research article on the products of -fibonacci numbers and...

5
Research Article On the Products of -Fibonacci Numbers and -Lucas Numbers Bijendra Singh, Kiran Sisodiya, and Farooq Ahmad School of Studies in Mathematics, Vikram University Ujjain, India Correspondence should be addressed to Farooq Ahmad; [email protected] Received 3 January 2014; Accepted 22 May 2014; Published 12 June 2014 Academic Editor: Hernando Quevedo Copyright Β© 2014 Bijendra Singh et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In this paper we investigate some products of -Fibonacci and -Lucas numbers. We also present some generalized identities on the products of -Fibonacci and -Lucas numbers to establish connection formulas between them with the help of Binet’s formula. 1. Introduction Fibonacci numbers possess wonderful and amazing proper- ties; though some are simple and known, others find broad scope in research work. Fibonacci and Lucas numbers cover a wide range of interest in modern mathematics as they appear in the comprehensive works of Koshy [1] and Vajda [2]. e Fibonacci numbers are the terms of the sequence {0, 1, 1, 2, 3, 5, 8 β‹… β‹… β‹… } wherein each term is the sum of the two previous terms beginning with the initial values 0 =0 and 1 =1. Also the ratio of two consecutive Fibonacci numbers converges to the Golden mean, 0 = (1 + √ 5)/2. e Fibonacci numbers and Golden mean find numerous applications in modern science and have been extensively used in number theory, applied mathematics, physics, computer science, and biology. e well-known Fibonacci sequence is defined as 0 = 0, 1 = 1, = βˆ’1 + βˆ’2 for β‰₯ 2. (1) In a similar way, Lucas sequence is defined as 0 = 2, 1 = 1, = βˆ’1 + βˆ’2 for β‰₯ 2. (2) e second order Fibonacci sequence has been gener- alized in several ways. Some authors have preserved the recurrence relation and altered the first two terms of the sequence while others have preserved the first two terms of the sequence and altered the recurrence relation slightly. e -Fibonacci sequence introduced by FalcΒ΄ on and Plaza [3] depends only on one integer parameter and is defined as follows: ,0 = 0, ,1 = 1, ,+1 = , + ,βˆ’1 , where β‰₯ 1, β‰₯ 1. (3) e first few terms of this sequence are {0, 1, , 2 + 1, 2 +2β‹…β‹…β‹…}. (4) e particular cases of the -Fibonacci sequence are as follows. If =1, the classical Fibonacci sequence is obtained: 0 = 0, 1 = 1, +1 = + βˆ’1 for β‰₯ 1, { } ∈ = {0, 1, 1, 2, 3, 5, 8 β‹… β‹… β‹… } . (5) If =2, the Pell sequence is obtained: 0 = 0, = 1, +1 = 2 + βˆ’1 for β‰₯ 1, { } ∈ = {0, 1, 2, 5, 12, 29, 70 β‹… β‹… β‹… } . (6) Motivated by the study of -Fibonacci numbers in [4], the - Lucas numbers have been defined in a similar fashion as ,0 = 2, ,1 = , ,+1 = , + ,βˆ’1 , where β‰₯ 1, β‰₯ 1. (7) Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2014, Article ID 505798, 4 pages http://dx.doi.org/10.1155/2014/505798

Upload: others

Post on 07-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article On the Products of -Fibonacci Numbers and ...downloads.hindawi.com/journals/ijmms/2014/505798.pdfΒ Β· On the Products of -Fibonacci Numbers and -Lucas Numbers

Research ArticleOn the Products of π‘˜-Fibonacci Numbers and π‘˜-Lucas Numbers

Bijendra Singh, Kiran Sisodiya, and Farooq Ahmad

School of Studies in Mathematics, Vikram University Ujjain, India

Correspondence should be addressed to Farooq Ahmad; [email protected]

Received 3 January 2014; Accepted 22 May 2014; Published 12 June 2014

Academic Editor: Hernando Quevedo

Copyright Β© 2014 Bijendra Singh et al.This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper we investigate some products of π‘˜-Fibonacci and π‘˜-Lucas numbers. We also present some generalized identities onthe products of π‘˜-Fibonacci and π‘˜-Lucas numbers to establish connection formulas between them with the help of Binet’s formula.

1. Introduction

Fibonacci numbers possess wonderful and amazing proper-ties; though some are simple and known, others find broadscope in research work. Fibonacci and Lucas numbers covera wide range of interest in modern mathematics as theyappear in the comprehensive works of Koshy [1] and Vajda[2]. The Fibonacci numbers 𝐹

𝑛are the terms of the sequence

{0, 1, 1, 2, 3, 5, 8 β‹… β‹… β‹… } wherein each term is the sum of the twoprevious terms beginning with the initial values 𝐹

0= 0 and

𝐹1= 1. Also the ratio of two consecutive Fibonacci numbers

converges to the Goldenmean, 0 = (1+√5)/2.The Fibonaccinumbers and Golden mean find numerous applications inmodern science and have been extensively used in numbertheory, applied mathematics, physics, computer science, andbiology.

The well-known Fibonacci sequence is defined as

𝐹0= 0, 𝐹

1= 1,

𝐹𝑛= πΉπ‘›βˆ’1+ πΉπ‘›βˆ’2

for 𝑛 β‰₯ 2.(1)

In a similar way, Lucas sequence is defined as

𝐿0= 2, 𝐿

1= 1,

𝐿𝑛= πΏπ‘›βˆ’1+ πΏπ‘›βˆ’2

for 𝑛 β‰₯ 2.(2)

The second order Fibonacci sequence has been gener-alized in several ways. Some authors have preserved therecurrence relation and altered the first two terms of thesequence while others have preserved the first two termsof the sequence and altered the recurrence relation slightly.

The π‘˜-Fibonacci sequence introduced by Falcon and Plaza [3]depends only on one integer parameter π‘˜ and is defined asfollows:

πΉπ‘˜,0= 0, 𝐹

π‘˜,1= 1,

πΉπ‘˜,𝑛+1= π‘˜πΉπ‘˜,𝑛+ πΉπ‘˜,π‘›βˆ’1, where 𝑛 β‰₯ 1, π‘˜ β‰₯ 1.

(3)

The first few terms of this sequence are

{0, 1, π‘˜, π‘˜2

+ 1, π‘˜2

+ 2 β‹… β‹… β‹… } . (4)

The particular cases of the π‘˜-Fibonacci sequence are asfollows.

If π‘˜ = 1, the classical Fibonacci sequence is obtained:

𝐹0= 0, 𝐹

1= 1,

𝐹𝑛+1= 𝐹𝑛+ πΉπ‘›βˆ’1

for 𝑛 β‰₯ 1,

{𝐹𝑛}π‘›βˆˆπ‘= {0, 1, 1, 2, 3, 5, 8 β‹… β‹… β‹… } .

(5)

If π‘˜ = 2, the Pell sequence is obtained:

𝑃0= 0, 𝑃 = 1, 𝑃

𝑛+1= 2𝑃𝑛+ π‘ƒπ‘›βˆ’1

for 𝑛 β‰₯ 1,

{𝑃𝑛}π‘›βˆˆπ‘= {0, 1, 2, 5, 12, 29, 70 β‹… β‹… β‹… } .

(6)

Motivated by the study of π‘˜-Fibonacci numbers in [4], the π‘˜-Lucas numbers have been defined in a similar fashion as

πΏπ‘˜,0= 2, 𝐿

π‘˜,1= π‘˜,

πΏπ‘˜,𝑛+1= π‘˜πΏπ‘˜,𝑛+ πΏπ‘˜,π‘›βˆ’1, where 𝑛 β‰₯ 1, π‘˜ β‰₯ 1.

(7)

Hindawi Publishing CorporationInternational Journal of Mathematics and Mathematical SciencesVolume 2014, Article ID 505798, 4 pageshttp://dx.doi.org/10.1155/2014/505798

Page 2: Research Article On the Products of -Fibonacci Numbers and ...downloads.hindawi.com/journals/ijmms/2014/505798.pdfΒ Β· On the Products of -Fibonacci Numbers and -Lucas Numbers

2 International Journal of Mathematics and Mathematical Sciences

The first few terms of this sequence are

{2, π‘˜, π‘˜2

+ 2, π‘˜3

+ 3 β‹… β‹… β‹… } . (8)

The particular cases of the π‘˜-Lucas sequence are as follows.If π‘˜ = 1, the classical Lucas sequence is obtained:

{2, 1, 3, 4, 7, 11, 18 β‹… β‹… β‹… } . (9)

If π‘˜ = 2, the Pell-Lucas sequence is obtained:

{2, 2, 6, 14, 34, 82 β‹… β‹… β‹… } . (10)

In the 19th century, the French mathematician Binet devisedtwo remarkable analytical formulas for the Fibonacci andLucas numbers [2]. The same idea has been used to developBinet formulas for other recursive sequences aswell.Thewell-knownBinet’s formulas for π‘˜-Fibonacci numbers and π‘˜-Lucasnumbers, see [3–5], are given by

πΉπ‘˜,𝑛=π‘Ÿ1

𝑛

βˆ’ π‘Ÿ2

𝑛

π‘Ÿ1βˆ’ π‘Ÿ2

,

πΏπ‘˜,𝑛= π‘Ÿ1

𝑛

+ π‘Ÿ2

𝑛

,

(11)

where π‘Ÿ1, π‘Ÿ2are roots of characteristic equation

π‘Ÿ2

βˆ’ π‘˜π‘Ÿ βˆ’ 1 = 0, (12)

which are given by

π‘Ÿ1=π‘˜ + βˆšπ‘˜2 + 4

2, π‘Ÿ

2=π‘˜ βˆ’ βˆšπ‘˜2 + 4

2. (13)

We also note thatπ‘Ÿ1+ π‘Ÿ2= π‘˜,

π‘Ÿ1π‘Ÿ2= βˆ’ 1,

π‘Ÿ1βˆ’ π‘Ÿ2= βˆšπ‘˜2 + 4.

(14)

There are a huge number of simple as well as general-ized identities available in the Fibonacci related literaturein various forms. Some properties for common factors ofFibonacci and Lucas numbers are studied by Thongmoon[6, 7]. The π‘˜-Fibonacci numbers which are of recent originwere found by studying the recursive application of twogeometrical transformations used in the well-known four-triangle longest-edge partition [3], serving as an examplebetween geometry and numbers. Also in [8], authors estab-lished some new properties of π‘˜-Fibonacci numbers and π‘˜-Lucas numbers in terms of binomial sums. Falcon and Plaza[9] studied 3-dimensional π‘˜-Fibonacci spirals consideringgeometric point of view. Some identities for π‘˜-Lucas numbersmay be found in [9]. In [10] many properties of π‘˜-Fibonaccinumbers are obtained by easy arguments and related withso-called Pascal triangle. The aim of the present paper is toestablish connection formulas between π‘˜-Fibonacci and π‘˜-Lucas numbers, thereby deriving some results out of them.In the following section we investigate some products ofπ‘˜-Fibonacci numbers and π‘˜-Lucas numbers. Though theresults can be established by inductionmethod as well, Binet’sformula is mainly used to prove all of them.

2. On the Products of π‘˜-Fibonacci andπ‘˜-Lucas Numbers

Theorem 1. πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛= πΉπ‘˜,4𝑛

, where 𝑛 β‰₯ 1.

Proof.

πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛= [π‘Ÿ1

2𝑛

βˆ’ π‘Ÿ2

2𝑛

π‘Ÿ1βˆ’ π‘Ÿ2

] [π‘Ÿ1

2𝑛

+ π‘Ÿ2

2𝑛

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛

+ (π‘Ÿ1π‘Ÿ2)2𝑛

βˆ’ (π‘Ÿ1π‘Ÿ2)2𝑛

βˆ’ π‘Ÿ2

4𝑛

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛

βˆ’ π‘Ÿ2

4𝑛

]

= πΉπ‘˜,4𝑛.

(15)

Theorem 2. πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛+1= πΉπ‘˜,4𝑛+1βˆ’ 1, where 𝑛 β‰₯ 1.

Proof.

πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛+1

= [π‘Ÿ1

2𝑛

βˆ’ π‘Ÿ2

2𝑛

π‘Ÿ1βˆ’π‘Ÿ2

] [π‘Ÿ1

2𝑛+1

+ π‘Ÿ2

2𝑛+1

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛+1

+ π‘Ÿ1

2𝑛

π‘Ÿ2

2𝑛+1

βˆ’ π‘Ÿ1

2𝑛+1

π‘Ÿ2

2𝑛

βˆ’ π‘Ÿ2

4𝑛+1

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛+1

βˆ’ π‘Ÿ2

4𝑛+1

] +(π‘Ÿ1π‘Ÿ2)2𝑛

(π‘Ÿ1βˆ’ π‘Ÿ2)(π‘Ÿ2βˆ’ π‘Ÿ1)

= πΉπ‘˜,4𝑛+1βˆ’ (βˆ’1)

2𝑛

= πΉπ‘˜,4𝑛+1βˆ’ 1.

(16)

Theorem 3. πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛+2= πΉπ‘˜,4𝑛+2βˆ’ π‘˜, where 𝑛 β‰₯ 1.

Proof.

πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛+2

= [π‘Ÿ1

2𝑛

βˆ’ π‘Ÿ2

2𝑛

π‘Ÿ1βˆ’ π‘Ÿ2

] [π‘Ÿ1

2𝑛+2

+ π‘Ÿ2

2𝑛+2

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛+2

+ π‘Ÿ1

2𝑛

π‘Ÿ2

2𝑛+2

βˆ’ π‘Ÿ1

2𝑛+2

π‘Ÿ2

2𝑛

βˆ’ π‘Ÿ2

4𝑛+2

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛+2

βˆ’ π‘Ÿ2

4𝑛+2

] βˆ’(π‘Ÿ1π‘Ÿ2)2𝑛

(π‘Ÿ1βˆ’ π‘Ÿ2)[π‘Ÿ1

2

βˆ’ π‘Ÿ2

2

]

= πΉπ‘˜,4𝑛+2βˆ’ (π‘Ÿ1π‘Ÿ2)2𝑛

(π‘Ÿ1+ π‘Ÿ2)

= πΉπ‘˜,4𝑛+2βˆ’ (βˆ’1)

2𝑛

π‘˜

= πΉπ‘˜,4𝑛+2βˆ’ π‘˜.

(17)

Page 3: Research Article On the Products of -Fibonacci Numbers and ...downloads.hindawi.com/journals/ijmms/2014/505798.pdfΒ Β· On the Products of -Fibonacci Numbers and -Lucas Numbers

International Journal of Mathematics and Mathematical Sciences 3

Theorem 4. πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛+3= πΉπ‘˜,4𝑛+3βˆ’ (π‘˜2

+ 1), where 𝑛 β‰₯ 1.

Proof.

πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛+3

= [π‘Ÿ1

2𝑛

βˆ’ π‘Ÿ2

2𝑛

π‘Ÿ1βˆ’ π‘Ÿ2

] [π‘Ÿ1

2𝑛+3

+ π‘Ÿ2

2𝑛+3

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛+3

+ π‘Ÿ1

2𝑛

π‘Ÿ2

2𝑛+3

βˆ’ π‘Ÿ1

2𝑛+3

π‘Ÿ2

2𝑛

βˆ’ π‘Ÿ2

4𝑛+3

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛+3

βˆ’ π‘Ÿ2

4𝑛+3

] +(π‘Ÿ1π‘Ÿ2)2𝑛

(π‘Ÿ1βˆ’ π‘Ÿ2)[π‘Ÿ2

3

βˆ’ π‘Ÿ1

3

]

= πΉπ‘˜,4𝑛+3βˆ’ (βˆ’1)

2𝑛

[π‘Ÿ1βˆ’ π‘Ÿ2

π‘Ÿ1βˆ’ π‘Ÿ2

] [π‘Ÿ1

2

+ π‘Ÿ2

2

+ π‘Ÿ1π‘Ÿ2]

= πΉπ‘˜,4𝑛+3βˆ’ (πΏπ‘˜,2βˆ’ 1)

= πΉπ‘˜,4𝑛+3βˆ’ (π‘˜2

+ 1) .

(18)

Theorem 5. πΉπ‘˜,2π‘›βˆ’1πΏπ‘˜,2𝑛+1= πΉπ‘˜,4𝑛+ 1, where 𝑛 β‰₯ 1.

Proof.

πΉπ‘˜,2π‘›βˆ’1πΏπ‘˜,2𝑛+1

= [π‘Ÿ1

2π‘›βˆ’1

βˆ’ π‘Ÿ2

2π‘›βˆ’1

π‘Ÿ1βˆ’ π‘Ÿ2

] [π‘Ÿ1

2𝑛+1

+ π‘Ÿ2

2𝑛+1

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛

+ π‘Ÿ1

2π‘›βˆ’1

π‘Ÿ2

2𝑛+1

βˆ’ π‘Ÿ1

2𝑛+1

π‘Ÿ2

2π‘›βˆ’1

βˆ’ π‘Ÿ2

4𝑛

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛

βˆ’ π‘Ÿ2

4𝑛

] +(π‘Ÿ1π‘Ÿ2)2𝑛

(π‘Ÿ1βˆ’ π‘Ÿ2)[π‘Ÿ2

π‘Ÿ1

βˆ’π‘Ÿ1

π‘Ÿ2

]

= πΉπ‘˜,4π‘›βˆ’ (π‘Ÿ1π‘Ÿ2)2π‘›βˆ’1

= πΉπ‘˜,4𝑛+ 1.

(19)

Theorem 6. πΉπ‘˜,2𝑛+1πΏπ‘˜,2𝑛= πΉπ‘˜,4𝑛+1+ 1, where 𝑛 β‰₯ 1.

Proof.

πΉπ‘˜,2𝑛+1πΏπ‘˜,2𝑛

= [π‘Ÿ1

2π‘›βˆ’1

βˆ’ π‘Ÿ2

2π‘›βˆ’1

π‘Ÿ1βˆ’π‘Ÿ2

] [π‘Ÿ1

2𝑛

+ π‘Ÿ2

2𝑛

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛+1

+ π‘Ÿ1

2𝑛+1

π‘Ÿ2

2𝑛

βˆ’ π‘Ÿ1

2𝑛

π‘Ÿ2

2𝑛+1

βˆ’ π‘Ÿ2

4𝑛+1

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛+1

βˆ’ π‘Ÿ2

4𝑛+1

] +(π‘Ÿ1π‘Ÿ2)2𝑛

(π‘Ÿ1βˆ’ π‘Ÿ2)(π‘Ÿ1βˆ’ π‘Ÿ2)

= πΉπ‘˜,4𝑛+1+ (βˆ’1)

2𝑛

= πΉπ‘˜,4𝑛+1+ 1.

(20)

In the same manner, we obtain the following results.

Theorem 7. πΉπ‘˜,2𝑛+2πΏπ‘˜,2𝑛= πΉπ‘˜,4𝑛+2+ π‘˜, where 𝑛 β‰₯ 1.

Theorem 8. πΉπ‘˜,2𝑛+2πΏπ‘˜,2𝑛+1= πΉπ‘˜,4𝑛+3βˆ’ 1, where 𝑛 β‰₯ 1.

3. Generalized Identities on the Products ofπ‘˜-Fibonacci and π‘˜-Lucas Numbers

Theorem 9. πΉπ‘˜,π‘šπΏπ‘˜,𝑛= πΉπ‘˜,π‘š+π‘›βˆ’ (βˆ’1)

π‘š

πΉπ‘˜,π‘›βˆ’π‘š

, for 𝑛 β‰₯ π‘š + 1,π‘š β‰₯ 0.

Proof.

πΉπ‘˜,π‘šπΏπ‘˜,𝑛

= [π‘Ÿ1

π‘š

βˆ’ π‘Ÿ2

π‘š

π‘Ÿ1βˆ’ π‘Ÿ2

] [π‘Ÿ1

𝑛

+ π‘Ÿ2

𝑛

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

π‘š+𝑛

+ π‘Ÿ1

π‘š

π‘Ÿ2

𝑛

βˆ’ π‘Ÿ1

𝑛

π‘Ÿ2

π‘š

βˆ’ π‘Ÿ2

π‘š+𝑛

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

π‘š+𝑛

βˆ’ π‘Ÿ2

π‘š+𝑛

] +1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

π‘š

π‘Ÿ2

𝑛

βˆ’ π‘Ÿ1

𝑛

π‘Ÿ2

π‘š

]

= πΉπ‘˜,π‘š+π‘›βˆ’ [π‘Ÿ1

𝑛

π‘Ÿ2

π‘š

βˆ’ π‘Ÿ1

π‘š

π‘Ÿ2

𝑛

π‘Ÿ1βˆ’ π‘Ÿ2

]

= πΉπ‘˜,π‘š+π‘›βˆ’ (π‘Ÿ1π‘Ÿ2)π‘š

[π‘Ÿ1

π‘›βˆ’π‘š

βˆ’ π‘Ÿ2

π‘›βˆ’π‘š

π‘Ÿ1βˆ’ π‘Ÿ2

]

= πΉπ‘˜,π‘š+π‘›βˆ’ (βˆ’1)

π‘š

πΉπ‘˜,π‘›βˆ’π‘š.

(21)

For different value ofπ‘š, we have different results:

If π‘š = 0 then πΉπ‘˜,0πΏπ‘˜,𝑛= πΉπ‘˜,π‘›βˆ’ πΉπ‘˜,𝑛= 0, 𝑛 β‰₯ 1

If π‘š = 1 then πΉπ‘˜,1πΏπ‘˜,𝑛= πΉπ‘˜,𝑛+1+ πΉπ‘˜,π‘›βˆ’1, 𝑛 β‰₯ 2

or πΏπ‘˜,𝑛= πΉπ‘˜,𝑛+1+ πΉπ‘˜,π‘›βˆ’1

If π‘š = 2 then πΉπ‘˜,2πΏπ‘˜,𝑛= πΉπ‘˜,𝑛+2βˆ’ πΉπ‘˜,π‘›βˆ’2, 𝑛 β‰₯ 3

or πΏπ‘˜,𝑛=πΉπ‘˜,𝑛+2βˆ’ πΉπ‘˜,π‘›βˆ’2

π‘˜and so on.

(22)

Theorem 10. πΉπ‘˜,π‘›πΏπ‘˜,2𝑛+π‘š= πΉπ‘˜,3𝑛+π‘šβˆ’ (βˆ’1)

𝑛

πΉπ‘˜,𝑛+π‘š

, for 𝑛 β‰₯ 1,π‘š β‰₯ 0.

Proof.

πΉπ‘˜,π‘›πΏπ‘˜,2𝑛+π‘š

= [π‘Ÿ1

𝑛

βˆ’ π‘Ÿ2

𝑛

π‘Ÿ1βˆ’ π‘Ÿ2

] [π‘Ÿ1

2𝑛+π‘š

+ π‘Ÿ2

2𝑛+π‘š

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

3𝑛+π‘š

+ π‘Ÿ1

𝑛

π‘Ÿ2

2𝑛+π‘š

βˆ’ π‘Ÿ1

2𝑛+π‘š

π‘Ÿ2

𝑛

βˆ’ π‘Ÿ2

3𝑛+π‘š

]

Page 4: Research Article On the Products of -Fibonacci Numbers and ...downloads.hindawi.com/journals/ijmms/2014/505798.pdfΒ Β· On the Products of -Fibonacci Numbers and -Lucas Numbers

4 International Journal of Mathematics and Mathematical Sciences

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

3𝑛+π‘š

βˆ’ π‘Ÿ2

3𝑛+π‘š

] + (π‘Ÿ1π‘Ÿ2)𝑛

[π‘Ÿ2

𝑛+π‘š

βˆ’ π‘Ÿ1

𝑛+π‘š

π‘Ÿ1βˆ’ π‘Ÿ2

]

= πΉπ‘˜,3𝑛+π‘šβˆ’ (βˆ’1)

𝑛

πΉπ‘˜,𝑛+π‘š

= πΉπ‘˜,3𝑛+π‘šβˆ’ πΉπ‘˜,𝑛+π‘š.

(23)

For different values ofπ‘š, we have various results:

If π‘š = 0 then πΉπ‘˜,π‘›πΏπ‘˜,2𝑛= πΉπ‘˜,3π‘›βˆ’ (βˆ’1)

𝑛

πΉπ‘˜,𝑛, 𝑛 β‰₯ 1

If π‘š = 1 then πΉπ‘˜,π‘›πΏπ‘˜,2𝑛+1= πΉπ‘˜,3𝑛+1βˆ’ (βˆ’1)

𝑛

πΉπ‘˜,𝑛+1, 𝑛 β‰₯ 1

and so on.(24)

Similarly we have the following result.

Theorem 11. πΉπ‘˜,2𝑛+π‘šπΏπ‘˜,𝑛= πΉπ‘˜,3𝑛+π‘š+ (βˆ’1)

𝑛

πΉπ‘˜,𝑛+π‘š

, for 𝑛 β‰₯ 1,π‘š β‰₯ 0.

Theorem 12. πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛+π‘š= πΉπ‘˜,4𝑛+π‘šβˆ’ πΉπ‘˜,π‘š

, for 𝑛 β‰₯ 1,π‘š β‰₯ 0.

Proof.

πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛+π‘š

= [π‘Ÿ1

2𝑛

βˆ’ π‘Ÿ2

2𝑛

π‘Ÿ1βˆ’ π‘Ÿ2

] [π‘Ÿ1

2𝑛+π‘š

+ π‘Ÿ2

2𝑛+π‘š

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛+π‘š

+ π‘Ÿ1

2𝑛

π‘Ÿ2

2𝑛+π‘š

βˆ’ π‘Ÿ1

2𝑛+π‘š

π‘Ÿ2

2𝑛

βˆ’ π‘Ÿ2

4𝑛+π‘š

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛+π‘š

βˆ’ π‘Ÿ2

4𝑛+π‘š

] + (π‘Ÿ1π‘Ÿ2)2𝑛

[π‘Ÿ2

π‘š

βˆ’ π‘Ÿ1

π‘š

π‘Ÿ1βˆ’ π‘Ÿ2

]

= πΉπ‘˜,4𝑛+π‘šβˆ’ πΉπ‘˜,π‘š.

(25)

For different values ofπ‘š, we have various results:

If π‘š = 0 then πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛= πΉπ‘˜,4𝑛, 𝑛 β‰₯ 1

If π‘š = 1 then πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛+1= πΉπ‘˜,4𝑛+1βˆ’ 1, 𝑛 β‰₯ 1 and so on.

(26)

Theorem 13. πΉπ‘˜,2𝑛+π‘šπΏπ‘˜,2𝑛= πΉπ‘˜,4𝑛+π‘š+ πΉπ‘˜,π‘š

, for 𝑛 β‰₯ 1,π‘š β‰₯ 0.

Proof.

πΉπ‘˜,2𝑛+π‘šπΏπ‘˜,2𝑛

= [π‘Ÿ1

2𝑛+π‘š

βˆ’ π‘Ÿ2

2𝑛+π‘š

π‘Ÿ1βˆ’ π‘Ÿ2

] [π‘Ÿ1

2𝑛

+ π‘Ÿ2

2𝑛

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛+π‘š

+ π‘Ÿ1

2𝑛+π‘š

π‘Ÿ2

2𝑛

βˆ’ π‘Ÿ1

2𝑛

π‘Ÿ2

2𝑛+π‘š

βˆ’ π‘Ÿ2

4𝑛+π‘š

]

=1

π‘Ÿ1βˆ’ π‘Ÿ2

[π‘Ÿ1

4𝑛+π‘š

βˆ’ π‘Ÿ2

4𝑛+π‘š

] + (π‘Ÿ1π‘Ÿ2)2𝑛

[π‘Ÿ1

π‘š

βˆ’ π‘Ÿ2

π‘š

π‘Ÿ1βˆ’ π‘Ÿ2

]

= πΉπ‘˜,4𝑛+π‘š+ πΉπ‘˜,π‘š.

(27)

For different values ofπ‘š, we have various results:

If π‘š = 0 then πΉπ‘˜,2π‘›πΏπ‘˜,2𝑛= πΉπ‘˜,4𝑛, 𝑛 β‰₯ 1

If π‘š = 1 then πΉπ‘˜,2𝑛+1πΏπ‘˜,2𝑛= πΉπ‘˜,4𝑛+1+ 1, 𝑛 β‰₯ 1

If π‘š = 2 then πΉπ‘˜,2𝑛+2πΏπ‘˜,2𝑛= πΉπ‘˜,4𝑛+2+ π‘˜, 𝑛 β‰₯ 1

and so on.

(28)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper.

References

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications,Wiley-Interscience, New York, NY, USA, 2001.

[2] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section,Ellis Horwood, Chichester, UK, 1989.

[3] S. Falcon and A. Plaza, β€œOn the Fibonacci π‘˜-numbers,” Chaos,Solitons and Fractals, vol. 32, no. 5, pp. 1615–1624, 2007.

[4] S. Falcon, β€œOn the π‘˜-Lucas numbers,” International Journal ofContemporary Mathematical Sciences, vol. 6, no. 21, pp. 1039–1050, 2011.

[5] C. Bolat, A. Ipeck, and H. Kose, β€œOn the sequence related toLucas numbers and its properties,”Mathematica Aeterna, vol. 2,no. 1, pp. 63–75, 2012.

[6] M. Thongmoon, β€œIdentities for the common factors ofFibonacci and Lucas numbers,” International MathematicalForum, vol. 4, no. 7, pp. 303–308, 2009.

[7] M.Thongmoon, β€œNew identities for the even and odd Fibonacciand Lucas numbers,” International Journal of ContemporaryMathematical Sciences, vol. 4, no. 14, pp. 671–676, 2009.

[8] N. Yilmaz, N. Taskara, K. Uslu, and Y. Yazlik, β€œOn the binomialsums of π‘˜-Fibonacci and π‘˜-Lucas sequences,” in Proceedings ofthe International Conference on Numerical Analysis and AppliedMathematics (ICNAAM ’11), pp. 341–344, September 2011.

[9] S. Falcon and A. Plaza, β€œOn the 3-dimensional π‘˜-Fibonaccispirals,”Chaos, Solitons and Fractals, vol. 38, no. 4, pp. 993–1003,2008.

[10] S. Falcon and A. Plaza, β€œThe π‘˜-Fibonacci sequence and thePascal 2-triangle,” Chaos, Solitons and Fractals, vol. 33, no. 1, pp.38–49, 2007.

Page 5: Research Article On the Products of -Fibonacci Numbers and ...downloads.hindawi.com/journals/ijmms/2014/505798.pdfΒ Β· On the Products of -Fibonacci Numbers and -Lucas Numbers

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of