquordquoEuropean Journal of Medicinal Chemistry vol 41 no 1 pp 142ndash146 2006

[8] S F Nielsen S B Christensen G Cruciani A Kharazmiand T Liljefors ldquoAntileishmaniai chalcones statistical designsynthesis and three-dimensional quantitative structure-activityrelationship analysisrdquo Journal of Medicinal Chemistry vol 41no 24 pp 4819ndash4832 1998

[9] P Boeck C A Bandeira Falcao P C Leal et al ldquoSynthesisof chalcone analogues with increased antileishmanial activityrdquoBioorganic and Medicinal Chemistry vol 14 no 5 pp 1538ndash1545 2006

[10] K V Sashidhara M Kumar R K Modukuri et al ldquoSynthesisand anti-inflammatory activity of novel biscoumarin-chalconehybridsrdquoBioorganic andMedicinal Chemistry Letters vol 21 no15 pp 4480ndash4484 2011

Organic Chemistry International 9

[11] H-M Yang H-R Shin S-H Cho et al ldquoStructural require-ment of chalcones for the inhibitory activity of interleukin-5rdquoBioorganic and Medicinal Chemistry vol 15 no 1 pp 104ndash1112007

[12] S Cheenpracha C Karalai C Ponglimanont S Subhadhi-rasakul and S Tewtrakul ldquoAnti-HIV-1 protease activity ofcompounds from Boesenbergia panduratardquo Bioorganic andMedicinal Chemistry vol 14 no 6 pp 1710ndash1714 2006

[13] L Svetaz A Tapia S N Lopez et al ldquoAntifungal chalconesand new caffeic acids esters from Zuccagnia punctata actingagainst soybean infecting fungirdquo Journal of Agricultural andFood Chemistry vol 52 no 11 pp 3297ndash3300 2004

[14] B P Bandgar B S Hote N A Dhole and R N GaccheldquoSynthesis and biological evaluation of novel series of chalconederivatives as inhibitors of cyclooxygenase and LPS-inducedTNF-120572 with potent antioxidant propertiesrdquo Medicinal Chem-istry Research vol 21 pp 2292ndash2299 2011

[15] O Nerya R Musa S Khatib S Tamir and J Vaya ldquoChalconesas potent tyrosinase inhibitors the effect of hydroxyl positionsand numbersrdquo Phytochemistry vol 65 no 10 pp 1389ndash13952004

[16] K V Sashidhara A Kumar M Kumar J Sarkar and SSinha ldquoSynthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agentsrdquo Bioorganic andMedicinal Chemistry Letters vol 20 no 24 pp 7205ndash7211 2010

[17] C THsieh T JHsiehM El-Shazly et al ldquoSynthesis of chalconederivatives as potential anti-diabetic agentsrdquo Bioorganic ampMedicinal Chemistry Letters vol 22 pp 3912ndash3915 2012

[18] S Wattanasin and W S Murphy ldquoAn improved procedure forthe preparation of chalcones and related enonesrdquo Synthesis vol1980 pp 647ndash650 1980

[19] T Narender K Venkateswarlu B V Nayak and S Sarkar ldquoAnew chemical access for 31015840 -acetyl-41015840 -hydroxychalcones usingborontrifluoride-etherate via a regioselective Claisen-Schmidtcondensation and its application in the synthesis of chalconehybridsrdquo Tetrahedron Letters vol 52 no 44 pp 5794ndash57982011

[20] A Garcia-Raso J A Garcia-Raso R Mestres and J V Sinis-terra ldquoMechanism of Michael addition of ethyl acetoacetate tochalcone catalyzed by activated Ba(OH)

2rdquoReactionKinetics and

Catalysis Letters vol 28 no 2 pp 365ndash371 1985

[21] J R Patel M H Malani and B Z Dholakiya ldquoSilica sulfuricacid-catalyzed Claisen-Schmidt condensation of 134 trisub-stituted pyrrole 25 dione to chalconesrdquo Research on ChemicalIntermediates vol 38 pp 2371ndash2381 2012

[22] KV Sashidhara J N Rosaiah andAKumar ldquoIodine-catalyzedmild and efficient method for the synthesis of chalconesrdquoSynthetic Communications vol 39 no 13 pp 2288ndash2296 2009

[23] A K Verma and R Pratap ldquoChemistry of biologically impor-tant flavonesrdquo Tetrahedron vol 68 pp 8523ndash8538 2012

[24] MH Bukhari H L SiddiquiMAhmad THussain andMGMoloney ldquoSynthesis and anti-bacterial activities of some novelpyrazolobenzothiazine-based chalcones and their pyrimidinederivativesrdquo Medicinal Chemistry Research vol 21 pp 2885ndash2895 2011

[25] E A Bell and R G Foster ldquoStructure of lathyrinerdquo Nature vol194 no 4823 pp 91ndash92 1962

[26] F Tanaka S Takeuchi N Tanaka H Yonehara H Umezawaand Y J Sumiki ldquoBacimethrin a new antibiotic produced by Bmegatheriumrdquo Journal of Antibiotics A vol 14 pp 161ndash162 1961

[27] R G S Berlinck J C Braekman D Daloze et al ldquoPolycyclicguanidine alkaloids from the marine sponge Crambe crambeandCa++ channel blocker activity of crambescidin 816rdquo Journalof Natural Products vol 56 no 7 pp 1007ndash1015 1993

[28] Y-L Lin R-L Huang C-M Chang and Y-H Kuo ldquoTwonew puriniums and three new pyrimidines fromHeterostemmabrowniirdquo Journal of Natural Products vol 60 no 10 pp 982ndash985 1997

[29] I Ohtani R E Moore and M T C Runnegar ldquoCylindrosper-mopsin a potent hepatotoxin from the blue-green alga Cylin-drospermopsis raciborskiirdquo Journal of the American ChemicalSociety vol 114 pp 7941ndash7942 1992

[30] N Jiang XQDeng F N Li and Z S Quan ldquoSynthesis of novel7-substituted-5-phenyl-[1 2 4]triazolo[1 5-a] pyrimidines withanticonvulsant activityrdquo Iranian Journal of PharmaceuticalResearch vol 11 pp 799ndash806 2012

[31] M Ungureanu C C Moldoveanu A Poeata G Drochioiu MPetrovanu and I Mangalagiu ldquoNew pyrimidine compoundswith in vitro antimicrobial or antifungal activityrdquo AnnalesPharmaceutiques Francaises vol 56 pp 181ndash183 1998

[32] A E-G E Amr N M Sabry and M M Abdulla ldquoSynthe-sis reactions and anti-inflammatory activity of heterocyclicsystems fused to a thiophene moiety using citrazinic acid assynthonrdquo Monatshefte fur Chemie vol 138 no 7 pp 699ndash7072007

[33] N Fujiwara T Nakajima Y Ueda H Fujita and H KawakamildquoNovel piperidinylpyrimidine derivatives as inhibitors of HIV-1 LTR activationrdquo Bioorganic and Medicinal Chemistry vol 16no 22 pp 9804ndash9816 2008

[34] L Ballell R A Field G A C Chung and R J YoungldquoNew thiopyrazolo[34-d]pyrimidine derivatives as anti-mycobacterial agentsrdquo Bioorganic and Medicinal ChemistryLetters vol 17 no 6 pp 1736ndash1740 2007

[35] E Wagner K Al-Kadasi M Zimecki and W Sawka-Dobrowolska ldquoSynthesis and pharmacological screening ofderivatives of isoxazolo[45-d]pyrimidinerdquo European Journal ofMedicinal Chemistry vol 43 no 11 pp 2498ndash2504 2008

[36] A Tiwari W R Waud and R F Struck ldquoDetermination of thephamacophore of penclomedine a clinically-evaluated antitu-mor pyridine derivativerdquo Bioorganic and Medicinal Chemistryvol 10 no 11 pp 3593ndash3598 2002

[37] K Gorlitzer S Herbig and R D Walter ldquoIndeno[12-d]pyrimidin-4-yl-aminesrdquo Pharmazie vol 52 no 9 pp 670ndash672 1997

[38] I V Ukrainets I A Tugaibei N L Bereznyakova V NKravchenko and A V Turov ldquo4-Hydroxy-2-quinolones 144Alkyl- arylalkyl- and arylamides of 2-hydroxy-4-oxo-4H-pyrido[12-a]pyrimidine-3-carboxylic acid and their diureticpropertiesrdquo Chemistry of Heterocyclic Compounds no 5 pp718ndash729 2008

[39] S Q Wang L Fang X J Liu and K Zhao ldquoDesign synthesisand hypnotic activity of pyrazolo[15-a]pyrimidine derivativesrdquoChinese Chemical Letters vol 15 no 8 pp 885ndash888 2004

[40] W Yang Z Ruan Y Wang et al ldquoDiscovery and structure-activity relationships of trisubstituted pyrimidinespyridines as

10 Organic Chemistry International

novel calcium-sensing receptor antagonistsrdquo Journal of Medici-nal Chemistry vol 52 no 4 pp 1204ndash1208 2009

[41] R J Gillespie S J Bamford R Botting et al ldquoAntagonistsof the human A2A adenosine receptor 4 Design synthesisand preclinical evaluation of 7-aryltriazolo[45-d]pyrimidinesrdquoJournal of Medicinal Chemistry vol 52 no 1 pp 33ndash47 2009

[42] H A Deshpande H N Chopde C P Pandhurnekar and RJ Batra ldquoSynthesis characterization and testing of biologicalactivity of some novel chalcones derivatives of coumarinrdquoChemical Science Transactions vol 2 pp 621ndash627 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 3: Research Article Synthesis, Characterization, and ...downloads.hindawi.com/journals/oci/2013/582079.pdfand p-acetophenone or p-nitroacetophenone (.moL) were added to ethanol (mL) and

Organic Chemistry International 3

NN

C

O

CO

HC

NN

C

O

C NN

N N

C CHO

HC

NN

C NN

N N

C

O

Ar-NH2 +

CHO

CHO

OH OH

OH

OH

NaNO2

HCl 0ndash5∘C Ar

H3C

EtOH NaOHStirring 12 hrs

OH

HC

HOAr

Ar

Ar Ar

H2N NH2EtOH NaOHReflux 16 hrs

OH OH

HOHO HO O2N

EtOH NaOH

Reflux 16 hrs NH2H2N

COCH3

EtOH NaOHStirring 12 hrs

O2N

O2N

(1andash1e)

(2andash2e) (3andash3e)

(4andash4e) (5andash5e)

Where Ar- for compounds (a) -C6H4-CH3 (b) 2-NO2-C6H4- (c) 3-NO2-C6H4- (d) 4-NO2-C6H4- (e) -C6H5

Scheme 1

9032 mp 146∘C IR (KBr) cmminus1 1340 (Ar-NO2) 1400

(N=N) 1700 (aldehydic C=O) 2345 (aldehydic HndashC=) 2920(Ar-OH) 1H-NMR (CDCl

3) 120575 530 (s 1H Ar-OH) 760 (s

1H Ar-CH) 790ndash820 (m 6H Ar-CH) 1010 (s 1H Ar-CHO) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1945 1642

1558 1506 1452 1304 1243 1242 1241 1208 1207 11831165 (13 aromatic carbon) Anal Calcd for C

13H9N3O4()

C 5757 H 334 N 1549 Found () C 5740 H 320 N 1530MS119898119911 27130 (100M+) 15090 (70) 12180 (40) 12110(60) 9310 (30) 7710 (30) 4500 (20) 2920 (10)2810 (20)

215 Characterization Data of 2-Hydroxy-5-(ph-enyldiazenyl)benzaldehyde (1e) Yellowish Powder Yield

4 Organic Chemistry International

7305 mp 110∘C IR (KBr) cmminus1 1440 (N=N) 1740(aldehydic C=O) 2820 (aldehydic HndashC=) 3010 (Ar-OH)1H-NMR (CDCl

3) 120575 520 (s 1H Ar-OH) 710 (d 1H

Ar-CH) 750 (t 3H Ar-CH) 790ndash810 (m 3H Ar-CH)840 (s 1H Ar-CH) 1030 (s 1H Ar-CHO) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1947 1643 1526 1456 1308

1305 1296 1295 1241 1232 1231 1187 1165 (13 aromaticcarbon) Anal Calcd for C

13H10N2O2() C 6902 H 446

N 1238 Found () C 6900 H 430 N 1210 MS119898119911 22620(100 M+) 12130 (60) 10510 (50) 9320 (40) 7720(30) 2910 (20) 2820 (10)

22 General Procedure for the Synthesis of Chalcones (2andash2e3andash3e) To synthesize the chalcone derivatives in the firststep 2-hydroxy-5-((aryl)diazenyl)benzaldehyde (001moL)and p-acetophenone or p-nitroacetophenone (001moL)were added to ethanol (30mL) and then mixed thoroughlyat the room temperature In this mixture 10mL of 20aqueous NaOH solution was added slowly The reactionmixture was stirred over the magnetic stirrer for at least 12hours The reaction mixture was then kept for overnight Itwas then poured into beaker containing crushed ice Theexcess of alkali in the reaction mixture was neutralized andthe reaction mixture was then slightly acidified by dropwiseaddition of dilute hydrochloric acid solution The chalconederivative that is 3-(2-hydroxy-5-((aryl)diazenyl)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2andash2e) and 3-(2-hydroxy-5-((aryl) diazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3andash3e) gets precipitated out and wasfiltered using Whatman filter paper number 40 The crudechalcone product was recrystallized using ethanol

221 Characterization Data of 3-(2-Hydroxy-5-(p-tolyldi-azenyl)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2a)Yellowish Powder Yield 7785 mp 130∘C IR (KBr) cmminus11490 (N=N) 1590 (C=C) 1680 (C=O) 2850 (Ar-CH

3) 3410

(Ar-OH) 1H-NMR (CDCl3) 120575 230 (s 3H Ar-CH

3) 490

(s 2H 2Ar-OH) 680ndash690 (m 3H Ar-CH) 720ndash730 (t3H Ar-CH) 740 (d 2H Ar-CH) 760ndash780 (m 6H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895 1640 1592

1497 1453 1416 1405 1313 1312 1304 1293 1292 12391226 1229 1212 1204 1163 1161 1167 1165 1164 (22aromatic carbon) 215 (CH

3) Anal Calcd for C

22H18N2O3

() C 7373 H 506 N 782 Found () C 7320 H 490 N770 MS119898119911 35830 (100 M+) 21108 (54) 14705 (46)12106 (15) 9110 (12) 93 (33) 2806 (21) 2610 (10)

222 Characterization Data of 3-(2-Hydroxy-5-((2-ni-trophenyl)diazenyl)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2b) Brownish Powder Yield 6705 mp 142∘C IR(KBr) cmminus1 1320 (Ar-NO

2) 1440 (N=N) 1580 (C=C) 1680

(C=O) 3030 (Ar-OH) 1H-NMR (CDCl3) 120575 510 (s 2H

2Ar-OH) 680 (t 3H Ar-CH) 740 (d 1H C=CH) 760ndash770(m 7H Ar-CH) 820 (d 1H C=CH) 13C-NMR (100MHzCDCl

3-d6 120575 ppm) 1896 1642 1594 1475 1451 1439 1412

1352 1316 1312 1311 1304 1244 1238 1212 1235 12041166 1163 1161 1162 (21 aromatic carbon) Anal Calcd forC21H15N3O5() C 6473 H 388 N 1079 Found () C

6470 H 370 N 1060 MS 119898119911 38938 (100 M+) 24210(65) 14708 (40) 12105 (13) 12210 (40) 9310 (14)2808 (21) 2610 (8)

223 Characterization Data of 3-(2-Hydroxy-5-((3-nitro-phenyl)diazenyl)phenyl)-1-(4-hydroxy phenyl)prop-2-en-1-one(2c) Brownish Powder Yield 7346 mp 164∘C IR (KBr)cmminus1 1310 (Ar-NO

2) 1460 (N=N) 1570 (C=C) 1690 (C=O)

3010 (Ar-OH) 1H-NMR (CDCl3) 120575 520 (s 2H 2Ar-OH)

690 (t 3H Ar-CH) 760 (d 1H C=CH) 780ndash810 (m 7HAr-CH) 830 (d 1H C=CH) 13C-NMR (100MHz CDCl

3-

d6 120575 ppm) 1896 1646 1591 1523 1485 1455 1413

1314 1312 1311 1302 1295 1265 1234 1215 1203 11711167 1164 1163 1162 (21 aromatic carbon) Anal Calcd forC21H15N3O5() C 6473 H 388 N 1079 Found () C

6460 H 360 N 1040 MS 119898119911 38941 (100 M+) 24200(85) 15010 (40) 14710 (40) 12210 (40) 12110 (15)9310 (16) 7700 (10) 4510 (20) 2800 (5) 2600 (10)

224 Characterization Data of 3-(2-Hydroxy-5-((4-nitro-phenyl)diazenyl)phenyl)-1-(4-hydroxy phenyl)prop-2-en-1-one(2d) Brownish Powder Yield 7697 mp 188∘C IR (KBr)cmminus1 1330 (Ar-NO

2) 1500 (N=N) 1580 (C=C) 1660 (C=O)

3270 (Ar-OH) 1H-NMR (CDCl3) 120575 530 (s 2H 2Ar-OH)

660 (t 3H Ar-CH) 740 (d 1H C=CH) 770ndash810 (m 7HAr-CH) 850 (d 1H C=CH) 13C-NMR (100MHz CDCl

3-

d6 120575 ppm) 1894 1644 1592 1554 1503 1453 1414

1315 1314 1304 1244 1243 1236 1208 1206 1204 11661165 1164 1163 1161 (21 aromatic carbon) Anal Calcd forC21H15N3O5() C 6473 H 388 N 1079 Found () C

6440 H 370 N 1060 MS 119898119911 38910 (100 M+) 24190(70) 15100 (40) 14700 (50) 12190 (30) 12100 (20)9290 (20) 7710 (12) 4500 (15) 2810 (10) 2610(13)

225 Characterization Data of 3-(2-Hydroxy-5-(phenyld-iazenyl)phenyl)-1-(4-hydroxy phenyl)prop-2-en-1-one (2e)Greenish Powder Yield 7406 mp 122∘C IR (KBr)cmminus1 1450 (N=N) 1550 (C=C) 1680 (C=O) 3020 (Ar-OH)1H-NMR (CDCl

3) 120575 520 (s 2H 2Ar-OH) 680ndash740 (m

10H Ar-CH) 770 (s 1H Ar-CH) 790 (d 2H Ar-CH) 840(d 1H C=CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1895 1646 1595 1523 1454 1413 1314 1316 1308 13021294 1293 1235 1235 1232 1211 1204 1167 1165 11641163 (21 aromatic carbon) Anal Calcd for C

21H16N2O3

() C 7324 H 468 N 813 Found () C 7330 H 450 N810 MS119898119911 34432 (100 M+) 14710 (60) 19708 (40)12110 (20) 9390 (50) 7720 (30) 2630 (10)

226 Characterization Data of 3-(2-Hydroxy-5-(p-tol-yldiazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3a)Brownish Powder Yield 7902 mp 152∘C IR (KBr)cmminus1 1350 (Ar-NO

2) 1510 (N=N) 1600 (C=C) 1680 (C=O)

2850 (Ar-CH3) 3380 (Ar-OH) 1H-NMR (CDCl

3) 120575 230

(s 3H Ar-CH3) 510 (s 1H Ar-OH) 680ndash720 (m 4H

Ar-CH) 730 (s 1H C=CH) 740 (s 1H C=CH) 770ndash780(t 3H Ar-CH) 810 (d 2H Ar-CH) 840 (d 2H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895 1592 1536

Organic Chemistry International 5

1494 1452 1443 1412 1403 1307 1306 1292 1291 12431241 1235 1226 1222 1215 1203 1164 1163 (21 aromaticcarbon) 215 (CH

3) Anal Calcd for C

22H17N3O4() C

6821 H 442 N 1085 Found () C 6820 H 430 N 1070MS 119898119911 38710 (100 M+) 21120 (60) 17610 (40)15000 (20) 12110 (40) 9320 (40) 9110 (30) 2800(20) 2608 (10)

227 Characterization Data of 3-(2-Hydroxy-5-((2-ni-trophenyl)diazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one(3b) Brownish Powder Yield 734 mp 160∘C IR (KBr)cmminus1 1340 (Ar-NO

2) 1430 (N=N) 1550 (C=C) 1640 (C=O)

3140 (Ar-OH) 1H-NMR (CDCl3) 120575 510 (s 1H Ar-OH)

690 (d 1H Ar-CH) 740 (d 1H C=CndashH) 760ndash780 (m 8HAr-CH) 810 (d 1H C=CH) 840 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1898 1596 1535 1476 1453

1441 1437 1413 1354 1315 1306 1305 1246 1243 12421237 1234 1214 1203 1167 1162 (21 aromatic carbon)Anal Calcd for C

21H14N4O6() C 6029 H 337 N 1339

Found () C 6020 H 330 N 1310 MS 119898119911 41825 (100M+) 24210 (60) 17620 (50) 15010 (40) 12210 (30)12100 (20) 9310 (10) 7710 (30) 4500 (10) 2810(10) 2600 (10)

228 Characterization Data of 3-(2-Hydroxy-5-((3-ni-trophenyl)diazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one(3c) Reddish Powder Yield 6801 mp 200∘C IR (KBr)cmminus1 1320 (Ar-NO

2) 1410 (N=N) 1570 (C=C) 1660 (C=O)

3120 (Ar-OH) 1H-NMR (CDCl3) 120575 530 (s 1H Ar-OH)

660 (d 1H Ar-CH) 720 (d 1H C=CndashH) 740ndash760 (m 8HAr-CH) 820 (d 1H C=CH) 860 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1895 1594 1534 1522 1484

1454 1443 1417 1318 1307 1306 1293 1265 1247 12451237 1218 1204 1171 1165 1164 (21 aromatic carbon) AnalCalcd for C

21H14N4O6() C 6029 H 337 N 1339 Found

() C 6010 H 310 N 1320 MS 119898119911 41830 (100 M+)24200 (70) 17600 (50) 12200 (40) 12110 (30) 9310(10) 2800 (10) 2790 (10)

229 Characterization Data of 3-(2-Hydroxy-5-((4-ni-trophenyl)diazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one(3d) Greenish Powder Yield 7081 mp 245∘C IR (KBr)cmminus1 1340 (Ar-NO

2) 1500 (N=N) 1590 (C=C) 1670 (C=O)

3250 (Ar-OH) 1H-NMR (CDCl3) 120575 490 (s 1H Ar-OH)

620 (d 1H Ar-CH) 710 (d 1H C=CndashH) 730ndash750 (m 8HAr-CH) 810 (d 1H C=CH) 830 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1898 1591 1557 1536 1504

1454 1445 1414 1309 1306 1247 1246 1245 1241 12371216 1208 1204 1203 1169 1161 (21 aromatic carbon)Anal Calcd for C

21H14N4O6() C 6029 H 337 N 1339

Found () C 6020 H 320 N 1330 MS 119898119911 41840 (100M+) 24220 (80) 17610 (70) 130 (50) 12220 (40)12110 (30) 10500 (20) 9300 (10) 4500 (10) 2820(10) 2740 (10)

2210 Characterization Data of 3-(2-Hydroxy-5-(phe-nyldiazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one (3e)Brownish Powder Yield 8062 mp 155∘C IR (KBr) cmminus1

1310 (Ar-NO2) 1450 (N=N) 1580 (C=C) 1660 (C=O) 3150

(Ar-OH) 1H-NMR (CDCl3) 120575 520 (s 1H Ar-OH) 670

(s 1H Ar-CH) 740 (t 3H Ar-CH) 760 (s 1H CH=CH)770ndash790 (m 6H Ar-CH) 810 (s 1H CH=CH) 830 (d2H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895

1595 1539 1529 1458 1447 1418 1307 1306 1305 12941292 1245 1244 1238 1235 1233 1219 1206 1168 1165(21 aromatic carbon) Anal Calcd for C

21H15N3O4() C

6756 H 405 N 1125 Found () C 6740 H 400 N 1120MS 119898119911 37334 (100 M+) 19710 (60) 17600 (50) 150(60) 12200 (50) 12100 (40) 9310 (20) 2810 (10)2710 (10) 2600 (10)

23 General Procedure for the Synthesis of Pyrimidines(4andash4e 5andash5e) A mixture of chalcone (001moL) and urea(001moL) was prepared in 30mL ethanol To this solution10mL 20 aqueous NaOH solution was addedThe resultingmixture was then refluxed on water bath for at least 16 hoursThe mixture was then cooled to room temperature andpoured into the beaker containing crushed ice The solidproduct of pyrimidine derivatives that is 4-(2-hydroxy-5-((aryl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ols (4andash4e) or 4-(2-hydroxy-5-((aryl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ols (5andash5e) gets precipitated outThe solid obtained was filtered using Whatman filter paperno 40 and recrystallized using ethanol

231 Characterization Data of 4-(2-Hydroxy-5-(p-tolyldi-azenyl)phenyl)-6-(4-hydroxyphenyl)-pyrimidin-2-ol (4a)Yellowish Powder Yield 6518 mp 174∘C IR (KBr)cmminus1 1490 (N=N) 1610 (C=N) 2900 (Ar-CH

3) 3430 cmminus1

(Ar-OH) 1H-NMR (CDCl3) 120575 240 (s 3H Ar-CH

3) 510

(s 3H 3Ar-OH) 660 (s 1H Ar-CH) 680ndash730 (m 7HAr-CH) 770ndash790 (m 4H Ar-CH) 13C-NMR (100MHzCDCl

3-d6 120575 ppm) 1627 1604 1585 1576 1549 1495

1456 1408 1299 1298 1289 1286 1285 1248 1238 12241226 1209 1168 1167 1163 (21 aromatic carbon) 954 (Cpyrimidine) 216 (CH

3) Anal Calcd for C

23H18N4O3()

C 6934 H 455 N 1406 Found () C 6930 H 450 N 1400MS 119898119911 39842 (100 M+) 27920 (80) 11910 (60)18700 (50) 9510 (30) 9310 (20) 9100 (10) 7900(10) 6810 (20) 2820 (10)

232 Characterization Data of 4-(2-Hydroxy-5-((2-nitroph-enyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol(4b) Brownish Powder Yield 5458 mp 210∘C IR(KBr) cmminus1 1310 (Ar-NO

2) 1420 (N=N) 1670 (C=N)

3030 (Ar-OH) 1H-NMR (CDCl3) 120575 490 (s 3H 3Ar-OH)

660ndash690 (m 4H Ar-CH) 730 (d 2H Ar-CH) 770ndash840(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1607 1624 1582 1579 1546 1477 1456 1438 1357 13191288 1283 1281 1247 1246 1236 1234 1206 1166 11651162 (21 aromatic carbon) 952 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6140 H 330 N 1610 MS 119898119911 42934 (100 M+) 30720(70) 18700 (50) 12210 (50) 12000 (40) 9520 (30)9300 (20) 7910 (10) 7720 (20) 4510 (10) 6800(10) 2810 (10)

6 Organic Chemistry International

233 Characterization Data of 4-(2-Hydroxy-5-((3-ni-trophenyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4c) Brownish Powder Yield 5962 mp 224∘CIR (KBr) cmminus1 1320 (Ar-NO

2) 1430 (N=N) 1640 (C=N)

3010 (Ar-OH) 1H-NMR (CDCl3) 120575 470 (s 3H 3Ar-OH)

640ndash660 (m 4H Ar-CH) 740 (d 2H Ar-CH) 760ndash820(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1628 1609 1583 1571 1544 1529 1481 1457 1312 12941288 1287 1284 1264 1242 1238 1203 1179 1165 11611163 (21 aromatic carbon) 959 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6130 H 320 N 1620 MS 119898119911 42928 (100 M+) 27910(60) 18720 (40) 15010 (30) 12220 (50) 9510 (30)9320 (10) 7920 (20) 7710 (10) 4500 (10) 6810(10) 2810 (10)

234 Characterization Data of 4-(2-Hydroxy-5-((4-ni-trophenyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4d) Brownish Powder Yield 6387 mp 240∘CIR (KBr) cmminus1 1340 (Ar-NO

2) 1450 (N=N) 1650 (C=N)

3400 (Ar-OH) 1H-NMR (CDCl3) 120575 480 (s 3H 3Ar-OH)

630ndash650 (m 4H Ar-CH) 720 (d 2H Ar-CH) 750ndash790(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1622 1604 1584 1573 1554 1546 1502 1457 1289 12881283 1243 1242 1241 1232 1209 1208 1207 1166 11631162 (21 aromatic carbon) 951 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6150 H 340 N 1630 MS 119898119911 42941 (100 M+) 27920(70) 18710 (50) 15000 (40) 12210 (40) 9500 (20)9310 (20) 7910 (10) 7700 (10) 4510 (10) 6820(20) 2800 (10)

235 Characterization Data of 4-(2-Hydroxy-5-(phenyldi-azenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4e)Yellowish Powder Yield 6049 mp 170∘C IR (KBr)cmminus1 1330 (Ar-NO

2) 1440 (N=N) 1650 (C=N) 3070 (Ar-

OH) 1H-NMR (CDCl3) 120575 450 (s 3H 3Ar-OH) 660ndash680

(m 4H Ar-CH) 730 (d 2H Ar-CH) 740ndash790 (m 7HAr-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1626

1601 1589 1577 1548 1523 1454 1308 1297 1294 12861285 1281 1247 1239 1237 1234 1201 1168 1167 1162(21 aromatic carbon) 956 (C pyrimidine) Anal Calcd forC22H16N4O3() C 6874 H 420 N 1458 Found () C

6860 H 410 N 1430 MS 119898119911 38432 (100 M+) 27910(70) 18710 (60) 10510 (40) 9520 (20) 9310 (10)7900 (10) 7720 (10) 4510 (10) 6810 (20) 2810(10)

236 Characterization Data of 4-(2-Hydroxy-5-(p-tol-yldiazenyl)phenyl)-6-(4-nitrophenyl)-pyrimidin-2-ol (5a)Brownish Powder Yield 7026 mp 165∘C IR (KBr) cmminus11350 (Ar-NO

2) 1490 (N=N) 1600 (C=N) 2900 (Ar-CH

3)

3390 (Ar-OH) 1H-NMR (CDCl3) 120575 240 (s 3H Ar-CH

3)

520 (s 2H 2Ar-OH) 670 (s 1H Ar-CH) 680 (d 2HAr-CH) 730 (d 2H Ar-CH) 750ndash770 (m 8H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1625 1604 1573

1546 1496 1478 1457 1418 1405 1294 1292 1262 12611243 1242 1232 1231 1229 1228 1207 1166 (21 aromatic

carbon) 959 (C pyrimidine) 212 (CH3) Anal Calcd for

C23H17N5O4() C 6463 H 401 N 1639 Found () C

6440 H 400 N 1620 MS 119898119911 42710 (100 M+) 30810(80) 18700 (60) 12210 (50) 11900 (40) 9510 (30)9300 (10) 9110 (20) 7910 (10) 7710 (10) 4590(30) 6800 (10) 2800 (20)

237 Characterization Data of 4-(2-Hydroxy-5-((2-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5b)Reddish Powder Yield 6518 mp 214∘C IR (KBr) cmminus11320 (Ar-NO

2) 1430 (N=N) 1630 (C=N) 3130 (Ar-OH)

1H-NMR (CDCl3) 120575 530 (s 2H 2Ar-OH) 650 (s 1H

Ar-CH) 680 (d 1H Ar-CH) 770ndash790 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1624 1603 1575

1543 1479 1475 1457 1437 1415 1353 1317 1265 12641246 1248 1247 1243 1239 1238 1206 1163 (21 aromaticcarbon) 954 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5740 H 300N 1820 MS 119898119911 45810 (100 M+) 30820 (70) 21610(40) 22200 (50) 15000 (60) 12200 (30) 9500(20) 9310 (20) 7900 (10) 6820 (20)

238 Characterization Data of 4-(2-Hydroxy-5-((3-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5c)Brownish Powder Yield 5433mp 239∘C IR (KBr) cmminus11330 (Ar-NO

2) 1410 (N=N) 1650 (C=N) 3030 (Ar-OH)

1H-NMR (CDCl3) 120575 520 (s 2H 2Ar-OH) 640 (s 1H

Ar-CH) 690 (d 1H Ar-CH) 760ndash790 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1622 1606 1573

1546 1525 1488 1474 1456 1419 1319 1299 1267 12661261 1248 1247 1245 1234 1207 1174 1168 (21 aromaticcarbon) 951 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5750 H 290N 1810 MS 119898119911 45838 (100 M+) 24210 (60) 21620(50) 12210 (40) 12120 (20) 9510 (20) 9300 (10)7910 (20) 6810 (10)

239 Characterization Data of 4-(2-Hydroxy-5-((4-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5d)Brownish Powder Yield 6187 mp 250∘C IR (KBr) cmminus11320 (Ar-NO

2) 1450 (N=N) 1670 (C=N) 3420 (Ar-OH)

1H-NMR (CDCl3) 120575 540 (s 2H 2Ar-OH) 620 (s 1H

Ar-CH) 670 (d 1H Ar-CH) 750ndash780 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1621 1607 1557

1575 1546 1508 1477 1456 1418 1269 1268 1249 12481244 1243 1242 1235 1209 1207 1206 1169 (21 aromaticcarbon) 957 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5730 H 310N 1830 MS 119898119911 45846 (100 M+) 24220 (80) 21610(60) 12220 (50) 12110 (10) 9520 (10) 9320 (10)7920 (10) 7710 (20) 6820 (20)

2310 Characterization Data of 4-(2-Hydroxy-5-(ph-enyldiazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5e)Yellowish Powder Yield 7422 mp 160∘C IR (KBr) cmminus11310 (Ar-NO

2) 1420 (N=N) 1670 (C=N) 3080 (Ar-OH)

1H-NMR (CDCl3) 120575 490 (s 2H 2Ar-OH) 670 (s 1H

Ar-CH) 710 (d 1H Ar-CH) 750ndash780 (m 11H Ar-CH)

Organic Chemistry International 7

Table 1 Antibacterial and anti-fungal activity of newly synthesized chalcone derivatives (2andash2e 3andash3e) and pyrimidine derivatives (4andash4e5andash5e)

Compound (500 120583gdisk)

Average value of zone of inhibition in mmAntimicrobial Activity

Gram Positive Gram Negative Antifungal activityS aureus B subtilis P vulgaris E coli C albicans A niger

2a mdash mdash mdash mdash mdash mdash2b 10 08 13 12 11 132c 11 06 16 14 12 162d 6 8 10 08 08 102e mdash 4 mdash mdash mdash mdash3a mdash mdash 5 4 mdash mdash3b 13 10 14 14 16 153c 12 13 16 15 17 183d 8 14 12 10 12 133e mdash 5 mdash 4 5 44a 4 3 6 8 8 104b 14 13 17 14 16 174c 15 08 19 18 18 204d 10 12 12 14 16 204e 7 6 8 10 14 125a 5 6 9 8 12 145b 29 18 24 26 22 255c 22 24 26 24 20 275d 13 15 16 12 24 215e 12 10 15 16 16 15Ciprofloxacin 30 26 32 31 mdash mdashFluconazole mdash mdash mdash mdash 24 26ldquomdashrdquo represent ldquoinactiverdquo

13C-NMR (100MHz CDCl3-d6 120575 ppm) 1624 1609 1577

1548 1525 1476 1457 1415 1308 1298 1295 1269 12671244 1243 1241 1238 1235 1234 1209 1168 (21 aromaticcarbon) 953 (C pyrimidine) Anal Calcd for C

22H15N5O4

() C 6392 H 366 N 1694 Found () C 6380 H 350N 1680 MS 119898119911 41336 (100 M+) 21620 (70) 19710(40) 12210 (60) 12100 (30) 9500 (20) 9310 (30)7720 (20) 6810 (10)

24 Biological Activity The newly synthesized compoundswere examined for antibacterial and antifungal activity usingwell diffusion method against the panel of different grampositive and gram negative bacterial stains and fungi stainsDifferent bacterial stains used for the screeningwere S aureus(gram Positive) B subtilis (gram Positive) P vulgaris (gramNegative) and E coli (gram Negative) Antifungal activitiesof these compounds were also tested against C albicans andA niger The stains for antibacterial and antifungal activitieswere obtained from Department of Microbiology S F SCollege Nagpur The stock solutions of pyrimidine deriva-tives or standard drug in dimethyl sulfoxide (100120583gmL)were

prepared for the study The sterilized petri dishes and agarmedium were used in the present work The antibacterialactivities of compounds were evaluated by measuring thezone of inhibition on nutrient agar plate Muller Hinton agarwas used in the anti-bacterial study whereas SabouraudrsquosDextrose agar was used for the anti-fungal activity studyThecomposition of nutrient agar medium to culture the bacterialstrains used in the present study was as follows Peptone(10 gm) agar powder (20 gm) sodium chloride powder(10 gm) beaf extract (5 gm) and distilled water (1000mL)The pH of the nutrient agar medium was adjusted to 72 Thenutrient agar medium was mixed well and was autoclaved at15 lbs pressure at 120∘C for at least 15 minutes

In the sterilized agar medium 10mL of one-day-oldbacterialfungal cultures were added Bacterial or fungalculture were inoculated into nutrient broth and incubatedat 37 plusmn 2∘C on rotary shaker at 100 rpm After 36-hourincubation bacterial suspensions were used for further testsThis media were poured in petri dishes and allowed toset Two wells were created using a 5mm cork borer Inthis well 01mL of test samplestandards were filled All thenutrient agar plates were incubated at 37∘C for 24 hours in

8 Organic Chemistry International

anti-bacterial study and at 37∘C for 48 hours in anti-fungalactivity study The plates were observed for clear zone ofinhibition Then diameters of the zone of inhibition for thesecompounds were measured The biological activities weretested for at least three times for all the compounds againstall microorganisms and average value has been reported hereThe results of antimicrobial activity and antifungal activity ofthe test compounds have been collected in Table 1

3 Results and Discussion

A new series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one (2andash2e 3andash3e) and pyrimidines derivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols (4andash4e 5andash5e)were synthesized as depicted in Scheme 1 In the first stepdifferent azo-aldehydes (1andash1e) were prepared by the reactionof aromatic amines with salicylaldehyde in equimolarcondition Typical procedure of synthesis of chalcones(2andash2e 3andash3e) in the present work involves the reaction ofequimolar quantities of various substituted azo-aldehydeswith either 4-nitroacetophenone or p-acetophenone inethanolic alkaline medium Pyrimidine derivatives (4andash4e 5andash5e) were obtained by refluxing newly synthesizedsubstituted chalcones and urea in ethanol in presence ofaqueous NaOH solution and then cooling the reactionmixture in crushed ice The newly synthesized compoundswere characterized on the basis of their spectroscopic data(1H-NMR 13C-NMR IR and Mass) and elemental analysisIn elemental analysis the percentage of the nitrogenhydrogen and carbon was found to be experimentallyequivalent to the calculated values in all compounds Ingeneral compounds 1andash1e have shown aldehydic C=O peakwithin the range of 1700-1700 cmminus1 whereas aldehydic HndashC=peaks approximately within 2820 up to 2850 cmminus1 The 1H-NMR spectra have shown the peaks of protons present in thecompounds at their appropriate 120575 values whereas 13C-NMRconfirmed the numbers of C atoms in the newly synthesizedcompounds In the LCMS of the synthesized compoundspeaks for molecular ion peak were observed at its respectivemolecular mass The newly synthesized chalcones andpyrimidines were evaluated for in vitro antibacterial andantifungal activities against various gram positive gramnegative bacteria and fungal species The results have beencollected in Table 1 Ciprofloxacin as the standard drugwas tested against bacterial strains whereas Fluconazoleas the standard drug was tested against fungal strains forcomparison with newly synthesized compounds The closesurvey of values indicates that the chalcones compound(2andash2e 3andash3e) exhibited varied range zone of inhibitiondepending upon the substituent on the ring structure Mostof the compounds have shown moderate to good biologicalactivity against the bacterial and fungal strains Compounds5a and 5b have shown excellent activity against both grampositive and gram negative bacterial strains as comparedto standard drug Ciprofloxacin Compounds 5b 5c and5d have shown excellent activity against as compared tostandard drug Fluconazole

4 Conclusion

A series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one and pyrimidinesderivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols were successfully synthesized All the newlysynthesized compoundswere characterized spectroscopicallyand using analytical techniques such as 1H-NMR 13C-NMRIR and mass and elemental analysis Anti-bacterial activitystudies reveal that compounds 5b and 5c have shown thehighest activity among all newly synthesized compoundsas compared to standard drug whereas compounds 5b 5cand 5d have shown the highest antifungal activity amongall newly synthesized compounds as compared to standarddrug

References

[1] T Narender S Shweta K Tanvir M Srinivasa Rao K Sri-vastava and S K Puri ldquoPrenylated chalcones isolated fromCrotalaria genus inhibits in vitro growth of the human malariaparasite Plasmodium falciparumrdquo Bioorganic and MedicinalChemistry Letters vol 15 no 10 pp 2453ndash2455 2005

[2] Z Nowakowska ldquoA review of anti-infective and anti-inflammatory chalconesrdquo European Journal of MedicinalChemistry vol 42 no 2 pp 125ndash137 2007

[3] M Ceylan and E Findik ldquoSynthesis and characterization ofnew chalcone derivatives from cis-bicyclo[320]hept-2-en-6-onerdquo Synthetic Communications vol 39 no 6 pp 1046ndash10542009

[4] H O Saxena U Faridi J K Kumar et al ldquoSynthesis of chalconederivatives on steroidal framework and their anticancer activi-tiesrdquo Steroids vol 72 no 13 pp 892ndash900 2007

[5] R J Anto K Sukumaran G KuttanMNA Rao V Subbarajuand R Kuttan ldquoAnticancer and antioxidant activity of syntheticchalcones and related compoundsrdquo Cancer Letters vol 97 no 1pp 33ndash37 1995

[6] J N Domınguez C Leon J Rodrigues N G De DomınguezJ Gut and P J Rosenthal ldquoSynthesis and evaluation ofnew antimalarial phenylurenyl chalcone derivativesrdquo Journal ofMedicinal Chemistry vol 48 no 10 pp 3654ndash3658 2005

[7] A Valla B Valla D Cartier et al ldquoNew syntheses andpotential antimalarial activities of new lsquoretinoid-like chalconesrsquordquoEuropean Journal of Medicinal Chemistry vol 41 no 1 pp 142ndash146 2006

[8] S F Nielsen S B Christensen G Cruciani A Kharazmiand T Liljefors ldquoAntileishmaniai chalcones statistical designsynthesis and three-dimensional quantitative structure-activityrelationship analysisrdquo Journal of Medicinal Chemistry vol 41no 24 pp 4819ndash4832 1998

[9] P Boeck C A Bandeira Falcao P C Leal et al ldquoSynthesisof chalcone analogues with increased antileishmanial activityrdquoBioorganic and Medicinal Chemistry vol 14 no 5 pp 1538ndash1545 2006

[10] K V Sashidhara M Kumar R K Modukuri et al ldquoSynthesisand anti-inflammatory activity of novel biscoumarin-chalconehybridsrdquoBioorganic andMedicinal Chemistry Letters vol 21 no15 pp 4480ndash4484 2011

Organic Chemistry International 9

[11] H-M Yang H-R Shin S-H Cho et al ldquoStructural require-ment of chalcones for the inhibitory activity of interleukin-5rdquoBioorganic and Medicinal Chemistry vol 15 no 1 pp 104ndash1112007

[12] S Cheenpracha C Karalai C Ponglimanont S Subhadhi-rasakul and S Tewtrakul ldquoAnti-HIV-1 protease activity ofcompounds from Boesenbergia panduratardquo Bioorganic andMedicinal Chemistry vol 14 no 6 pp 1710ndash1714 2006

[13] L Svetaz A Tapia S N Lopez et al ldquoAntifungal chalconesand new caffeic acids esters from Zuccagnia punctata actingagainst soybean infecting fungirdquo Journal of Agricultural andFood Chemistry vol 52 no 11 pp 3297ndash3300 2004

[14] B P Bandgar B S Hote N A Dhole and R N GaccheldquoSynthesis and biological evaluation of novel series of chalconederivatives as inhibitors of cyclooxygenase and LPS-inducedTNF-120572 with potent antioxidant propertiesrdquo Medicinal Chem-istry Research vol 21 pp 2292ndash2299 2011

[15] O Nerya R Musa S Khatib S Tamir and J Vaya ldquoChalconesas potent tyrosinase inhibitors the effect of hydroxyl positionsand numbersrdquo Phytochemistry vol 65 no 10 pp 1389ndash13952004

[16] K V Sashidhara A Kumar M Kumar J Sarkar and SSinha ldquoSynthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agentsrdquo Bioorganic andMedicinal Chemistry Letters vol 20 no 24 pp 7205ndash7211 2010

[17] C THsieh T JHsiehM El-Shazly et al ldquoSynthesis of chalconederivatives as potential anti-diabetic agentsrdquo Bioorganic ampMedicinal Chemistry Letters vol 22 pp 3912ndash3915 2012

[18] S Wattanasin and W S Murphy ldquoAn improved procedure forthe preparation of chalcones and related enonesrdquo Synthesis vol1980 pp 647ndash650 1980

[19] T Narender K Venkateswarlu B V Nayak and S Sarkar ldquoAnew chemical access for 31015840 -acetyl-41015840 -hydroxychalcones usingborontrifluoride-etherate via a regioselective Claisen-Schmidtcondensation and its application in the synthesis of chalconehybridsrdquo Tetrahedron Letters vol 52 no 44 pp 5794ndash57982011

[20] A Garcia-Raso J A Garcia-Raso R Mestres and J V Sinis-terra ldquoMechanism of Michael addition of ethyl acetoacetate tochalcone catalyzed by activated Ba(OH)

2rdquoReactionKinetics and

Catalysis Letters vol 28 no 2 pp 365ndash371 1985

[21] J R Patel M H Malani and B Z Dholakiya ldquoSilica sulfuricacid-catalyzed Claisen-Schmidt condensation of 134 trisub-stituted pyrrole 25 dione to chalconesrdquo Research on ChemicalIntermediates vol 38 pp 2371ndash2381 2012

[22] KV Sashidhara J N Rosaiah andAKumar ldquoIodine-catalyzedmild and efficient method for the synthesis of chalconesrdquoSynthetic Communications vol 39 no 13 pp 2288ndash2296 2009

[23] A K Verma and R Pratap ldquoChemistry of biologically impor-tant flavonesrdquo Tetrahedron vol 68 pp 8523ndash8538 2012

[24] MH Bukhari H L SiddiquiMAhmad THussain andMGMoloney ldquoSynthesis and anti-bacterial activities of some novelpyrazolobenzothiazine-based chalcones and their pyrimidinederivativesrdquo Medicinal Chemistry Research vol 21 pp 2885ndash2895 2011

[25] E A Bell and R G Foster ldquoStructure of lathyrinerdquo Nature vol194 no 4823 pp 91ndash92 1962

[26] F Tanaka S Takeuchi N Tanaka H Yonehara H Umezawaand Y J Sumiki ldquoBacimethrin a new antibiotic produced by Bmegatheriumrdquo Journal of Antibiotics A vol 14 pp 161ndash162 1961

[27] R G S Berlinck J C Braekman D Daloze et al ldquoPolycyclicguanidine alkaloids from the marine sponge Crambe crambeandCa++ channel blocker activity of crambescidin 816rdquo Journalof Natural Products vol 56 no 7 pp 1007ndash1015 1993

[28] Y-L Lin R-L Huang C-M Chang and Y-H Kuo ldquoTwonew puriniums and three new pyrimidines fromHeterostemmabrowniirdquo Journal of Natural Products vol 60 no 10 pp 982ndash985 1997

[29] I Ohtani R E Moore and M T C Runnegar ldquoCylindrosper-mopsin a potent hepatotoxin from the blue-green alga Cylin-drospermopsis raciborskiirdquo Journal of the American ChemicalSociety vol 114 pp 7941ndash7942 1992

[30] N Jiang XQDeng F N Li and Z S Quan ldquoSynthesis of novel7-substituted-5-phenyl-[1 2 4]triazolo[1 5-a] pyrimidines withanticonvulsant activityrdquo Iranian Journal of PharmaceuticalResearch vol 11 pp 799ndash806 2012

[31] M Ungureanu C C Moldoveanu A Poeata G Drochioiu MPetrovanu and I Mangalagiu ldquoNew pyrimidine compoundswith in vitro antimicrobial or antifungal activityrdquo AnnalesPharmaceutiques Francaises vol 56 pp 181ndash183 1998

[32] A E-G E Amr N M Sabry and M M Abdulla ldquoSynthe-sis reactions and anti-inflammatory activity of heterocyclicsystems fused to a thiophene moiety using citrazinic acid assynthonrdquo Monatshefte fur Chemie vol 138 no 7 pp 699ndash7072007

[33] N Fujiwara T Nakajima Y Ueda H Fujita and H KawakamildquoNovel piperidinylpyrimidine derivatives as inhibitors of HIV-1 LTR activationrdquo Bioorganic and Medicinal Chemistry vol 16no 22 pp 9804ndash9816 2008

[34] L Ballell R A Field G A C Chung and R J YoungldquoNew thiopyrazolo[34-d]pyrimidine derivatives as anti-mycobacterial agentsrdquo Bioorganic and Medicinal ChemistryLetters vol 17 no 6 pp 1736ndash1740 2007

[35] E Wagner K Al-Kadasi M Zimecki and W Sawka-Dobrowolska ldquoSynthesis and pharmacological screening ofderivatives of isoxazolo[45-d]pyrimidinerdquo European Journal ofMedicinal Chemistry vol 43 no 11 pp 2498ndash2504 2008

[36] A Tiwari W R Waud and R F Struck ldquoDetermination of thephamacophore of penclomedine a clinically-evaluated antitu-mor pyridine derivativerdquo Bioorganic and Medicinal Chemistryvol 10 no 11 pp 3593ndash3598 2002

[37] K Gorlitzer S Herbig and R D Walter ldquoIndeno[12-d]pyrimidin-4-yl-aminesrdquo Pharmazie vol 52 no 9 pp 670ndash672 1997

[38] I V Ukrainets I A Tugaibei N L Bereznyakova V NKravchenko and A V Turov ldquo4-Hydroxy-2-quinolones 144Alkyl- arylalkyl- and arylamides of 2-hydroxy-4-oxo-4H-pyrido[12-a]pyrimidine-3-carboxylic acid and their diureticpropertiesrdquo Chemistry of Heterocyclic Compounds no 5 pp718ndash729 2008

[39] S Q Wang L Fang X J Liu and K Zhao ldquoDesign synthesisand hypnotic activity of pyrazolo[15-a]pyrimidine derivativesrdquoChinese Chemical Letters vol 15 no 8 pp 885ndash888 2004

[40] W Yang Z Ruan Y Wang et al ldquoDiscovery and structure-activity relationships of trisubstituted pyrimidinespyridines as

10 Organic Chemistry International

novel calcium-sensing receptor antagonistsrdquo Journal of Medici-nal Chemistry vol 52 no 4 pp 1204ndash1208 2009

[41] R J Gillespie S J Bamford R Botting et al ldquoAntagonistsof the human A2A adenosine receptor 4 Design synthesisand preclinical evaluation of 7-aryltriazolo[45-d]pyrimidinesrdquoJournal of Medicinal Chemistry vol 52 no 1 pp 33ndash47 2009

[42] H A Deshpande H N Chopde C P Pandhurnekar and RJ Batra ldquoSynthesis characterization and testing of biologicalactivity of some novel chalcones derivatives of coumarinrdquoChemical Science Transactions vol 2 pp 621ndash627 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 4: Research Article Synthesis, Characterization, and ...downloads.hindawi.com/journals/oci/2013/582079.pdfand p-acetophenone or p-nitroacetophenone (.moL) were added to ethanol (mL) and

4 Organic Chemistry International

7305 mp 110∘C IR (KBr) cmminus1 1440 (N=N) 1740(aldehydic C=O) 2820 (aldehydic HndashC=) 3010 (Ar-OH)1H-NMR (CDCl

3) 120575 520 (s 1H Ar-OH) 710 (d 1H

Ar-CH) 750 (t 3H Ar-CH) 790ndash810 (m 3H Ar-CH)840 (s 1H Ar-CH) 1030 (s 1H Ar-CHO) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1947 1643 1526 1456 1308

1305 1296 1295 1241 1232 1231 1187 1165 (13 aromaticcarbon) Anal Calcd for C

13H10N2O2() C 6902 H 446

N 1238 Found () C 6900 H 430 N 1210 MS119898119911 22620(100 M+) 12130 (60) 10510 (50) 9320 (40) 7720(30) 2910 (20) 2820 (10)

22 General Procedure for the Synthesis of Chalcones (2andash2e3andash3e) To synthesize the chalcone derivatives in the firststep 2-hydroxy-5-((aryl)diazenyl)benzaldehyde (001moL)and p-acetophenone or p-nitroacetophenone (001moL)were added to ethanol (30mL) and then mixed thoroughlyat the room temperature In this mixture 10mL of 20aqueous NaOH solution was added slowly The reactionmixture was stirred over the magnetic stirrer for at least 12hours The reaction mixture was then kept for overnight Itwas then poured into beaker containing crushed ice Theexcess of alkali in the reaction mixture was neutralized andthe reaction mixture was then slightly acidified by dropwiseaddition of dilute hydrochloric acid solution The chalconederivative that is 3-(2-hydroxy-5-((aryl)diazenyl)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2andash2e) and 3-(2-hydroxy-5-((aryl) diazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3andash3e) gets precipitated out and wasfiltered using Whatman filter paper number 40 The crudechalcone product was recrystallized using ethanol

221 Characterization Data of 3-(2-Hydroxy-5-(p-tolyldi-azenyl)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2a)Yellowish Powder Yield 7785 mp 130∘C IR (KBr) cmminus11490 (N=N) 1590 (C=C) 1680 (C=O) 2850 (Ar-CH

3) 3410

(Ar-OH) 1H-NMR (CDCl3) 120575 230 (s 3H Ar-CH

3) 490

(s 2H 2Ar-OH) 680ndash690 (m 3H Ar-CH) 720ndash730 (t3H Ar-CH) 740 (d 2H Ar-CH) 760ndash780 (m 6H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895 1640 1592

1497 1453 1416 1405 1313 1312 1304 1293 1292 12391226 1229 1212 1204 1163 1161 1167 1165 1164 (22aromatic carbon) 215 (CH

3) Anal Calcd for C

22H18N2O3

() C 7373 H 506 N 782 Found () C 7320 H 490 N770 MS119898119911 35830 (100 M+) 21108 (54) 14705 (46)12106 (15) 9110 (12) 93 (33) 2806 (21) 2610 (10)

222 Characterization Data of 3-(2-Hydroxy-5-((2-ni-trophenyl)diazenyl)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2b) Brownish Powder Yield 6705 mp 142∘C IR(KBr) cmminus1 1320 (Ar-NO

2) 1440 (N=N) 1580 (C=C) 1680

(C=O) 3030 (Ar-OH) 1H-NMR (CDCl3) 120575 510 (s 2H

2Ar-OH) 680 (t 3H Ar-CH) 740 (d 1H C=CH) 760ndash770(m 7H Ar-CH) 820 (d 1H C=CH) 13C-NMR (100MHzCDCl

3-d6 120575 ppm) 1896 1642 1594 1475 1451 1439 1412

1352 1316 1312 1311 1304 1244 1238 1212 1235 12041166 1163 1161 1162 (21 aromatic carbon) Anal Calcd forC21H15N3O5() C 6473 H 388 N 1079 Found () C

6470 H 370 N 1060 MS 119898119911 38938 (100 M+) 24210(65) 14708 (40) 12105 (13) 12210 (40) 9310 (14)2808 (21) 2610 (8)

223 Characterization Data of 3-(2-Hydroxy-5-((3-nitro-phenyl)diazenyl)phenyl)-1-(4-hydroxy phenyl)prop-2-en-1-one(2c) Brownish Powder Yield 7346 mp 164∘C IR (KBr)cmminus1 1310 (Ar-NO

2) 1460 (N=N) 1570 (C=C) 1690 (C=O)

3010 (Ar-OH) 1H-NMR (CDCl3) 120575 520 (s 2H 2Ar-OH)

690 (t 3H Ar-CH) 760 (d 1H C=CH) 780ndash810 (m 7HAr-CH) 830 (d 1H C=CH) 13C-NMR (100MHz CDCl

3-

d6 120575 ppm) 1896 1646 1591 1523 1485 1455 1413

1314 1312 1311 1302 1295 1265 1234 1215 1203 11711167 1164 1163 1162 (21 aromatic carbon) Anal Calcd forC21H15N3O5() C 6473 H 388 N 1079 Found () C

6460 H 360 N 1040 MS 119898119911 38941 (100 M+) 24200(85) 15010 (40) 14710 (40) 12210 (40) 12110 (15)9310 (16) 7700 (10) 4510 (20) 2800 (5) 2600 (10)

224 Characterization Data of 3-(2-Hydroxy-5-((4-nitro-phenyl)diazenyl)phenyl)-1-(4-hydroxy phenyl)prop-2-en-1-one(2d) Brownish Powder Yield 7697 mp 188∘C IR (KBr)cmminus1 1330 (Ar-NO

2) 1500 (N=N) 1580 (C=C) 1660 (C=O)

3270 (Ar-OH) 1H-NMR (CDCl3) 120575 530 (s 2H 2Ar-OH)

660 (t 3H Ar-CH) 740 (d 1H C=CH) 770ndash810 (m 7HAr-CH) 850 (d 1H C=CH) 13C-NMR (100MHz CDCl

3-

d6 120575 ppm) 1894 1644 1592 1554 1503 1453 1414

1315 1314 1304 1244 1243 1236 1208 1206 1204 11661165 1164 1163 1161 (21 aromatic carbon) Anal Calcd forC21H15N3O5() C 6473 H 388 N 1079 Found () C

6440 H 370 N 1060 MS 119898119911 38910 (100 M+) 24190(70) 15100 (40) 14700 (50) 12190 (30) 12100 (20)9290 (20) 7710 (12) 4500 (15) 2810 (10) 2610(13)

225 Characterization Data of 3-(2-Hydroxy-5-(phenyld-iazenyl)phenyl)-1-(4-hydroxy phenyl)prop-2-en-1-one (2e)Greenish Powder Yield 7406 mp 122∘C IR (KBr)cmminus1 1450 (N=N) 1550 (C=C) 1680 (C=O) 3020 (Ar-OH)1H-NMR (CDCl

3) 120575 520 (s 2H 2Ar-OH) 680ndash740 (m

10H Ar-CH) 770 (s 1H Ar-CH) 790 (d 2H Ar-CH) 840(d 1H C=CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1895 1646 1595 1523 1454 1413 1314 1316 1308 13021294 1293 1235 1235 1232 1211 1204 1167 1165 11641163 (21 aromatic carbon) Anal Calcd for C

21H16N2O3

() C 7324 H 468 N 813 Found () C 7330 H 450 N810 MS119898119911 34432 (100 M+) 14710 (60) 19708 (40)12110 (20) 9390 (50) 7720 (30) 2630 (10)

226 Characterization Data of 3-(2-Hydroxy-5-(p-tol-yldiazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3a)Brownish Powder Yield 7902 mp 152∘C IR (KBr)cmminus1 1350 (Ar-NO

2) 1510 (N=N) 1600 (C=C) 1680 (C=O)

2850 (Ar-CH3) 3380 (Ar-OH) 1H-NMR (CDCl

3) 120575 230

(s 3H Ar-CH3) 510 (s 1H Ar-OH) 680ndash720 (m 4H

Ar-CH) 730 (s 1H C=CH) 740 (s 1H C=CH) 770ndash780(t 3H Ar-CH) 810 (d 2H Ar-CH) 840 (d 2H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895 1592 1536

Organic Chemistry International 5

1494 1452 1443 1412 1403 1307 1306 1292 1291 12431241 1235 1226 1222 1215 1203 1164 1163 (21 aromaticcarbon) 215 (CH

3) Anal Calcd for C

22H17N3O4() C

6821 H 442 N 1085 Found () C 6820 H 430 N 1070MS 119898119911 38710 (100 M+) 21120 (60) 17610 (40)15000 (20) 12110 (40) 9320 (40) 9110 (30) 2800(20) 2608 (10)

227 Characterization Data of 3-(2-Hydroxy-5-((2-ni-trophenyl)diazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one(3b) Brownish Powder Yield 734 mp 160∘C IR (KBr)cmminus1 1340 (Ar-NO

2) 1430 (N=N) 1550 (C=C) 1640 (C=O)

3140 (Ar-OH) 1H-NMR (CDCl3) 120575 510 (s 1H Ar-OH)

690 (d 1H Ar-CH) 740 (d 1H C=CndashH) 760ndash780 (m 8HAr-CH) 810 (d 1H C=CH) 840 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1898 1596 1535 1476 1453

1441 1437 1413 1354 1315 1306 1305 1246 1243 12421237 1234 1214 1203 1167 1162 (21 aromatic carbon)Anal Calcd for C

21H14N4O6() C 6029 H 337 N 1339

Found () C 6020 H 330 N 1310 MS 119898119911 41825 (100M+) 24210 (60) 17620 (50) 15010 (40) 12210 (30)12100 (20) 9310 (10) 7710 (30) 4500 (10) 2810(10) 2600 (10)

228 Characterization Data of 3-(2-Hydroxy-5-((3-ni-trophenyl)diazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one(3c) Reddish Powder Yield 6801 mp 200∘C IR (KBr)cmminus1 1320 (Ar-NO

2) 1410 (N=N) 1570 (C=C) 1660 (C=O)

3120 (Ar-OH) 1H-NMR (CDCl3) 120575 530 (s 1H Ar-OH)

660 (d 1H Ar-CH) 720 (d 1H C=CndashH) 740ndash760 (m 8HAr-CH) 820 (d 1H C=CH) 860 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1895 1594 1534 1522 1484

1454 1443 1417 1318 1307 1306 1293 1265 1247 12451237 1218 1204 1171 1165 1164 (21 aromatic carbon) AnalCalcd for C

21H14N4O6() C 6029 H 337 N 1339 Found

() C 6010 H 310 N 1320 MS 119898119911 41830 (100 M+)24200 (70) 17600 (50) 12200 (40) 12110 (30) 9310(10) 2800 (10) 2790 (10)

229 Characterization Data of 3-(2-Hydroxy-5-((4-ni-trophenyl)diazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one(3d) Greenish Powder Yield 7081 mp 245∘C IR (KBr)cmminus1 1340 (Ar-NO

2) 1500 (N=N) 1590 (C=C) 1670 (C=O)

3250 (Ar-OH) 1H-NMR (CDCl3) 120575 490 (s 1H Ar-OH)

620 (d 1H Ar-CH) 710 (d 1H C=CndashH) 730ndash750 (m 8HAr-CH) 810 (d 1H C=CH) 830 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1898 1591 1557 1536 1504

1454 1445 1414 1309 1306 1247 1246 1245 1241 12371216 1208 1204 1203 1169 1161 (21 aromatic carbon)Anal Calcd for C

21H14N4O6() C 6029 H 337 N 1339

Found () C 6020 H 320 N 1330 MS 119898119911 41840 (100M+) 24220 (80) 17610 (70) 130 (50) 12220 (40)12110 (30) 10500 (20) 9300 (10) 4500 (10) 2820(10) 2740 (10)

2210 Characterization Data of 3-(2-Hydroxy-5-(phe-nyldiazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one (3e)Brownish Powder Yield 8062 mp 155∘C IR (KBr) cmminus1

1310 (Ar-NO2) 1450 (N=N) 1580 (C=C) 1660 (C=O) 3150

(Ar-OH) 1H-NMR (CDCl3) 120575 520 (s 1H Ar-OH) 670

(s 1H Ar-CH) 740 (t 3H Ar-CH) 760 (s 1H CH=CH)770ndash790 (m 6H Ar-CH) 810 (s 1H CH=CH) 830 (d2H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895

1595 1539 1529 1458 1447 1418 1307 1306 1305 12941292 1245 1244 1238 1235 1233 1219 1206 1168 1165(21 aromatic carbon) Anal Calcd for C

21H15N3O4() C

6756 H 405 N 1125 Found () C 6740 H 400 N 1120MS 119898119911 37334 (100 M+) 19710 (60) 17600 (50) 150(60) 12200 (50) 12100 (40) 9310 (20) 2810 (10)2710 (10) 2600 (10)

23 General Procedure for the Synthesis of Pyrimidines(4andash4e 5andash5e) A mixture of chalcone (001moL) and urea(001moL) was prepared in 30mL ethanol To this solution10mL 20 aqueous NaOH solution was addedThe resultingmixture was then refluxed on water bath for at least 16 hoursThe mixture was then cooled to room temperature andpoured into the beaker containing crushed ice The solidproduct of pyrimidine derivatives that is 4-(2-hydroxy-5-((aryl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ols (4andash4e) or 4-(2-hydroxy-5-((aryl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ols (5andash5e) gets precipitated outThe solid obtained was filtered using Whatman filter paperno 40 and recrystallized using ethanol

231 Characterization Data of 4-(2-Hydroxy-5-(p-tolyldi-azenyl)phenyl)-6-(4-hydroxyphenyl)-pyrimidin-2-ol (4a)Yellowish Powder Yield 6518 mp 174∘C IR (KBr)cmminus1 1490 (N=N) 1610 (C=N) 2900 (Ar-CH

3) 3430 cmminus1

(Ar-OH) 1H-NMR (CDCl3) 120575 240 (s 3H Ar-CH

3) 510

(s 3H 3Ar-OH) 660 (s 1H Ar-CH) 680ndash730 (m 7HAr-CH) 770ndash790 (m 4H Ar-CH) 13C-NMR (100MHzCDCl

3-d6 120575 ppm) 1627 1604 1585 1576 1549 1495

1456 1408 1299 1298 1289 1286 1285 1248 1238 12241226 1209 1168 1167 1163 (21 aromatic carbon) 954 (Cpyrimidine) 216 (CH

3) Anal Calcd for C

23H18N4O3()

C 6934 H 455 N 1406 Found () C 6930 H 450 N 1400MS 119898119911 39842 (100 M+) 27920 (80) 11910 (60)18700 (50) 9510 (30) 9310 (20) 9100 (10) 7900(10) 6810 (20) 2820 (10)

232 Characterization Data of 4-(2-Hydroxy-5-((2-nitroph-enyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol(4b) Brownish Powder Yield 5458 mp 210∘C IR(KBr) cmminus1 1310 (Ar-NO

2) 1420 (N=N) 1670 (C=N)

3030 (Ar-OH) 1H-NMR (CDCl3) 120575 490 (s 3H 3Ar-OH)

660ndash690 (m 4H Ar-CH) 730 (d 2H Ar-CH) 770ndash840(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1607 1624 1582 1579 1546 1477 1456 1438 1357 13191288 1283 1281 1247 1246 1236 1234 1206 1166 11651162 (21 aromatic carbon) 952 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6140 H 330 N 1610 MS 119898119911 42934 (100 M+) 30720(70) 18700 (50) 12210 (50) 12000 (40) 9520 (30)9300 (20) 7910 (10) 7720 (20) 4510 (10) 6800(10) 2810 (10)

6 Organic Chemistry International

233 Characterization Data of 4-(2-Hydroxy-5-((3-ni-trophenyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4c) Brownish Powder Yield 5962 mp 224∘CIR (KBr) cmminus1 1320 (Ar-NO

2) 1430 (N=N) 1640 (C=N)

3010 (Ar-OH) 1H-NMR (CDCl3) 120575 470 (s 3H 3Ar-OH)

640ndash660 (m 4H Ar-CH) 740 (d 2H Ar-CH) 760ndash820(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1628 1609 1583 1571 1544 1529 1481 1457 1312 12941288 1287 1284 1264 1242 1238 1203 1179 1165 11611163 (21 aromatic carbon) 959 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6130 H 320 N 1620 MS 119898119911 42928 (100 M+) 27910(60) 18720 (40) 15010 (30) 12220 (50) 9510 (30)9320 (10) 7920 (20) 7710 (10) 4500 (10) 6810(10) 2810 (10)

234 Characterization Data of 4-(2-Hydroxy-5-((4-ni-trophenyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4d) Brownish Powder Yield 6387 mp 240∘CIR (KBr) cmminus1 1340 (Ar-NO

2) 1450 (N=N) 1650 (C=N)

3400 (Ar-OH) 1H-NMR (CDCl3) 120575 480 (s 3H 3Ar-OH)

630ndash650 (m 4H Ar-CH) 720 (d 2H Ar-CH) 750ndash790(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1622 1604 1584 1573 1554 1546 1502 1457 1289 12881283 1243 1242 1241 1232 1209 1208 1207 1166 11631162 (21 aromatic carbon) 951 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6150 H 340 N 1630 MS 119898119911 42941 (100 M+) 27920(70) 18710 (50) 15000 (40) 12210 (40) 9500 (20)9310 (20) 7910 (10) 7700 (10) 4510 (10) 6820(20) 2800 (10)

235 Characterization Data of 4-(2-Hydroxy-5-(phenyldi-azenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4e)Yellowish Powder Yield 6049 mp 170∘C IR (KBr)cmminus1 1330 (Ar-NO

2) 1440 (N=N) 1650 (C=N) 3070 (Ar-

OH) 1H-NMR (CDCl3) 120575 450 (s 3H 3Ar-OH) 660ndash680

(m 4H Ar-CH) 730 (d 2H Ar-CH) 740ndash790 (m 7HAr-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1626

1601 1589 1577 1548 1523 1454 1308 1297 1294 12861285 1281 1247 1239 1237 1234 1201 1168 1167 1162(21 aromatic carbon) 956 (C pyrimidine) Anal Calcd forC22H16N4O3() C 6874 H 420 N 1458 Found () C

6860 H 410 N 1430 MS 119898119911 38432 (100 M+) 27910(70) 18710 (60) 10510 (40) 9520 (20) 9310 (10)7900 (10) 7720 (10) 4510 (10) 6810 (20) 2810(10)

236 Characterization Data of 4-(2-Hydroxy-5-(p-tol-yldiazenyl)phenyl)-6-(4-nitrophenyl)-pyrimidin-2-ol (5a)Brownish Powder Yield 7026 mp 165∘C IR (KBr) cmminus11350 (Ar-NO

2) 1490 (N=N) 1600 (C=N) 2900 (Ar-CH

3)

3390 (Ar-OH) 1H-NMR (CDCl3) 120575 240 (s 3H Ar-CH

3)

520 (s 2H 2Ar-OH) 670 (s 1H Ar-CH) 680 (d 2HAr-CH) 730 (d 2H Ar-CH) 750ndash770 (m 8H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1625 1604 1573

1546 1496 1478 1457 1418 1405 1294 1292 1262 12611243 1242 1232 1231 1229 1228 1207 1166 (21 aromatic

carbon) 959 (C pyrimidine) 212 (CH3) Anal Calcd for

C23H17N5O4() C 6463 H 401 N 1639 Found () C

6440 H 400 N 1620 MS 119898119911 42710 (100 M+) 30810(80) 18700 (60) 12210 (50) 11900 (40) 9510 (30)9300 (10) 9110 (20) 7910 (10) 7710 (10) 4590(30) 6800 (10) 2800 (20)

237 Characterization Data of 4-(2-Hydroxy-5-((2-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5b)Reddish Powder Yield 6518 mp 214∘C IR (KBr) cmminus11320 (Ar-NO

2) 1430 (N=N) 1630 (C=N) 3130 (Ar-OH)

1H-NMR (CDCl3) 120575 530 (s 2H 2Ar-OH) 650 (s 1H

Ar-CH) 680 (d 1H Ar-CH) 770ndash790 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1624 1603 1575

1543 1479 1475 1457 1437 1415 1353 1317 1265 12641246 1248 1247 1243 1239 1238 1206 1163 (21 aromaticcarbon) 954 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5740 H 300N 1820 MS 119898119911 45810 (100 M+) 30820 (70) 21610(40) 22200 (50) 15000 (60) 12200 (30) 9500(20) 9310 (20) 7900 (10) 6820 (20)

238 Characterization Data of 4-(2-Hydroxy-5-((3-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5c)Brownish Powder Yield 5433mp 239∘C IR (KBr) cmminus11330 (Ar-NO

2) 1410 (N=N) 1650 (C=N) 3030 (Ar-OH)

1H-NMR (CDCl3) 120575 520 (s 2H 2Ar-OH) 640 (s 1H

Ar-CH) 690 (d 1H Ar-CH) 760ndash790 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1622 1606 1573

1546 1525 1488 1474 1456 1419 1319 1299 1267 12661261 1248 1247 1245 1234 1207 1174 1168 (21 aromaticcarbon) 951 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5750 H 290N 1810 MS 119898119911 45838 (100 M+) 24210 (60) 21620(50) 12210 (40) 12120 (20) 9510 (20) 9300 (10)7910 (20) 6810 (10)

239 Characterization Data of 4-(2-Hydroxy-5-((4-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5d)Brownish Powder Yield 6187 mp 250∘C IR (KBr) cmminus11320 (Ar-NO

2) 1450 (N=N) 1670 (C=N) 3420 (Ar-OH)

1H-NMR (CDCl3) 120575 540 (s 2H 2Ar-OH) 620 (s 1H

Ar-CH) 670 (d 1H Ar-CH) 750ndash780 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1621 1607 1557

1575 1546 1508 1477 1456 1418 1269 1268 1249 12481244 1243 1242 1235 1209 1207 1206 1169 (21 aromaticcarbon) 957 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5730 H 310N 1830 MS 119898119911 45846 (100 M+) 24220 (80) 21610(60) 12220 (50) 12110 (10) 9520 (10) 9320 (10)7920 (10) 7710 (20) 6820 (20)

2310 Characterization Data of 4-(2-Hydroxy-5-(ph-enyldiazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5e)Yellowish Powder Yield 7422 mp 160∘C IR (KBr) cmminus11310 (Ar-NO

2) 1420 (N=N) 1670 (C=N) 3080 (Ar-OH)

1H-NMR (CDCl3) 120575 490 (s 2H 2Ar-OH) 670 (s 1H

Ar-CH) 710 (d 1H Ar-CH) 750ndash780 (m 11H Ar-CH)

Organic Chemistry International 7

Table 1 Antibacterial and anti-fungal activity of newly synthesized chalcone derivatives (2andash2e 3andash3e) and pyrimidine derivatives (4andash4e5andash5e)

Compound (500 120583gdisk)

Average value of zone of inhibition in mmAntimicrobial Activity

Gram Positive Gram Negative Antifungal activityS aureus B subtilis P vulgaris E coli C albicans A niger

2a mdash mdash mdash mdash mdash mdash2b 10 08 13 12 11 132c 11 06 16 14 12 162d 6 8 10 08 08 102e mdash 4 mdash mdash mdash mdash3a mdash mdash 5 4 mdash mdash3b 13 10 14 14 16 153c 12 13 16 15 17 183d 8 14 12 10 12 133e mdash 5 mdash 4 5 44a 4 3 6 8 8 104b 14 13 17 14 16 174c 15 08 19 18 18 204d 10 12 12 14 16 204e 7 6 8 10 14 125a 5 6 9 8 12 145b 29 18 24 26 22 255c 22 24 26 24 20 275d 13 15 16 12 24 215e 12 10 15 16 16 15Ciprofloxacin 30 26 32 31 mdash mdashFluconazole mdash mdash mdash mdash 24 26ldquomdashrdquo represent ldquoinactiverdquo

13C-NMR (100MHz CDCl3-d6 120575 ppm) 1624 1609 1577

1548 1525 1476 1457 1415 1308 1298 1295 1269 12671244 1243 1241 1238 1235 1234 1209 1168 (21 aromaticcarbon) 953 (C pyrimidine) Anal Calcd for C

22H15N5O4

() C 6392 H 366 N 1694 Found () C 6380 H 350N 1680 MS 119898119911 41336 (100 M+) 21620 (70) 19710(40) 12210 (60) 12100 (30) 9500 (20) 9310 (30)7720 (20) 6810 (10)

24 Biological Activity The newly synthesized compoundswere examined for antibacterial and antifungal activity usingwell diffusion method against the panel of different grampositive and gram negative bacterial stains and fungi stainsDifferent bacterial stains used for the screeningwere S aureus(gram Positive) B subtilis (gram Positive) P vulgaris (gramNegative) and E coli (gram Negative) Antifungal activitiesof these compounds were also tested against C albicans andA niger The stains for antibacterial and antifungal activitieswere obtained from Department of Microbiology S F SCollege Nagpur The stock solutions of pyrimidine deriva-tives or standard drug in dimethyl sulfoxide (100120583gmL)were

prepared for the study The sterilized petri dishes and agarmedium were used in the present work The antibacterialactivities of compounds were evaluated by measuring thezone of inhibition on nutrient agar plate Muller Hinton agarwas used in the anti-bacterial study whereas SabouraudrsquosDextrose agar was used for the anti-fungal activity studyThecomposition of nutrient agar medium to culture the bacterialstrains used in the present study was as follows Peptone(10 gm) agar powder (20 gm) sodium chloride powder(10 gm) beaf extract (5 gm) and distilled water (1000mL)The pH of the nutrient agar medium was adjusted to 72 Thenutrient agar medium was mixed well and was autoclaved at15 lbs pressure at 120∘C for at least 15 minutes

In the sterilized agar medium 10mL of one-day-oldbacterialfungal cultures were added Bacterial or fungalculture were inoculated into nutrient broth and incubatedat 37 plusmn 2∘C on rotary shaker at 100 rpm After 36-hourincubation bacterial suspensions were used for further testsThis media were poured in petri dishes and allowed toset Two wells were created using a 5mm cork borer Inthis well 01mL of test samplestandards were filled All thenutrient agar plates were incubated at 37∘C for 24 hours in

8 Organic Chemistry International

anti-bacterial study and at 37∘C for 48 hours in anti-fungalactivity study The plates were observed for clear zone ofinhibition Then diameters of the zone of inhibition for thesecompounds were measured The biological activities weretested for at least three times for all the compounds againstall microorganisms and average value has been reported hereThe results of antimicrobial activity and antifungal activity ofthe test compounds have been collected in Table 1

3 Results and Discussion

A new series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one (2andash2e 3andash3e) and pyrimidines derivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols (4andash4e 5andash5e)were synthesized as depicted in Scheme 1 In the first stepdifferent azo-aldehydes (1andash1e) were prepared by the reactionof aromatic amines with salicylaldehyde in equimolarcondition Typical procedure of synthesis of chalcones(2andash2e 3andash3e) in the present work involves the reaction ofequimolar quantities of various substituted azo-aldehydeswith either 4-nitroacetophenone or p-acetophenone inethanolic alkaline medium Pyrimidine derivatives (4andash4e 5andash5e) were obtained by refluxing newly synthesizedsubstituted chalcones and urea in ethanol in presence ofaqueous NaOH solution and then cooling the reactionmixture in crushed ice The newly synthesized compoundswere characterized on the basis of their spectroscopic data(1H-NMR 13C-NMR IR and Mass) and elemental analysisIn elemental analysis the percentage of the nitrogenhydrogen and carbon was found to be experimentallyequivalent to the calculated values in all compounds Ingeneral compounds 1andash1e have shown aldehydic C=O peakwithin the range of 1700-1700 cmminus1 whereas aldehydic HndashC=peaks approximately within 2820 up to 2850 cmminus1 The 1H-NMR spectra have shown the peaks of protons present in thecompounds at their appropriate 120575 values whereas 13C-NMRconfirmed the numbers of C atoms in the newly synthesizedcompounds In the LCMS of the synthesized compoundspeaks for molecular ion peak were observed at its respectivemolecular mass The newly synthesized chalcones andpyrimidines were evaluated for in vitro antibacterial andantifungal activities against various gram positive gramnegative bacteria and fungal species The results have beencollected in Table 1 Ciprofloxacin as the standard drugwas tested against bacterial strains whereas Fluconazoleas the standard drug was tested against fungal strains forcomparison with newly synthesized compounds The closesurvey of values indicates that the chalcones compound(2andash2e 3andash3e) exhibited varied range zone of inhibitiondepending upon the substituent on the ring structure Mostof the compounds have shown moderate to good biologicalactivity against the bacterial and fungal strains Compounds5a and 5b have shown excellent activity against both grampositive and gram negative bacterial strains as comparedto standard drug Ciprofloxacin Compounds 5b 5c and5d have shown excellent activity against as compared tostandard drug Fluconazole

4 Conclusion

A series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one and pyrimidinesderivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols were successfully synthesized All the newlysynthesized compoundswere characterized spectroscopicallyand using analytical techniques such as 1H-NMR 13C-NMRIR and mass and elemental analysis Anti-bacterial activitystudies reveal that compounds 5b and 5c have shown thehighest activity among all newly synthesized compoundsas compared to standard drug whereas compounds 5b 5cand 5d have shown the highest antifungal activity amongall newly synthesized compounds as compared to standarddrug

References

[1] T Narender S Shweta K Tanvir M Srinivasa Rao K Sri-vastava and S K Puri ldquoPrenylated chalcones isolated fromCrotalaria genus inhibits in vitro growth of the human malariaparasite Plasmodium falciparumrdquo Bioorganic and MedicinalChemistry Letters vol 15 no 10 pp 2453ndash2455 2005

[2] Z Nowakowska ldquoA review of anti-infective and anti-inflammatory chalconesrdquo European Journal of MedicinalChemistry vol 42 no 2 pp 125ndash137 2007

[3] M Ceylan and E Findik ldquoSynthesis and characterization ofnew chalcone derivatives from cis-bicyclo[320]hept-2-en-6-onerdquo Synthetic Communications vol 39 no 6 pp 1046ndash10542009

[4] H O Saxena U Faridi J K Kumar et al ldquoSynthesis of chalconederivatives on steroidal framework and their anticancer activi-tiesrdquo Steroids vol 72 no 13 pp 892ndash900 2007

[5] R J Anto K Sukumaran G KuttanMNA Rao V Subbarajuand R Kuttan ldquoAnticancer and antioxidant activity of syntheticchalcones and related compoundsrdquo Cancer Letters vol 97 no 1pp 33ndash37 1995

[6] J N Domınguez C Leon J Rodrigues N G De DomınguezJ Gut and P J Rosenthal ldquoSynthesis and evaluation ofnew antimalarial phenylurenyl chalcone derivativesrdquo Journal ofMedicinal Chemistry vol 48 no 10 pp 3654ndash3658 2005

[7] A Valla B Valla D Cartier et al ldquoNew syntheses andpotential antimalarial activities of new lsquoretinoid-like chalconesrsquordquoEuropean Journal of Medicinal Chemistry vol 41 no 1 pp 142ndash146 2006

[8] S F Nielsen S B Christensen G Cruciani A Kharazmiand T Liljefors ldquoAntileishmaniai chalcones statistical designsynthesis and three-dimensional quantitative structure-activityrelationship analysisrdquo Journal of Medicinal Chemistry vol 41no 24 pp 4819ndash4832 1998

[9] P Boeck C A Bandeira Falcao P C Leal et al ldquoSynthesisof chalcone analogues with increased antileishmanial activityrdquoBioorganic and Medicinal Chemistry vol 14 no 5 pp 1538ndash1545 2006

[10] K V Sashidhara M Kumar R K Modukuri et al ldquoSynthesisand anti-inflammatory activity of novel biscoumarin-chalconehybridsrdquoBioorganic andMedicinal Chemistry Letters vol 21 no15 pp 4480ndash4484 2011

Organic Chemistry International 9

[11] H-M Yang H-R Shin S-H Cho et al ldquoStructural require-ment of chalcones for the inhibitory activity of interleukin-5rdquoBioorganic and Medicinal Chemistry vol 15 no 1 pp 104ndash1112007

[12] S Cheenpracha C Karalai C Ponglimanont S Subhadhi-rasakul and S Tewtrakul ldquoAnti-HIV-1 protease activity ofcompounds from Boesenbergia panduratardquo Bioorganic andMedicinal Chemistry vol 14 no 6 pp 1710ndash1714 2006

[13] L Svetaz A Tapia S N Lopez et al ldquoAntifungal chalconesand new caffeic acids esters from Zuccagnia punctata actingagainst soybean infecting fungirdquo Journal of Agricultural andFood Chemistry vol 52 no 11 pp 3297ndash3300 2004

[14] B P Bandgar B S Hote N A Dhole and R N GaccheldquoSynthesis and biological evaluation of novel series of chalconederivatives as inhibitors of cyclooxygenase and LPS-inducedTNF-120572 with potent antioxidant propertiesrdquo Medicinal Chem-istry Research vol 21 pp 2292ndash2299 2011

[15] O Nerya R Musa S Khatib S Tamir and J Vaya ldquoChalconesas potent tyrosinase inhibitors the effect of hydroxyl positionsand numbersrdquo Phytochemistry vol 65 no 10 pp 1389ndash13952004

[16] K V Sashidhara A Kumar M Kumar J Sarkar and SSinha ldquoSynthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agentsrdquo Bioorganic andMedicinal Chemistry Letters vol 20 no 24 pp 7205ndash7211 2010

[17] C THsieh T JHsiehM El-Shazly et al ldquoSynthesis of chalconederivatives as potential anti-diabetic agentsrdquo Bioorganic ampMedicinal Chemistry Letters vol 22 pp 3912ndash3915 2012

[18] S Wattanasin and W S Murphy ldquoAn improved procedure forthe preparation of chalcones and related enonesrdquo Synthesis vol1980 pp 647ndash650 1980

[19] T Narender K Venkateswarlu B V Nayak and S Sarkar ldquoAnew chemical access for 31015840 -acetyl-41015840 -hydroxychalcones usingborontrifluoride-etherate via a regioselective Claisen-Schmidtcondensation and its application in the synthesis of chalconehybridsrdquo Tetrahedron Letters vol 52 no 44 pp 5794ndash57982011

[20] A Garcia-Raso J A Garcia-Raso R Mestres and J V Sinis-terra ldquoMechanism of Michael addition of ethyl acetoacetate tochalcone catalyzed by activated Ba(OH)

2rdquoReactionKinetics and

Catalysis Letters vol 28 no 2 pp 365ndash371 1985

[21] J R Patel M H Malani and B Z Dholakiya ldquoSilica sulfuricacid-catalyzed Claisen-Schmidt condensation of 134 trisub-stituted pyrrole 25 dione to chalconesrdquo Research on ChemicalIntermediates vol 38 pp 2371ndash2381 2012

[22] KV Sashidhara J N Rosaiah andAKumar ldquoIodine-catalyzedmild and efficient method for the synthesis of chalconesrdquoSynthetic Communications vol 39 no 13 pp 2288ndash2296 2009

[23] A K Verma and R Pratap ldquoChemistry of biologically impor-tant flavonesrdquo Tetrahedron vol 68 pp 8523ndash8538 2012

[24] MH Bukhari H L SiddiquiMAhmad THussain andMGMoloney ldquoSynthesis and anti-bacterial activities of some novelpyrazolobenzothiazine-based chalcones and their pyrimidinederivativesrdquo Medicinal Chemistry Research vol 21 pp 2885ndash2895 2011

[25] E A Bell and R G Foster ldquoStructure of lathyrinerdquo Nature vol194 no 4823 pp 91ndash92 1962

[26] F Tanaka S Takeuchi N Tanaka H Yonehara H Umezawaand Y J Sumiki ldquoBacimethrin a new antibiotic produced by Bmegatheriumrdquo Journal of Antibiotics A vol 14 pp 161ndash162 1961

[27] R G S Berlinck J C Braekman D Daloze et al ldquoPolycyclicguanidine alkaloids from the marine sponge Crambe crambeandCa++ channel blocker activity of crambescidin 816rdquo Journalof Natural Products vol 56 no 7 pp 1007ndash1015 1993

[28] Y-L Lin R-L Huang C-M Chang and Y-H Kuo ldquoTwonew puriniums and three new pyrimidines fromHeterostemmabrowniirdquo Journal of Natural Products vol 60 no 10 pp 982ndash985 1997

[29] I Ohtani R E Moore and M T C Runnegar ldquoCylindrosper-mopsin a potent hepatotoxin from the blue-green alga Cylin-drospermopsis raciborskiirdquo Journal of the American ChemicalSociety vol 114 pp 7941ndash7942 1992

[30] N Jiang XQDeng F N Li and Z S Quan ldquoSynthesis of novel7-substituted-5-phenyl-[1 2 4]triazolo[1 5-a] pyrimidines withanticonvulsant activityrdquo Iranian Journal of PharmaceuticalResearch vol 11 pp 799ndash806 2012

[31] M Ungureanu C C Moldoveanu A Poeata G Drochioiu MPetrovanu and I Mangalagiu ldquoNew pyrimidine compoundswith in vitro antimicrobial or antifungal activityrdquo AnnalesPharmaceutiques Francaises vol 56 pp 181ndash183 1998

[32] A E-G E Amr N M Sabry and M M Abdulla ldquoSynthe-sis reactions and anti-inflammatory activity of heterocyclicsystems fused to a thiophene moiety using citrazinic acid assynthonrdquo Monatshefte fur Chemie vol 138 no 7 pp 699ndash7072007

[33] N Fujiwara T Nakajima Y Ueda H Fujita and H KawakamildquoNovel piperidinylpyrimidine derivatives as inhibitors of HIV-1 LTR activationrdquo Bioorganic and Medicinal Chemistry vol 16no 22 pp 9804ndash9816 2008

[34] L Ballell R A Field G A C Chung and R J YoungldquoNew thiopyrazolo[34-d]pyrimidine derivatives as anti-mycobacterial agentsrdquo Bioorganic and Medicinal ChemistryLetters vol 17 no 6 pp 1736ndash1740 2007

[35] E Wagner K Al-Kadasi M Zimecki and W Sawka-Dobrowolska ldquoSynthesis and pharmacological screening ofderivatives of isoxazolo[45-d]pyrimidinerdquo European Journal ofMedicinal Chemistry vol 43 no 11 pp 2498ndash2504 2008

[36] A Tiwari W R Waud and R F Struck ldquoDetermination of thephamacophore of penclomedine a clinically-evaluated antitu-mor pyridine derivativerdquo Bioorganic and Medicinal Chemistryvol 10 no 11 pp 3593ndash3598 2002

[37] K Gorlitzer S Herbig and R D Walter ldquoIndeno[12-d]pyrimidin-4-yl-aminesrdquo Pharmazie vol 52 no 9 pp 670ndash672 1997

[38] I V Ukrainets I A Tugaibei N L Bereznyakova V NKravchenko and A V Turov ldquo4-Hydroxy-2-quinolones 144Alkyl- arylalkyl- and arylamides of 2-hydroxy-4-oxo-4H-pyrido[12-a]pyrimidine-3-carboxylic acid and their diureticpropertiesrdquo Chemistry of Heterocyclic Compounds no 5 pp718ndash729 2008

[39] S Q Wang L Fang X J Liu and K Zhao ldquoDesign synthesisand hypnotic activity of pyrazolo[15-a]pyrimidine derivativesrdquoChinese Chemical Letters vol 15 no 8 pp 885ndash888 2004

[40] W Yang Z Ruan Y Wang et al ldquoDiscovery and structure-activity relationships of trisubstituted pyrimidinespyridines as

10 Organic Chemistry International

novel calcium-sensing receptor antagonistsrdquo Journal of Medici-nal Chemistry vol 52 no 4 pp 1204ndash1208 2009

[41] R J Gillespie S J Bamford R Botting et al ldquoAntagonistsof the human A2A adenosine receptor 4 Design synthesisand preclinical evaluation of 7-aryltriazolo[45-d]pyrimidinesrdquoJournal of Medicinal Chemistry vol 52 no 1 pp 33ndash47 2009

[42] H A Deshpande H N Chopde C P Pandhurnekar and RJ Batra ldquoSynthesis characterization and testing of biologicalactivity of some novel chalcones derivatives of coumarinrdquoChemical Science Transactions vol 2 pp 621ndash627 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 5: Research Article Synthesis, Characterization, and ...downloads.hindawi.com/journals/oci/2013/582079.pdfand p-acetophenone or p-nitroacetophenone (.moL) were added to ethanol (mL) and

Organic Chemistry International 5

1494 1452 1443 1412 1403 1307 1306 1292 1291 12431241 1235 1226 1222 1215 1203 1164 1163 (21 aromaticcarbon) 215 (CH

3) Anal Calcd for C

22H17N3O4() C

6821 H 442 N 1085 Found () C 6820 H 430 N 1070MS 119898119911 38710 (100 M+) 21120 (60) 17610 (40)15000 (20) 12110 (40) 9320 (40) 9110 (30) 2800(20) 2608 (10)

227 Characterization Data of 3-(2-Hydroxy-5-((2-ni-trophenyl)diazenyl)phenyl)-1-(4-nitrophenyl)prop-2-en-1-one(3b) Brownish Powder Yield 734 mp 160∘C IR (KBr)cmminus1 1340 (Ar-NO

2) 1430 (N=N) 1550 (C=C) 1640 (C=O)

3140 (Ar-OH) 1H-NMR (CDCl3) 120575 510 (s 1H Ar-OH)

690 (d 1H Ar-CH) 740 (d 1H C=CndashH) 760ndash780 (m 8HAr-CH) 810 (d 1H C=CH) 840 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1898 1596 1535 1476 1453

1441 1437 1413 1354 1315 1306 1305 1246 1243 12421237 1234 1214 1203 1167 1162 (21 aromatic carbon)Anal Calcd for C

21H14N4O6() C 6029 H 337 N 1339

Found () C 6020 H 330 N 1310 MS 119898119911 41825 (100M+) 24210 (60) 17620 (50) 15010 (40) 12210 (30)12100 (20) 9310 (10) 7710 (30) 4500 (10) 2810(10) 2600 (10)

228 Characterization Data of 3-(2-Hydroxy-5-((3-ni-trophenyl)diazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one(3c) Reddish Powder Yield 6801 mp 200∘C IR (KBr)cmminus1 1320 (Ar-NO

2) 1410 (N=N) 1570 (C=C) 1660 (C=O)

3120 (Ar-OH) 1H-NMR (CDCl3) 120575 530 (s 1H Ar-OH)

660 (d 1H Ar-CH) 720 (d 1H C=CndashH) 740ndash760 (m 8HAr-CH) 820 (d 1H C=CH) 860 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1895 1594 1534 1522 1484

1454 1443 1417 1318 1307 1306 1293 1265 1247 12451237 1218 1204 1171 1165 1164 (21 aromatic carbon) AnalCalcd for C

21H14N4O6() C 6029 H 337 N 1339 Found

() C 6010 H 310 N 1320 MS 119898119911 41830 (100 M+)24200 (70) 17600 (50) 12200 (40) 12110 (30) 9310(10) 2800 (10) 2790 (10)

229 Characterization Data of 3-(2-Hydroxy-5-((4-ni-trophenyl)diazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one(3d) Greenish Powder Yield 7081 mp 245∘C IR (KBr)cmminus1 1340 (Ar-NO

2) 1500 (N=N) 1590 (C=C) 1670 (C=O)

3250 (Ar-OH) 1H-NMR (CDCl3) 120575 490 (s 1H Ar-OH)

620 (d 1H Ar-CH) 710 (d 1H C=CndashH) 730ndash750 (m 8HAr-CH) 810 (d 1H C=CH) 830 (d 2H Ar-CH) 13C-NMR(100MHz CDCl

3-d6 120575 ppm) 1898 1591 1557 1536 1504

1454 1445 1414 1309 1306 1247 1246 1245 1241 12371216 1208 1204 1203 1169 1161 (21 aromatic carbon)Anal Calcd for C

21H14N4O6() C 6029 H 337 N 1339

Found () C 6020 H 320 N 1330 MS 119898119911 41840 (100M+) 24220 (80) 17610 (70) 130 (50) 12220 (40)12110 (30) 10500 (20) 9300 (10) 4500 (10) 2820(10) 2740 (10)

2210 Characterization Data of 3-(2-Hydroxy-5-(phe-nyldiazenyl)phenyl)-1-(4-nitro phenyl)prop-2-en-1-one (3e)Brownish Powder Yield 8062 mp 155∘C IR (KBr) cmminus1

1310 (Ar-NO2) 1450 (N=N) 1580 (C=C) 1660 (C=O) 3150

(Ar-OH) 1H-NMR (CDCl3) 120575 520 (s 1H Ar-OH) 670

(s 1H Ar-CH) 740 (t 3H Ar-CH) 760 (s 1H CH=CH)770ndash790 (m 6H Ar-CH) 810 (s 1H CH=CH) 830 (d2H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1895

1595 1539 1529 1458 1447 1418 1307 1306 1305 12941292 1245 1244 1238 1235 1233 1219 1206 1168 1165(21 aromatic carbon) Anal Calcd for C

21H15N3O4() C

6756 H 405 N 1125 Found () C 6740 H 400 N 1120MS 119898119911 37334 (100 M+) 19710 (60) 17600 (50) 150(60) 12200 (50) 12100 (40) 9310 (20) 2810 (10)2710 (10) 2600 (10)

23 General Procedure for the Synthesis of Pyrimidines(4andash4e 5andash5e) A mixture of chalcone (001moL) and urea(001moL) was prepared in 30mL ethanol To this solution10mL 20 aqueous NaOH solution was addedThe resultingmixture was then refluxed on water bath for at least 16 hoursThe mixture was then cooled to room temperature andpoured into the beaker containing crushed ice The solidproduct of pyrimidine derivatives that is 4-(2-hydroxy-5-((aryl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ols (4andash4e) or 4-(2-hydroxy-5-((aryl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ols (5andash5e) gets precipitated outThe solid obtained was filtered using Whatman filter paperno 40 and recrystallized using ethanol

231 Characterization Data of 4-(2-Hydroxy-5-(p-tolyldi-azenyl)phenyl)-6-(4-hydroxyphenyl)-pyrimidin-2-ol (4a)Yellowish Powder Yield 6518 mp 174∘C IR (KBr)cmminus1 1490 (N=N) 1610 (C=N) 2900 (Ar-CH

3) 3430 cmminus1

(Ar-OH) 1H-NMR (CDCl3) 120575 240 (s 3H Ar-CH

3) 510

(s 3H 3Ar-OH) 660 (s 1H Ar-CH) 680ndash730 (m 7HAr-CH) 770ndash790 (m 4H Ar-CH) 13C-NMR (100MHzCDCl

3-d6 120575 ppm) 1627 1604 1585 1576 1549 1495

1456 1408 1299 1298 1289 1286 1285 1248 1238 12241226 1209 1168 1167 1163 (21 aromatic carbon) 954 (Cpyrimidine) 216 (CH

3) Anal Calcd for C

23H18N4O3()

C 6934 H 455 N 1406 Found () C 6930 H 450 N 1400MS 119898119911 39842 (100 M+) 27920 (80) 11910 (60)18700 (50) 9510 (30) 9310 (20) 9100 (10) 7900(10) 6810 (20) 2820 (10)

232 Characterization Data of 4-(2-Hydroxy-5-((2-nitroph-enyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol(4b) Brownish Powder Yield 5458 mp 210∘C IR(KBr) cmminus1 1310 (Ar-NO

2) 1420 (N=N) 1670 (C=N)

3030 (Ar-OH) 1H-NMR (CDCl3) 120575 490 (s 3H 3Ar-OH)

660ndash690 (m 4H Ar-CH) 730 (d 2H Ar-CH) 770ndash840(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1607 1624 1582 1579 1546 1477 1456 1438 1357 13191288 1283 1281 1247 1246 1236 1234 1206 1166 11651162 (21 aromatic carbon) 952 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6140 H 330 N 1610 MS 119898119911 42934 (100 M+) 30720(70) 18700 (50) 12210 (50) 12000 (40) 9520 (30)9300 (20) 7910 (10) 7720 (20) 4510 (10) 6800(10) 2810 (10)

6 Organic Chemistry International

233 Characterization Data of 4-(2-Hydroxy-5-((3-ni-trophenyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4c) Brownish Powder Yield 5962 mp 224∘CIR (KBr) cmminus1 1320 (Ar-NO

2) 1430 (N=N) 1640 (C=N)

3010 (Ar-OH) 1H-NMR (CDCl3) 120575 470 (s 3H 3Ar-OH)

640ndash660 (m 4H Ar-CH) 740 (d 2H Ar-CH) 760ndash820(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1628 1609 1583 1571 1544 1529 1481 1457 1312 12941288 1287 1284 1264 1242 1238 1203 1179 1165 11611163 (21 aromatic carbon) 959 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6130 H 320 N 1620 MS 119898119911 42928 (100 M+) 27910(60) 18720 (40) 15010 (30) 12220 (50) 9510 (30)9320 (10) 7920 (20) 7710 (10) 4500 (10) 6810(10) 2810 (10)

234 Characterization Data of 4-(2-Hydroxy-5-((4-ni-trophenyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4d) Brownish Powder Yield 6387 mp 240∘CIR (KBr) cmminus1 1340 (Ar-NO

2) 1450 (N=N) 1650 (C=N)

3400 (Ar-OH) 1H-NMR (CDCl3) 120575 480 (s 3H 3Ar-OH)

630ndash650 (m 4H Ar-CH) 720 (d 2H Ar-CH) 750ndash790(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1622 1604 1584 1573 1554 1546 1502 1457 1289 12881283 1243 1242 1241 1232 1209 1208 1207 1166 11631162 (21 aromatic carbon) 951 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6150 H 340 N 1630 MS 119898119911 42941 (100 M+) 27920(70) 18710 (50) 15000 (40) 12210 (40) 9500 (20)9310 (20) 7910 (10) 7700 (10) 4510 (10) 6820(20) 2800 (10)

235 Characterization Data of 4-(2-Hydroxy-5-(phenyldi-azenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4e)Yellowish Powder Yield 6049 mp 170∘C IR (KBr)cmminus1 1330 (Ar-NO

2) 1440 (N=N) 1650 (C=N) 3070 (Ar-

OH) 1H-NMR (CDCl3) 120575 450 (s 3H 3Ar-OH) 660ndash680

(m 4H Ar-CH) 730 (d 2H Ar-CH) 740ndash790 (m 7HAr-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1626

1601 1589 1577 1548 1523 1454 1308 1297 1294 12861285 1281 1247 1239 1237 1234 1201 1168 1167 1162(21 aromatic carbon) 956 (C pyrimidine) Anal Calcd forC22H16N4O3() C 6874 H 420 N 1458 Found () C

6860 H 410 N 1430 MS 119898119911 38432 (100 M+) 27910(70) 18710 (60) 10510 (40) 9520 (20) 9310 (10)7900 (10) 7720 (10) 4510 (10) 6810 (20) 2810(10)

236 Characterization Data of 4-(2-Hydroxy-5-(p-tol-yldiazenyl)phenyl)-6-(4-nitrophenyl)-pyrimidin-2-ol (5a)Brownish Powder Yield 7026 mp 165∘C IR (KBr) cmminus11350 (Ar-NO

2) 1490 (N=N) 1600 (C=N) 2900 (Ar-CH

3)

3390 (Ar-OH) 1H-NMR (CDCl3) 120575 240 (s 3H Ar-CH

3)

520 (s 2H 2Ar-OH) 670 (s 1H Ar-CH) 680 (d 2HAr-CH) 730 (d 2H Ar-CH) 750ndash770 (m 8H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1625 1604 1573

1546 1496 1478 1457 1418 1405 1294 1292 1262 12611243 1242 1232 1231 1229 1228 1207 1166 (21 aromatic

carbon) 959 (C pyrimidine) 212 (CH3) Anal Calcd for

C23H17N5O4() C 6463 H 401 N 1639 Found () C

6440 H 400 N 1620 MS 119898119911 42710 (100 M+) 30810(80) 18700 (60) 12210 (50) 11900 (40) 9510 (30)9300 (10) 9110 (20) 7910 (10) 7710 (10) 4590(30) 6800 (10) 2800 (20)

237 Characterization Data of 4-(2-Hydroxy-5-((2-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5b)Reddish Powder Yield 6518 mp 214∘C IR (KBr) cmminus11320 (Ar-NO

2) 1430 (N=N) 1630 (C=N) 3130 (Ar-OH)

1H-NMR (CDCl3) 120575 530 (s 2H 2Ar-OH) 650 (s 1H

Ar-CH) 680 (d 1H Ar-CH) 770ndash790 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1624 1603 1575

1543 1479 1475 1457 1437 1415 1353 1317 1265 12641246 1248 1247 1243 1239 1238 1206 1163 (21 aromaticcarbon) 954 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5740 H 300N 1820 MS 119898119911 45810 (100 M+) 30820 (70) 21610(40) 22200 (50) 15000 (60) 12200 (30) 9500(20) 9310 (20) 7900 (10) 6820 (20)

238 Characterization Data of 4-(2-Hydroxy-5-((3-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5c)Brownish Powder Yield 5433mp 239∘C IR (KBr) cmminus11330 (Ar-NO

2) 1410 (N=N) 1650 (C=N) 3030 (Ar-OH)

1H-NMR (CDCl3) 120575 520 (s 2H 2Ar-OH) 640 (s 1H

Ar-CH) 690 (d 1H Ar-CH) 760ndash790 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1622 1606 1573

1546 1525 1488 1474 1456 1419 1319 1299 1267 12661261 1248 1247 1245 1234 1207 1174 1168 (21 aromaticcarbon) 951 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5750 H 290N 1810 MS 119898119911 45838 (100 M+) 24210 (60) 21620(50) 12210 (40) 12120 (20) 9510 (20) 9300 (10)7910 (20) 6810 (10)

239 Characterization Data of 4-(2-Hydroxy-5-((4-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5d)Brownish Powder Yield 6187 mp 250∘C IR (KBr) cmminus11320 (Ar-NO

2) 1450 (N=N) 1670 (C=N) 3420 (Ar-OH)

1H-NMR (CDCl3) 120575 540 (s 2H 2Ar-OH) 620 (s 1H

Ar-CH) 670 (d 1H Ar-CH) 750ndash780 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1621 1607 1557

1575 1546 1508 1477 1456 1418 1269 1268 1249 12481244 1243 1242 1235 1209 1207 1206 1169 (21 aromaticcarbon) 957 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5730 H 310N 1830 MS 119898119911 45846 (100 M+) 24220 (80) 21610(60) 12220 (50) 12110 (10) 9520 (10) 9320 (10)7920 (10) 7710 (20) 6820 (20)

2310 Characterization Data of 4-(2-Hydroxy-5-(ph-enyldiazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5e)Yellowish Powder Yield 7422 mp 160∘C IR (KBr) cmminus11310 (Ar-NO

2) 1420 (N=N) 1670 (C=N) 3080 (Ar-OH)

1H-NMR (CDCl3) 120575 490 (s 2H 2Ar-OH) 670 (s 1H

Ar-CH) 710 (d 1H Ar-CH) 750ndash780 (m 11H Ar-CH)

Organic Chemistry International 7

Table 1 Antibacterial and anti-fungal activity of newly synthesized chalcone derivatives (2andash2e 3andash3e) and pyrimidine derivatives (4andash4e5andash5e)

Compound (500 120583gdisk)

Average value of zone of inhibition in mmAntimicrobial Activity

Gram Positive Gram Negative Antifungal activityS aureus B subtilis P vulgaris E coli C albicans A niger

2a mdash mdash mdash mdash mdash mdash2b 10 08 13 12 11 132c 11 06 16 14 12 162d 6 8 10 08 08 102e mdash 4 mdash mdash mdash mdash3a mdash mdash 5 4 mdash mdash3b 13 10 14 14 16 153c 12 13 16 15 17 183d 8 14 12 10 12 133e mdash 5 mdash 4 5 44a 4 3 6 8 8 104b 14 13 17 14 16 174c 15 08 19 18 18 204d 10 12 12 14 16 204e 7 6 8 10 14 125a 5 6 9 8 12 145b 29 18 24 26 22 255c 22 24 26 24 20 275d 13 15 16 12 24 215e 12 10 15 16 16 15Ciprofloxacin 30 26 32 31 mdash mdashFluconazole mdash mdash mdash mdash 24 26ldquomdashrdquo represent ldquoinactiverdquo

13C-NMR (100MHz CDCl3-d6 120575 ppm) 1624 1609 1577

1548 1525 1476 1457 1415 1308 1298 1295 1269 12671244 1243 1241 1238 1235 1234 1209 1168 (21 aromaticcarbon) 953 (C pyrimidine) Anal Calcd for C

22H15N5O4

() C 6392 H 366 N 1694 Found () C 6380 H 350N 1680 MS 119898119911 41336 (100 M+) 21620 (70) 19710(40) 12210 (60) 12100 (30) 9500 (20) 9310 (30)7720 (20) 6810 (10)

24 Biological Activity The newly synthesized compoundswere examined for antibacterial and antifungal activity usingwell diffusion method against the panel of different grampositive and gram negative bacterial stains and fungi stainsDifferent bacterial stains used for the screeningwere S aureus(gram Positive) B subtilis (gram Positive) P vulgaris (gramNegative) and E coli (gram Negative) Antifungal activitiesof these compounds were also tested against C albicans andA niger The stains for antibacterial and antifungal activitieswere obtained from Department of Microbiology S F SCollege Nagpur The stock solutions of pyrimidine deriva-tives or standard drug in dimethyl sulfoxide (100120583gmL)were

prepared for the study The sterilized petri dishes and agarmedium were used in the present work The antibacterialactivities of compounds were evaluated by measuring thezone of inhibition on nutrient agar plate Muller Hinton agarwas used in the anti-bacterial study whereas SabouraudrsquosDextrose agar was used for the anti-fungal activity studyThecomposition of nutrient agar medium to culture the bacterialstrains used in the present study was as follows Peptone(10 gm) agar powder (20 gm) sodium chloride powder(10 gm) beaf extract (5 gm) and distilled water (1000mL)The pH of the nutrient agar medium was adjusted to 72 Thenutrient agar medium was mixed well and was autoclaved at15 lbs pressure at 120∘C for at least 15 minutes

In the sterilized agar medium 10mL of one-day-oldbacterialfungal cultures were added Bacterial or fungalculture were inoculated into nutrient broth and incubatedat 37 plusmn 2∘C on rotary shaker at 100 rpm After 36-hourincubation bacterial suspensions were used for further testsThis media were poured in petri dishes and allowed toset Two wells were created using a 5mm cork borer Inthis well 01mL of test samplestandards were filled All thenutrient agar plates were incubated at 37∘C for 24 hours in

8 Organic Chemistry International

anti-bacterial study and at 37∘C for 48 hours in anti-fungalactivity study The plates were observed for clear zone ofinhibition Then diameters of the zone of inhibition for thesecompounds were measured The biological activities weretested for at least three times for all the compounds againstall microorganisms and average value has been reported hereThe results of antimicrobial activity and antifungal activity ofthe test compounds have been collected in Table 1

3 Results and Discussion

A new series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one (2andash2e 3andash3e) and pyrimidines derivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols (4andash4e 5andash5e)were synthesized as depicted in Scheme 1 In the first stepdifferent azo-aldehydes (1andash1e) were prepared by the reactionof aromatic amines with salicylaldehyde in equimolarcondition Typical procedure of synthesis of chalcones(2andash2e 3andash3e) in the present work involves the reaction ofequimolar quantities of various substituted azo-aldehydeswith either 4-nitroacetophenone or p-acetophenone inethanolic alkaline medium Pyrimidine derivatives (4andash4e 5andash5e) were obtained by refluxing newly synthesizedsubstituted chalcones and urea in ethanol in presence ofaqueous NaOH solution and then cooling the reactionmixture in crushed ice The newly synthesized compoundswere characterized on the basis of their spectroscopic data(1H-NMR 13C-NMR IR and Mass) and elemental analysisIn elemental analysis the percentage of the nitrogenhydrogen and carbon was found to be experimentallyequivalent to the calculated values in all compounds Ingeneral compounds 1andash1e have shown aldehydic C=O peakwithin the range of 1700-1700 cmminus1 whereas aldehydic HndashC=peaks approximately within 2820 up to 2850 cmminus1 The 1H-NMR spectra have shown the peaks of protons present in thecompounds at their appropriate 120575 values whereas 13C-NMRconfirmed the numbers of C atoms in the newly synthesizedcompounds In the LCMS of the synthesized compoundspeaks for molecular ion peak were observed at its respectivemolecular mass The newly synthesized chalcones andpyrimidines were evaluated for in vitro antibacterial andantifungal activities against various gram positive gramnegative bacteria and fungal species The results have beencollected in Table 1 Ciprofloxacin as the standard drugwas tested against bacterial strains whereas Fluconazoleas the standard drug was tested against fungal strains forcomparison with newly synthesized compounds The closesurvey of values indicates that the chalcones compound(2andash2e 3andash3e) exhibited varied range zone of inhibitiondepending upon the substituent on the ring structure Mostof the compounds have shown moderate to good biologicalactivity against the bacterial and fungal strains Compounds5a and 5b have shown excellent activity against both grampositive and gram negative bacterial strains as comparedto standard drug Ciprofloxacin Compounds 5b 5c and5d have shown excellent activity against as compared tostandard drug Fluconazole

4 Conclusion

A series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one and pyrimidinesderivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols were successfully synthesized All the newlysynthesized compoundswere characterized spectroscopicallyand using analytical techniques such as 1H-NMR 13C-NMRIR and mass and elemental analysis Anti-bacterial activitystudies reveal that compounds 5b and 5c have shown thehighest activity among all newly synthesized compoundsas compared to standard drug whereas compounds 5b 5cand 5d have shown the highest antifungal activity amongall newly synthesized compounds as compared to standarddrug

References

[1] T Narender S Shweta K Tanvir M Srinivasa Rao K Sri-vastava and S K Puri ldquoPrenylated chalcones isolated fromCrotalaria genus inhibits in vitro growth of the human malariaparasite Plasmodium falciparumrdquo Bioorganic and MedicinalChemistry Letters vol 15 no 10 pp 2453ndash2455 2005

[2] Z Nowakowska ldquoA review of anti-infective and anti-inflammatory chalconesrdquo European Journal of MedicinalChemistry vol 42 no 2 pp 125ndash137 2007

[3] M Ceylan and E Findik ldquoSynthesis and characterization ofnew chalcone derivatives from cis-bicyclo[320]hept-2-en-6-onerdquo Synthetic Communications vol 39 no 6 pp 1046ndash10542009

[4] H O Saxena U Faridi J K Kumar et al ldquoSynthesis of chalconederivatives on steroidal framework and their anticancer activi-tiesrdquo Steroids vol 72 no 13 pp 892ndash900 2007

[5] R J Anto K Sukumaran G KuttanMNA Rao V Subbarajuand R Kuttan ldquoAnticancer and antioxidant activity of syntheticchalcones and related compoundsrdquo Cancer Letters vol 97 no 1pp 33ndash37 1995

[6] J N Domınguez C Leon J Rodrigues N G De DomınguezJ Gut and P J Rosenthal ldquoSynthesis and evaluation ofnew antimalarial phenylurenyl chalcone derivativesrdquo Journal ofMedicinal Chemistry vol 48 no 10 pp 3654ndash3658 2005

[7] A Valla B Valla D Cartier et al ldquoNew syntheses andpotential antimalarial activities of new lsquoretinoid-like chalconesrsquordquoEuropean Journal of Medicinal Chemistry vol 41 no 1 pp 142ndash146 2006

[8] S F Nielsen S B Christensen G Cruciani A Kharazmiand T Liljefors ldquoAntileishmaniai chalcones statistical designsynthesis and three-dimensional quantitative structure-activityrelationship analysisrdquo Journal of Medicinal Chemistry vol 41no 24 pp 4819ndash4832 1998

[9] P Boeck C A Bandeira Falcao P C Leal et al ldquoSynthesisof chalcone analogues with increased antileishmanial activityrdquoBioorganic and Medicinal Chemistry vol 14 no 5 pp 1538ndash1545 2006

[10] K V Sashidhara M Kumar R K Modukuri et al ldquoSynthesisand anti-inflammatory activity of novel biscoumarin-chalconehybridsrdquoBioorganic andMedicinal Chemistry Letters vol 21 no15 pp 4480ndash4484 2011

Organic Chemistry International 9

[11] H-M Yang H-R Shin S-H Cho et al ldquoStructural require-ment of chalcones for the inhibitory activity of interleukin-5rdquoBioorganic and Medicinal Chemistry vol 15 no 1 pp 104ndash1112007

[12] S Cheenpracha C Karalai C Ponglimanont S Subhadhi-rasakul and S Tewtrakul ldquoAnti-HIV-1 protease activity ofcompounds from Boesenbergia panduratardquo Bioorganic andMedicinal Chemistry vol 14 no 6 pp 1710ndash1714 2006

[13] L Svetaz A Tapia S N Lopez et al ldquoAntifungal chalconesand new caffeic acids esters from Zuccagnia punctata actingagainst soybean infecting fungirdquo Journal of Agricultural andFood Chemistry vol 52 no 11 pp 3297ndash3300 2004

[14] B P Bandgar B S Hote N A Dhole and R N GaccheldquoSynthesis and biological evaluation of novel series of chalconederivatives as inhibitors of cyclooxygenase and LPS-inducedTNF-120572 with potent antioxidant propertiesrdquo Medicinal Chem-istry Research vol 21 pp 2292ndash2299 2011

[15] O Nerya R Musa S Khatib S Tamir and J Vaya ldquoChalconesas potent tyrosinase inhibitors the effect of hydroxyl positionsand numbersrdquo Phytochemistry vol 65 no 10 pp 1389ndash13952004

[16] K V Sashidhara A Kumar M Kumar J Sarkar and SSinha ldquoSynthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agentsrdquo Bioorganic andMedicinal Chemistry Letters vol 20 no 24 pp 7205ndash7211 2010

[17] C THsieh T JHsiehM El-Shazly et al ldquoSynthesis of chalconederivatives as potential anti-diabetic agentsrdquo Bioorganic ampMedicinal Chemistry Letters vol 22 pp 3912ndash3915 2012

[18] S Wattanasin and W S Murphy ldquoAn improved procedure forthe preparation of chalcones and related enonesrdquo Synthesis vol1980 pp 647ndash650 1980

[19] T Narender K Venkateswarlu B V Nayak and S Sarkar ldquoAnew chemical access for 31015840 -acetyl-41015840 -hydroxychalcones usingborontrifluoride-etherate via a regioselective Claisen-Schmidtcondensation and its application in the synthesis of chalconehybridsrdquo Tetrahedron Letters vol 52 no 44 pp 5794ndash57982011

[20] A Garcia-Raso J A Garcia-Raso R Mestres and J V Sinis-terra ldquoMechanism of Michael addition of ethyl acetoacetate tochalcone catalyzed by activated Ba(OH)

2rdquoReactionKinetics and

Catalysis Letters vol 28 no 2 pp 365ndash371 1985

[21] J R Patel M H Malani and B Z Dholakiya ldquoSilica sulfuricacid-catalyzed Claisen-Schmidt condensation of 134 trisub-stituted pyrrole 25 dione to chalconesrdquo Research on ChemicalIntermediates vol 38 pp 2371ndash2381 2012

[22] KV Sashidhara J N Rosaiah andAKumar ldquoIodine-catalyzedmild and efficient method for the synthesis of chalconesrdquoSynthetic Communications vol 39 no 13 pp 2288ndash2296 2009

[23] A K Verma and R Pratap ldquoChemistry of biologically impor-tant flavonesrdquo Tetrahedron vol 68 pp 8523ndash8538 2012

[24] MH Bukhari H L SiddiquiMAhmad THussain andMGMoloney ldquoSynthesis and anti-bacterial activities of some novelpyrazolobenzothiazine-based chalcones and their pyrimidinederivativesrdquo Medicinal Chemistry Research vol 21 pp 2885ndash2895 2011

[25] E A Bell and R G Foster ldquoStructure of lathyrinerdquo Nature vol194 no 4823 pp 91ndash92 1962

[26] F Tanaka S Takeuchi N Tanaka H Yonehara H Umezawaand Y J Sumiki ldquoBacimethrin a new antibiotic produced by Bmegatheriumrdquo Journal of Antibiotics A vol 14 pp 161ndash162 1961

[27] R G S Berlinck J C Braekman D Daloze et al ldquoPolycyclicguanidine alkaloids from the marine sponge Crambe crambeandCa++ channel blocker activity of crambescidin 816rdquo Journalof Natural Products vol 56 no 7 pp 1007ndash1015 1993

[28] Y-L Lin R-L Huang C-M Chang and Y-H Kuo ldquoTwonew puriniums and three new pyrimidines fromHeterostemmabrowniirdquo Journal of Natural Products vol 60 no 10 pp 982ndash985 1997

[29] I Ohtani R E Moore and M T C Runnegar ldquoCylindrosper-mopsin a potent hepatotoxin from the blue-green alga Cylin-drospermopsis raciborskiirdquo Journal of the American ChemicalSociety vol 114 pp 7941ndash7942 1992

[30] N Jiang XQDeng F N Li and Z S Quan ldquoSynthesis of novel7-substituted-5-phenyl-[1 2 4]triazolo[1 5-a] pyrimidines withanticonvulsant activityrdquo Iranian Journal of PharmaceuticalResearch vol 11 pp 799ndash806 2012

[31] M Ungureanu C C Moldoveanu A Poeata G Drochioiu MPetrovanu and I Mangalagiu ldquoNew pyrimidine compoundswith in vitro antimicrobial or antifungal activityrdquo AnnalesPharmaceutiques Francaises vol 56 pp 181ndash183 1998

[32] A E-G E Amr N M Sabry and M M Abdulla ldquoSynthe-sis reactions and anti-inflammatory activity of heterocyclicsystems fused to a thiophene moiety using citrazinic acid assynthonrdquo Monatshefte fur Chemie vol 138 no 7 pp 699ndash7072007

[33] N Fujiwara T Nakajima Y Ueda H Fujita and H KawakamildquoNovel piperidinylpyrimidine derivatives as inhibitors of HIV-1 LTR activationrdquo Bioorganic and Medicinal Chemistry vol 16no 22 pp 9804ndash9816 2008

[34] L Ballell R A Field G A C Chung and R J YoungldquoNew thiopyrazolo[34-d]pyrimidine derivatives as anti-mycobacterial agentsrdquo Bioorganic and Medicinal ChemistryLetters vol 17 no 6 pp 1736ndash1740 2007

[35] E Wagner K Al-Kadasi M Zimecki and W Sawka-Dobrowolska ldquoSynthesis and pharmacological screening ofderivatives of isoxazolo[45-d]pyrimidinerdquo European Journal ofMedicinal Chemistry vol 43 no 11 pp 2498ndash2504 2008

[36] A Tiwari W R Waud and R F Struck ldquoDetermination of thephamacophore of penclomedine a clinically-evaluated antitu-mor pyridine derivativerdquo Bioorganic and Medicinal Chemistryvol 10 no 11 pp 3593ndash3598 2002

[37] K Gorlitzer S Herbig and R D Walter ldquoIndeno[12-d]pyrimidin-4-yl-aminesrdquo Pharmazie vol 52 no 9 pp 670ndash672 1997

[38] I V Ukrainets I A Tugaibei N L Bereznyakova V NKravchenko and A V Turov ldquo4-Hydroxy-2-quinolones 144Alkyl- arylalkyl- and arylamides of 2-hydroxy-4-oxo-4H-pyrido[12-a]pyrimidine-3-carboxylic acid and their diureticpropertiesrdquo Chemistry of Heterocyclic Compounds no 5 pp718ndash729 2008

[39] S Q Wang L Fang X J Liu and K Zhao ldquoDesign synthesisand hypnotic activity of pyrazolo[15-a]pyrimidine derivativesrdquoChinese Chemical Letters vol 15 no 8 pp 885ndash888 2004

[40] W Yang Z Ruan Y Wang et al ldquoDiscovery and structure-activity relationships of trisubstituted pyrimidinespyridines as

10 Organic Chemistry International

novel calcium-sensing receptor antagonistsrdquo Journal of Medici-nal Chemistry vol 52 no 4 pp 1204ndash1208 2009

[41] R J Gillespie S J Bamford R Botting et al ldquoAntagonistsof the human A2A adenosine receptor 4 Design synthesisand preclinical evaluation of 7-aryltriazolo[45-d]pyrimidinesrdquoJournal of Medicinal Chemistry vol 52 no 1 pp 33ndash47 2009

[42] H A Deshpande H N Chopde C P Pandhurnekar and RJ Batra ldquoSynthesis characterization and testing of biologicalactivity of some novel chalcones derivatives of coumarinrdquoChemical Science Transactions vol 2 pp 621ndash627 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 6: Research Article Synthesis, Characterization, and ...downloads.hindawi.com/journals/oci/2013/582079.pdfand p-acetophenone or p-nitroacetophenone (.moL) were added to ethanol (mL) and

6 Organic Chemistry International

233 Characterization Data of 4-(2-Hydroxy-5-((3-ni-trophenyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4c) Brownish Powder Yield 5962 mp 224∘CIR (KBr) cmminus1 1320 (Ar-NO

2) 1430 (N=N) 1640 (C=N)

3010 (Ar-OH) 1H-NMR (CDCl3) 120575 470 (s 3H 3Ar-OH)

640ndash660 (m 4H Ar-CH) 740 (d 2H Ar-CH) 760ndash820(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1628 1609 1583 1571 1544 1529 1481 1457 1312 12941288 1287 1284 1264 1242 1238 1203 1179 1165 11611163 (21 aromatic carbon) 959 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6130 H 320 N 1620 MS 119898119911 42928 (100 M+) 27910(60) 18720 (40) 15010 (30) 12220 (50) 9510 (30)9320 (10) 7920 (20) 7710 (10) 4500 (10) 6810(10) 2810 (10)

234 Characterization Data of 4-(2-Hydroxy-5-((4-ni-trophenyl)diazenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4d) Brownish Powder Yield 6387 mp 240∘CIR (KBr) cmminus1 1340 (Ar-NO

2) 1450 (N=N) 1650 (C=N)

3400 (Ar-OH) 1H-NMR (CDCl3) 120575 480 (s 3H 3Ar-OH)

630ndash650 (m 4H Ar-CH) 720 (d 2H Ar-CH) 750ndash790(m 6H Ar-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm)

1622 1604 1584 1573 1554 1546 1502 1457 1289 12881283 1243 1242 1241 1232 1209 1208 1207 1166 11631162 (21 aromatic carbon) 951 (C pyrimidine) Anal Calcdfor C22H15N5O5() C 6154 H 352 N 1631 Found () C

6150 H 340 N 1630 MS 119898119911 42941 (100 M+) 27920(70) 18710 (50) 15000 (40) 12210 (40) 9500 (20)9310 (20) 7910 (10) 7700 (10) 4510 (10) 6820(20) 2800 (10)

235 Characterization Data of 4-(2-Hydroxy-5-(phenyldi-azenyl)phenyl)-6-(4-hydroxy-phenyl)pyrimidin-2-ol (4e)Yellowish Powder Yield 6049 mp 170∘C IR (KBr)cmminus1 1330 (Ar-NO

2) 1440 (N=N) 1650 (C=N) 3070 (Ar-

OH) 1H-NMR (CDCl3) 120575 450 (s 3H 3Ar-OH) 660ndash680

(m 4H Ar-CH) 730 (d 2H Ar-CH) 740ndash790 (m 7HAr-CH) 13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1626

1601 1589 1577 1548 1523 1454 1308 1297 1294 12861285 1281 1247 1239 1237 1234 1201 1168 1167 1162(21 aromatic carbon) 956 (C pyrimidine) Anal Calcd forC22H16N4O3() C 6874 H 420 N 1458 Found () C

6860 H 410 N 1430 MS 119898119911 38432 (100 M+) 27910(70) 18710 (60) 10510 (40) 9520 (20) 9310 (10)7900 (10) 7720 (10) 4510 (10) 6810 (20) 2810(10)

236 Characterization Data of 4-(2-Hydroxy-5-(p-tol-yldiazenyl)phenyl)-6-(4-nitrophenyl)-pyrimidin-2-ol (5a)Brownish Powder Yield 7026 mp 165∘C IR (KBr) cmminus11350 (Ar-NO

2) 1490 (N=N) 1600 (C=N) 2900 (Ar-CH

3)

3390 (Ar-OH) 1H-NMR (CDCl3) 120575 240 (s 3H Ar-CH

3)

520 (s 2H 2Ar-OH) 670 (s 1H Ar-CH) 680 (d 2HAr-CH) 730 (d 2H Ar-CH) 750ndash770 (m 8H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1625 1604 1573

1546 1496 1478 1457 1418 1405 1294 1292 1262 12611243 1242 1232 1231 1229 1228 1207 1166 (21 aromatic

carbon) 959 (C pyrimidine) 212 (CH3) Anal Calcd for

C23H17N5O4() C 6463 H 401 N 1639 Found () C

6440 H 400 N 1620 MS 119898119911 42710 (100 M+) 30810(80) 18700 (60) 12210 (50) 11900 (40) 9510 (30)9300 (10) 9110 (20) 7910 (10) 7710 (10) 4590(30) 6800 (10) 2800 (20)

237 Characterization Data of 4-(2-Hydroxy-5-((2-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5b)Reddish Powder Yield 6518 mp 214∘C IR (KBr) cmminus11320 (Ar-NO

2) 1430 (N=N) 1630 (C=N) 3130 (Ar-OH)

1H-NMR (CDCl3) 120575 530 (s 2H 2Ar-OH) 650 (s 1H

Ar-CH) 680 (d 1H Ar-CH) 770ndash790 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1624 1603 1575

1543 1479 1475 1457 1437 1415 1353 1317 1265 12641246 1248 1247 1243 1239 1238 1206 1163 (21 aromaticcarbon) 954 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5740 H 300N 1820 MS 119898119911 45810 (100 M+) 30820 (70) 21610(40) 22200 (50) 15000 (60) 12200 (30) 9500(20) 9310 (20) 7900 (10) 6820 (20)

238 Characterization Data of 4-(2-Hydroxy-5-((3-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5c)Brownish Powder Yield 5433mp 239∘C IR (KBr) cmminus11330 (Ar-NO

2) 1410 (N=N) 1650 (C=N) 3030 (Ar-OH)

1H-NMR (CDCl3) 120575 520 (s 2H 2Ar-OH) 640 (s 1H

Ar-CH) 690 (d 1H Ar-CH) 760ndash790 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1622 1606 1573

1546 1525 1488 1474 1456 1419 1319 1299 1267 12661261 1248 1247 1245 1234 1207 1174 1168 (21 aromaticcarbon) 951 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5750 H 290N 1810 MS 119898119911 45838 (100 M+) 24210 (60) 21620(50) 12210 (40) 12120 (20) 9510 (20) 9300 (10)7910 (20) 6810 (10)

239 Characterization Data of 4-(2-Hydroxy-5-((4-nitroph-enyl)diazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5d)Brownish Powder Yield 6187 mp 250∘C IR (KBr) cmminus11320 (Ar-NO

2) 1450 (N=N) 1670 (C=N) 3420 (Ar-OH)

1H-NMR (CDCl3) 120575 540 (s 2H 2Ar-OH) 620 (s 1H

Ar-CH) 670 (d 1H Ar-CH) 750ndash780 (m 10H Ar-CH)13C-NMR (100MHz CDCl

3-d6 120575 ppm) 1621 1607 1557

1575 1546 1508 1477 1456 1418 1269 1268 1249 12481244 1243 1242 1235 1209 1207 1206 1169 (21 aromaticcarbon) 957 (C pyrimidine) Anal Calcd for C

22H14N6O6

() C 5765 H 308 N 1833 Found () C 5730 H 310N 1830 MS 119898119911 45846 (100 M+) 24220 (80) 21610(60) 12220 (50) 12110 (10) 9520 (10) 9320 (10)7920 (10) 7710 (20) 6820 (20)

2310 Characterization Data of 4-(2-Hydroxy-5-(ph-enyldiazenyl)phenyl)-6-(4-nitrophenyl)pyrimidin-2-ol (5e)Yellowish Powder Yield 7422 mp 160∘C IR (KBr) cmminus11310 (Ar-NO

2) 1420 (N=N) 1670 (C=N) 3080 (Ar-OH)

1H-NMR (CDCl3) 120575 490 (s 2H 2Ar-OH) 670 (s 1H

Ar-CH) 710 (d 1H Ar-CH) 750ndash780 (m 11H Ar-CH)

Organic Chemistry International 7

Table 1 Antibacterial and anti-fungal activity of newly synthesized chalcone derivatives (2andash2e 3andash3e) and pyrimidine derivatives (4andash4e5andash5e)

Compound (500 120583gdisk)

Average value of zone of inhibition in mmAntimicrobial Activity

Gram Positive Gram Negative Antifungal activityS aureus B subtilis P vulgaris E coli C albicans A niger

2a mdash mdash mdash mdash mdash mdash2b 10 08 13 12 11 132c 11 06 16 14 12 162d 6 8 10 08 08 102e mdash 4 mdash mdash mdash mdash3a mdash mdash 5 4 mdash mdash3b 13 10 14 14 16 153c 12 13 16 15 17 183d 8 14 12 10 12 133e mdash 5 mdash 4 5 44a 4 3 6 8 8 104b 14 13 17 14 16 174c 15 08 19 18 18 204d 10 12 12 14 16 204e 7 6 8 10 14 125a 5 6 9 8 12 145b 29 18 24 26 22 255c 22 24 26 24 20 275d 13 15 16 12 24 215e 12 10 15 16 16 15Ciprofloxacin 30 26 32 31 mdash mdashFluconazole mdash mdash mdash mdash 24 26ldquomdashrdquo represent ldquoinactiverdquo

13C-NMR (100MHz CDCl3-d6 120575 ppm) 1624 1609 1577

1548 1525 1476 1457 1415 1308 1298 1295 1269 12671244 1243 1241 1238 1235 1234 1209 1168 (21 aromaticcarbon) 953 (C pyrimidine) Anal Calcd for C

22H15N5O4

() C 6392 H 366 N 1694 Found () C 6380 H 350N 1680 MS 119898119911 41336 (100 M+) 21620 (70) 19710(40) 12210 (60) 12100 (30) 9500 (20) 9310 (30)7720 (20) 6810 (10)

24 Biological Activity The newly synthesized compoundswere examined for antibacterial and antifungal activity usingwell diffusion method against the panel of different grampositive and gram negative bacterial stains and fungi stainsDifferent bacterial stains used for the screeningwere S aureus(gram Positive) B subtilis (gram Positive) P vulgaris (gramNegative) and E coli (gram Negative) Antifungal activitiesof these compounds were also tested against C albicans andA niger The stains for antibacterial and antifungal activitieswere obtained from Department of Microbiology S F SCollege Nagpur The stock solutions of pyrimidine deriva-tives or standard drug in dimethyl sulfoxide (100120583gmL)were

prepared for the study The sterilized petri dishes and agarmedium were used in the present work The antibacterialactivities of compounds were evaluated by measuring thezone of inhibition on nutrient agar plate Muller Hinton agarwas used in the anti-bacterial study whereas SabouraudrsquosDextrose agar was used for the anti-fungal activity studyThecomposition of nutrient agar medium to culture the bacterialstrains used in the present study was as follows Peptone(10 gm) agar powder (20 gm) sodium chloride powder(10 gm) beaf extract (5 gm) and distilled water (1000mL)The pH of the nutrient agar medium was adjusted to 72 Thenutrient agar medium was mixed well and was autoclaved at15 lbs pressure at 120∘C for at least 15 minutes

In the sterilized agar medium 10mL of one-day-oldbacterialfungal cultures were added Bacterial or fungalculture were inoculated into nutrient broth and incubatedat 37 plusmn 2∘C on rotary shaker at 100 rpm After 36-hourincubation bacterial suspensions were used for further testsThis media were poured in petri dishes and allowed toset Two wells were created using a 5mm cork borer Inthis well 01mL of test samplestandards were filled All thenutrient agar plates were incubated at 37∘C for 24 hours in

8 Organic Chemistry International

anti-bacterial study and at 37∘C for 48 hours in anti-fungalactivity study The plates were observed for clear zone ofinhibition Then diameters of the zone of inhibition for thesecompounds were measured The biological activities weretested for at least three times for all the compounds againstall microorganisms and average value has been reported hereThe results of antimicrobial activity and antifungal activity ofthe test compounds have been collected in Table 1

3 Results and Discussion

A new series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one (2andash2e 3andash3e) and pyrimidines derivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols (4andash4e 5andash5e)were synthesized as depicted in Scheme 1 In the first stepdifferent azo-aldehydes (1andash1e) were prepared by the reactionof aromatic amines with salicylaldehyde in equimolarcondition Typical procedure of synthesis of chalcones(2andash2e 3andash3e) in the present work involves the reaction ofequimolar quantities of various substituted azo-aldehydeswith either 4-nitroacetophenone or p-acetophenone inethanolic alkaline medium Pyrimidine derivatives (4andash4e 5andash5e) were obtained by refluxing newly synthesizedsubstituted chalcones and urea in ethanol in presence ofaqueous NaOH solution and then cooling the reactionmixture in crushed ice The newly synthesized compoundswere characterized on the basis of their spectroscopic data(1H-NMR 13C-NMR IR and Mass) and elemental analysisIn elemental analysis the percentage of the nitrogenhydrogen and carbon was found to be experimentallyequivalent to the calculated values in all compounds Ingeneral compounds 1andash1e have shown aldehydic C=O peakwithin the range of 1700-1700 cmminus1 whereas aldehydic HndashC=peaks approximately within 2820 up to 2850 cmminus1 The 1H-NMR spectra have shown the peaks of protons present in thecompounds at their appropriate 120575 values whereas 13C-NMRconfirmed the numbers of C atoms in the newly synthesizedcompounds In the LCMS of the synthesized compoundspeaks for molecular ion peak were observed at its respectivemolecular mass The newly synthesized chalcones andpyrimidines were evaluated for in vitro antibacterial andantifungal activities against various gram positive gramnegative bacteria and fungal species The results have beencollected in Table 1 Ciprofloxacin as the standard drugwas tested against bacterial strains whereas Fluconazoleas the standard drug was tested against fungal strains forcomparison with newly synthesized compounds The closesurvey of values indicates that the chalcones compound(2andash2e 3andash3e) exhibited varied range zone of inhibitiondepending upon the substituent on the ring structure Mostof the compounds have shown moderate to good biologicalactivity against the bacterial and fungal strains Compounds5a and 5b have shown excellent activity against both grampositive and gram negative bacterial strains as comparedto standard drug Ciprofloxacin Compounds 5b 5c and5d have shown excellent activity against as compared tostandard drug Fluconazole

4 Conclusion

A series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one and pyrimidinesderivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols were successfully synthesized All the newlysynthesized compoundswere characterized spectroscopicallyand using analytical techniques such as 1H-NMR 13C-NMRIR and mass and elemental analysis Anti-bacterial activitystudies reveal that compounds 5b and 5c have shown thehighest activity among all newly synthesized compoundsas compared to standard drug whereas compounds 5b 5cand 5d have shown the highest antifungal activity amongall newly synthesized compounds as compared to standarddrug

References

[1] T Narender S Shweta K Tanvir M Srinivasa Rao K Sri-vastava and S K Puri ldquoPrenylated chalcones isolated fromCrotalaria genus inhibits in vitro growth of the human malariaparasite Plasmodium falciparumrdquo Bioorganic and MedicinalChemistry Letters vol 15 no 10 pp 2453ndash2455 2005

[2] Z Nowakowska ldquoA review of anti-infective and anti-inflammatory chalconesrdquo European Journal of MedicinalChemistry vol 42 no 2 pp 125ndash137 2007

[3] M Ceylan and E Findik ldquoSynthesis and characterization ofnew chalcone derivatives from cis-bicyclo[320]hept-2-en-6-onerdquo Synthetic Communications vol 39 no 6 pp 1046ndash10542009

[4] H O Saxena U Faridi J K Kumar et al ldquoSynthesis of chalconederivatives on steroidal framework and their anticancer activi-tiesrdquo Steroids vol 72 no 13 pp 892ndash900 2007

[5] R J Anto K Sukumaran G KuttanMNA Rao V Subbarajuand R Kuttan ldquoAnticancer and antioxidant activity of syntheticchalcones and related compoundsrdquo Cancer Letters vol 97 no 1pp 33ndash37 1995

[6] J N Domınguez C Leon J Rodrigues N G De DomınguezJ Gut and P J Rosenthal ldquoSynthesis and evaluation ofnew antimalarial phenylurenyl chalcone derivativesrdquo Journal ofMedicinal Chemistry vol 48 no 10 pp 3654ndash3658 2005

[7] A Valla B Valla D Cartier et al ldquoNew syntheses andpotential antimalarial activities of new lsquoretinoid-like chalconesrsquordquoEuropean Journal of Medicinal Chemistry vol 41 no 1 pp 142ndash146 2006

[8] S F Nielsen S B Christensen G Cruciani A Kharazmiand T Liljefors ldquoAntileishmaniai chalcones statistical designsynthesis and three-dimensional quantitative structure-activityrelationship analysisrdquo Journal of Medicinal Chemistry vol 41no 24 pp 4819ndash4832 1998

[9] P Boeck C A Bandeira Falcao P C Leal et al ldquoSynthesisof chalcone analogues with increased antileishmanial activityrdquoBioorganic and Medicinal Chemistry vol 14 no 5 pp 1538ndash1545 2006

[10] K V Sashidhara M Kumar R K Modukuri et al ldquoSynthesisand anti-inflammatory activity of novel biscoumarin-chalconehybridsrdquoBioorganic andMedicinal Chemistry Letters vol 21 no15 pp 4480ndash4484 2011

Organic Chemistry International 9

[11] H-M Yang H-R Shin S-H Cho et al ldquoStructural require-ment of chalcones for the inhibitory activity of interleukin-5rdquoBioorganic and Medicinal Chemistry vol 15 no 1 pp 104ndash1112007

[12] S Cheenpracha C Karalai C Ponglimanont S Subhadhi-rasakul and S Tewtrakul ldquoAnti-HIV-1 protease activity ofcompounds from Boesenbergia panduratardquo Bioorganic andMedicinal Chemistry vol 14 no 6 pp 1710ndash1714 2006

[13] L Svetaz A Tapia S N Lopez et al ldquoAntifungal chalconesand new caffeic acids esters from Zuccagnia punctata actingagainst soybean infecting fungirdquo Journal of Agricultural andFood Chemistry vol 52 no 11 pp 3297ndash3300 2004

[14] B P Bandgar B S Hote N A Dhole and R N GaccheldquoSynthesis and biological evaluation of novel series of chalconederivatives as inhibitors of cyclooxygenase and LPS-inducedTNF-120572 with potent antioxidant propertiesrdquo Medicinal Chem-istry Research vol 21 pp 2292ndash2299 2011

[15] O Nerya R Musa S Khatib S Tamir and J Vaya ldquoChalconesas potent tyrosinase inhibitors the effect of hydroxyl positionsand numbersrdquo Phytochemistry vol 65 no 10 pp 1389ndash13952004

[16] K V Sashidhara A Kumar M Kumar J Sarkar and SSinha ldquoSynthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agentsrdquo Bioorganic andMedicinal Chemistry Letters vol 20 no 24 pp 7205ndash7211 2010

[17] C THsieh T JHsiehM El-Shazly et al ldquoSynthesis of chalconederivatives as potential anti-diabetic agentsrdquo Bioorganic ampMedicinal Chemistry Letters vol 22 pp 3912ndash3915 2012

[18] S Wattanasin and W S Murphy ldquoAn improved procedure forthe preparation of chalcones and related enonesrdquo Synthesis vol1980 pp 647ndash650 1980

[19] T Narender K Venkateswarlu B V Nayak and S Sarkar ldquoAnew chemical access for 31015840 -acetyl-41015840 -hydroxychalcones usingborontrifluoride-etherate via a regioselective Claisen-Schmidtcondensation and its application in the synthesis of chalconehybridsrdquo Tetrahedron Letters vol 52 no 44 pp 5794ndash57982011

[20] A Garcia-Raso J A Garcia-Raso R Mestres and J V Sinis-terra ldquoMechanism of Michael addition of ethyl acetoacetate tochalcone catalyzed by activated Ba(OH)

2rdquoReactionKinetics and

Catalysis Letters vol 28 no 2 pp 365ndash371 1985

[21] J R Patel M H Malani and B Z Dholakiya ldquoSilica sulfuricacid-catalyzed Claisen-Schmidt condensation of 134 trisub-stituted pyrrole 25 dione to chalconesrdquo Research on ChemicalIntermediates vol 38 pp 2371ndash2381 2012

[22] KV Sashidhara J N Rosaiah andAKumar ldquoIodine-catalyzedmild and efficient method for the synthesis of chalconesrdquoSynthetic Communications vol 39 no 13 pp 2288ndash2296 2009

[23] A K Verma and R Pratap ldquoChemistry of biologically impor-tant flavonesrdquo Tetrahedron vol 68 pp 8523ndash8538 2012

[24] MH Bukhari H L SiddiquiMAhmad THussain andMGMoloney ldquoSynthesis and anti-bacterial activities of some novelpyrazolobenzothiazine-based chalcones and their pyrimidinederivativesrdquo Medicinal Chemistry Research vol 21 pp 2885ndash2895 2011

[25] E A Bell and R G Foster ldquoStructure of lathyrinerdquo Nature vol194 no 4823 pp 91ndash92 1962

[26] F Tanaka S Takeuchi N Tanaka H Yonehara H Umezawaand Y J Sumiki ldquoBacimethrin a new antibiotic produced by Bmegatheriumrdquo Journal of Antibiotics A vol 14 pp 161ndash162 1961

[27] R G S Berlinck J C Braekman D Daloze et al ldquoPolycyclicguanidine alkaloids from the marine sponge Crambe crambeandCa++ channel blocker activity of crambescidin 816rdquo Journalof Natural Products vol 56 no 7 pp 1007ndash1015 1993

[28] Y-L Lin R-L Huang C-M Chang and Y-H Kuo ldquoTwonew puriniums and three new pyrimidines fromHeterostemmabrowniirdquo Journal of Natural Products vol 60 no 10 pp 982ndash985 1997

[29] I Ohtani R E Moore and M T C Runnegar ldquoCylindrosper-mopsin a potent hepatotoxin from the blue-green alga Cylin-drospermopsis raciborskiirdquo Journal of the American ChemicalSociety vol 114 pp 7941ndash7942 1992

[30] N Jiang XQDeng F N Li and Z S Quan ldquoSynthesis of novel7-substituted-5-phenyl-[1 2 4]triazolo[1 5-a] pyrimidines withanticonvulsant activityrdquo Iranian Journal of PharmaceuticalResearch vol 11 pp 799ndash806 2012

[31] M Ungureanu C C Moldoveanu A Poeata G Drochioiu MPetrovanu and I Mangalagiu ldquoNew pyrimidine compoundswith in vitro antimicrobial or antifungal activityrdquo AnnalesPharmaceutiques Francaises vol 56 pp 181ndash183 1998

[32] A E-G E Amr N M Sabry and M M Abdulla ldquoSynthe-sis reactions and anti-inflammatory activity of heterocyclicsystems fused to a thiophene moiety using citrazinic acid assynthonrdquo Monatshefte fur Chemie vol 138 no 7 pp 699ndash7072007

[33] N Fujiwara T Nakajima Y Ueda H Fujita and H KawakamildquoNovel piperidinylpyrimidine derivatives as inhibitors of HIV-1 LTR activationrdquo Bioorganic and Medicinal Chemistry vol 16no 22 pp 9804ndash9816 2008

[34] L Ballell R A Field G A C Chung and R J YoungldquoNew thiopyrazolo[34-d]pyrimidine derivatives as anti-mycobacterial agentsrdquo Bioorganic and Medicinal ChemistryLetters vol 17 no 6 pp 1736ndash1740 2007

[35] E Wagner K Al-Kadasi M Zimecki and W Sawka-Dobrowolska ldquoSynthesis and pharmacological screening ofderivatives of isoxazolo[45-d]pyrimidinerdquo European Journal ofMedicinal Chemistry vol 43 no 11 pp 2498ndash2504 2008

[36] A Tiwari W R Waud and R F Struck ldquoDetermination of thephamacophore of penclomedine a clinically-evaluated antitu-mor pyridine derivativerdquo Bioorganic and Medicinal Chemistryvol 10 no 11 pp 3593ndash3598 2002

[37] K Gorlitzer S Herbig and R D Walter ldquoIndeno[12-d]pyrimidin-4-yl-aminesrdquo Pharmazie vol 52 no 9 pp 670ndash672 1997

[38] I V Ukrainets I A Tugaibei N L Bereznyakova V NKravchenko and A V Turov ldquo4-Hydroxy-2-quinolones 144Alkyl- arylalkyl- and arylamides of 2-hydroxy-4-oxo-4H-pyrido[12-a]pyrimidine-3-carboxylic acid and their diureticpropertiesrdquo Chemistry of Heterocyclic Compounds no 5 pp718ndash729 2008

[39] S Q Wang L Fang X J Liu and K Zhao ldquoDesign synthesisand hypnotic activity of pyrazolo[15-a]pyrimidine derivativesrdquoChinese Chemical Letters vol 15 no 8 pp 885ndash888 2004

[40] W Yang Z Ruan Y Wang et al ldquoDiscovery and structure-activity relationships of trisubstituted pyrimidinespyridines as

10 Organic Chemistry International

novel calcium-sensing receptor antagonistsrdquo Journal of Medici-nal Chemistry vol 52 no 4 pp 1204ndash1208 2009

[41] R J Gillespie S J Bamford R Botting et al ldquoAntagonistsof the human A2A adenosine receptor 4 Design synthesisand preclinical evaluation of 7-aryltriazolo[45-d]pyrimidinesrdquoJournal of Medicinal Chemistry vol 52 no 1 pp 33ndash47 2009

[42] H A Deshpande H N Chopde C P Pandhurnekar and RJ Batra ldquoSynthesis characterization and testing of biologicalactivity of some novel chalcones derivatives of coumarinrdquoChemical Science Transactions vol 2 pp 621ndash627 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 7: Research Article Synthesis, Characterization, and ...downloads.hindawi.com/journals/oci/2013/582079.pdfand p-acetophenone or p-nitroacetophenone (.moL) were added to ethanol (mL) and

Organic Chemistry International 7

Table 1 Antibacterial and anti-fungal activity of newly synthesized chalcone derivatives (2andash2e 3andash3e) and pyrimidine derivatives (4andash4e5andash5e)

Compound (500 120583gdisk)

Average value of zone of inhibition in mmAntimicrobial Activity

Gram Positive Gram Negative Antifungal activityS aureus B subtilis P vulgaris E coli C albicans A niger

2a mdash mdash mdash mdash mdash mdash2b 10 08 13 12 11 132c 11 06 16 14 12 162d 6 8 10 08 08 102e mdash 4 mdash mdash mdash mdash3a mdash mdash 5 4 mdash mdash3b 13 10 14 14 16 153c 12 13 16 15 17 183d 8 14 12 10 12 133e mdash 5 mdash 4 5 44a 4 3 6 8 8 104b 14 13 17 14 16 174c 15 08 19 18 18 204d 10 12 12 14 16 204e 7 6 8 10 14 125a 5 6 9 8 12 145b 29 18 24 26 22 255c 22 24 26 24 20 275d 13 15 16 12 24 215e 12 10 15 16 16 15Ciprofloxacin 30 26 32 31 mdash mdashFluconazole mdash mdash mdash mdash 24 26ldquomdashrdquo represent ldquoinactiverdquo

13C-NMR (100MHz CDCl3-d6 120575 ppm) 1624 1609 1577

1548 1525 1476 1457 1415 1308 1298 1295 1269 12671244 1243 1241 1238 1235 1234 1209 1168 (21 aromaticcarbon) 953 (C pyrimidine) Anal Calcd for C

22H15N5O4

() C 6392 H 366 N 1694 Found () C 6380 H 350N 1680 MS 119898119911 41336 (100 M+) 21620 (70) 19710(40) 12210 (60) 12100 (30) 9500 (20) 9310 (30)7720 (20) 6810 (10)

24 Biological Activity The newly synthesized compoundswere examined for antibacterial and antifungal activity usingwell diffusion method against the panel of different grampositive and gram negative bacterial stains and fungi stainsDifferent bacterial stains used for the screeningwere S aureus(gram Positive) B subtilis (gram Positive) P vulgaris (gramNegative) and E coli (gram Negative) Antifungal activitiesof these compounds were also tested against C albicans andA niger The stains for antibacterial and antifungal activitieswere obtained from Department of Microbiology S F SCollege Nagpur The stock solutions of pyrimidine deriva-tives or standard drug in dimethyl sulfoxide (100120583gmL)were

prepared for the study The sterilized petri dishes and agarmedium were used in the present work The antibacterialactivities of compounds were evaluated by measuring thezone of inhibition on nutrient agar plate Muller Hinton agarwas used in the anti-bacterial study whereas SabouraudrsquosDextrose agar was used for the anti-fungal activity studyThecomposition of nutrient agar medium to culture the bacterialstrains used in the present study was as follows Peptone(10 gm) agar powder (20 gm) sodium chloride powder(10 gm) beaf extract (5 gm) and distilled water (1000mL)The pH of the nutrient agar medium was adjusted to 72 Thenutrient agar medium was mixed well and was autoclaved at15 lbs pressure at 120∘C for at least 15 minutes

In the sterilized agar medium 10mL of one-day-oldbacterialfungal cultures were added Bacterial or fungalculture were inoculated into nutrient broth and incubatedat 37 plusmn 2∘C on rotary shaker at 100 rpm After 36-hourincubation bacterial suspensions were used for further testsThis media were poured in petri dishes and allowed toset Two wells were created using a 5mm cork borer Inthis well 01mL of test samplestandards were filled All thenutrient agar plates were incubated at 37∘C for 24 hours in

8 Organic Chemistry International

anti-bacterial study and at 37∘C for 48 hours in anti-fungalactivity study The plates were observed for clear zone ofinhibition Then diameters of the zone of inhibition for thesecompounds were measured The biological activities weretested for at least three times for all the compounds againstall microorganisms and average value has been reported hereThe results of antimicrobial activity and antifungal activity ofthe test compounds have been collected in Table 1

3 Results and Discussion

A new series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one (2andash2e 3andash3e) and pyrimidines derivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols (4andash4e 5andash5e)were synthesized as depicted in Scheme 1 In the first stepdifferent azo-aldehydes (1andash1e) were prepared by the reactionof aromatic amines with salicylaldehyde in equimolarcondition Typical procedure of synthesis of chalcones(2andash2e 3andash3e) in the present work involves the reaction ofequimolar quantities of various substituted azo-aldehydeswith either 4-nitroacetophenone or p-acetophenone inethanolic alkaline medium Pyrimidine derivatives (4andash4e 5andash5e) were obtained by refluxing newly synthesizedsubstituted chalcones and urea in ethanol in presence ofaqueous NaOH solution and then cooling the reactionmixture in crushed ice The newly synthesized compoundswere characterized on the basis of their spectroscopic data(1H-NMR 13C-NMR IR and Mass) and elemental analysisIn elemental analysis the percentage of the nitrogenhydrogen and carbon was found to be experimentallyequivalent to the calculated values in all compounds Ingeneral compounds 1andash1e have shown aldehydic C=O peakwithin the range of 1700-1700 cmminus1 whereas aldehydic HndashC=peaks approximately within 2820 up to 2850 cmminus1 The 1H-NMR spectra have shown the peaks of protons present in thecompounds at their appropriate 120575 values whereas 13C-NMRconfirmed the numbers of C atoms in the newly synthesizedcompounds In the LCMS of the synthesized compoundspeaks for molecular ion peak were observed at its respectivemolecular mass The newly synthesized chalcones andpyrimidines were evaluated for in vitro antibacterial andantifungal activities against various gram positive gramnegative bacteria and fungal species The results have beencollected in Table 1 Ciprofloxacin as the standard drugwas tested against bacterial strains whereas Fluconazoleas the standard drug was tested against fungal strains forcomparison with newly synthesized compounds The closesurvey of values indicates that the chalcones compound(2andash2e 3andash3e) exhibited varied range zone of inhibitiondepending upon the substituent on the ring structure Mostof the compounds have shown moderate to good biologicalactivity against the bacterial and fungal strains Compounds5a and 5b have shown excellent activity against both grampositive and gram negative bacterial strains as comparedto standard drug Ciprofloxacin Compounds 5b 5c and5d have shown excellent activity against as compared tostandard drug Fluconazole

4 Conclusion

A series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one and pyrimidinesderivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols were successfully synthesized All the newlysynthesized compoundswere characterized spectroscopicallyand using analytical techniques such as 1H-NMR 13C-NMRIR and mass and elemental analysis Anti-bacterial activitystudies reveal that compounds 5b and 5c have shown thehighest activity among all newly synthesized compoundsas compared to standard drug whereas compounds 5b 5cand 5d have shown the highest antifungal activity amongall newly synthesized compounds as compared to standarddrug

References

[1] T Narender S Shweta K Tanvir M Srinivasa Rao K Sri-vastava and S K Puri ldquoPrenylated chalcones isolated fromCrotalaria genus inhibits in vitro growth of the human malariaparasite Plasmodium falciparumrdquo Bioorganic and MedicinalChemistry Letters vol 15 no 10 pp 2453ndash2455 2005

[2] Z Nowakowska ldquoA review of anti-infective and anti-inflammatory chalconesrdquo European Journal of MedicinalChemistry vol 42 no 2 pp 125ndash137 2007

[3] M Ceylan and E Findik ldquoSynthesis and characterization ofnew chalcone derivatives from cis-bicyclo[320]hept-2-en-6-onerdquo Synthetic Communications vol 39 no 6 pp 1046ndash10542009

[4] H O Saxena U Faridi J K Kumar et al ldquoSynthesis of chalconederivatives on steroidal framework and their anticancer activi-tiesrdquo Steroids vol 72 no 13 pp 892ndash900 2007

[5] R J Anto K Sukumaran G KuttanMNA Rao V Subbarajuand R Kuttan ldquoAnticancer and antioxidant activity of syntheticchalcones and related compoundsrdquo Cancer Letters vol 97 no 1pp 33ndash37 1995

[6] J N Domınguez C Leon J Rodrigues N G De DomınguezJ Gut and P J Rosenthal ldquoSynthesis and evaluation ofnew antimalarial phenylurenyl chalcone derivativesrdquo Journal ofMedicinal Chemistry vol 48 no 10 pp 3654ndash3658 2005

[7] A Valla B Valla D Cartier et al ldquoNew syntheses andpotential antimalarial activities of new lsquoretinoid-like chalconesrsquordquoEuropean Journal of Medicinal Chemistry vol 41 no 1 pp 142ndash146 2006

[8] S F Nielsen S B Christensen G Cruciani A Kharazmiand T Liljefors ldquoAntileishmaniai chalcones statistical designsynthesis and three-dimensional quantitative structure-activityrelationship analysisrdquo Journal of Medicinal Chemistry vol 41no 24 pp 4819ndash4832 1998

[9] P Boeck C A Bandeira Falcao P C Leal et al ldquoSynthesisof chalcone analogues with increased antileishmanial activityrdquoBioorganic and Medicinal Chemistry vol 14 no 5 pp 1538ndash1545 2006

[10] K V Sashidhara M Kumar R K Modukuri et al ldquoSynthesisand anti-inflammatory activity of novel biscoumarin-chalconehybridsrdquoBioorganic andMedicinal Chemistry Letters vol 21 no15 pp 4480ndash4484 2011

Organic Chemistry International 9

[11] H-M Yang H-R Shin S-H Cho et al ldquoStructural require-ment of chalcones for the inhibitory activity of interleukin-5rdquoBioorganic and Medicinal Chemistry vol 15 no 1 pp 104ndash1112007

[12] S Cheenpracha C Karalai C Ponglimanont S Subhadhi-rasakul and S Tewtrakul ldquoAnti-HIV-1 protease activity ofcompounds from Boesenbergia panduratardquo Bioorganic andMedicinal Chemistry vol 14 no 6 pp 1710ndash1714 2006

[13] L Svetaz A Tapia S N Lopez et al ldquoAntifungal chalconesand new caffeic acids esters from Zuccagnia punctata actingagainst soybean infecting fungirdquo Journal of Agricultural andFood Chemistry vol 52 no 11 pp 3297ndash3300 2004

[14] B P Bandgar B S Hote N A Dhole and R N GaccheldquoSynthesis and biological evaluation of novel series of chalconederivatives as inhibitors of cyclooxygenase and LPS-inducedTNF-120572 with potent antioxidant propertiesrdquo Medicinal Chem-istry Research vol 21 pp 2292ndash2299 2011

[15] O Nerya R Musa S Khatib S Tamir and J Vaya ldquoChalconesas potent tyrosinase inhibitors the effect of hydroxyl positionsand numbersrdquo Phytochemistry vol 65 no 10 pp 1389ndash13952004

[16] K V Sashidhara A Kumar M Kumar J Sarkar and SSinha ldquoSynthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agentsrdquo Bioorganic andMedicinal Chemistry Letters vol 20 no 24 pp 7205ndash7211 2010

[17] C THsieh T JHsiehM El-Shazly et al ldquoSynthesis of chalconederivatives as potential anti-diabetic agentsrdquo Bioorganic ampMedicinal Chemistry Letters vol 22 pp 3912ndash3915 2012

[18] S Wattanasin and W S Murphy ldquoAn improved procedure forthe preparation of chalcones and related enonesrdquo Synthesis vol1980 pp 647ndash650 1980

[19] T Narender K Venkateswarlu B V Nayak and S Sarkar ldquoAnew chemical access for 31015840 -acetyl-41015840 -hydroxychalcones usingborontrifluoride-etherate via a regioselective Claisen-Schmidtcondensation and its application in the synthesis of chalconehybridsrdquo Tetrahedron Letters vol 52 no 44 pp 5794ndash57982011

[20] A Garcia-Raso J A Garcia-Raso R Mestres and J V Sinis-terra ldquoMechanism of Michael addition of ethyl acetoacetate tochalcone catalyzed by activated Ba(OH)

2rdquoReactionKinetics and

Catalysis Letters vol 28 no 2 pp 365ndash371 1985

[21] J R Patel M H Malani and B Z Dholakiya ldquoSilica sulfuricacid-catalyzed Claisen-Schmidt condensation of 134 trisub-stituted pyrrole 25 dione to chalconesrdquo Research on ChemicalIntermediates vol 38 pp 2371ndash2381 2012

[22] KV Sashidhara J N Rosaiah andAKumar ldquoIodine-catalyzedmild and efficient method for the synthesis of chalconesrdquoSynthetic Communications vol 39 no 13 pp 2288ndash2296 2009

[23] A K Verma and R Pratap ldquoChemistry of biologically impor-tant flavonesrdquo Tetrahedron vol 68 pp 8523ndash8538 2012

[24] MH Bukhari H L SiddiquiMAhmad THussain andMGMoloney ldquoSynthesis and anti-bacterial activities of some novelpyrazolobenzothiazine-based chalcones and their pyrimidinederivativesrdquo Medicinal Chemistry Research vol 21 pp 2885ndash2895 2011

[25] E A Bell and R G Foster ldquoStructure of lathyrinerdquo Nature vol194 no 4823 pp 91ndash92 1962

[26] F Tanaka S Takeuchi N Tanaka H Yonehara H Umezawaand Y J Sumiki ldquoBacimethrin a new antibiotic produced by Bmegatheriumrdquo Journal of Antibiotics A vol 14 pp 161ndash162 1961

[27] R G S Berlinck J C Braekman D Daloze et al ldquoPolycyclicguanidine alkaloids from the marine sponge Crambe crambeandCa++ channel blocker activity of crambescidin 816rdquo Journalof Natural Products vol 56 no 7 pp 1007ndash1015 1993

[28] Y-L Lin R-L Huang C-M Chang and Y-H Kuo ldquoTwonew puriniums and three new pyrimidines fromHeterostemmabrowniirdquo Journal of Natural Products vol 60 no 10 pp 982ndash985 1997

[29] I Ohtani R E Moore and M T C Runnegar ldquoCylindrosper-mopsin a potent hepatotoxin from the blue-green alga Cylin-drospermopsis raciborskiirdquo Journal of the American ChemicalSociety vol 114 pp 7941ndash7942 1992

[30] N Jiang XQDeng F N Li and Z S Quan ldquoSynthesis of novel7-substituted-5-phenyl-[1 2 4]triazolo[1 5-a] pyrimidines withanticonvulsant activityrdquo Iranian Journal of PharmaceuticalResearch vol 11 pp 799ndash806 2012

[31] M Ungureanu C C Moldoveanu A Poeata G Drochioiu MPetrovanu and I Mangalagiu ldquoNew pyrimidine compoundswith in vitro antimicrobial or antifungal activityrdquo AnnalesPharmaceutiques Francaises vol 56 pp 181ndash183 1998

[32] A E-G E Amr N M Sabry and M M Abdulla ldquoSynthe-sis reactions and anti-inflammatory activity of heterocyclicsystems fused to a thiophene moiety using citrazinic acid assynthonrdquo Monatshefte fur Chemie vol 138 no 7 pp 699ndash7072007

[33] N Fujiwara T Nakajima Y Ueda H Fujita and H KawakamildquoNovel piperidinylpyrimidine derivatives as inhibitors of HIV-1 LTR activationrdquo Bioorganic and Medicinal Chemistry vol 16no 22 pp 9804ndash9816 2008

[34] L Ballell R A Field G A C Chung and R J YoungldquoNew thiopyrazolo[34-d]pyrimidine derivatives as anti-mycobacterial agentsrdquo Bioorganic and Medicinal ChemistryLetters vol 17 no 6 pp 1736ndash1740 2007

[35] E Wagner K Al-Kadasi M Zimecki and W Sawka-Dobrowolska ldquoSynthesis and pharmacological screening ofderivatives of isoxazolo[45-d]pyrimidinerdquo European Journal ofMedicinal Chemistry vol 43 no 11 pp 2498ndash2504 2008

[36] A Tiwari W R Waud and R F Struck ldquoDetermination of thephamacophore of penclomedine a clinically-evaluated antitu-mor pyridine derivativerdquo Bioorganic and Medicinal Chemistryvol 10 no 11 pp 3593ndash3598 2002

[37] K Gorlitzer S Herbig and R D Walter ldquoIndeno[12-d]pyrimidin-4-yl-aminesrdquo Pharmazie vol 52 no 9 pp 670ndash672 1997

[38] I V Ukrainets I A Tugaibei N L Bereznyakova V NKravchenko and A V Turov ldquo4-Hydroxy-2-quinolones 144Alkyl- arylalkyl- and arylamides of 2-hydroxy-4-oxo-4H-pyrido[12-a]pyrimidine-3-carboxylic acid and their diureticpropertiesrdquo Chemistry of Heterocyclic Compounds no 5 pp718ndash729 2008

[39] S Q Wang L Fang X J Liu and K Zhao ldquoDesign synthesisand hypnotic activity of pyrazolo[15-a]pyrimidine derivativesrdquoChinese Chemical Letters vol 15 no 8 pp 885ndash888 2004

[40] W Yang Z Ruan Y Wang et al ldquoDiscovery and structure-activity relationships of trisubstituted pyrimidinespyridines as

10 Organic Chemistry International

novel calcium-sensing receptor antagonistsrdquo Journal of Medici-nal Chemistry vol 52 no 4 pp 1204ndash1208 2009

[41] R J Gillespie S J Bamford R Botting et al ldquoAntagonistsof the human A2A adenosine receptor 4 Design synthesisand preclinical evaluation of 7-aryltriazolo[45-d]pyrimidinesrdquoJournal of Medicinal Chemistry vol 52 no 1 pp 33ndash47 2009

[42] H A Deshpande H N Chopde C P Pandhurnekar and RJ Batra ldquoSynthesis characterization and testing of biologicalactivity of some novel chalcones derivatives of coumarinrdquoChemical Science Transactions vol 2 pp 621ndash627 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 8: Research Article Synthesis, Characterization, and ...downloads.hindawi.com/journals/oci/2013/582079.pdfand p-acetophenone or p-nitroacetophenone (.moL) were added to ethanol (mL) and

8 Organic Chemistry International

anti-bacterial study and at 37∘C for 48 hours in anti-fungalactivity study The plates were observed for clear zone ofinhibition Then diameters of the zone of inhibition for thesecompounds were measured The biological activities weretested for at least three times for all the compounds againstall microorganisms and average value has been reported hereThe results of antimicrobial activity and antifungal activity ofthe test compounds have been collected in Table 1

3 Results and Discussion

A new series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one (2andash2e 3andash3e) and pyrimidines derivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols (4andash4e 5andash5e)were synthesized as depicted in Scheme 1 In the first stepdifferent azo-aldehydes (1andash1e) were prepared by the reactionof aromatic amines with salicylaldehyde in equimolarcondition Typical procedure of synthesis of chalcones(2andash2e 3andash3e) in the present work involves the reaction ofequimolar quantities of various substituted azo-aldehydeswith either 4-nitroacetophenone or p-acetophenone inethanolic alkaline medium Pyrimidine derivatives (4andash4e 5andash5e) were obtained by refluxing newly synthesizedsubstituted chalcones and urea in ethanol in presence ofaqueous NaOH solution and then cooling the reactionmixture in crushed ice The newly synthesized compoundswere characterized on the basis of their spectroscopic data(1H-NMR 13C-NMR IR and Mass) and elemental analysisIn elemental analysis the percentage of the nitrogenhydrogen and carbon was found to be experimentallyequivalent to the calculated values in all compounds Ingeneral compounds 1andash1e have shown aldehydic C=O peakwithin the range of 1700-1700 cmminus1 whereas aldehydic HndashC=peaks approximately within 2820 up to 2850 cmminus1 The 1H-NMR spectra have shown the peaks of protons present in thecompounds at their appropriate 120575 values whereas 13C-NMRconfirmed the numbers of C atoms in the newly synthesizedcompounds In the LCMS of the synthesized compoundspeaks for molecular ion peak were observed at its respectivemolecular mass The newly synthesized chalcones andpyrimidines were evaluated for in vitro antibacterial andantifungal activities against various gram positive gramnegative bacteria and fungal species The results have beencollected in Table 1 Ciprofloxacin as the standard drugwas tested against bacterial strains whereas Fluconazoleas the standard drug was tested against fungal strains forcomparison with newly synthesized compounds The closesurvey of values indicates that the chalcones compound(2andash2e 3andash3e) exhibited varied range zone of inhibitiondepending upon the substituent on the ring structure Mostof the compounds have shown moderate to good biologicalactivity against the bacterial and fungal strains Compounds5a and 5b have shown excellent activity against both grampositive and gram negative bacterial strains as comparedto standard drug Ciprofloxacin Compounds 5b 5c and5d have shown excellent activity against as compared tostandard drug Fluconazole

4 Conclusion

A series of chalcones that is 3-(2-hydroxy-5-(aryl-diazenyl)phenyl)-1-(aryl)prop-2-en-1-one and pyrimidinesderivatives 4-(2-hydroxy-5-(aryl-diazenyl)phenyl)-6-(aryl)pyrimidin-2-ols were successfully synthesized All the newlysynthesized compoundswere characterized spectroscopicallyand using analytical techniques such as 1H-NMR 13C-NMRIR and mass and elemental analysis Anti-bacterial activitystudies reveal that compounds 5b and 5c have shown thehighest activity among all newly synthesized compoundsas compared to standard drug whereas compounds 5b 5cand 5d have shown the highest antifungal activity amongall newly synthesized compounds as compared to standarddrug

References

[1] T Narender S Shweta K Tanvir M Srinivasa Rao K Sri-vastava and S K Puri ldquoPrenylated chalcones isolated fromCrotalaria genus inhibits in vitro growth of the human malariaparasite Plasmodium falciparumrdquo Bioorganic and MedicinalChemistry Letters vol 15 no 10 pp 2453ndash2455 2005

[2] Z Nowakowska ldquoA review of anti-infective and anti-inflammatory chalconesrdquo European Journal of MedicinalChemistry vol 42 no 2 pp 125ndash137 2007

[3] M Ceylan and E Findik ldquoSynthesis and characterization ofnew chalcone derivatives from cis-bicyclo[320]hept-2-en-6-onerdquo Synthetic Communications vol 39 no 6 pp 1046ndash10542009

[4] H O Saxena U Faridi J K Kumar et al ldquoSynthesis of chalconederivatives on steroidal framework and their anticancer activi-tiesrdquo Steroids vol 72 no 13 pp 892ndash900 2007

[5] R J Anto K Sukumaran G KuttanMNA Rao V Subbarajuand R Kuttan ldquoAnticancer and antioxidant activity of syntheticchalcones and related compoundsrdquo Cancer Letters vol 97 no 1pp 33ndash37 1995

[6] J N Domınguez C Leon J Rodrigues N G De DomınguezJ Gut and P J Rosenthal ldquoSynthesis and evaluation ofnew antimalarial phenylurenyl chalcone derivativesrdquo Journal ofMedicinal Chemistry vol 48 no 10 pp 3654ndash3658 2005

[7] A Valla B Valla D Cartier et al ldquoNew syntheses andpotential antimalarial activities of new lsquoretinoid-like chalconesrsquordquoEuropean Journal of Medicinal Chemistry vol 41 no 1 pp 142ndash146 2006

[8] S F Nielsen S B Christensen G Cruciani A Kharazmiand T Liljefors ldquoAntileishmaniai chalcones statistical designsynthesis and three-dimensional quantitative structure-activityrelationship analysisrdquo Journal of Medicinal Chemistry vol 41no 24 pp 4819ndash4832 1998

[9] P Boeck C A Bandeira Falcao P C Leal et al ldquoSynthesisof chalcone analogues with increased antileishmanial activityrdquoBioorganic and Medicinal Chemistry vol 14 no 5 pp 1538ndash1545 2006

[10] K V Sashidhara M Kumar R K Modukuri et al ldquoSynthesisand anti-inflammatory activity of novel biscoumarin-chalconehybridsrdquoBioorganic andMedicinal Chemistry Letters vol 21 no15 pp 4480ndash4484 2011

Organic Chemistry International 9

[11] H-M Yang H-R Shin S-H Cho et al ldquoStructural require-ment of chalcones for the inhibitory activity of interleukin-5rdquoBioorganic and Medicinal Chemistry vol 15 no 1 pp 104ndash1112007

[12] S Cheenpracha C Karalai C Ponglimanont S Subhadhi-rasakul and S Tewtrakul ldquoAnti-HIV-1 protease activity ofcompounds from Boesenbergia panduratardquo Bioorganic andMedicinal Chemistry vol 14 no 6 pp 1710ndash1714 2006

[13] L Svetaz A Tapia S N Lopez et al ldquoAntifungal chalconesand new caffeic acids esters from Zuccagnia punctata actingagainst soybean infecting fungirdquo Journal of Agricultural andFood Chemistry vol 52 no 11 pp 3297ndash3300 2004

[14] B P Bandgar B S Hote N A Dhole and R N GaccheldquoSynthesis and biological evaluation of novel series of chalconederivatives as inhibitors of cyclooxygenase and LPS-inducedTNF-120572 with potent antioxidant propertiesrdquo Medicinal Chem-istry Research vol 21 pp 2292ndash2299 2011

[15] O Nerya R Musa S Khatib S Tamir and J Vaya ldquoChalconesas potent tyrosinase inhibitors the effect of hydroxyl positionsand numbersrdquo Phytochemistry vol 65 no 10 pp 1389ndash13952004

[16] K V Sashidhara A Kumar M Kumar J Sarkar and SSinha ldquoSynthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agentsrdquo Bioorganic andMedicinal Chemistry Letters vol 20 no 24 pp 7205ndash7211 2010

[17] C THsieh T JHsiehM El-Shazly et al ldquoSynthesis of chalconederivatives as potential anti-diabetic agentsrdquo Bioorganic ampMedicinal Chemistry Letters vol 22 pp 3912ndash3915 2012

[18] S Wattanasin and W S Murphy ldquoAn improved procedure forthe preparation of chalcones and related enonesrdquo Synthesis vol1980 pp 647ndash650 1980

[19] T Narender K Venkateswarlu B V Nayak and S Sarkar ldquoAnew chemical access for 31015840 -acetyl-41015840 -hydroxychalcones usingborontrifluoride-etherate via a regioselective Claisen-Schmidtcondensation and its application in the synthesis of chalconehybridsrdquo Tetrahedron Letters vol 52 no 44 pp 5794ndash57982011

[20] A Garcia-Raso J A Garcia-Raso R Mestres and J V Sinis-terra ldquoMechanism of Michael addition of ethyl acetoacetate tochalcone catalyzed by activated Ba(OH)

2rdquoReactionKinetics and

Catalysis Letters vol 28 no 2 pp 365ndash371 1985

[21] J R Patel M H Malani and B Z Dholakiya ldquoSilica sulfuricacid-catalyzed Claisen-Schmidt condensation of 134 trisub-stituted pyrrole 25 dione to chalconesrdquo Research on ChemicalIntermediates vol 38 pp 2371ndash2381 2012

[22] KV Sashidhara J N Rosaiah andAKumar ldquoIodine-catalyzedmild and efficient method for the synthesis of chalconesrdquoSynthetic Communications vol 39 no 13 pp 2288ndash2296 2009

[23] A K Verma and R Pratap ldquoChemistry of biologically impor-tant flavonesrdquo Tetrahedron vol 68 pp 8523ndash8538 2012

[24] MH Bukhari H L SiddiquiMAhmad THussain andMGMoloney ldquoSynthesis and anti-bacterial activities of some novelpyrazolobenzothiazine-based chalcones and their pyrimidinederivativesrdquo Medicinal Chemistry Research vol 21 pp 2885ndash2895 2011

[25] E A Bell and R G Foster ldquoStructure of lathyrinerdquo Nature vol194 no 4823 pp 91ndash92 1962

[26] F Tanaka S Takeuchi N Tanaka H Yonehara H Umezawaand Y J Sumiki ldquoBacimethrin a new antibiotic produced by Bmegatheriumrdquo Journal of Antibiotics A vol 14 pp 161ndash162 1961

[27] R G S Berlinck J C Braekman D Daloze et al ldquoPolycyclicguanidine alkaloids from the marine sponge Crambe crambeandCa++ channel blocker activity of crambescidin 816rdquo Journalof Natural Products vol 56 no 7 pp 1007ndash1015 1993

[28] Y-L Lin R-L Huang C-M Chang and Y-H Kuo ldquoTwonew puriniums and three new pyrimidines fromHeterostemmabrowniirdquo Journal of Natural Products vol 60 no 10 pp 982ndash985 1997

[29] I Ohtani R E Moore and M T C Runnegar ldquoCylindrosper-mopsin a potent hepatotoxin from the blue-green alga Cylin-drospermopsis raciborskiirdquo Journal of the American ChemicalSociety vol 114 pp 7941ndash7942 1992

[30] N Jiang XQDeng F N Li and Z S Quan ldquoSynthesis of novel7-substituted-5-phenyl-[1 2 4]triazolo[1 5-a] pyrimidines withanticonvulsant activityrdquo Iranian Journal of PharmaceuticalResearch vol 11 pp 799ndash806 2012

[31] M Ungureanu C C Moldoveanu A Poeata G Drochioiu MPetrovanu and I Mangalagiu ldquoNew pyrimidine compoundswith in vitro antimicrobial or antifungal activityrdquo AnnalesPharmaceutiques Francaises vol 56 pp 181ndash183 1998

[32] A E-G E Amr N M Sabry and M M Abdulla ldquoSynthe-sis reactions and anti-inflammatory activity of heterocyclicsystems fused to a thiophene moiety using citrazinic acid assynthonrdquo Monatshefte fur Chemie vol 138 no 7 pp 699ndash7072007

[33] N Fujiwara T Nakajima Y Ueda H Fujita and H KawakamildquoNovel piperidinylpyrimidine derivatives as inhibitors of HIV-1 LTR activationrdquo Bioorganic and Medicinal Chemistry vol 16no 22 pp 9804ndash9816 2008

[34] L Ballell R A Field G A C Chung and R J YoungldquoNew thiopyrazolo[34-d]pyrimidine derivatives as anti-mycobacterial agentsrdquo Bioorganic and Medicinal ChemistryLetters vol 17 no 6 pp 1736ndash1740 2007

[35] E Wagner K Al-Kadasi M Zimecki and W Sawka-Dobrowolska ldquoSynthesis and pharmacological screening ofderivatives of isoxazolo[45-d]pyrimidinerdquo European Journal ofMedicinal Chemistry vol 43 no 11 pp 2498ndash2504 2008

[36] A Tiwari W R Waud and R F Struck ldquoDetermination of thephamacophore of penclomedine a clinically-evaluated antitu-mor pyridine derivativerdquo Bioorganic and Medicinal Chemistryvol 10 no 11 pp 3593ndash3598 2002

[37] K Gorlitzer S Herbig and R D Walter ldquoIndeno[12-d]pyrimidin-4-yl-aminesrdquo Pharmazie vol 52 no 9 pp 670ndash672 1997

[38] I V Ukrainets I A Tugaibei N L Bereznyakova V NKravchenko and A V Turov ldquo4-Hydroxy-2-quinolones 144Alkyl- arylalkyl- and arylamides of 2-hydroxy-4-oxo-4H-pyrido[12-a]pyrimidine-3-carboxylic acid and their diureticpropertiesrdquo Chemistry of Heterocyclic Compounds no 5 pp718ndash729 2008

[39] S Q Wang L Fang X J Liu and K Zhao ldquoDesign synthesisand hypnotic activity of pyrazolo[15-a]pyrimidine derivativesrdquoChinese Chemical Letters vol 15 no 8 pp 885ndash888 2004

[40] W Yang Z Ruan Y Wang et al ldquoDiscovery and structure-activity relationships of trisubstituted pyrimidinespyridines as

10 Organic Chemistry International

novel calcium-sensing receptor antagonistsrdquo Journal of Medici-nal Chemistry vol 52 no 4 pp 1204ndash1208 2009

[41] R J Gillespie S J Bamford R Botting et al ldquoAntagonistsof the human A2A adenosine receptor 4 Design synthesisand preclinical evaluation of 7-aryltriazolo[45-d]pyrimidinesrdquoJournal of Medicinal Chemistry vol 52 no 1 pp 33ndash47 2009

[42] H A Deshpande H N Chopde C P Pandhurnekar and RJ Batra ldquoSynthesis characterization and testing of biologicalactivity of some novel chalcones derivatives of coumarinrdquoChemical Science Transactions vol 2 pp 621ndash627 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 9: Research Article Synthesis, Characterization, and ...downloads.hindawi.com/journals/oci/2013/582079.pdfand p-acetophenone or p-nitroacetophenone (.moL) were added to ethanol (mL) and

Organic Chemistry International 9

[11] H-M Yang H-R Shin S-H Cho et al ldquoStructural require-ment of chalcones for the inhibitory activity of interleukin-5rdquoBioorganic and Medicinal Chemistry vol 15 no 1 pp 104ndash1112007

[12] S Cheenpracha C Karalai C Ponglimanont S Subhadhi-rasakul and S Tewtrakul ldquoAnti-HIV-1 protease activity ofcompounds from Boesenbergia panduratardquo Bioorganic andMedicinal Chemistry vol 14 no 6 pp 1710ndash1714 2006

[13] L Svetaz A Tapia S N Lopez et al ldquoAntifungal chalconesand new caffeic acids esters from Zuccagnia punctata actingagainst soybean infecting fungirdquo Journal of Agricultural andFood Chemistry vol 52 no 11 pp 3297ndash3300 2004

[14] B P Bandgar B S Hote N A Dhole and R N GaccheldquoSynthesis and biological evaluation of novel series of chalconederivatives as inhibitors of cyclooxygenase and LPS-inducedTNF-120572 with potent antioxidant propertiesrdquo Medicinal Chem-istry Research vol 21 pp 2292ndash2299 2011

[15] O Nerya R Musa S Khatib S Tamir and J Vaya ldquoChalconesas potent tyrosinase inhibitors the effect of hydroxyl positionsand numbersrdquo Phytochemistry vol 65 no 10 pp 1389ndash13952004

[16] K V Sashidhara A Kumar M Kumar J Sarkar and SSinha ldquoSynthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agentsrdquo Bioorganic andMedicinal Chemistry Letters vol 20 no 24 pp 7205ndash7211 2010

[17] C THsieh T JHsiehM El-Shazly et al ldquoSynthesis of chalconederivatives as potential anti-diabetic agentsrdquo Bioorganic ampMedicinal Chemistry Letters vol 22 pp 3912ndash3915 2012

[18] S Wattanasin and W S Murphy ldquoAn improved procedure forthe preparation of chalcones and related enonesrdquo Synthesis vol1980 pp 647ndash650 1980

[19] T Narender K Venkateswarlu B V Nayak and S Sarkar ldquoAnew chemical access for 31015840 -acetyl-41015840 -hydroxychalcones usingborontrifluoride-etherate via a regioselective Claisen-Schmidtcondensation and its application in the synthesis of chalconehybridsrdquo Tetrahedron Letters vol 52 no 44 pp 5794ndash57982011

[20] A Garcia-Raso J A Garcia-Raso R Mestres and J V Sinis-terra ldquoMechanism of Michael addition of ethyl acetoacetate tochalcone catalyzed by activated Ba(OH)

2rdquoReactionKinetics and

Catalysis Letters vol 28 no 2 pp 365ndash371 1985

[21] J R Patel M H Malani and B Z Dholakiya ldquoSilica sulfuricacid-catalyzed Claisen-Schmidt condensation of 134 trisub-stituted pyrrole 25 dione to chalconesrdquo Research on ChemicalIntermediates vol 38 pp 2371ndash2381 2012

[22] KV Sashidhara J N Rosaiah andAKumar ldquoIodine-catalyzedmild and efficient method for the synthesis of chalconesrdquoSynthetic Communications vol 39 no 13 pp 2288ndash2296 2009

[23] A K Verma and R Pratap ldquoChemistry of biologically impor-tant flavonesrdquo Tetrahedron vol 68 pp 8523ndash8538 2012

[24] MH Bukhari H L SiddiquiMAhmad THussain andMGMoloney ldquoSynthesis and anti-bacterial activities of some novelpyrazolobenzothiazine-based chalcones and their pyrimidinederivativesrdquo Medicinal Chemistry Research vol 21 pp 2885ndash2895 2011

[25] E A Bell and R G Foster ldquoStructure of lathyrinerdquo Nature vol194 no 4823 pp 91ndash92 1962

[26] F Tanaka S Takeuchi N Tanaka H Yonehara H Umezawaand Y J Sumiki ldquoBacimethrin a new antibiotic produced by Bmegatheriumrdquo Journal of Antibiotics A vol 14 pp 161ndash162 1961

[27] R G S Berlinck J C Braekman D Daloze et al ldquoPolycyclicguanidine alkaloids from the marine sponge Crambe crambeandCa++ channel blocker activity of crambescidin 816rdquo Journalof Natural Products vol 56 no 7 pp 1007ndash1015 1993

[28] Y-L Lin R-L Huang C-M Chang and Y-H Kuo ldquoTwonew puriniums and three new pyrimidines fromHeterostemmabrowniirdquo Journal of Natural Products vol 60 no 10 pp 982ndash985 1997

[29] I Ohtani R E Moore and M T C Runnegar ldquoCylindrosper-mopsin a potent hepatotoxin from the blue-green alga Cylin-drospermopsis raciborskiirdquo Journal of the American ChemicalSociety vol 114 pp 7941ndash7942 1992

[30] N Jiang XQDeng F N Li and Z S Quan ldquoSynthesis of novel7-substituted-5-phenyl-[1 2 4]triazolo[1 5-a] pyrimidines withanticonvulsant activityrdquo Iranian Journal of PharmaceuticalResearch vol 11 pp 799ndash806 2012

[31] M Ungureanu C C Moldoveanu A Poeata G Drochioiu MPetrovanu and I Mangalagiu ldquoNew pyrimidine compoundswith in vitro antimicrobial or antifungal activityrdquo AnnalesPharmaceutiques Francaises vol 56 pp 181ndash183 1998

[32] A E-G E Amr N M Sabry and M M Abdulla ldquoSynthe-sis reactions and anti-inflammatory activity of heterocyclicsystems fused to a thiophene moiety using citrazinic acid assynthonrdquo Monatshefte fur Chemie vol 138 no 7 pp 699ndash7072007

[33] N Fujiwara T Nakajima Y Ueda H Fujita and H KawakamildquoNovel piperidinylpyrimidine derivatives as inhibitors of HIV-1 LTR activationrdquo Bioorganic and Medicinal Chemistry vol 16no 22 pp 9804ndash9816 2008

[34] L Ballell R A Field G A C Chung and R J YoungldquoNew thiopyrazolo[34-d]pyrimidine derivatives as anti-mycobacterial agentsrdquo Bioorganic and Medicinal ChemistryLetters vol 17 no 6 pp 1736ndash1740 2007

[35] E Wagner K Al-Kadasi M Zimecki and W Sawka-Dobrowolska ldquoSynthesis and pharmacological screening ofderivatives of isoxazolo[45-d]pyrimidinerdquo European Journal ofMedicinal Chemistry vol 43 no 11 pp 2498ndash2504 2008

[36] A Tiwari W R Waud and R F Struck ldquoDetermination of thephamacophore of penclomedine a clinically-evaluated antitu-mor pyridine derivativerdquo Bioorganic and Medicinal Chemistryvol 10 no 11 pp 3593ndash3598 2002

[37] K Gorlitzer S Herbig and R D Walter ldquoIndeno[12-d]pyrimidin-4-yl-aminesrdquo Pharmazie vol 52 no 9 pp 670ndash672 1997

[38] I V Ukrainets I A Tugaibei N L Bereznyakova V NKravchenko and A V Turov ldquo4-Hydroxy-2-quinolones 144Alkyl- arylalkyl- and arylamides of 2-hydroxy-4-oxo-4H-pyrido[12-a]pyrimidine-3-carboxylic acid and their diureticpropertiesrdquo Chemistry of Heterocyclic Compounds no 5 pp718ndash729 2008

[39] S Q Wang L Fang X J Liu and K Zhao ldquoDesign synthesisand hypnotic activity of pyrazolo[15-a]pyrimidine derivativesrdquoChinese Chemical Letters vol 15 no 8 pp 885ndash888 2004

[40] W Yang Z Ruan Y Wang et al ldquoDiscovery and structure-activity relationships of trisubstituted pyrimidinespyridines as

10 Organic Chemistry International

novel calcium-sensing receptor antagonistsrdquo Journal of Medici-nal Chemistry vol 52 no 4 pp 1204ndash1208 2009

[41] R J Gillespie S J Bamford R Botting et al ldquoAntagonistsof the human A2A adenosine receptor 4 Design synthesisand preclinical evaluation of 7-aryltriazolo[45-d]pyrimidinesrdquoJournal of Medicinal Chemistry vol 52 no 1 pp 33ndash47 2009

[42] H A Deshpande H N Chopde C P Pandhurnekar and RJ Batra ldquoSynthesis characterization and testing of biologicalactivity of some novel chalcones derivatives of coumarinrdquoChemical Science Transactions vol 2 pp 621ndash627 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 10: Research Article Synthesis, Characterization, and ...downloads.hindawi.com/journals/oci/2013/582079.pdfand p-acetophenone or p-nitroacetophenone (.moL) were added to ethanol (mL) and

10 Organic Chemistry International

novel calcium-sensing receptor antagonistsrdquo Journal of Medici-nal Chemistry vol 52 no 4 pp 1204ndash1208 2009

[41] R J Gillespie S J Bamford R Botting et al ldquoAntagonistsof the human A2A adenosine receptor 4 Design synthesisand preclinical evaluation of 7-aryltriazolo[45-d]pyrimidinesrdquoJournal of Medicinal Chemistry vol 52 no 1 pp 33ndash47 2009

[42] H A Deshpande H N Chopde C P Pandhurnekar and RJ Batra ldquoSynthesis characterization and testing of biologicalactivity of some novel chalcones derivatives of coumarinrdquoChemical Science Transactions vol 2 pp 621ndash627 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 11: Research Article Synthesis, Characterization, and ...downloads.hindawi.com/journals/oci/2013/582079.pdfand p-acetophenone or p-nitroacetophenone (.moL) were added to ethanol (mL) and

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of