research article numerical simulation and investigation of...

15
Hindawi Publishing Corporation Chinese Journal of Engineering Volume 2013, Article ID 362682, 14 pages http://dx.doi.org/10.1155/2013/362682 Research Article Numerical Simulation and Investigation of System Parameters of Sonochemical Process Sankar Chakma and Vijayanand S. Moholkar Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India Correspondence should be addressed to Sankar Chakma; [email protected] Received 25 July 2013; Accepted 19 August 2013 Academic Editors: B.-Y. Cao, S. Tang, and G. Xiao Copyright © 2013 S. Chakma and V. S. Moholkar. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. is paper presents the effects of various parameters that significantly affect the cavitation. In this study, three types of liquid mediums with different physicochemical properties were considered as the cavitation medium. e effects of various operating parameters such as temperature, pressure, initial bubble radius, dissolved gas content and so forth, were investigated in detail. e simulation results of cavitation bubble dynamics model showed a very interesting link among these parameters for production of oxidizing species. e formation of OH radical and H 2 O 2 is considered as the results of main effects of sonochemical process. Simulation results of radial motion of cavitation bubble dynamics revealed that bubble with small initial radius gives higher sonochemical effects. is is due to the bubble with small radius can undergo many acoustic cycles before reaching its critical radius when it collapses and produces higher temperature and pressure inside the bubble. On the other hand, due to the low surface tension and high vapor pressure, organic solvents are not suitable for sonochemical reactions. 1. Introduction e sonochemistry concept is a well-established technique, and now it is considered as one of the most popular advanced oxidation processes. In the last few decades, sonochemical process became one of the most popular techniques for synthesis of catalysts as well as different types of materials [47], degradation of pollutants [812], synthesis of biodiesel [13, 14], and so forth. Numerous literatures on sonochemistry have already been published [1518] which reported the various beneficial effects of sonochemistry. e principal phenomenon behind all of these effects is the cavitation. Cavitation is nothing but nucleation, growth, and implosive collapse of a bubble. Cavitation occurs through the forma- tion of bubbles or cavities present in liquid medium. Each cavitating bubble contains gas or vapor or a mixture of gas-vapor. When bubble contains only gas, the expansion of bubble is mainly by diffusion, pressure reduction, or by rise in temperature. However, there are several parameters which are directly involved in transient cavitation. Transient cavitation is nothing but the growth of bubbles extensively over time scales of the order of the acoustic cycle and then undergoes an implosive/energetic collapse resulting in either fragmentation, decaying oscillation, or a repeat performance [19]. Cavitation can also be the result of the enlargement of cavities that are already present in bulk liquid. Sometimes cavitation bubbles are suspended/trapped in tinny cracks in the interface of solid and liquid. ese cavitation bubbles grow and collapse in the medium based on the pressure variation inside the bubble. On the basis of pressure variation, cavitation can be categorized into four subsections: (1) hydrodynamic cavitation, (2) acoustic cavitation, (3) optic cavitation, and (4) particle cavitation [20]. Hydrodynamic cavitation is the result of pressure variation in the liquid medium due to the flow variation of liquid through the medium, while acoustic cavitation is due to the passing of acoustic waves in the liquid medium. Generally, acoustic cavitation occurs in the frequency range of 20 kHz to 1 MHz, that is, high power low frequency [20]. In acoustic cavitation, very high temperature and pressure (5000 K and 500 bar) are produced inside the bubbles due to transient collapse of cavitation bubbles. e bubble collapse occurs within as small time as 50 ns, and it is almost adiabatic. During the collapse of the bubble, many species are formed such as H 2 ,O 2 ,H 2 O 2 ,

Upload: others

Post on 02-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

Hindawi Publishing CorporationChinese Journal of EngineeringVolume 2013 Article ID 362682 14 pageshttpdxdoiorg1011552013362682

Research ArticleNumerical Simulation and Investigation of System Parametersof Sonochemical Process

Sankar Chakma and Vijayanand S Moholkar

Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati 781 039 Assam India

Correspondence should be addressed to Sankar Chakma sankariitgernetin

Received 25 July 2013 Accepted 19 August 2013

Academic Editors B-Y Cao S Tang and G Xiao

Copyright copy 2013 S Chakma and V S Moholkar This is an open access article distributed under the Creative CommonsAttribution License which permits unrestricted use distribution and reproduction in any medium provided the original work isproperly cited

This paper presents the effects of various parameters that significantly affect the cavitation In this study three types of liquidmediums with different physicochemical properties were considered as the cavitation medium The effects of various operatingparameters such as temperature pressure initial bubble radius dissolved gas content and so forth were investigated in detail Thesimulation results of cavitation bubble dynamics model showed a very interesting link among these parameters for production ofoxidizing species The formation of ∙OH radical and H

2

O2

is considered as the results of main effects of sonochemical processSimulation results of radial motion of cavitation bubble dynamics revealed that bubble with small initial radius gives highersonochemical effects This is due to the bubble with small radius can undergo many acoustic cycles before reaching its criticalradius when it collapses and produces higher temperature and pressure inside the bubble On the other hand due to the low surfacetension and high vapor pressure organic solvents are not suitable for sonochemical reactions

1 Introduction

The sonochemistry concept is a well-established techniqueand now it is considered as one of the most popular advancedoxidation processes In the last few decades sonochemicalprocess became one of the most popular techniques forsynthesis of catalysts as well as different types of materials[4ndash7] degradation of pollutants [8ndash12] synthesis of biodiesel[13 14] and so forth Numerous literatures on sonochemistryhave already been published [15ndash18] which reported thevarious beneficial effects of sonochemistry The principalphenomenon behind all of these effects is the cavitationCavitation is nothing but nucleation growth and implosivecollapse of a bubble Cavitation occurs through the forma-tion of bubbles or cavities present in liquid medium Eachcavitating bubble contains gas or vapor or a mixture ofgas-vapor When bubble contains only gas the expansionof bubble is mainly by diffusion pressure reduction or byrise in temperature However there are several parameterswhich are directly involved in transient cavitation Transientcavitation is nothing but the growth of bubbles extensivelyover time scales of the order of the acoustic cycle and then

undergoes an implosiveenergetic collapse resulting in eitherfragmentation decaying oscillation or a repeat performance[19] Cavitation can also be the result of the enlargement ofcavities that are already present in bulk liquid Sometimescavitation bubbles are suspendedtrapped in tinny cracks inthe interface of solid and liquid These cavitation bubblesgrow and collapse in the medium based on the pressurevariation inside the bubble On the basis of pressure variationcavitation can be categorized into four subsections (1)hydrodynamic cavitation (2) acoustic cavitation (3) opticcavitation and (4) particle cavitation [20] Hydrodynamiccavitation is the result of pressure variation in the liquidmedium due to the flow variation of liquid through themedium while acoustic cavitation is due to the passing ofacoustic waves in the liquid medium Generally acousticcavitation occurs in the frequency range of 20 kHz to 1MHzthat is high power low frequency [20] In acoustic cavitationvery high temperature and pressure (sim 5000K and sim 500 bar)are produced inside the bubbles due to transient collapse ofcavitation bubblesThe bubble collapse occurs within as smalltime as 50 ns and it is almost adiabatic During the collapseof the bubble many species are formed such as H

2

O2

H2

O2

2 Chinese Journal of Engineering

O3

∙OH ∙H ∙O andHO2

∙ Among these species ∙OH radicalis the most predominant radical species [21 22] having anoxidizing potential of 233V [9 23] For greater details incavitation concepts we would like to refer the readers to seethe state of art reviews by Xu et al [4] Apfel [24] Gong andHart [25] Suslick et al [26] and Gogate and Pandit [27]

2 Cavitation Bubble Dynamics Model

In order to investigate the various effects of cavitation wehave considered a model for a single cavitation bubble tosimulate the radial motion of cavitation bubble Although thesingle bubble analysis for radial motion of cavitation bubbledoes not give the entire phenomenon of the sonochemicalprocess but it can give a qualitative physical insight into themechanism The resultant effect of sonochemical reaction isthe collective oscillations and collapse of cavitation bubbleswith strong interaction between them For simulation ofradial motion the single bubble model is the most popularmodel to present the effects of cavitation namely physi-cal and chemical effect The physical and chemical effectsinduced by ultrasound and cavitation bubbles in the systemcan be determined using diffusion limited ordinary differen-tial equation (ODE) model This model is basically based onthe boundary layer approximation proposed by Toegel et al[28]This radial motion of cavitation bubble model is derivedfrom the partial differential equation (PDE) model of Storeyand Szeri [29] which showed that water vapor entrapment inthe cavitation bubble ismainly a diffusion limited process andnot the condensation limited process The main componentsof the radial motion of cavitation bubble dynamics are (1)Keller-Miksis equation for the radial motion of the bubble[30] (2) equation for the diffusive flux of water vapor andheat conduction through bubble wall The overall diffusioncoefficient in ternary mixture (eg N

2

ndashO2

ndashH2

O in case ofair bubbles) or binary mixture (eg N

2

ndashH2

O or O2

ndashH2

Oor ArndashH

2

O) has been determined using Blancrsquos law [31] (3)equation for heat conduction through cavitation bubble walland (4) overall energy balance treating the cavitation bubbleas an open system The set of 4 ODEs are also given below

(1) Radial motion of the cavitation bubble

(1 minus119889119877119889119905

119888L)119877

1198892119877

1198891199052+3

2(1 minus

119889119877119889119905

3119888L)(

119889119877

119889119905)

2

=1

120588L(1 +

119889119877119889119905

119888L) (119875119894

minus 119875119905

)

+119877

120588L119888L

119889119875119894

119889119905minus 4]

119889119877119889119905

119877minus2120590

120588L119877

(1)

Internal pressure in the bubble 119875119894

= 119873tot(119905)119896119879[4120587(119877

3

(119905) minus ℎ3

)3]

Pressure in bulk liquid medium 119875119905

= 1198750

minus 119875Asin(2120587119891119905)

(2) Diffusive flux of water molecules 119889119873W119889119905 = 41205871198772

119863W(120597119862W120597119903)|119903=119877 asymp 41205871198772119863W((119862W119877 minus 119862W)119897diff)

Instantaneous diffusive penetration depth119897diff = min(radic(119877119863w)|119889119877119889119905| 119877120587)

(3) Heat conduction across bubble wall 119889119876119889119905 = 41205871198772120582(120597119879120597119903)|

119903=119877

asymp 41205871198772120582((1198790

minus 119879)119897th)

Thermal diffusion length 119897th = min(radic119877120581|119889119877119889119905| 119877120587)

(4) Overall energy balance119862119881mix119889119879119889119905 = 119889119876119889119905minus119875119894119889119881

119889119905 + (ℎW minus 119880W)119889119873W119889119905

Mixture heat capacity 119862119881mix = sum119862

119881119894

119873119894

(where 119894 = N2

O2

H2

O)Molecular properties of water Enthalpy ℎw =4119896119879119900

Internal energy 119880W = 119873W119896119879(3 + sum

3

119894=1

((120579119894

119879)

(exp(120579119894

119879) minus 1)))Heat capacity of various species (119894 = N

2

O2

H2

O)

119862119881119894

= 119873119894

119896(119891119894

2+sum(

(120579119894

119879)2 exp (120579

119894

119879)

(exp (120579119894

119879) minus 1)2

)) (2)

The initial conditions of the ordinary differential equa-tions are taken as at 119905 = 0 119877 = 119877

119900

119889119877119889119905 = 0 119873w =

0 119876 = 0 and 119879 = 119879119900

Thermodynamic data for variousspecies and physicochemical properties of various solventsthat is cavitation medium are given in Tables 1 and 2The thermal conductivity and diffusion coefficient (transportparameters for the heat and mass transfer) are estimatedusing Chapman-Enskog theory using Lennard-Jones 12-6potential at the bulk temperature of the liquid medium [1ndash3 31] This model ignores the diffusion of gas across bubbleinterface because the time scale for the diffusion of gasesis much higher than the time scale of cavitation bubblemodel The ODEs in the bubble dynamics model have beensolved simultaneously using Runge-Kutta 4th- and 5th-orderadaptive step size method [32] Various parameters used inthe numerical solution of radial motion of cavitation bubbledynamics and their numerical values are given in Tables 1 and2 The other parameters are as follows ultrasound frequency(119891) = 20 kHz ultrasound pressure amplitude (119875A) = 150 kPainitial bubble radius (119877

119900

) = 5 120583m sound velocity in water(119888W) = 1481ms sound velocity in toluene (119888T) = 1275msand sound velocity in n-hexane (119888H) = 1203ms All theseparameters remain unchanged unless otherwise stated

Physical Effect of UltrasoundUltrasound propagates throughthe medium in the form of longitudinal wave with seriesof compression and rarefaction and causes rapid oscillatorymotion of fluid elements called microstreamingThis motiongives rise to intense micromixing in the medium Themagnitude of the microstreaming velocity is given by 119906 =119875A120588119888 Substituting values of 119875A as 15 times 105 Pa (or 15 bar)120588w = 1000 kgm

3 and 119888w = 1481ms gives 119906w = 0101ms

Sonochemical Effect of Cavitation Bubbles The numericalsolution of bubble dynamics model predicts the temperature

Chinese Journal of Engineering 3

Table 1 Thermodynamic data for various species (data taken from [1ndash3])

Species Degrees of freedom(translational + rotational) (119891

119894

)

Lennard-Jones force constants Characteristic vibrational temperatures 120579 (K)120590 (10minus10 m) 120576119896 (K)

N2 5 368 92 3350O2 5 343 113 2273Ar 3 342 124 mdashH2O 6 265 380 2295 5255 5400C6H12 6 575 3864 1036 1932 1987 2104 4193C6H5ndashCH3 6 582 451 1004 1056 2112 2153 2326 4224 4375

Table 2 Physicochemical properties of various solvents as cavitation medium

Solvent Boiling point (K) Density (kgm3) Viscosity (Pa-s) Surface tension (Nm) Vapor pressure (kPa)Water 373 1000 10 times 10

minus6 0072 25Toluene 384 867 68 times 10minus7 0029 40n-Hexane 341 658 50 times 10minus7 0018 162 calculated using Antoine type correlations

pressure and the number of gas and solvent moleculesin the bubble at transient collapse At transient collapsetemperature and pressure reach extreme conditions whichresult in dissociation of molecules to form various chemicalspecies To calculate the composition of the bubble at thetime of collapse we assume that thermodynamic equilibriumis attained [9] The equilibrium mole fraction of differentchemical species in the bubble at the peak conditions reachedat transient collapse is estimated using Gibbs free-energyminimization technique [33]The radial motion of cavitationbubbles generates intense convection in the medium throughtwo phenomena

(i) Microconvection [20] 119881turb(119903 119905) = (11987721199032)(119889119877119889119905)

(ii) Shock (or acoustic) waves [34 35] 119875AW(119903 119905) = (120588L4120587119903)(1198892119881

119887

1198891199052

) = 120588L(119877119903)[2(119889119877119889119905)2

+ 119877(1198892119877 1198891199052

)]

where 119881119887

is the volume of the bubble A representative valueof 119903 is taken as 1mm In bubble dynamic model directestimation of initial bubble radius is very difficult Severalphenomena such as rectified diffusion and fragmentation ofthe bubble cause continuous change in this parameter Ina multibubble system a large variation in this parametermay be expected In order to investigate the influence of thisparameter two numerical values for this parameter namely 5and 10 120583m are selected for this present studyThe equilibriumcomposition of the bubble contents was determined usingthe FactSage online software [36] which is based on thefree-energy minimization algorithm same as proposed byEriksson [33]

3 Numerical Solution of Mathematical Model

The simulation results of radial motion of cavitation bubbledynamics are depicted in Figures 1 2 3 4 and 5 and Tables3 4 5 6 and 7 Tables 3ndash7 present the temperature (119879max)and pressure (119875max) peaks reached at themoment of transientcollapse of cavitation bubble the number of water moleculesin the bubble at collapse and the equilibrium composition of

the various species resulting from dissociation of entrappedmolecules in the bubble when the temperature and pressurereached to its extreme conditions during transient collapse ofcavitation bubbles

31 Initial Bubble Size in the Liquid Medium Bubbles withdifferent initial radius present in the liquid medium play animportant role in cavitation Kumar and Moholkar [37] havereported that the smaller bubble has higher Laplace pressurewhich results in higher expansion and more intense collapseduring the transient collapse In this present study a singlebubble model with different initial radius has been chosen topresent the effects of bubble radius in sonochemical processFrom Table 3 it could be seen that the ∙OH radical formationduring transient collapse of cavitation bubble is higher withthe initial bubble radius of 5 120583m followed by 25120583m Thisis due to the bubble with small bubble radius can undergomany acoustic cycles before reaching its critical radius whenit collapses and as a result the highest temperature peak isreached at the moment of transient collapse of the cavitationbubble with 5120583m radius bubble as shown in Figure 1 andTable 3

32 Static Pressure of the System As stated earlier in theprevious section the cavitation is nothing but the nucle-ation growth and implosive collapse of bubbles but thegrowthexpansion of the bubble depends on the systemrsquosstatic pressure So when the bubble contains vapor cavitationmay occur due to reduced static pressure sufficiently atconstant temperature To investigate the effects of pressurefive different static pressures ranging from 100ndash300 kPa havebeen chosen The results showed that as the static pressureincreases the radical formation decreases drastically even itbecomes zero at higher ambient static pressure This is dueto at elevated static pressure the sonochemical effects geteliminated which directly affects the generation of radicalformation provided the applied pressure must be greaterthan or equal to the acoustic pressure amplitude (119875

119900

ge 119875AW)[9 38]Thehighest ∙OHradical productionwas seen at nearly

4 Chinese Journal of Engineering

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

1500

3000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50N

o o

f wat

er v

apor

mol

ecul

es

No of acoustic cycles0 1 2 3 4 5

0

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

5 middot 1010

1 middot 1011

3 middot 1012

6 middot 1012

(c)

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles0 1 2 3 4 5

0

750

1500

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104

(d)

0 1 2 3 4 5

0

10

Osc

illat

ory

velo

city

(ms

)

No of acoustic cycles

minus100 1 2 3 4 5

05

Osc

illat

ory

velo

city

(ms

)

No of acoustic cycles

minus1

minus025

(e)

0 1 2 3 4 5

148

300

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

5120583m bubble

0 1 2 3 4 50

50

100

No of acoustic cycles

25120583m bubble

Acou

stic w

ave

ampl

itude

(bar

)

minus4

(f)

Figure 1 Simulations of radial motion of 5 and 25 micron air bubble in water 119891 = 20 kHz 119875A = 150 kPa and 119875119900 = 100 kPa Time historyof (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside the bubble (e)microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 5

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

15

3

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

2000

4000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

4 middot 1010

2 middot 1010

1 middot 1010

5 middot 109

(c)

0 1 2 3 4 50

2000

4000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

30

60

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5No of acoustic cyclesO

scill

ator

y ve

loci

ty (m

s)

minus04

minus01

0 1 2 3 4 5

0

01

Osc

illat

ory

velo

city

(ms

)

minus01

No of acoustic cycles

(e)

0 1 2 3 4 50

30

60

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

120 kPa

0 1 2 3 4 50

075

15

No of acoustic cycles

150kPa

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 2 Simulations of radial motion of 5 micron air bubble in water at 120 kPa and 150 kPa 119891 = 20 kHz 119875A = 150 kPa and 119877119900 = 5 120583mTime history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside thebubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

6 Chinese Journal of Engineering

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

5

10

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

1500

3000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

3 middot 1010

15 middot 1010 1 middot 1012

2 middot 1012

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

1000

2000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104

(d)

0 1 2 3 4 5

0

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus050 1 2 3 4 5

1

minus05

minus2

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

150

300

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

283K

0 1 2 3 4 50

30

60

343K

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 3 Simulations of radial motion of 5 micron air bubble in water at 283K and 343K 119891 = 20 kHz 119875A = 150 kPa and 119875119900 = 100 kPaTime history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside thebubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 7

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

1 middot 1011

5 middot 1010

1 middot 1011

5 middot 1010

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104 1 middot 104

(d)

0 1 2 3 4 5

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus1

minus025

0 1 2 3 4 5

05

minus1

minus025

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

200

400

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

Oxygen bubble

0 1 2 3 4 50

150

300

Nitrogen bubble

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 4 Simulations of radial motion of 5 micron air bubble in water with O2

bubble and N2

bubble 119891 = 20 kHz 119875A = 150 kPa and119875119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

8 Chinese Journal of Engineering

0 1 2 3 4 50

2

4

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

750

1500

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No

of t

olue

ne

vap

mol

ecul

es

No of acoustic cycles0 1 2 3 4 5

0

No of acoustic cycles

No

of h

exan

eva

pm

olec

ules

1 middot 105

2 middot 105 3 middot 1011

15 middot 1011

(c)

1 middot 104

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5

Osc

illat

ory

velo

city

(ms

)

minus03

minus01

No of acoustic cycles0 1 2 3 4 5

0005

Osc

illat

ory

velo

city

(ms

)

minus001

minus00025

No of acoustic cycles

(e)

0 1 2 3 4 50

200

400

Acou

stic w

ave

ampl

itude

(bar

)

Toluene

No of acoustic cycles0 1 2 3 4 5

0

1

2

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

n-hexane

(f)

Figure 5 Simulations of radial motion of 5 micron air bubble in toluene and n-hexane as cavitation medium 119891 = 35 kHz 119875A = 150 kPaand 119875

119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 9

Table 3 Simulation summary of initial bubble size (119877119900

) dependent sonochemical process

Conditions at the first collapse of the bubble119877119900

= 5 120583m 119877119900

= 25 120583m 119877119900

= 50 120583m 119877119900

= 100 120583m 119877119900

= 200 120583m119879max = 3999K 119879max = 1688K 119879max = 7785K 119879max = 409K 119879max = 3299K119875max = 6967MPa 119875max = 3057MPa 119875max = 256MPa 119875max = 288 kPa 119875max = 136 kPa119881turb = 036ms 119881turb = 611ms 119881turb = 62ms 119881turb = 795ms 119881turb = 112ms119875AW = 2404MPa 119875AW = 880MPa 119875AW = 063MPa 119875AW = 027MPa 119875AW = 035 kPa

119873N2 = 128 times 1010 119873N2 = 132 times 10

12 119873N2 = 103 times 1013 119873N2 = 811 times 10

13 119873N2 = 644 times 1014

119873O2 = 341 times 109 119873O2 = 351 times 10

11 119873O2 = 273 times 1012 119873O2 = 216 times 10

13 119873O2 = 171 times 1014

119873W = 291 times 109

119873W = 25 times 1011

119873W = 908 times 1011

119873W = 298 times 1012

119873W = 115 times 1013

Species Equilibrium composition of species in the bubble at collapse5120583m 25 120583m 50 120583m 100120583m 200120583m

N2 626 times 10minus1 686 times 10minus1 738 times 10minus1 768 times 10minus1 779 times 10minus1

O2 128 times 10minus1 182 times 10minus1 196 times 10minus1 204 times 10minus1 207 times 10minus1

H2O 141 times 10minus2 130 times 10minus1 650 times 10minus2 280 times 10minus2 140 times 10minus2

N 156 times 10minus5 mdash mdash mdash mdash

O 595 times 10minus3 mdash mdash mdash mdashH 283 times 10minus4 mdash mdash mdash mdashO3 170 times 10

minus5 mdash mdash mdash mdashH2 253 times 10minus4 mdash mdash mdash mdashOH 951 times 10minus3 903 times 10minus5 mdash mdash mdashHO2 559 times 10

minus4

581 times 10minus6 mdash mdash mdash

H2O2 200 times 10minus5 mdash mdash mdash mdashNO 847 times 10minus2 258 times 10minus3 149 times 10minus6 mdash mdashNO2 170 times 10minus3 127 times 10minus4 284 times 10minus6 mdash mdashN2O 361 times 10

minus4

218 times 10minus6 mdash mdash mdash

NH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10minus5 mdash mdash mdash mdashHNO2 175 times 10

minus4

706 times 10minus6 mdash mdash mdash

Note solvent = water temperature (119879) = 303K static pressure (1198750) = 100 kPa dissolved gas = air and frequency (119891) = 20 kHz

ambient static pressure (ie 100 kPa) and the productionof ∙OH radical decreases as the static pressure approachesto the magnitude of acoustic pressure that is 150 kPa Theproduction of ∙OH radical at 100 kPa is typically 15 foldhigher than the ∙OH radical production at 120 kPa while at150 kPa or higher static pressure no ∙OH radical formationwas seenThis result can be attributed to the temperature peakreached at the moment of collapse of the bubble At the timeof transient collapse the highest temperature peak (3999K)was seen when the pressure was 100 kPa while the lowesttemperature peak (sim313 K) was observed with elevated staticpressure of 300 kPa

33 System Operating Temperature Another important fac-tor that affects the transient cavitation is system temperatureTo study the temperature effect on sonochemical processthe numerical simulations were run in the temperature rangefrom 283 to 373K (viz 283 303 323 343 and 373 K)The sim-ulation results are depicted in Figure 3 As the temperaturein the system increases the formation of oxidizing speciesdue to transient cavitation of bubbles reduces drasticallyThiscould be attributed to the effects of bubble radius as discussedin the earlier section In this case vapor bubbles grow

with increasing the temperature through the phenomenonof boiling [20] So the lower the temperature means thehigher the cavitation effects in the system Table 5 shows thatthe production of ∙OH radical is highest with the lowesttemperature that is at 283K while at the boiling point ofwater no ∙OH radical formation has been observed Theoverall trend of the ∙OH radical production under variousoperating temperature is 283K gt 303K gt 323K gt 343K

34 Type of Dissolved Gas Content The type of dissolvedgas has an impact on bubble nucleation rate as described inthe literatures [15 37] The simulation results for four gasesare shown in Table 6 and Figure 4 The production of ∙OHradical as well as H

2

O2

is highest for O2

bubble followed byair Ar and N

2

bubble Also the generation of O3

per bubblefor oxygen bubble is one order of magnitude higher thanthe O

3

generation by air bubble The radicals by air bubbleare formed through the reactions (3)ndash(22) while (24) and(25) represent the radical formation by O

2

bubble [39] Theproduction of radicals is least with N

2

bubble as compared toother gas bubbles This is due to the scavenging of radicals byN2

molecules through the reactions (3)ndash(16) Moreover thereis no regeneration of ∙OH and O∙ radicals by O

2

when the

10 Chinese Journal of Engineering

Table 4 Simulation summary of sonochemical process under various static pressures (119875119900

)

Conditions at the first collapse of the bubble119875119900

= 100 kPa 119875119900

= 120 kPa 119875119900

= 150 kPa 119875119900

= 200 kPa 119875119900

= 300 kPa119879max = 3999K 119879max = 3024K 119879max = 9773K 119879max = 3534K 119879max = 3127K119875max = 6967MPa 119875max = 2863MPa 119875max = 462MPa 119875max = 416 kPa 119875max = 477 kPa119881turb = 036ms 119881turb = 021ms 119881turb = 007ms 119881turb = 0008ms 119881turb = 0002ms119875AW = 2404MPa 119875AW = 543MPa 119875AW = 120 kPa 119875AW = 2 kPa 119875AW = 06 kPa

119873N2 = 128 times 1010 119873N2 = 148 times 10

10 119873N2 = 178 times 1010 119873N2 = 228 times 10

10 119873N2 = 328 times 1010

119873O2 = 341 times 109

119873O2 = 395 times 109

119873O2 = 474 times 109

119873O2 = 607 times 109

119873O2 = 873 times 109

119873W = 291 times 109

119873W = 181 times 109

119873W = 886 times 108

119873W = 819 times 1010

119873W = 381 times 108

Species Equilibrium composition of species in the bubble at collapse1 bar 12 bar 15 bar 2 bar 3 bar

N2 626 times 10minus1 699 times 10minus1 760 times 10minus1 768 times 10minus1 783 times 10minus1

O2 128 times 10minus1 167 times 10minus1 202 times 10minus1 204 times 10minus1 208 times 10minus1

H2O 141 times 10minus2

745 times 10minus2

380 times 10minus2

280 times 10minus2

900 times 10minus3

N 156 times 10minus5 mdash mdash mdash mdashO 595 times 10minus3 935 times 10minus4 mdash mdash mdashH 283 times 10minus4 409 times 10minus5 mdash mdash mdashO3 170 times 10

minus5

371 times 10minus6 mdash mdash mdash

H2 253 times 10minus4 167 times 10minus4 mdash mdash mdashOH 951 times 10minus3 633 times 10minus3 mdash mdash mdashHO2 559 times 10

minus4

360 times 10minus4 mdash mdash mdash

H2O2 200 times 10minus5 274 times 10minus5 mdash mdash mdashNO 847 times 10minus2 430 times 10minus2 264 times 10minus5 mdash mdashNO2 170 times 10

minus3

103 times 10minus3

109 times 10minus5 mdash mdash

N2O 361 times 10minus4 110 times 10minus4 mdash mdash mdashNH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10

minus5

138 times 10minus5 mdash mdash mdash

HNO2 175 times 10minus4

140 times 10minus4 mdash mdash mdash

Note solvent = water dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) = 303K and frequency (119891) = 20 kHz

bubble contents are N2

gas So the total number of radicalsper bubble in N

2

bubbling is always lower than the other gasbubbles The trend of production of ∙OH radical per bubblewith various gases bubbling is as follows O

2

gt Air gt Ar gtN2

N2

+O∙ 999448999471 N∙ +NO (3)

N2

+∙OH 999448999471 N

2

H +O∙ (4)

N2

+∙OH 999448999471 N

2

O +H∙ (5)

N2

+∙OH 999448999471 NH +NO (6)

N2

+H∙ 999448999471 N2

H (7)

N2

+H∙ 999448999471 NH + N∙ (8)

N + ∙OH 999448999471 NO +H∙ (9)

N2

O +O∙ 999448999471 2NO (10)

NO + ∙OH 999448999471 NO2

(11)

NH + ∙OH 999448999471 NH2

+O∙ (12)

NH2

+O∙ 999448999471 H∙ +HNO (13)

HNO +O∙ 999448999471 NH +O2

(14)

HNO +O∙ 999448999471 NO + ∙OH (15)

HNO + ∙OH 999448999471 NO +H2

O (16)

N +O2

999448999471 NO +O∙ (17)

NO +O2

999448999471 NO2

+O∙ (18)

NH +O2

999448999471 HNO +O∙ (19)

NH +O2

999448999471 NO + ∙OH (20)

N2

+O2

999448999471 N2

O +O∙ (21)

H∙ +O2

999448999471 HO2

∙ (22)∙OH+O

2

999448999471 HO2

+O∙ (23)

O∙ +O2

rarr O3

(24)

2HO2

999448999471 H2

O2

+O2

(25)

Chinese Journal of Engineering 11

Table 5 Simulation summary of system temperature (119879119900

) dependent sonochemical process

System temperature119879 = 283K 119879 = 303K 119879 = 323K 119879 = 343K 119879 = 373K

Conditions at the first collapse of the bubble119879max = 3989K 119879max = 3999K 119879max = 3733K 119879max = 2683K 119879max = 8117K119875max = 6815MPa 119875max = 6967MPa 119875max = 6239MPa 119875max = 1753MPa 119875max = 179MPa119881turb = 035ms 119881turb = 036ms 119881turb = 045ms 119881turb = 108ms 119881turb = 463ms119875AW = 2475MPa 119875AW = 2404MPa 119875AW = 2156MPa 119875AW = 443MPa 119875AW = 220 kPa

119873N2 = 138 times 1010

119873N2 = 128 times 1010

119873N2 = 121 times 1010

119873N2 = 113 times 1010

119873N2 = 104 times 1010

119873O2 = 366 times 109 119873O2 = 341 times 10

9 119873O2 = 320 times 109 119873O2 = 302 times 10

9 119873O2 = 277 times 109

119873W = 794 times 108 119873W = 291 times 10

9 119873W = 123 times 1010 119873W = 815 times 10

10 119873W = 179 times 1012

Species Equilibrium composition of species in the bubble at collapse283K 303K 323K 343K 373K

N2 707 times 10minus1 626 times 10minus1 413 times 10minus1 116 times 10minus1 600 times 10minus3

O2 145 times 10minus1

128 times 10minus1

884 times 10minus2

283 times 10minus2

200 times 10minus3

H2O 163 times 10minus2 141 times 10minus2 121 times 10minus2 280 times 10minus2 993 times 10minus1

N 172 times 10minus5 156 times 10minus5 384 times 10minus6 mdash mdashO 667 times 10

minus3

595 times 10minus3

244 times 10minus3

569 times 10minus5 mdash

H 321 times 10minus4 283 times 10minus4 106 times 10minus4 257 times 10minus6 mdashO3 189 times 10minus5 170 times 10minus5 838 times 10minus6 228 times 10minus7 mdashH2 291 times 10minus4 253 times 10minus4 130 times 10minus4 229 times 10minus5 mdashOH 108 times 10

minus2

951 times 10minus3

527 times 10minus3

808 times 10minus4 mdash

HO2 631 times 10minus4 559 times 10minus4 325 times 10minus4 422 times 10minus5 mdashH2O2 228 times 10minus5 200 times 10minus5 136 times 10minus5 460 times 10minus6 mdashNO 951 times 10

minus2

847 times 10minus2

472 times 10minus2

457 times 10minus3 mdash

NO2 190 times 10minus3 170 times 10minus3 104 times 10minus3 111 times 10minus4 mdashN2O 401 times 10minus4 361 times 10minus4 188 times 10minus4 869 times 10minus6 mdashNH 189 times 10

minus6

170 times 10minus6 mdash mdash mdash

HNO 667 times 10minus5 595 times 10minus5 274 times 10minus5 969 times 10minus7 mdashHNO2 196 times 10minus4 175 times 10minus4 112 times 10minus4 176 times 10minus5 mdashNote solvent = water dissolved gas = air initial bubble size (119877

0) = 5 120583m static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz

35 Type of Solvent or Cavitation Medium The solvent orcavitation medium is another important factor that affectsdirectly on the sonochemical process In order to assess thesuitability of solvent for cavitation we have chosen threesolvents with different physicochemical properties namelywater toluene and n-hexane as shown in Table 2 To addressthis issue we have presented the numerical solution withvarious solvent as cavitation medium in Figure 5 and Table 7which lists the temperature and pressure peak reached at themoment of collapse with various equilibrium compositionsof species The number of ∙OH radical production is highestwhen water is used as cavitation medium This can beattributed to the lower surface tension and higher vaporpressure of the organic solvent The production of ∙OHradical in water is typically two orders of magnitude higherthan that in toluene So due to the low intensity of bubblecollapse organic solvents are not able to generate sufficientnumbers of radical in-situ for sonochemical reactions

4 Conclusions

The lower is the system temperature the higher is thecavitation effects that is when the system temperature is

moderately low the effect of cavitation is more In this presentstudy the radical formation due to cavitation is highest whenthe system temperature is 283K So the system with lowoperating temperature and cavitation medium contents withsmall initial bubble radius is always preferable for sono-chemical reactions since this type of sonochemical reactionsystems are able to generate large amount of highly oxidizingspecies Due to the high vapor pressure and low surfacetension organic solvents cannot produce large amount ofradicals in the reaction medium thus they are not suitablefor sonochemical reactions However they could be goodsolvents for extraction or other processes using ultrasoundMoreover depending on the process requirement one canchoose the system with different gas bubbling and aqueousor organic solvents for conducting experiments

Nomenclature

119862119881119894

Heat capacity at constant volume Jkgminus1 Kminus1

119888L Velocity of sound in liquid medium m sminus1119888W Velocity of sound in water m sminus1

12 Chinese Journal of Engineering

Table 6 Effect of dissolved gas content on sonochemical process

Conditions at the first collapse of the bubbleAir bubble Nitrogen bubble Oxygen bubble Argon bubble119879max = 3999K 119879max = 4379K 119879max = 4155K 119879max = 4551K119875max = 6967MPa 119875max = 7723MPa 119875max = 7582MPa 119875max = 7866MPa119881turb = 036ms 119881turb = 037ms 119881turb = 037ms 119881turb = 037ms119875AW = 2404MPa 119875AW = 2825MPa 119875AW = 3078MPa 119875AW = 2728MPa

119873N2 = 128 times 1010 119873N2 = 163 times 10

10 119873O2 = 163 times 1010 119873Ar = 163 times 10

10

119873O2 = 341 times 109

119873W = 388 times 109

119873W = 388 times 109

119873W = 254 times 109

119873W = 291 times 109

Species Equilibrium composition of species in the bubble at collapseAir bubble Nitrogen bubble Oxygen bubble Argon bubble

N2 626 times 10minus1 805 times 10minus1 mdash mdashO2 128 times 10minus1 280 times 10minus4 793 times 10minus1 109 times 10minus3

Ar mdash mdash mdash 865 times 10minus1

H2O 141 times 10minus2 969 times 10minus3 113 times 10minus2 921 times 10minus3

N 156 times 10minus5 585 times 10minus5 mdash mdashO 595 times 10minus3 506 times 10minus4 187 times 10minus2 134 times 10minus3

H 283 times 10minus4

248 times 10minus3

221 times 10minus4

259 times 10minus3

N3 mdash 145 times 10minus6 mdash mdashO3 170 times 10minus5 mdash 328 times 10minus4 mdashH2 253 times 10

minus4

673 times 10minus3

103 times 10minus4

431 times 10minus3

OH 951 times 10minus3 250 times 10minus3 157 times 10minus2 409 times 10minus3

HO2 559 times 10minus4 677 times 10minus6 234 times 10minus3 207 times 10minus5

H2O2 200 times 10minus5

886 times 10minus7

475 times 10minus5

179 times 10minus6

NO 847 times 10minus2 565 times 10minus3 mdash mdashNO2 170 times 10minus3 493 times 10minus6 mdash mdashN2O 361 times 10

minus4

302 times 10minus5 mdash mdash

NH 170 times 10minus6

268 times 10minus5 mdash mdash

NH2 mdash 242 times 10minus5 mdash mdashNH3 mdash 178 times 10minus5 mdash mdashHNO 595 times 10

minus5

225 times 10minus5 mdash mdash

HNO2 175 times 10minus4 216 times 10minus6 mdash mdashNote solvent = water initial bubble size (119877

0) = 5 120583m temperature (119879) = 303K static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz O2 gt air gt Ar gt

N2

119888T Velocity of sound in toluene m sminus1119888H Velocity of sound in n-hexane m sminus1119863w Diffusion coefficient of solvent vapor m2

sminus1119891 Frequency of ultrasound wave Hz119891119894

Translational and rotational degrees offreedom

ℎ Van der Waalrsquos hard core radius m119868diffw Instantaneous diffusive penetration depth

for water molecules119896 Boltzmann constant J Kminus1119873W Number of water molecules trapped in the

bubble119873N2

Number of N2

molecules in the bubble119873O2

Number of oxygenmolecules in the bubble119873T Number of toluenemolecules in the bubble119873H Number of n-hexane molecules in the

bubble

119873Ar Number of Ar molecules in the bubble119873tot Total number of molecules (gas + vapor) in

the bubble119875119900

Static pressure in the liquid medium Pa119875max Pressure peak reached in the bubble at the

time of first collapse Pa119875AW Pressure amplitude of the acoustic wave

generated by the cavitation bubble Pa119876 Heat conducted across bubble wall J sminus1119877 Radius of the bubble m119877119900

Initial radius of the cavitation bubble m119889119877119889119905 Bubble wall velocity m sminus1119905 Time s119879 Temperature of the bubble contents K119879119900

Ambient (or bulk liquid medium) temper-ature K

119879max Temperature peak reached in the bubble atthe time of first collapse K

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 2: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

2 Chinese Journal of Engineering

O3

∙OH ∙H ∙O andHO2

∙ Among these species ∙OH radicalis the most predominant radical species [21 22] having anoxidizing potential of 233V [9 23] For greater details incavitation concepts we would like to refer the readers to seethe state of art reviews by Xu et al [4] Apfel [24] Gong andHart [25] Suslick et al [26] and Gogate and Pandit [27]

2 Cavitation Bubble Dynamics Model

In order to investigate the various effects of cavitation wehave considered a model for a single cavitation bubble tosimulate the radial motion of cavitation bubble Although thesingle bubble analysis for radial motion of cavitation bubbledoes not give the entire phenomenon of the sonochemicalprocess but it can give a qualitative physical insight into themechanism The resultant effect of sonochemical reaction isthe collective oscillations and collapse of cavitation bubbleswith strong interaction between them For simulation ofradial motion the single bubble model is the most popularmodel to present the effects of cavitation namely physi-cal and chemical effect The physical and chemical effectsinduced by ultrasound and cavitation bubbles in the systemcan be determined using diffusion limited ordinary differen-tial equation (ODE) model This model is basically based onthe boundary layer approximation proposed by Toegel et al[28]This radial motion of cavitation bubble model is derivedfrom the partial differential equation (PDE) model of Storeyand Szeri [29] which showed that water vapor entrapment inthe cavitation bubble ismainly a diffusion limited process andnot the condensation limited process The main componentsof the radial motion of cavitation bubble dynamics are (1)Keller-Miksis equation for the radial motion of the bubble[30] (2) equation for the diffusive flux of water vapor andheat conduction through bubble wall The overall diffusioncoefficient in ternary mixture (eg N

2

ndashO2

ndashH2

O in case ofair bubbles) or binary mixture (eg N

2

ndashH2

O or O2

ndashH2

Oor ArndashH

2

O) has been determined using Blancrsquos law [31] (3)equation for heat conduction through cavitation bubble walland (4) overall energy balance treating the cavitation bubbleas an open system The set of 4 ODEs are also given below

(1) Radial motion of the cavitation bubble

(1 minus119889119877119889119905

119888L)119877

1198892119877

1198891199052+3

2(1 minus

119889119877119889119905

3119888L)(

119889119877

119889119905)

2

=1

120588L(1 +

119889119877119889119905

119888L) (119875119894

minus 119875119905

)

+119877

120588L119888L

119889119875119894

119889119905minus 4]

119889119877119889119905

119877minus2120590

120588L119877

(1)

Internal pressure in the bubble 119875119894

= 119873tot(119905)119896119879[4120587(119877

3

(119905) minus ℎ3

)3]

Pressure in bulk liquid medium 119875119905

= 1198750

minus 119875Asin(2120587119891119905)

(2) Diffusive flux of water molecules 119889119873W119889119905 = 41205871198772

119863W(120597119862W120597119903)|119903=119877 asymp 41205871198772119863W((119862W119877 minus 119862W)119897diff)

Instantaneous diffusive penetration depth119897diff = min(radic(119877119863w)|119889119877119889119905| 119877120587)

(3) Heat conduction across bubble wall 119889119876119889119905 = 41205871198772120582(120597119879120597119903)|

119903=119877

asymp 41205871198772120582((1198790

minus 119879)119897th)

Thermal diffusion length 119897th = min(radic119877120581|119889119877119889119905| 119877120587)

(4) Overall energy balance119862119881mix119889119879119889119905 = 119889119876119889119905minus119875119894119889119881

119889119905 + (ℎW minus 119880W)119889119873W119889119905

Mixture heat capacity 119862119881mix = sum119862

119881119894

119873119894

(where 119894 = N2

O2

H2

O)Molecular properties of water Enthalpy ℎw =4119896119879119900

Internal energy 119880W = 119873W119896119879(3 + sum

3

119894=1

((120579119894

119879)

(exp(120579119894

119879) minus 1)))Heat capacity of various species (119894 = N

2

O2

H2

O)

119862119881119894

= 119873119894

119896(119891119894

2+sum(

(120579119894

119879)2 exp (120579

119894

119879)

(exp (120579119894

119879) minus 1)2

)) (2)

The initial conditions of the ordinary differential equa-tions are taken as at 119905 = 0 119877 = 119877

119900

119889119877119889119905 = 0 119873w =

0 119876 = 0 and 119879 = 119879119900

Thermodynamic data for variousspecies and physicochemical properties of various solventsthat is cavitation medium are given in Tables 1 and 2The thermal conductivity and diffusion coefficient (transportparameters for the heat and mass transfer) are estimatedusing Chapman-Enskog theory using Lennard-Jones 12-6potential at the bulk temperature of the liquid medium [1ndash3 31] This model ignores the diffusion of gas across bubbleinterface because the time scale for the diffusion of gasesis much higher than the time scale of cavitation bubblemodel The ODEs in the bubble dynamics model have beensolved simultaneously using Runge-Kutta 4th- and 5th-orderadaptive step size method [32] Various parameters used inthe numerical solution of radial motion of cavitation bubbledynamics and their numerical values are given in Tables 1 and2 The other parameters are as follows ultrasound frequency(119891) = 20 kHz ultrasound pressure amplitude (119875A) = 150 kPainitial bubble radius (119877

119900

) = 5 120583m sound velocity in water(119888W) = 1481ms sound velocity in toluene (119888T) = 1275msand sound velocity in n-hexane (119888H) = 1203ms All theseparameters remain unchanged unless otherwise stated

Physical Effect of UltrasoundUltrasound propagates throughthe medium in the form of longitudinal wave with seriesof compression and rarefaction and causes rapid oscillatorymotion of fluid elements called microstreamingThis motiongives rise to intense micromixing in the medium Themagnitude of the microstreaming velocity is given by 119906 =119875A120588119888 Substituting values of 119875A as 15 times 105 Pa (or 15 bar)120588w = 1000 kgm

3 and 119888w = 1481ms gives 119906w = 0101ms

Sonochemical Effect of Cavitation Bubbles The numericalsolution of bubble dynamics model predicts the temperature

Chinese Journal of Engineering 3

Table 1 Thermodynamic data for various species (data taken from [1ndash3])

Species Degrees of freedom(translational + rotational) (119891

119894

)

Lennard-Jones force constants Characteristic vibrational temperatures 120579 (K)120590 (10minus10 m) 120576119896 (K)

N2 5 368 92 3350O2 5 343 113 2273Ar 3 342 124 mdashH2O 6 265 380 2295 5255 5400C6H12 6 575 3864 1036 1932 1987 2104 4193C6H5ndashCH3 6 582 451 1004 1056 2112 2153 2326 4224 4375

Table 2 Physicochemical properties of various solvents as cavitation medium

Solvent Boiling point (K) Density (kgm3) Viscosity (Pa-s) Surface tension (Nm) Vapor pressure (kPa)Water 373 1000 10 times 10

minus6 0072 25Toluene 384 867 68 times 10minus7 0029 40n-Hexane 341 658 50 times 10minus7 0018 162 calculated using Antoine type correlations

pressure and the number of gas and solvent moleculesin the bubble at transient collapse At transient collapsetemperature and pressure reach extreme conditions whichresult in dissociation of molecules to form various chemicalspecies To calculate the composition of the bubble at thetime of collapse we assume that thermodynamic equilibriumis attained [9] The equilibrium mole fraction of differentchemical species in the bubble at the peak conditions reachedat transient collapse is estimated using Gibbs free-energyminimization technique [33]The radial motion of cavitationbubbles generates intense convection in the medium throughtwo phenomena

(i) Microconvection [20] 119881turb(119903 119905) = (11987721199032)(119889119877119889119905)

(ii) Shock (or acoustic) waves [34 35] 119875AW(119903 119905) = (120588L4120587119903)(1198892119881

119887

1198891199052

) = 120588L(119877119903)[2(119889119877119889119905)2

+ 119877(1198892119877 1198891199052

)]

where 119881119887

is the volume of the bubble A representative valueof 119903 is taken as 1mm In bubble dynamic model directestimation of initial bubble radius is very difficult Severalphenomena such as rectified diffusion and fragmentation ofthe bubble cause continuous change in this parameter Ina multibubble system a large variation in this parametermay be expected In order to investigate the influence of thisparameter two numerical values for this parameter namely 5and 10 120583m are selected for this present studyThe equilibriumcomposition of the bubble contents was determined usingthe FactSage online software [36] which is based on thefree-energy minimization algorithm same as proposed byEriksson [33]

3 Numerical Solution of Mathematical Model

The simulation results of radial motion of cavitation bubbledynamics are depicted in Figures 1 2 3 4 and 5 and Tables3 4 5 6 and 7 Tables 3ndash7 present the temperature (119879max)and pressure (119875max) peaks reached at themoment of transientcollapse of cavitation bubble the number of water moleculesin the bubble at collapse and the equilibrium composition of

the various species resulting from dissociation of entrappedmolecules in the bubble when the temperature and pressurereached to its extreme conditions during transient collapse ofcavitation bubbles

31 Initial Bubble Size in the Liquid Medium Bubbles withdifferent initial radius present in the liquid medium play animportant role in cavitation Kumar and Moholkar [37] havereported that the smaller bubble has higher Laplace pressurewhich results in higher expansion and more intense collapseduring the transient collapse In this present study a singlebubble model with different initial radius has been chosen topresent the effects of bubble radius in sonochemical processFrom Table 3 it could be seen that the ∙OH radical formationduring transient collapse of cavitation bubble is higher withthe initial bubble radius of 5 120583m followed by 25120583m Thisis due to the bubble with small bubble radius can undergomany acoustic cycles before reaching its critical radius whenit collapses and as a result the highest temperature peak isreached at the moment of transient collapse of the cavitationbubble with 5120583m radius bubble as shown in Figure 1 andTable 3

32 Static Pressure of the System As stated earlier in theprevious section the cavitation is nothing but the nucle-ation growth and implosive collapse of bubbles but thegrowthexpansion of the bubble depends on the systemrsquosstatic pressure So when the bubble contains vapor cavitationmay occur due to reduced static pressure sufficiently atconstant temperature To investigate the effects of pressurefive different static pressures ranging from 100ndash300 kPa havebeen chosen The results showed that as the static pressureincreases the radical formation decreases drastically even itbecomes zero at higher ambient static pressure This is dueto at elevated static pressure the sonochemical effects geteliminated which directly affects the generation of radicalformation provided the applied pressure must be greaterthan or equal to the acoustic pressure amplitude (119875

119900

ge 119875AW)[9 38]Thehighest ∙OHradical productionwas seen at nearly

4 Chinese Journal of Engineering

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

1500

3000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50N

o o

f wat

er v

apor

mol

ecul

es

No of acoustic cycles0 1 2 3 4 5

0

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

5 middot 1010

1 middot 1011

3 middot 1012

6 middot 1012

(c)

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles0 1 2 3 4 5

0

750

1500

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104

(d)

0 1 2 3 4 5

0

10

Osc

illat

ory

velo

city

(ms

)

No of acoustic cycles

minus100 1 2 3 4 5

05

Osc

illat

ory

velo

city

(ms

)

No of acoustic cycles

minus1

minus025

(e)

0 1 2 3 4 5

148

300

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

5120583m bubble

0 1 2 3 4 50

50

100

No of acoustic cycles

25120583m bubble

Acou

stic w

ave

ampl

itude

(bar

)

minus4

(f)

Figure 1 Simulations of radial motion of 5 and 25 micron air bubble in water 119891 = 20 kHz 119875A = 150 kPa and 119875119900 = 100 kPa Time historyof (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside the bubble (e)microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 5

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

15

3

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

2000

4000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

4 middot 1010

2 middot 1010

1 middot 1010

5 middot 109

(c)

0 1 2 3 4 50

2000

4000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

30

60

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5No of acoustic cyclesO

scill

ator

y ve

loci

ty (m

s)

minus04

minus01

0 1 2 3 4 5

0

01

Osc

illat

ory

velo

city

(ms

)

minus01

No of acoustic cycles

(e)

0 1 2 3 4 50

30

60

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

120 kPa

0 1 2 3 4 50

075

15

No of acoustic cycles

150kPa

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 2 Simulations of radial motion of 5 micron air bubble in water at 120 kPa and 150 kPa 119891 = 20 kHz 119875A = 150 kPa and 119877119900 = 5 120583mTime history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside thebubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

6 Chinese Journal of Engineering

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

5

10

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

1500

3000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

3 middot 1010

15 middot 1010 1 middot 1012

2 middot 1012

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

1000

2000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104

(d)

0 1 2 3 4 5

0

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus050 1 2 3 4 5

1

minus05

minus2

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

150

300

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

283K

0 1 2 3 4 50

30

60

343K

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 3 Simulations of radial motion of 5 micron air bubble in water at 283K and 343K 119891 = 20 kHz 119875A = 150 kPa and 119875119900 = 100 kPaTime history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside thebubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 7

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

1 middot 1011

5 middot 1010

1 middot 1011

5 middot 1010

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104 1 middot 104

(d)

0 1 2 3 4 5

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus1

minus025

0 1 2 3 4 5

05

minus1

minus025

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

200

400

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

Oxygen bubble

0 1 2 3 4 50

150

300

Nitrogen bubble

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 4 Simulations of radial motion of 5 micron air bubble in water with O2

bubble and N2

bubble 119891 = 20 kHz 119875A = 150 kPa and119875119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

8 Chinese Journal of Engineering

0 1 2 3 4 50

2

4

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

750

1500

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No

of t

olue

ne

vap

mol

ecul

es

No of acoustic cycles0 1 2 3 4 5

0

No of acoustic cycles

No

of h

exan

eva

pm

olec

ules

1 middot 105

2 middot 105 3 middot 1011

15 middot 1011

(c)

1 middot 104

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5

Osc

illat

ory

velo

city

(ms

)

minus03

minus01

No of acoustic cycles0 1 2 3 4 5

0005

Osc

illat

ory

velo

city

(ms

)

minus001

minus00025

No of acoustic cycles

(e)

0 1 2 3 4 50

200

400

Acou

stic w

ave

ampl

itude

(bar

)

Toluene

No of acoustic cycles0 1 2 3 4 5

0

1

2

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

n-hexane

(f)

Figure 5 Simulations of radial motion of 5 micron air bubble in toluene and n-hexane as cavitation medium 119891 = 35 kHz 119875A = 150 kPaand 119875

119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 9

Table 3 Simulation summary of initial bubble size (119877119900

) dependent sonochemical process

Conditions at the first collapse of the bubble119877119900

= 5 120583m 119877119900

= 25 120583m 119877119900

= 50 120583m 119877119900

= 100 120583m 119877119900

= 200 120583m119879max = 3999K 119879max = 1688K 119879max = 7785K 119879max = 409K 119879max = 3299K119875max = 6967MPa 119875max = 3057MPa 119875max = 256MPa 119875max = 288 kPa 119875max = 136 kPa119881turb = 036ms 119881turb = 611ms 119881turb = 62ms 119881turb = 795ms 119881turb = 112ms119875AW = 2404MPa 119875AW = 880MPa 119875AW = 063MPa 119875AW = 027MPa 119875AW = 035 kPa

119873N2 = 128 times 1010 119873N2 = 132 times 10

12 119873N2 = 103 times 1013 119873N2 = 811 times 10

13 119873N2 = 644 times 1014

119873O2 = 341 times 109 119873O2 = 351 times 10

11 119873O2 = 273 times 1012 119873O2 = 216 times 10

13 119873O2 = 171 times 1014

119873W = 291 times 109

119873W = 25 times 1011

119873W = 908 times 1011

119873W = 298 times 1012

119873W = 115 times 1013

Species Equilibrium composition of species in the bubble at collapse5120583m 25 120583m 50 120583m 100120583m 200120583m

N2 626 times 10minus1 686 times 10minus1 738 times 10minus1 768 times 10minus1 779 times 10minus1

O2 128 times 10minus1 182 times 10minus1 196 times 10minus1 204 times 10minus1 207 times 10minus1

H2O 141 times 10minus2 130 times 10minus1 650 times 10minus2 280 times 10minus2 140 times 10minus2

N 156 times 10minus5 mdash mdash mdash mdash

O 595 times 10minus3 mdash mdash mdash mdashH 283 times 10minus4 mdash mdash mdash mdashO3 170 times 10

minus5 mdash mdash mdash mdashH2 253 times 10minus4 mdash mdash mdash mdashOH 951 times 10minus3 903 times 10minus5 mdash mdash mdashHO2 559 times 10

minus4

581 times 10minus6 mdash mdash mdash

H2O2 200 times 10minus5 mdash mdash mdash mdashNO 847 times 10minus2 258 times 10minus3 149 times 10minus6 mdash mdashNO2 170 times 10minus3 127 times 10minus4 284 times 10minus6 mdash mdashN2O 361 times 10

minus4

218 times 10minus6 mdash mdash mdash

NH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10minus5 mdash mdash mdash mdashHNO2 175 times 10

minus4

706 times 10minus6 mdash mdash mdash

Note solvent = water temperature (119879) = 303K static pressure (1198750) = 100 kPa dissolved gas = air and frequency (119891) = 20 kHz

ambient static pressure (ie 100 kPa) and the productionof ∙OH radical decreases as the static pressure approachesto the magnitude of acoustic pressure that is 150 kPa Theproduction of ∙OH radical at 100 kPa is typically 15 foldhigher than the ∙OH radical production at 120 kPa while at150 kPa or higher static pressure no ∙OH radical formationwas seenThis result can be attributed to the temperature peakreached at the moment of collapse of the bubble At the timeof transient collapse the highest temperature peak (3999K)was seen when the pressure was 100 kPa while the lowesttemperature peak (sim313 K) was observed with elevated staticpressure of 300 kPa

33 System Operating Temperature Another important fac-tor that affects the transient cavitation is system temperatureTo study the temperature effect on sonochemical processthe numerical simulations were run in the temperature rangefrom 283 to 373K (viz 283 303 323 343 and 373 K)The sim-ulation results are depicted in Figure 3 As the temperaturein the system increases the formation of oxidizing speciesdue to transient cavitation of bubbles reduces drasticallyThiscould be attributed to the effects of bubble radius as discussedin the earlier section In this case vapor bubbles grow

with increasing the temperature through the phenomenonof boiling [20] So the lower the temperature means thehigher the cavitation effects in the system Table 5 shows thatthe production of ∙OH radical is highest with the lowesttemperature that is at 283K while at the boiling point ofwater no ∙OH radical formation has been observed Theoverall trend of the ∙OH radical production under variousoperating temperature is 283K gt 303K gt 323K gt 343K

34 Type of Dissolved Gas Content The type of dissolvedgas has an impact on bubble nucleation rate as described inthe literatures [15 37] The simulation results for four gasesare shown in Table 6 and Figure 4 The production of ∙OHradical as well as H

2

O2

is highest for O2

bubble followed byair Ar and N

2

bubble Also the generation of O3

per bubblefor oxygen bubble is one order of magnitude higher thanthe O

3

generation by air bubble The radicals by air bubbleare formed through the reactions (3)ndash(22) while (24) and(25) represent the radical formation by O

2

bubble [39] Theproduction of radicals is least with N

2

bubble as compared toother gas bubbles This is due to the scavenging of radicals byN2

molecules through the reactions (3)ndash(16) Moreover thereis no regeneration of ∙OH and O∙ radicals by O

2

when the

10 Chinese Journal of Engineering

Table 4 Simulation summary of sonochemical process under various static pressures (119875119900

)

Conditions at the first collapse of the bubble119875119900

= 100 kPa 119875119900

= 120 kPa 119875119900

= 150 kPa 119875119900

= 200 kPa 119875119900

= 300 kPa119879max = 3999K 119879max = 3024K 119879max = 9773K 119879max = 3534K 119879max = 3127K119875max = 6967MPa 119875max = 2863MPa 119875max = 462MPa 119875max = 416 kPa 119875max = 477 kPa119881turb = 036ms 119881turb = 021ms 119881turb = 007ms 119881turb = 0008ms 119881turb = 0002ms119875AW = 2404MPa 119875AW = 543MPa 119875AW = 120 kPa 119875AW = 2 kPa 119875AW = 06 kPa

119873N2 = 128 times 1010 119873N2 = 148 times 10

10 119873N2 = 178 times 1010 119873N2 = 228 times 10

10 119873N2 = 328 times 1010

119873O2 = 341 times 109

119873O2 = 395 times 109

119873O2 = 474 times 109

119873O2 = 607 times 109

119873O2 = 873 times 109

119873W = 291 times 109

119873W = 181 times 109

119873W = 886 times 108

119873W = 819 times 1010

119873W = 381 times 108

Species Equilibrium composition of species in the bubble at collapse1 bar 12 bar 15 bar 2 bar 3 bar

N2 626 times 10minus1 699 times 10minus1 760 times 10minus1 768 times 10minus1 783 times 10minus1

O2 128 times 10minus1 167 times 10minus1 202 times 10minus1 204 times 10minus1 208 times 10minus1

H2O 141 times 10minus2

745 times 10minus2

380 times 10minus2

280 times 10minus2

900 times 10minus3

N 156 times 10minus5 mdash mdash mdash mdashO 595 times 10minus3 935 times 10minus4 mdash mdash mdashH 283 times 10minus4 409 times 10minus5 mdash mdash mdashO3 170 times 10

minus5

371 times 10minus6 mdash mdash mdash

H2 253 times 10minus4 167 times 10minus4 mdash mdash mdashOH 951 times 10minus3 633 times 10minus3 mdash mdash mdashHO2 559 times 10

minus4

360 times 10minus4 mdash mdash mdash

H2O2 200 times 10minus5 274 times 10minus5 mdash mdash mdashNO 847 times 10minus2 430 times 10minus2 264 times 10minus5 mdash mdashNO2 170 times 10

minus3

103 times 10minus3

109 times 10minus5 mdash mdash

N2O 361 times 10minus4 110 times 10minus4 mdash mdash mdashNH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10

minus5

138 times 10minus5 mdash mdash mdash

HNO2 175 times 10minus4

140 times 10minus4 mdash mdash mdash

Note solvent = water dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) = 303K and frequency (119891) = 20 kHz

bubble contents are N2

gas So the total number of radicalsper bubble in N

2

bubbling is always lower than the other gasbubbles The trend of production of ∙OH radical per bubblewith various gases bubbling is as follows O

2

gt Air gt Ar gtN2

N2

+O∙ 999448999471 N∙ +NO (3)

N2

+∙OH 999448999471 N

2

H +O∙ (4)

N2

+∙OH 999448999471 N

2

O +H∙ (5)

N2

+∙OH 999448999471 NH +NO (6)

N2

+H∙ 999448999471 N2

H (7)

N2

+H∙ 999448999471 NH + N∙ (8)

N + ∙OH 999448999471 NO +H∙ (9)

N2

O +O∙ 999448999471 2NO (10)

NO + ∙OH 999448999471 NO2

(11)

NH + ∙OH 999448999471 NH2

+O∙ (12)

NH2

+O∙ 999448999471 H∙ +HNO (13)

HNO +O∙ 999448999471 NH +O2

(14)

HNO +O∙ 999448999471 NO + ∙OH (15)

HNO + ∙OH 999448999471 NO +H2

O (16)

N +O2

999448999471 NO +O∙ (17)

NO +O2

999448999471 NO2

+O∙ (18)

NH +O2

999448999471 HNO +O∙ (19)

NH +O2

999448999471 NO + ∙OH (20)

N2

+O2

999448999471 N2

O +O∙ (21)

H∙ +O2

999448999471 HO2

∙ (22)∙OH+O

2

999448999471 HO2

+O∙ (23)

O∙ +O2

rarr O3

(24)

2HO2

999448999471 H2

O2

+O2

(25)

Chinese Journal of Engineering 11

Table 5 Simulation summary of system temperature (119879119900

) dependent sonochemical process

System temperature119879 = 283K 119879 = 303K 119879 = 323K 119879 = 343K 119879 = 373K

Conditions at the first collapse of the bubble119879max = 3989K 119879max = 3999K 119879max = 3733K 119879max = 2683K 119879max = 8117K119875max = 6815MPa 119875max = 6967MPa 119875max = 6239MPa 119875max = 1753MPa 119875max = 179MPa119881turb = 035ms 119881turb = 036ms 119881turb = 045ms 119881turb = 108ms 119881turb = 463ms119875AW = 2475MPa 119875AW = 2404MPa 119875AW = 2156MPa 119875AW = 443MPa 119875AW = 220 kPa

119873N2 = 138 times 1010

119873N2 = 128 times 1010

119873N2 = 121 times 1010

119873N2 = 113 times 1010

119873N2 = 104 times 1010

119873O2 = 366 times 109 119873O2 = 341 times 10

9 119873O2 = 320 times 109 119873O2 = 302 times 10

9 119873O2 = 277 times 109

119873W = 794 times 108 119873W = 291 times 10

9 119873W = 123 times 1010 119873W = 815 times 10

10 119873W = 179 times 1012

Species Equilibrium composition of species in the bubble at collapse283K 303K 323K 343K 373K

N2 707 times 10minus1 626 times 10minus1 413 times 10minus1 116 times 10minus1 600 times 10minus3

O2 145 times 10minus1

128 times 10minus1

884 times 10minus2

283 times 10minus2

200 times 10minus3

H2O 163 times 10minus2 141 times 10minus2 121 times 10minus2 280 times 10minus2 993 times 10minus1

N 172 times 10minus5 156 times 10minus5 384 times 10minus6 mdash mdashO 667 times 10

minus3

595 times 10minus3

244 times 10minus3

569 times 10minus5 mdash

H 321 times 10minus4 283 times 10minus4 106 times 10minus4 257 times 10minus6 mdashO3 189 times 10minus5 170 times 10minus5 838 times 10minus6 228 times 10minus7 mdashH2 291 times 10minus4 253 times 10minus4 130 times 10minus4 229 times 10minus5 mdashOH 108 times 10

minus2

951 times 10minus3

527 times 10minus3

808 times 10minus4 mdash

HO2 631 times 10minus4 559 times 10minus4 325 times 10minus4 422 times 10minus5 mdashH2O2 228 times 10minus5 200 times 10minus5 136 times 10minus5 460 times 10minus6 mdashNO 951 times 10

minus2

847 times 10minus2

472 times 10minus2

457 times 10minus3 mdash

NO2 190 times 10minus3 170 times 10minus3 104 times 10minus3 111 times 10minus4 mdashN2O 401 times 10minus4 361 times 10minus4 188 times 10minus4 869 times 10minus6 mdashNH 189 times 10

minus6

170 times 10minus6 mdash mdash mdash

HNO 667 times 10minus5 595 times 10minus5 274 times 10minus5 969 times 10minus7 mdashHNO2 196 times 10minus4 175 times 10minus4 112 times 10minus4 176 times 10minus5 mdashNote solvent = water dissolved gas = air initial bubble size (119877

0) = 5 120583m static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz

35 Type of Solvent or Cavitation Medium The solvent orcavitation medium is another important factor that affectsdirectly on the sonochemical process In order to assess thesuitability of solvent for cavitation we have chosen threesolvents with different physicochemical properties namelywater toluene and n-hexane as shown in Table 2 To addressthis issue we have presented the numerical solution withvarious solvent as cavitation medium in Figure 5 and Table 7which lists the temperature and pressure peak reached at themoment of collapse with various equilibrium compositionsof species The number of ∙OH radical production is highestwhen water is used as cavitation medium This can beattributed to the lower surface tension and higher vaporpressure of the organic solvent The production of ∙OHradical in water is typically two orders of magnitude higherthan that in toluene So due to the low intensity of bubblecollapse organic solvents are not able to generate sufficientnumbers of radical in-situ for sonochemical reactions

4 Conclusions

The lower is the system temperature the higher is thecavitation effects that is when the system temperature is

moderately low the effect of cavitation is more In this presentstudy the radical formation due to cavitation is highest whenthe system temperature is 283K So the system with lowoperating temperature and cavitation medium contents withsmall initial bubble radius is always preferable for sono-chemical reactions since this type of sonochemical reactionsystems are able to generate large amount of highly oxidizingspecies Due to the high vapor pressure and low surfacetension organic solvents cannot produce large amount ofradicals in the reaction medium thus they are not suitablefor sonochemical reactions However they could be goodsolvents for extraction or other processes using ultrasoundMoreover depending on the process requirement one canchoose the system with different gas bubbling and aqueousor organic solvents for conducting experiments

Nomenclature

119862119881119894

Heat capacity at constant volume Jkgminus1 Kminus1

119888L Velocity of sound in liquid medium m sminus1119888W Velocity of sound in water m sminus1

12 Chinese Journal of Engineering

Table 6 Effect of dissolved gas content on sonochemical process

Conditions at the first collapse of the bubbleAir bubble Nitrogen bubble Oxygen bubble Argon bubble119879max = 3999K 119879max = 4379K 119879max = 4155K 119879max = 4551K119875max = 6967MPa 119875max = 7723MPa 119875max = 7582MPa 119875max = 7866MPa119881turb = 036ms 119881turb = 037ms 119881turb = 037ms 119881turb = 037ms119875AW = 2404MPa 119875AW = 2825MPa 119875AW = 3078MPa 119875AW = 2728MPa

119873N2 = 128 times 1010 119873N2 = 163 times 10

10 119873O2 = 163 times 1010 119873Ar = 163 times 10

10

119873O2 = 341 times 109

119873W = 388 times 109

119873W = 388 times 109

119873W = 254 times 109

119873W = 291 times 109

Species Equilibrium composition of species in the bubble at collapseAir bubble Nitrogen bubble Oxygen bubble Argon bubble

N2 626 times 10minus1 805 times 10minus1 mdash mdashO2 128 times 10minus1 280 times 10minus4 793 times 10minus1 109 times 10minus3

Ar mdash mdash mdash 865 times 10minus1

H2O 141 times 10minus2 969 times 10minus3 113 times 10minus2 921 times 10minus3

N 156 times 10minus5 585 times 10minus5 mdash mdashO 595 times 10minus3 506 times 10minus4 187 times 10minus2 134 times 10minus3

H 283 times 10minus4

248 times 10minus3

221 times 10minus4

259 times 10minus3

N3 mdash 145 times 10minus6 mdash mdashO3 170 times 10minus5 mdash 328 times 10minus4 mdashH2 253 times 10

minus4

673 times 10minus3

103 times 10minus4

431 times 10minus3

OH 951 times 10minus3 250 times 10minus3 157 times 10minus2 409 times 10minus3

HO2 559 times 10minus4 677 times 10minus6 234 times 10minus3 207 times 10minus5

H2O2 200 times 10minus5

886 times 10minus7

475 times 10minus5

179 times 10minus6

NO 847 times 10minus2 565 times 10minus3 mdash mdashNO2 170 times 10minus3 493 times 10minus6 mdash mdashN2O 361 times 10

minus4

302 times 10minus5 mdash mdash

NH 170 times 10minus6

268 times 10minus5 mdash mdash

NH2 mdash 242 times 10minus5 mdash mdashNH3 mdash 178 times 10minus5 mdash mdashHNO 595 times 10

minus5

225 times 10minus5 mdash mdash

HNO2 175 times 10minus4 216 times 10minus6 mdash mdashNote solvent = water initial bubble size (119877

0) = 5 120583m temperature (119879) = 303K static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz O2 gt air gt Ar gt

N2

119888T Velocity of sound in toluene m sminus1119888H Velocity of sound in n-hexane m sminus1119863w Diffusion coefficient of solvent vapor m2

sminus1119891 Frequency of ultrasound wave Hz119891119894

Translational and rotational degrees offreedom

ℎ Van der Waalrsquos hard core radius m119868diffw Instantaneous diffusive penetration depth

for water molecules119896 Boltzmann constant J Kminus1119873W Number of water molecules trapped in the

bubble119873N2

Number of N2

molecules in the bubble119873O2

Number of oxygenmolecules in the bubble119873T Number of toluenemolecules in the bubble119873H Number of n-hexane molecules in the

bubble

119873Ar Number of Ar molecules in the bubble119873tot Total number of molecules (gas + vapor) in

the bubble119875119900

Static pressure in the liquid medium Pa119875max Pressure peak reached in the bubble at the

time of first collapse Pa119875AW Pressure amplitude of the acoustic wave

generated by the cavitation bubble Pa119876 Heat conducted across bubble wall J sminus1119877 Radius of the bubble m119877119900

Initial radius of the cavitation bubble m119889119877119889119905 Bubble wall velocity m sminus1119905 Time s119879 Temperature of the bubble contents K119879119900

Ambient (or bulk liquid medium) temper-ature K

119879max Temperature peak reached in the bubble atthe time of first collapse K

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 3: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

Chinese Journal of Engineering 3

Table 1 Thermodynamic data for various species (data taken from [1ndash3])

Species Degrees of freedom(translational + rotational) (119891

119894

)

Lennard-Jones force constants Characteristic vibrational temperatures 120579 (K)120590 (10minus10 m) 120576119896 (K)

N2 5 368 92 3350O2 5 343 113 2273Ar 3 342 124 mdashH2O 6 265 380 2295 5255 5400C6H12 6 575 3864 1036 1932 1987 2104 4193C6H5ndashCH3 6 582 451 1004 1056 2112 2153 2326 4224 4375

Table 2 Physicochemical properties of various solvents as cavitation medium

Solvent Boiling point (K) Density (kgm3) Viscosity (Pa-s) Surface tension (Nm) Vapor pressure (kPa)Water 373 1000 10 times 10

minus6 0072 25Toluene 384 867 68 times 10minus7 0029 40n-Hexane 341 658 50 times 10minus7 0018 162 calculated using Antoine type correlations

pressure and the number of gas and solvent moleculesin the bubble at transient collapse At transient collapsetemperature and pressure reach extreme conditions whichresult in dissociation of molecules to form various chemicalspecies To calculate the composition of the bubble at thetime of collapse we assume that thermodynamic equilibriumis attained [9] The equilibrium mole fraction of differentchemical species in the bubble at the peak conditions reachedat transient collapse is estimated using Gibbs free-energyminimization technique [33]The radial motion of cavitationbubbles generates intense convection in the medium throughtwo phenomena

(i) Microconvection [20] 119881turb(119903 119905) = (11987721199032)(119889119877119889119905)

(ii) Shock (or acoustic) waves [34 35] 119875AW(119903 119905) = (120588L4120587119903)(1198892119881

119887

1198891199052

) = 120588L(119877119903)[2(119889119877119889119905)2

+ 119877(1198892119877 1198891199052

)]

where 119881119887

is the volume of the bubble A representative valueof 119903 is taken as 1mm In bubble dynamic model directestimation of initial bubble radius is very difficult Severalphenomena such as rectified diffusion and fragmentation ofthe bubble cause continuous change in this parameter Ina multibubble system a large variation in this parametermay be expected In order to investigate the influence of thisparameter two numerical values for this parameter namely 5and 10 120583m are selected for this present studyThe equilibriumcomposition of the bubble contents was determined usingthe FactSage online software [36] which is based on thefree-energy minimization algorithm same as proposed byEriksson [33]

3 Numerical Solution of Mathematical Model

The simulation results of radial motion of cavitation bubbledynamics are depicted in Figures 1 2 3 4 and 5 and Tables3 4 5 6 and 7 Tables 3ndash7 present the temperature (119879max)and pressure (119875max) peaks reached at themoment of transientcollapse of cavitation bubble the number of water moleculesin the bubble at collapse and the equilibrium composition of

the various species resulting from dissociation of entrappedmolecules in the bubble when the temperature and pressurereached to its extreme conditions during transient collapse ofcavitation bubbles

31 Initial Bubble Size in the Liquid Medium Bubbles withdifferent initial radius present in the liquid medium play animportant role in cavitation Kumar and Moholkar [37] havereported that the smaller bubble has higher Laplace pressurewhich results in higher expansion and more intense collapseduring the transient collapse In this present study a singlebubble model with different initial radius has been chosen topresent the effects of bubble radius in sonochemical processFrom Table 3 it could be seen that the ∙OH radical formationduring transient collapse of cavitation bubble is higher withthe initial bubble radius of 5 120583m followed by 25120583m Thisis due to the bubble with small bubble radius can undergomany acoustic cycles before reaching its critical radius whenit collapses and as a result the highest temperature peak isreached at the moment of transient collapse of the cavitationbubble with 5120583m radius bubble as shown in Figure 1 andTable 3

32 Static Pressure of the System As stated earlier in theprevious section the cavitation is nothing but the nucle-ation growth and implosive collapse of bubbles but thegrowthexpansion of the bubble depends on the systemrsquosstatic pressure So when the bubble contains vapor cavitationmay occur due to reduced static pressure sufficiently atconstant temperature To investigate the effects of pressurefive different static pressures ranging from 100ndash300 kPa havebeen chosen The results showed that as the static pressureincreases the radical formation decreases drastically even itbecomes zero at higher ambient static pressure This is dueto at elevated static pressure the sonochemical effects geteliminated which directly affects the generation of radicalformation provided the applied pressure must be greaterthan or equal to the acoustic pressure amplitude (119875

119900

ge 119875AW)[9 38]Thehighest ∙OHradical productionwas seen at nearly

4 Chinese Journal of Engineering

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

1500

3000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50N

o o

f wat

er v

apor

mol

ecul

es

No of acoustic cycles0 1 2 3 4 5

0

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

5 middot 1010

1 middot 1011

3 middot 1012

6 middot 1012

(c)

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles0 1 2 3 4 5

0

750

1500

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104

(d)

0 1 2 3 4 5

0

10

Osc

illat

ory

velo

city

(ms

)

No of acoustic cycles

minus100 1 2 3 4 5

05

Osc

illat

ory

velo

city

(ms

)

No of acoustic cycles

minus1

minus025

(e)

0 1 2 3 4 5

148

300

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

5120583m bubble

0 1 2 3 4 50

50

100

No of acoustic cycles

25120583m bubble

Acou

stic w

ave

ampl

itude

(bar

)

minus4

(f)

Figure 1 Simulations of radial motion of 5 and 25 micron air bubble in water 119891 = 20 kHz 119875A = 150 kPa and 119875119900 = 100 kPa Time historyof (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside the bubble (e)microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 5

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

15

3

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

2000

4000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

4 middot 1010

2 middot 1010

1 middot 1010

5 middot 109

(c)

0 1 2 3 4 50

2000

4000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

30

60

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5No of acoustic cyclesO

scill

ator

y ve

loci

ty (m

s)

minus04

minus01

0 1 2 3 4 5

0

01

Osc

illat

ory

velo

city

(ms

)

minus01

No of acoustic cycles

(e)

0 1 2 3 4 50

30

60

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

120 kPa

0 1 2 3 4 50

075

15

No of acoustic cycles

150kPa

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 2 Simulations of radial motion of 5 micron air bubble in water at 120 kPa and 150 kPa 119891 = 20 kHz 119875A = 150 kPa and 119877119900 = 5 120583mTime history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside thebubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

6 Chinese Journal of Engineering

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

5

10

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

1500

3000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

3 middot 1010

15 middot 1010 1 middot 1012

2 middot 1012

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

1000

2000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104

(d)

0 1 2 3 4 5

0

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus050 1 2 3 4 5

1

minus05

minus2

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

150

300

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

283K

0 1 2 3 4 50

30

60

343K

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 3 Simulations of radial motion of 5 micron air bubble in water at 283K and 343K 119891 = 20 kHz 119875A = 150 kPa and 119875119900 = 100 kPaTime history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside thebubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 7

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

1 middot 1011

5 middot 1010

1 middot 1011

5 middot 1010

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104 1 middot 104

(d)

0 1 2 3 4 5

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus1

minus025

0 1 2 3 4 5

05

minus1

minus025

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

200

400

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

Oxygen bubble

0 1 2 3 4 50

150

300

Nitrogen bubble

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 4 Simulations of radial motion of 5 micron air bubble in water with O2

bubble and N2

bubble 119891 = 20 kHz 119875A = 150 kPa and119875119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

8 Chinese Journal of Engineering

0 1 2 3 4 50

2

4

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

750

1500

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No

of t

olue

ne

vap

mol

ecul

es

No of acoustic cycles0 1 2 3 4 5

0

No of acoustic cycles

No

of h

exan

eva

pm

olec

ules

1 middot 105

2 middot 105 3 middot 1011

15 middot 1011

(c)

1 middot 104

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5

Osc

illat

ory

velo

city

(ms

)

minus03

minus01

No of acoustic cycles0 1 2 3 4 5

0005

Osc

illat

ory

velo

city

(ms

)

minus001

minus00025

No of acoustic cycles

(e)

0 1 2 3 4 50

200

400

Acou

stic w

ave

ampl

itude

(bar

)

Toluene

No of acoustic cycles0 1 2 3 4 5

0

1

2

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

n-hexane

(f)

Figure 5 Simulations of radial motion of 5 micron air bubble in toluene and n-hexane as cavitation medium 119891 = 35 kHz 119875A = 150 kPaand 119875

119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 9

Table 3 Simulation summary of initial bubble size (119877119900

) dependent sonochemical process

Conditions at the first collapse of the bubble119877119900

= 5 120583m 119877119900

= 25 120583m 119877119900

= 50 120583m 119877119900

= 100 120583m 119877119900

= 200 120583m119879max = 3999K 119879max = 1688K 119879max = 7785K 119879max = 409K 119879max = 3299K119875max = 6967MPa 119875max = 3057MPa 119875max = 256MPa 119875max = 288 kPa 119875max = 136 kPa119881turb = 036ms 119881turb = 611ms 119881turb = 62ms 119881turb = 795ms 119881turb = 112ms119875AW = 2404MPa 119875AW = 880MPa 119875AW = 063MPa 119875AW = 027MPa 119875AW = 035 kPa

119873N2 = 128 times 1010 119873N2 = 132 times 10

12 119873N2 = 103 times 1013 119873N2 = 811 times 10

13 119873N2 = 644 times 1014

119873O2 = 341 times 109 119873O2 = 351 times 10

11 119873O2 = 273 times 1012 119873O2 = 216 times 10

13 119873O2 = 171 times 1014

119873W = 291 times 109

119873W = 25 times 1011

119873W = 908 times 1011

119873W = 298 times 1012

119873W = 115 times 1013

Species Equilibrium composition of species in the bubble at collapse5120583m 25 120583m 50 120583m 100120583m 200120583m

N2 626 times 10minus1 686 times 10minus1 738 times 10minus1 768 times 10minus1 779 times 10minus1

O2 128 times 10minus1 182 times 10minus1 196 times 10minus1 204 times 10minus1 207 times 10minus1

H2O 141 times 10minus2 130 times 10minus1 650 times 10minus2 280 times 10minus2 140 times 10minus2

N 156 times 10minus5 mdash mdash mdash mdash

O 595 times 10minus3 mdash mdash mdash mdashH 283 times 10minus4 mdash mdash mdash mdashO3 170 times 10

minus5 mdash mdash mdash mdashH2 253 times 10minus4 mdash mdash mdash mdashOH 951 times 10minus3 903 times 10minus5 mdash mdash mdashHO2 559 times 10

minus4

581 times 10minus6 mdash mdash mdash

H2O2 200 times 10minus5 mdash mdash mdash mdashNO 847 times 10minus2 258 times 10minus3 149 times 10minus6 mdash mdashNO2 170 times 10minus3 127 times 10minus4 284 times 10minus6 mdash mdashN2O 361 times 10

minus4

218 times 10minus6 mdash mdash mdash

NH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10minus5 mdash mdash mdash mdashHNO2 175 times 10

minus4

706 times 10minus6 mdash mdash mdash

Note solvent = water temperature (119879) = 303K static pressure (1198750) = 100 kPa dissolved gas = air and frequency (119891) = 20 kHz

ambient static pressure (ie 100 kPa) and the productionof ∙OH radical decreases as the static pressure approachesto the magnitude of acoustic pressure that is 150 kPa Theproduction of ∙OH radical at 100 kPa is typically 15 foldhigher than the ∙OH radical production at 120 kPa while at150 kPa or higher static pressure no ∙OH radical formationwas seenThis result can be attributed to the temperature peakreached at the moment of collapse of the bubble At the timeof transient collapse the highest temperature peak (3999K)was seen when the pressure was 100 kPa while the lowesttemperature peak (sim313 K) was observed with elevated staticpressure of 300 kPa

33 System Operating Temperature Another important fac-tor that affects the transient cavitation is system temperatureTo study the temperature effect on sonochemical processthe numerical simulations were run in the temperature rangefrom 283 to 373K (viz 283 303 323 343 and 373 K)The sim-ulation results are depicted in Figure 3 As the temperaturein the system increases the formation of oxidizing speciesdue to transient cavitation of bubbles reduces drasticallyThiscould be attributed to the effects of bubble radius as discussedin the earlier section In this case vapor bubbles grow

with increasing the temperature through the phenomenonof boiling [20] So the lower the temperature means thehigher the cavitation effects in the system Table 5 shows thatthe production of ∙OH radical is highest with the lowesttemperature that is at 283K while at the boiling point ofwater no ∙OH radical formation has been observed Theoverall trend of the ∙OH radical production under variousoperating temperature is 283K gt 303K gt 323K gt 343K

34 Type of Dissolved Gas Content The type of dissolvedgas has an impact on bubble nucleation rate as described inthe literatures [15 37] The simulation results for four gasesare shown in Table 6 and Figure 4 The production of ∙OHradical as well as H

2

O2

is highest for O2

bubble followed byair Ar and N

2

bubble Also the generation of O3

per bubblefor oxygen bubble is one order of magnitude higher thanthe O

3

generation by air bubble The radicals by air bubbleare formed through the reactions (3)ndash(22) while (24) and(25) represent the radical formation by O

2

bubble [39] Theproduction of radicals is least with N

2

bubble as compared toother gas bubbles This is due to the scavenging of radicals byN2

molecules through the reactions (3)ndash(16) Moreover thereis no regeneration of ∙OH and O∙ radicals by O

2

when the

10 Chinese Journal of Engineering

Table 4 Simulation summary of sonochemical process under various static pressures (119875119900

)

Conditions at the first collapse of the bubble119875119900

= 100 kPa 119875119900

= 120 kPa 119875119900

= 150 kPa 119875119900

= 200 kPa 119875119900

= 300 kPa119879max = 3999K 119879max = 3024K 119879max = 9773K 119879max = 3534K 119879max = 3127K119875max = 6967MPa 119875max = 2863MPa 119875max = 462MPa 119875max = 416 kPa 119875max = 477 kPa119881turb = 036ms 119881turb = 021ms 119881turb = 007ms 119881turb = 0008ms 119881turb = 0002ms119875AW = 2404MPa 119875AW = 543MPa 119875AW = 120 kPa 119875AW = 2 kPa 119875AW = 06 kPa

119873N2 = 128 times 1010 119873N2 = 148 times 10

10 119873N2 = 178 times 1010 119873N2 = 228 times 10

10 119873N2 = 328 times 1010

119873O2 = 341 times 109

119873O2 = 395 times 109

119873O2 = 474 times 109

119873O2 = 607 times 109

119873O2 = 873 times 109

119873W = 291 times 109

119873W = 181 times 109

119873W = 886 times 108

119873W = 819 times 1010

119873W = 381 times 108

Species Equilibrium composition of species in the bubble at collapse1 bar 12 bar 15 bar 2 bar 3 bar

N2 626 times 10minus1 699 times 10minus1 760 times 10minus1 768 times 10minus1 783 times 10minus1

O2 128 times 10minus1 167 times 10minus1 202 times 10minus1 204 times 10minus1 208 times 10minus1

H2O 141 times 10minus2

745 times 10minus2

380 times 10minus2

280 times 10minus2

900 times 10minus3

N 156 times 10minus5 mdash mdash mdash mdashO 595 times 10minus3 935 times 10minus4 mdash mdash mdashH 283 times 10minus4 409 times 10minus5 mdash mdash mdashO3 170 times 10

minus5

371 times 10minus6 mdash mdash mdash

H2 253 times 10minus4 167 times 10minus4 mdash mdash mdashOH 951 times 10minus3 633 times 10minus3 mdash mdash mdashHO2 559 times 10

minus4

360 times 10minus4 mdash mdash mdash

H2O2 200 times 10minus5 274 times 10minus5 mdash mdash mdashNO 847 times 10minus2 430 times 10minus2 264 times 10minus5 mdash mdashNO2 170 times 10

minus3

103 times 10minus3

109 times 10minus5 mdash mdash

N2O 361 times 10minus4 110 times 10minus4 mdash mdash mdashNH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10

minus5

138 times 10minus5 mdash mdash mdash

HNO2 175 times 10minus4

140 times 10minus4 mdash mdash mdash

Note solvent = water dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) = 303K and frequency (119891) = 20 kHz

bubble contents are N2

gas So the total number of radicalsper bubble in N

2

bubbling is always lower than the other gasbubbles The trend of production of ∙OH radical per bubblewith various gases bubbling is as follows O

2

gt Air gt Ar gtN2

N2

+O∙ 999448999471 N∙ +NO (3)

N2

+∙OH 999448999471 N

2

H +O∙ (4)

N2

+∙OH 999448999471 N

2

O +H∙ (5)

N2

+∙OH 999448999471 NH +NO (6)

N2

+H∙ 999448999471 N2

H (7)

N2

+H∙ 999448999471 NH + N∙ (8)

N + ∙OH 999448999471 NO +H∙ (9)

N2

O +O∙ 999448999471 2NO (10)

NO + ∙OH 999448999471 NO2

(11)

NH + ∙OH 999448999471 NH2

+O∙ (12)

NH2

+O∙ 999448999471 H∙ +HNO (13)

HNO +O∙ 999448999471 NH +O2

(14)

HNO +O∙ 999448999471 NO + ∙OH (15)

HNO + ∙OH 999448999471 NO +H2

O (16)

N +O2

999448999471 NO +O∙ (17)

NO +O2

999448999471 NO2

+O∙ (18)

NH +O2

999448999471 HNO +O∙ (19)

NH +O2

999448999471 NO + ∙OH (20)

N2

+O2

999448999471 N2

O +O∙ (21)

H∙ +O2

999448999471 HO2

∙ (22)∙OH+O

2

999448999471 HO2

+O∙ (23)

O∙ +O2

rarr O3

(24)

2HO2

999448999471 H2

O2

+O2

(25)

Chinese Journal of Engineering 11

Table 5 Simulation summary of system temperature (119879119900

) dependent sonochemical process

System temperature119879 = 283K 119879 = 303K 119879 = 323K 119879 = 343K 119879 = 373K

Conditions at the first collapse of the bubble119879max = 3989K 119879max = 3999K 119879max = 3733K 119879max = 2683K 119879max = 8117K119875max = 6815MPa 119875max = 6967MPa 119875max = 6239MPa 119875max = 1753MPa 119875max = 179MPa119881turb = 035ms 119881turb = 036ms 119881turb = 045ms 119881turb = 108ms 119881turb = 463ms119875AW = 2475MPa 119875AW = 2404MPa 119875AW = 2156MPa 119875AW = 443MPa 119875AW = 220 kPa

119873N2 = 138 times 1010

119873N2 = 128 times 1010

119873N2 = 121 times 1010

119873N2 = 113 times 1010

119873N2 = 104 times 1010

119873O2 = 366 times 109 119873O2 = 341 times 10

9 119873O2 = 320 times 109 119873O2 = 302 times 10

9 119873O2 = 277 times 109

119873W = 794 times 108 119873W = 291 times 10

9 119873W = 123 times 1010 119873W = 815 times 10

10 119873W = 179 times 1012

Species Equilibrium composition of species in the bubble at collapse283K 303K 323K 343K 373K

N2 707 times 10minus1 626 times 10minus1 413 times 10minus1 116 times 10minus1 600 times 10minus3

O2 145 times 10minus1

128 times 10minus1

884 times 10minus2

283 times 10minus2

200 times 10minus3

H2O 163 times 10minus2 141 times 10minus2 121 times 10minus2 280 times 10minus2 993 times 10minus1

N 172 times 10minus5 156 times 10minus5 384 times 10minus6 mdash mdashO 667 times 10

minus3

595 times 10minus3

244 times 10minus3

569 times 10minus5 mdash

H 321 times 10minus4 283 times 10minus4 106 times 10minus4 257 times 10minus6 mdashO3 189 times 10minus5 170 times 10minus5 838 times 10minus6 228 times 10minus7 mdashH2 291 times 10minus4 253 times 10minus4 130 times 10minus4 229 times 10minus5 mdashOH 108 times 10

minus2

951 times 10minus3

527 times 10minus3

808 times 10minus4 mdash

HO2 631 times 10minus4 559 times 10minus4 325 times 10minus4 422 times 10minus5 mdashH2O2 228 times 10minus5 200 times 10minus5 136 times 10minus5 460 times 10minus6 mdashNO 951 times 10

minus2

847 times 10minus2

472 times 10minus2

457 times 10minus3 mdash

NO2 190 times 10minus3 170 times 10minus3 104 times 10minus3 111 times 10minus4 mdashN2O 401 times 10minus4 361 times 10minus4 188 times 10minus4 869 times 10minus6 mdashNH 189 times 10

minus6

170 times 10minus6 mdash mdash mdash

HNO 667 times 10minus5 595 times 10minus5 274 times 10minus5 969 times 10minus7 mdashHNO2 196 times 10minus4 175 times 10minus4 112 times 10minus4 176 times 10minus5 mdashNote solvent = water dissolved gas = air initial bubble size (119877

0) = 5 120583m static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz

35 Type of Solvent or Cavitation Medium The solvent orcavitation medium is another important factor that affectsdirectly on the sonochemical process In order to assess thesuitability of solvent for cavitation we have chosen threesolvents with different physicochemical properties namelywater toluene and n-hexane as shown in Table 2 To addressthis issue we have presented the numerical solution withvarious solvent as cavitation medium in Figure 5 and Table 7which lists the temperature and pressure peak reached at themoment of collapse with various equilibrium compositionsof species The number of ∙OH radical production is highestwhen water is used as cavitation medium This can beattributed to the lower surface tension and higher vaporpressure of the organic solvent The production of ∙OHradical in water is typically two orders of magnitude higherthan that in toluene So due to the low intensity of bubblecollapse organic solvents are not able to generate sufficientnumbers of radical in-situ for sonochemical reactions

4 Conclusions

The lower is the system temperature the higher is thecavitation effects that is when the system temperature is

moderately low the effect of cavitation is more In this presentstudy the radical formation due to cavitation is highest whenthe system temperature is 283K So the system with lowoperating temperature and cavitation medium contents withsmall initial bubble radius is always preferable for sono-chemical reactions since this type of sonochemical reactionsystems are able to generate large amount of highly oxidizingspecies Due to the high vapor pressure and low surfacetension organic solvents cannot produce large amount ofradicals in the reaction medium thus they are not suitablefor sonochemical reactions However they could be goodsolvents for extraction or other processes using ultrasoundMoreover depending on the process requirement one canchoose the system with different gas bubbling and aqueousor organic solvents for conducting experiments

Nomenclature

119862119881119894

Heat capacity at constant volume Jkgminus1 Kminus1

119888L Velocity of sound in liquid medium m sminus1119888W Velocity of sound in water m sminus1

12 Chinese Journal of Engineering

Table 6 Effect of dissolved gas content on sonochemical process

Conditions at the first collapse of the bubbleAir bubble Nitrogen bubble Oxygen bubble Argon bubble119879max = 3999K 119879max = 4379K 119879max = 4155K 119879max = 4551K119875max = 6967MPa 119875max = 7723MPa 119875max = 7582MPa 119875max = 7866MPa119881turb = 036ms 119881turb = 037ms 119881turb = 037ms 119881turb = 037ms119875AW = 2404MPa 119875AW = 2825MPa 119875AW = 3078MPa 119875AW = 2728MPa

119873N2 = 128 times 1010 119873N2 = 163 times 10

10 119873O2 = 163 times 1010 119873Ar = 163 times 10

10

119873O2 = 341 times 109

119873W = 388 times 109

119873W = 388 times 109

119873W = 254 times 109

119873W = 291 times 109

Species Equilibrium composition of species in the bubble at collapseAir bubble Nitrogen bubble Oxygen bubble Argon bubble

N2 626 times 10minus1 805 times 10minus1 mdash mdashO2 128 times 10minus1 280 times 10minus4 793 times 10minus1 109 times 10minus3

Ar mdash mdash mdash 865 times 10minus1

H2O 141 times 10minus2 969 times 10minus3 113 times 10minus2 921 times 10minus3

N 156 times 10minus5 585 times 10minus5 mdash mdashO 595 times 10minus3 506 times 10minus4 187 times 10minus2 134 times 10minus3

H 283 times 10minus4

248 times 10minus3

221 times 10minus4

259 times 10minus3

N3 mdash 145 times 10minus6 mdash mdashO3 170 times 10minus5 mdash 328 times 10minus4 mdashH2 253 times 10

minus4

673 times 10minus3

103 times 10minus4

431 times 10minus3

OH 951 times 10minus3 250 times 10minus3 157 times 10minus2 409 times 10minus3

HO2 559 times 10minus4 677 times 10minus6 234 times 10minus3 207 times 10minus5

H2O2 200 times 10minus5

886 times 10minus7

475 times 10minus5

179 times 10minus6

NO 847 times 10minus2 565 times 10minus3 mdash mdashNO2 170 times 10minus3 493 times 10minus6 mdash mdashN2O 361 times 10

minus4

302 times 10minus5 mdash mdash

NH 170 times 10minus6

268 times 10minus5 mdash mdash

NH2 mdash 242 times 10minus5 mdash mdashNH3 mdash 178 times 10minus5 mdash mdashHNO 595 times 10

minus5

225 times 10minus5 mdash mdash

HNO2 175 times 10minus4 216 times 10minus6 mdash mdashNote solvent = water initial bubble size (119877

0) = 5 120583m temperature (119879) = 303K static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz O2 gt air gt Ar gt

N2

119888T Velocity of sound in toluene m sminus1119888H Velocity of sound in n-hexane m sminus1119863w Diffusion coefficient of solvent vapor m2

sminus1119891 Frequency of ultrasound wave Hz119891119894

Translational and rotational degrees offreedom

ℎ Van der Waalrsquos hard core radius m119868diffw Instantaneous diffusive penetration depth

for water molecules119896 Boltzmann constant J Kminus1119873W Number of water molecules trapped in the

bubble119873N2

Number of N2

molecules in the bubble119873O2

Number of oxygenmolecules in the bubble119873T Number of toluenemolecules in the bubble119873H Number of n-hexane molecules in the

bubble

119873Ar Number of Ar molecules in the bubble119873tot Total number of molecules (gas + vapor) in

the bubble119875119900

Static pressure in the liquid medium Pa119875max Pressure peak reached in the bubble at the

time of first collapse Pa119875AW Pressure amplitude of the acoustic wave

generated by the cavitation bubble Pa119876 Heat conducted across bubble wall J sminus1119877 Radius of the bubble m119877119900

Initial radius of the cavitation bubble m119889119877119889119905 Bubble wall velocity m sminus1119905 Time s119879 Temperature of the bubble contents K119879119900

Ambient (or bulk liquid medium) temper-ature K

119879max Temperature peak reached in the bubble atthe time of first collapse K

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 4: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

4 Chinese Journal of Engineering

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

1500

3000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50N

o o

f wat

er v

apor

mol

ecul

es

No of acoustic cycles0 1 2 3 4 5

0

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

5 middot 1010

1 middot 1011

3 middot 1012

6 middot 1012

(c)

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles0 1 2 3 4 5

0

750

1500

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104

(d)

0 1 2 3 4 5

0

10

Osc

illat

ory

velo

city

(ms

)

No of acoustic cycles

minus100 1 2 3 4 5

05

Osc

illat

ory

velo

city

(ms

)

No of acoustic cycles

minus1

minus025

(e)

0 1 2 3 4 5

148

300

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

5120583m bubble

0 1 2 3 4 50

50

100

No of acoustic cycles

25120583m bubble

Acou

stic w

ave

ampl

itude

(bar

)

minus4

(f)

Figure 1 Simulations of radial motion of 5 and 25 micron air bubble in water 119891 = 20 kHz 119875A = 150 kPa and 119875119900 = 100 kPa Time historyof (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside the bubble (e)microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 5

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

15

3

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

2000

4000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

4 middot 1010

2 middot 1010

1 middot 1010

5 middot 109

(c)

0 1 2 3 4 50

2000

4000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

30

60

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5No of acoustic cyclesO

scill

ator

y ve

loci

ty (m

s)

minus04

minus01

0 1 2 3 4 5

0

01

Osc

illat

ory

velo

city

(ms

)

minus01

No of acoustic cycles

(e)

0 1 2 3 4 50

30

60

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

120 kPa

0 1 2 3 4 50

075

15

No of acoustic cycles

150kPa

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 2 Simulations of radial motion of 5 micron air bubble in water at 120 kPa and 150 kPa 119891 = 20 kHz 119875A = 150 kPa and 119877119900 = 5 120583mTime history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside thebubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

6 Chinese Journal of Engineering

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

5

10

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

1500

3000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

3 middot 1010

15 middot 1010 1 middot 1012

2 middot 1012

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

1000

2000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104

(d)

0 1 2 3 4 5

0

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus050 1 2 3 4 5

1

minus05

minus2

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

150

300

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

283K

0 1 2 3 4 50

30

60

343K

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 3 Simulations of radial motion of 5 micron air bubble in water at 283K and 343K 119891 = 20 kHz 119875A = 150 kPa and 119875119900 = 100 kPaTime history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside thebubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 7

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

1 middot 1011

5 middot 1010

1 middot 1011

5 middot 1010

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104 1 middot 104

(d)

0 1 2 3 4 5

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus1

minus025

0 1 2 3 4 5

05

minus1

minus025

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

200

400

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

Oxygen bubble

0 1 2 3 4 50

150

300

Nitrogen bubble

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 4 Simulations of radial motion of 5 micron air bubble in water with O2

bubble and N2

bubble 119891 = 20 kHz 119875A = 150 kPa and119875119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

8 Chinese Journal of Engineering

0 1 2 3 4 50

2

4

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

750

1500

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No

of t

olue

ne

vap

mol

ecul

es

No of acoustic cycles0 1 2 3 4 5

0

No of acoustic cycles

No

of h

exan

eva

pm

olec

ules

1 middot 105

2 middot 105 3 middot 1011

15 middot 1011

(c)

1 middot 104

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5

Osc

illat

ory

velo

city

(ms

)

minus03

minus01

No of acoustic cycles0 1 2 3 4 5

0005

Osc

illat

ory

velo

city

(ms

)

minus001

minus00025

No of acoustic cycles

(e)

0 1 2 3 4 50

200

400

Acou

stic w

ave

ampl

itude

(bar

)

Toluene

No of acoustic cycles0 1 2 3 4 5

0

1

2

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

n-hexane

(f)

Figure 5 Simulations of radial motion of 5 micron air bubble in toluene and n-hexane as cavitation medium 119891 = 35 kHz 119875A = 150 kPaand 119875

119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 9

Table 3 Simulation summary of initial bubble size (119877119900

) dependent sonochemical process

Conditions at the first collapse of the bubble119877119900

= 5 120583m 119877119900

= 25 120583m 119877119900

= 50 120583m 119877119900

= 100 120583m 119877119900

= 200 120583m119879max = 3999K 119879max = 1688K 119879max = 7785K 119879max = 409K 119879max = 3299K119875max = 6967MPa 119875max = 3057MPa 119875max = 256MPa 119875max = 288 kPa 119875max = 136 kPa119881turb = 036ms 119881turb = 611ms 119881turb = 62ms 119881turb = 795ms 119881turb = 112ms119875AW = 2404MPa 119875AW = 880MPa 119875AW = 063MPa 119875AW = 027MPa 119875AW = 035 kPa

119873N2 = 128 times 1010 119873N2 = 132 times 10

12 119873N2 = 103 times 1013 119873N2 = 811 times 10

13 119873N2 = 644 times 1014

119873O2 = 341 times 109 119873O2 = 351 times 10

11 119873O2 = 273 times 1012 119873O2 = 216 times 10

13 119873O2 = 171 times 1014

119873W = 291 times 109

119873W = 25 times 1011

119873W = 908 times 1011

119873W = 298 times 1012

119873W = 115 times 1013

Species Equilibrium composition of species in the bubble at collapse5120583m 25 120583m 50 120583m 100120583m 200120583m

N2 626 times 10minus1 686 times 10minus1 738 times 10minus1 768 times 10minus1 779 times 10minus1

O2 128 times 10minus1 182 times 10minus1 196 times 10minus1 204 times 10minus1 207 times 10minus1

H2O 141 times 10minus2 130 times 10minus1 650 times 10minus2 280 times 10minus2 140 times 10minus2

N 156 times 10minus5 mdash mdash mdash mdash

O 595 times 10minus3 mdash mdash mdash mdashH 283 times 10minus4 mdash mdash mdash mdashO3 170 times 10

minus5 mdash mdash mdash mdashH2 253 times 10minus4 mdash mdash mdash mdashOH 951 times 10minus3 903 times 10minus5 mdash mdash mdashHO2 559 times 10

minus4

581 times 10minus6 mdash mdash mdash

H2O2 200 times 10minus5 mdash mdash mdash mdashNO 847 times 10minus2 258 times 10minus3 149 times 10minus6 mdash mdashNO2 170 times 10minus3 127 times 10minus4 284 times 10minus6 mdash mdashN2O 361 times 10

minus4

218 times 10minus6 mdash mdash mdash

NH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10minus5 mdash mdash mdash mdashHNO2 175 times 10

minus4

706 times 10minus6 mdash mdash mdash

Note solvent = water temperature (119879) = 303K static pressure (1198750) = 100 kPa dissolved gas = air and frequency (119891) = 20 kHz

ambient static pressure (ie 100 kPa) and the productionof ∙OH radical decreases as the static pressure approachesto the magnitude of acoustic pressure that is 150 kPa Theproduction of ∙OH radical at 100 kPa is typically 15 foldhigher than the ∙OH radical production at 120 kPa while at150 kPa or higher static pressure no ∙OH radical formationwas seenThis result can be attributed to the temperature peakreached at the moment of collapse of the bubble At the timeof transient collapse the highest temperature peak (3999K)was seen when the pressure was 100 kPa while the lowesttemperature peak (sim313 K) was observed with elevated staticpressure of 300 kPa

33 System Operating Temperature Another important fac-tor that affects the transient cavitation is system temperatureTo study the temperature effect on sonochemical processthe numerical simulations were run in the temperature rangefrom 283 to 373K (viz 283 303 323 343 and 373 K)The sim-ulation results are depicted in Figure 3 As the temperaturein the system increases the formation of oxidizing speciesdue to transient cavitation of bubbles reduces drasticallyThiscould be attributed to the effects of bubble radius as discussedin the earlier section In this case vapor bubbles grow

with increasing the temperature through the phenomenonof boiling [20] So the lower the temperature means thehigher the cavitation effects in the system Table 5 shows thatthe production of ∙OH radical is highest with the lowesttemperature that is at 283K while at the boiling point ofwater no ∙OH radical formation has been observed Theoverall trend of the ∙OH radical production under variousoperating temperature is 283K gt 303K gt 323K gt 343K

34 Type of Dissolved Gas Content The type of dissolvedgas has an impact on bubble nucleation rate as described inthe literatures [15 37] The simulation results for four gasesare shown in Table 6 and Figure 4 The production of ∙OHradical as well as H

2

O2

is highest for O2

bubble followed byair Ar and N

2

bubble Also the generation of O3

per bubblefor oxygen bubble is one order of magnitude higher thanthe O

3

generation by air bubble The radicals by air bubbleare formed through the reactions (3)ndash(22) while (24) and(25) represent the radical formation by O

2

bubble [39] Theproduction of radicals is least with N

2

bubble as compared toother gas bubbles This is due to the scavenging of radicals byN2

molecules through the reactions (3)ndash(16) Moreover thereis no regeneration of ∙OH and O∙ radicals by O

2

when the

10 Chinese Journal of Engineering

Table 4 Simulation summary of sonochemical process under various static pressures (119875119900

)

Conditions at the first collapse of the bubble119875119900

= 100 kPa 119875119900

= 120 kPa 119875119900

= 150 kPa 119875119900

= 200 kPa 119875119900

= 300 kPa119879max = 3999K 119879max = 3024K 119879max = 9773K 119879max = 3534K 119879max = 3127K119875max = 6967MPa 119875max = 2863MPa 119875max = 462MPa 119875max = 416 kPa 119875max = 477 kPa119881turb = 036ms 119881turb = 021ms 119881turb = 007ms 119881turb = 0008ms 119881turb = 0002ms119875AW = 2404MPa 119875AW = 543MPa 119875AW = 120 kPa 119875AW = 2 kPa 119875AW = 06 kPa

119873N2 = 128 times 1010 119873N2 = 148 times 10

10 119873N2 = 178 times 1010 119873N2 = 228 times 10

10 119873N2 = 328 times 1010

119873O2 = 341 times 109

119873O2 = 395 times 109

119873O2 = 474 times 109

119873O2 = 607 times 109

119873O2 = 873 times 109

119873W = 291 times 109

119873W = 181 times 109

119873W = 886 times 108

119873W = 819 times 1010

119873W = 381 times 108

Species Equilibrium composition of species in the bubble at collapse1 bar 12 bar 15 bar 2 bar 3 bar

N2 626 times 10minus1 699 times 10minus1 760 times 10minus1 768 times 10minus1 783 times 10minus1

O2 128 times 10minus1 167 times 10minus1 202 times 10minus1 204 times 10minus1 208 times 10minus1

H2O 141 times 10minus2

745 times 10minus2

380 times 10minus2

280 times 10minus2

900 times 10minus3

N 156 times 10minus5 mdash mdash mdash mdashO 595 times 10minus3 935 times 10minus4 mdash mdash mdashH 283 times 10minus4 409 times 10minus5 mdash mdash mdashO3 170 times 10

minus5

371 times 10minus6 mdash mdash mdash

H2 253 times 10minus4 167 times 10minus4 mdash mdash mdashOH 951 times 10minus3 633 times 10minus3 mdash mdash mdashHO2 559 times 10

minus4

360 times 10minus4 mdash mdash mdash

H2O2 200 times 10minus5 274 times 10minus5 mdash mdash mdashNO 847 times 10minus2 430 times 10minus2 264 times 10minus5 mdash mdashNO2 170 times 10

minus3

103 times 10minus3

109 times 10minus5 mdash mdash

N2O 361 times 10minus4 110 times 10minus4 mdash mdash mdashNH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10

minus5

138 times 10minus5 mdash mdash mdash

HNO2 175 times 10minus4

140 times 10minus4 mdash mdash mdash

Note solvent = water dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) = 303K and frequency (119891) = 20 kHz

bubble contents are N2

gas So the total number of radicalsper bubble in N

2

bubbling is always lower than the other gasbubbles The trend of production of ∙OH radical per bubblewith various gases bubbling is as follows O

2

gt Air gt Ar gtN2

N2

+O∙ 999448999471 N∙ +NO (3)

N2

+∙OH 999448999471 N

2

H +O∙ (4)

N2

+∙OH 999448999471 N

2

O +H∙ (5)

N2

+∙OH 999448999471 NH +NO (6)

N2

+H∙ 999448999471 N2

H (7)

N2

+H∙ 999448999471 NH + N∙ (8)

N + ∙OH 999448999471 NO +H∙ (9)

N2

O +O∙ 999448999471 2NO (10)

NO + ∙OH 999448999471 NO2

(11)

NH + ∙OH 999448999471 NH2

+O∙ (12)

NH2

+O∙ 999448999471 H∙ +HNO (13)

HNO +O∙ 999448999471 NH +O2

(14)

HNO +O∙ 999448999471 NO + ∙OH (15)

HNO + ∙OH 999448999471 NO +H2

O (16)

N +O2

999448999471 NO +O∙ (17)

NO +O2

999448999471 NO2

+O∙ (18)

NH +O2

999448999471 HNO +O∙ (19)

NH +O2

999448999471 NO + ∙OH (20)

N2

+O2

999448999471 N2

O +O∙ (21)

H∙ +O2

999448999471 HO2

∙ (22)∙OH+O

2

999448999471 HO2

+O∙ (23)

O∙ +O2

rarr O3

(24)

2HO2

999448999471 H2

O2

+O2

(25)

Chinese Journal of Engineering 11

Table 5 Simulation summary of system temperature (119879119900

) dependent sonochemical process

System temperature119879 = 283K 119879 = 303K 119879 = 323K 119879 = 343K 119879 = 373K

Conditions at the first collapse of the bubble119879max = 3989K 119879max = 3999K 119879max = 3733K 119879max = 2683K 119879max = 8117K119875max = 6815MPa 119875max = 6967MPa 119875max = 6239MPa 119875max = 1753MPa 119875max = 179MPa119881turb = 035ms 119881turb = 036ms 119881turb = 045ms 119881turb = 108ms 119881turb = 463ms119875AW = 2475MPa 119875AW = 2404MPa 119875AW = 2156MPa 119875AW = 443MPa 119875AW = 220 kPa

119873N2 = 138 times 1010

119873N2 = 128 times 1010

119873N2 = 121 times 1010

119873N2 = 113 times 1010

119873N2 = 104 times 1010

119873O2 = 366 times 109 119873O2 = 341 times 10

9 119873O2 = 320 times 109 119873O2 = 302 times 10

9 119873O2 = 277 times 109

119873W = 794 times 108 119873W = 291 times 10

9 119873W = 123 times 1010 119873W = 815 times 10

10 119873W = 179 times 1012

Species Equilibrium composition of species in the bubble at collapse283K 303K 323K 343K 373K

N2 707 times 10minus1 626 times 10minus1 413 times 10minus1 116 times 10minus1 600 times 10minus3

O2 145 times 10minus1

128 times 10minus1

884 times 10minus2

283 times 10minus2

200 times 10minus3

H2O 163 times 10minus2 141 times 10minus2 121 times 10minus2 280 times 10minus2 993 times 10minus1

N 172 times 10minus5 156 times 10minus5 384 times 10minus6 mdash mdashO 667 times 10

minus3

595 times 10minus3

244 times 10minus3

569 times 10minus5 mdash

H 321 times 10minus4 283 times 10minus4 106 times 10minus4 257 times 10minus6 mdashO3 189 times 10minus5 170 times 10minus5 838 times 10minus6 228 times 10minus7 mdashH2 291 times 10minus4 253 times 10minus4 130 times 10minus4 229 times 10minus5 mdashOH 108 times 10

minus2

951 times 10minus3

527 times 10minus3

808 times 10minus4 mdash

HO2 631 times 10minus4 559 times 10minus4 325 times 10minus4 422 times 10minus5 mdashH2O2 228 times 10minus5 200 times 10minus5 136 times 10minus5 460 times 10minus6 mdashNO 951 times 10

minus2

847 times 10minus2

472 times 10minus2

457 times 10minus3 mdash

NO2 190 times 10minus3 170 times 10minus3 104 times 10minus3 111 times 10minus4 mdashN2O 401 times 10minus4 361 times 10minus4 188 times 10minus4 869 times 10minus6 mdashNH 189 times 10

minus6

170 times 10minus6 mdash mdash mdash

HNO 667 times 10minus5 595 times 10minus5 274 times 10minus5 969 times 10minus7 mdashHNO2 196 times 10minus4 175 times 10minus4 112 times 10minus4 176 times 10minus5 mdashNote solvent = water dissolved gas = air initial bubble size (119877

0) = 5 120583m static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz

35 Type of Solvent or Cavitation Medium The solvent orcavitation medium is another important factor that affectsdirectly on the sonochemical process In order to assess thesuitability of solvent for cavitation we have chosen threesolvents with different physicochemical properties namelywater toluene and n-hexane as shown in Table 2 To addressthis issue we have presented the numerical solution withvarious solvent as cavitation medium in Figure 5 and Table 7which lists the temperature and pressure peak reached at themoment of collapse with various equilibrium compositionsof species The number of ∙OH radical production is highestwhen water is used as cavitation medium This can beattributed to the lower surface tension and higher vaporpressure of the organic solvent The production of ∙OHradical in water is typically two orders of magnitude higherthan that in toluene So due to the low intensity of bubblecollapse organic solvents are not able to generate sufficientnumbers of radical in-situ for sonochemical reactions

4 Conclusions

The lower is the system temperature the higher is thecavitation effects that is when the system temperature is

moderately low the effect of cavitation is more In this presentstudy the radical formation due to cavitation is highest whenthe system temperature is 283K So the system with lowoperating temperature and cavitation medium contents withsmall initial bubble radius is always preferable for sono-chemical reactions since this type of sonochemical reactionsystems are able to generate large amount of highly oxidizingspecies Due to the high vapor pressure and low surfacetension organic solvents cannot produce large amount ofradicals in the reaction medium thus they are not suitablefor sonochemical reactions However they could be goodsolvents for extraction or other processes using ultrasoundMoreover depending on the process requirement one canchoose the system with different gas bubbling and aqueousor organic solvents for conducting experiments

Nomenclature

119862119881119894

Heat capacity at constant volume Jkgminus1 Kminus1

119888L Velocity of sound in liquid medium m sminus1119888W Velocity of sound in water m sminus1

12 Chinese Journal of Engineering

Table 6 Effect of dissolved gas content on sonochemical process

Conditions at the first collapse of the bubbleAir bubble Nitrogen bubble Oxygen bubble Argon bubble119879max = 3999K 119879max = 4379K 119879max = 4155K 119879max = 4551K119875max = 6967MPa 119875max = 7723MPa 119875max = 7582MPa 119875max = 7866MPa119881turb = 036ms 119881turb = 037ms 119881turb = 037ms 119881turb = 037ms119875AW = 2404MPa 119875AW = 2825MPa 119875AW = 3078MPa 119875AW = 2728MPa

119873N2 = 128 times 1010 119873N2 = 163 times 10

10 119873O2 = 163 times 1010 119873Ar = 163 times 10

10

119873O2 = 341 times 109

119873W = 388 times 109

119873W = 388 times 109

119873W = 254 times 109

119873W = 291 times 109

Species Equilibrium composition of species in the bubble at collapseAir bubble Nitrogen bubble Oxygen bubble Argon bubble

N2 626 times 10minus1 805 times 10minus1 mdash mdashO2 128 times 10minus1 280 times 10minus4 793 times 10minus1 109 times 10minus3

Ar mdash mdash mdash 865 times 10minus1

H2O 141 times 10minus2 969 times 10minus3 113 times 10minus2 921 times 10minus3

N 156 times 10minus5 585 times 10minus5 mdash mdashO 595 times 10minus3 506 times 10minus4 187 times 10minus2 134 times 10minus3

H 283 times 10minus4

248 times 10minus3

221 times 10minus4

259 times 10minus3

N3 mdash 145 times 10minus6 mdash mdashO3 170 times 10minus5 mdash 328 times 10minus4 mdashH2 253 times 10

minus4

673 times 10minus3

103 times 10minus4

431 times 10minus3

OH 951 times 10minus3 250 times 10minus3 157 times 10minus2 409 times 10minus3

HO2 559 times 10minus4 677 times 10minus6 234 times 10minus3 207 times 10minus5

H2O2 200 times 10minus5

886 times 10minus7

475 times 10minus5

179 times 10minus6

NO 847 times 10minus2 565 times 10minus3 mdash mdashNO2 170 times 10minus3 493 times 10minus6 mdash mdashN2O 361 times 10

minus4

302 times 10minus5 mdash mdash

NH 170 times 10minus6

268 times 10minus5 mdash mdash

NH2 mdash 242 times 10minus5 mdash mdashNH3 mdash 178 times 10minus5 mdash mdashHNO 595 times 10

minus5

225 times 10minus5 mdash mdash

HNO2 175 times 10minus4 216 times 10minus6 mdash mdashNote solvent = water initial bubble size (119877

0) = 5 120583m temperature (119879) = 303K static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz O2 gt air gt Ar gt

N2

119888T Velocity of sound in toluene m sminus1119888H Velocity of sound in n-hexane m sminus1119863w Diffusion coefficient of solvent vapor m2

sminus1119891 Frequency of ultrasound wave Hz119891119894

Translational and rotational degrees offreedom

ℎ Van der Waalrsquos hard core radius m119868diffw Instantaneous diffusive penetration depth

for water molecules119896 Boltzmann constant J Kminus1119873W Number of water molecules trapped in the

bubble119873N2

Number of N2

molecules in the bubble119873O2

Number of oxygenmolecules in the bubble119873T Number of toluenemolecules in the bubble119873H Number of n-hexane molecules in the

bubble

119873Ar Number of Ar molecules in the bubble119873tot Total number of molecules (gas + vapor) in

the bubble119875119900

Static pressure in the liquid medium Pa119875max Pressure peak reached in the bubble at the

time of first collapse Pa119875AW Pressure amplitude of the acoustic wave

generated by the cavitation bubble Pa119876 Heat conducted across bubble wall J sminus1119877 Radius of the bubble m119877119900

Initial radius of the cavitation bubble m119889119877119889119905 Bubble wall velocity m sminus1119905 Time s119879 Temperature of the bubble contents K119879119900

Ambient (or bulk liquid medium) temper-ature K

119879max Temperature peak reached in the bubble atthe time of first collapse K

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 5: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

Chinese Journal of Engineering 5

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

15

3

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

2000

4000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

4 middot 1010

2 middot 1010

1 middot 1010

5 middot 109

(c)

0 1 2 3 4 50

2000

4000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

30

60

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5No of acoustic cyclesO

scill

ator

y ve

loci

ty (m

s)

minus04

minus01

0 1 2 3 4 5

0

01

Osc

illat

ory

velo

city

(ms

)

minus01

No of acoustic cycles

(e)

0 1 2 3 4 50

30

60

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

120 kPa

0 1 2 3 4 50

075

15

No of acoustic cycles

150kPa

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 2 Simulations of radial motion of 5 micron air bubble in water at 120 kPa and 150 kPa 119891 = 20 kHz 119875A = 150 kPa and 119877119900 = 5 120583mTime history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside thebubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

6 Chinese Journal of Engineering

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

5

10

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

1500

3000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

3 middot 1010

15 middot 1010 1 middot 1012

2 middot 1012

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

1000

2000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104

(d)

0 1 2 3 4 5

0

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus050 1 2 3 4 5

1

minus05

minus2

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

150

300

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

283K

0 1 2 3 4 50

30

60

343K

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 3 Simulations of radial motion of 5 micron air bubble in water at 283K and 343K 119891 = 20 kHz 119875A = 150 kPa and 119875119900 = 100 kPaTime history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside thebubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 7

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

1 middot 1011

5 middot 1010

1 middot 1011

5 middot 1010

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104 1 middot 104

(d)

0 1 2 3 4 5

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus1

minus025

0 1 2 3 4 5

05

minus1

minus025

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

200

400

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

Oxygen bubble

0 1 2 3 4 50

150

300

Nitrogen bubble

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 4 Simulations of radial motion of 5 micron air bubble in water with O2

bubble and N2

bubble 119891 = 20 kHz 119875A = 150 kPa and119875119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

8 Chinese Journal of Engineering

0 1 2 3 4 50

2

4

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

750

1500

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No

of t

olue

ne

vap

mol

ecul

es

No of acoustic cycles0 1 2 3 4 5

0

No of acoustic cycles

No

of h

exan

eva

pm

olec

ules

1 middot 105

2 middot 105 3 middot 1011

15 middot 1011

(c)

1 middot 104

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5

Osc

illat

ory

velo

city

(ms

)

minus03

minus01

No of acoustic cycles0 1 2 3 4 5

0005

Osc

illat

ory

velo

city

(ms

)

minus001

minus00025

No of acoustic cycles

(e)

0 1 2 3 4 50

200

400

Acou

stic w

ave

ampl

itude

(bar

)

Toluene

No of acoustic cycles0 1 2 3 4 5

0

1

2

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

n-hexane

(f)

Figure 5 Simulations of radial motion of 5 micron air bubble in toluene and n-hexane as cavitation medium 119891 = 35 kHz 119875A = 150 kPaand 119875

119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 9

Table 3 Simulation summary of initial bubble size (119877119900

) dependent sonochemical process

Conditions at the first collapse of the bubble119877119900

= 5 120583m 119877119900

= 25 120583m 119877119900

= 50 120583m 119877119900

= 100 120583m 119877119900

= 200 120583m119879max = 3999K 119879max = 1688K 119879max = 7785K 119879max = 409K 119879max = 3299K119875max = 6967MPa 119875max = 3057MPa 119875max = 256MPa 119875max = 288 kPa 119875max = 136 kPa119881turb = 036ms 119881turb = 611ms 119881turb = 62ms 119881turb = 795ms 119881turb = 112ms119875AW = 2404MPa 119875AW = 880MPa 119875AW = 063MPa 119875AW = 027MPa 119875AW = 035 kPa

119873N2 = 128 times 1010 119873N2 = 132 times 10

12 119873N2 = 103 times 1013 119873N2 = 811 times 10

13 119873N2 = 644 times 1014

119873O2 = 341 times 109 119873O2 = 351 times 10

11 119873O2 = 273 times 1012 119873O2 = 216 times 10

13 119873O2 = 171 times 1014

119873W = 291 times 109

119873W = 25 times 1011

119873W = 908 times 1011

119873W = 298 times 1012

119873W = 115 times 1013

Species Equilibrium composition of species in the bubble at collapse5120583m 25 120583m 50 120583m 100120583m 200120583m

N2 626 times 10minus1 686 times 10minus1 738 times 10minus1 768 times 10minus1 779 times 10minus1

O2 128 times 10minus1 182 times 10minus1 196 times 10minus1 204 times 10minus1 207 times 10minus1

H2O 141 times 10minus2 130 times 10minus1 650 times 10minus2 280 times 10minus2 140 times 10minus2

N 156 times 10minus5 mdash mdash mdash mdash

O 595 times 10minus3 mdash mdash mdash mdashH 283 times 10minus4 mdash mdash mdash mdashO3 170 times 10

minus5 mdash mdash mdash mdashH2 253 times 10minus4 mdash mdash mdash mdashOH 951 times 10minus3 903 times 10minus5 mdash mdash mdashHO2 559 times 10

minus4

581 times 10minus6 mdash mdash mdash

H2O2 200 times 10minus5 mdash mdash mdash mdashNO 847 times 10minus2 258 times 10minus3 149 times 10minus6 mdash mdashNO2 170 times 10minus3 127 times 10minus4 284 times 10minus6 mdash mdashN2O 361 times 10

minus4

218 times 10minus6 mdash mdash mdash

NH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10minus5 mdash mdash mdash mdashHNO2 175 times 10

minus4

706 times 10minus6 mdash mdash mdash

Note solvent = water temperature (119879) = 303K static pressure (1198750) = 100 kPa dissolved gas = air and frequency (119891) = 20 kHz

ambient static pressure (ie 100 kPa) and the productionof ∙OH radical decreases as the static pressure approachesto the magnitude of acoustic pressure that is 150 kPa Theproduction of ∙OH radical at 100 kPa is typically 15 foldhigher than the ∙OH radical production at 120 kPa while at150 kPa or higher static pressure no ∙OH radical formationwas seenThis result can be attributed to the temperature peakreached at the moment of collapse of the bubble At the timeof transient collapse the highest temperature peak (3999K)was seen when the pressure was 100 kPa while the lowesttemperature peak (sim313 K) was observed with elevated staticpressure of 300 kPa

33 System Operating Temperature Another important fac-tor that affects the transient cavitation is system temperatureTo study the temperature effect on sonochemical processthe numerical simulations were run in the temperature rangefrom 283 to 373K (viz 283 303 323 343 and 373 K)The sim-ulation results are depicted in Figure 3 As the temperaturein the system increases the formation of oxidizing speciesdue to transient cavitation of bubbles reduces drasticallyThiscould be attributed to the effects of bubble radius as discussedin the earlier section In this case vapor bubbles grow

with increasing the temperature through the phenomenonof boiling [20] So the lower the temperature means thehigher the cavitation effects in the system Table 5 shows thatthe production of ∙OH radical is highest with the lowesttemperature that is at 283K while at the boiling point ofwater no ∙OH radical formation has been observed Theoverall trend of the ∙OH radical production under variousoperating temperature is 283K gt 303K gt 323K gt 343K

34 Type of Dissolved Gas Content The type of dissolvedgas has an impact on bubble nucleation rate as described inthe literatures [15 37] The simulation results for four gasesare shown in Table 6 and Figure 4 The production of ∙OHradical as well as H

2

O2

is highest for O2

bubble followed byair Ar and N

2

bubble Also the generation of O3

per bubblefor oxygen bubble is one order of magnitude higher thanthe O

3

generation by air bubble The radicals by air bubbleare formed through the reactions (3)ndash(22) while (24) and(25) represent the radical formation by O

2

bubble [39] Theproduction of radicals is least with N

2

bubble as compared toother gas bubbles This is due to the scavenging of radicals byN2

molecules through the reactions (3)ndash(16) Moreover thereis no regeneration of ∙OH and O∙ radicals by O

2

when the

10 Chinese Journal of Engineering

Table 4 Simulation summary of sonochemical process under various static pressures (119875119900

)

Conditions at the first collapse of the bubble119875119900

= 100 kPa 119875119900

= 120 kPa 119875119900

= 150 kPa 119875119900

= 200 kPa 119875119900

= 300 kPa119879max = 3999K 119879max = 3024K 119879max = 9773K 119879max = 3534K 119879max = 3127K119875max = 6967MPa 119875max = 2863MPa 119875max = 462MPa 119875max = 416 kPa 119875max = 477 kPa119881turb = 036ms 119881turb = 021ms 119881turb = 007ms 119881turb = 0008ms 119881turb = 0002ms119875AW = 2404MPa 119875AW = 543MPa 119875AW = 120 kPa 119875AW = 2 kPa 119875AW = 06 kPa

119873N2 = 128 times 1010 119873N2 = 148 times 10

10 119873N2 = 178 times 1010 119873N2 = 228 times 10

10 119873N2 = 328 times 1010

119873O2 = 341 times 109

119873O2 = 395 times 109

119873O2 = 474 times 109

119873O2 = 607 times 109

119873O2 = 873 times 109

119873W = 291 times 109

119873W = 181 times 109

119873W = 886 times 108

119873W = 819 times 1010

119873W = 381 times 108

Species Equilibrium composition of species in the bubble at collapse1 bar 12 bar 15 bar 2 bar 3 bar

N2 626 times 10minus1 699 times 10minus1 760 times 10minus1 768 times 10minus1 783 times 10minus1

O2 128 times 10minus1 167 times 10minus1 202 times 10minus1 204 times 10minus1 208 times 10minus1

H2O 141 times 10minus2

745 times 10minus2

380 times 10minus2

280 times 10minus2

900 times 10minus3

N 156 times 10minus5 mdash mdash mdash mdashO 595 times 10minus3 935 times 10minus4 mdash mdash mdashH 283 times 10minus4 409 times 10minus5 mdash mdash mdashO3 170 times 10

minus5

371 times 10minus6 mdash mdash mdash

H2 253 times 10minus4 167 times 10minus4 mdash mdash mdashOH 951 times 10minus3 633 times 10minus3 mdash mdash mdashHO2 559 times 10

minus4

360 times 10minus4 mdash mdash mdash

H2O2 200 times 10minus5 274 times 10minus5 mdash mdash mdashNO 847 times 10minus2 430 times 10minus2 264 times 10minus5 mdash mdashNO2 170 times 10

minus3

103 times 10minus3

109 times 10minus5 mdash mdash

N2O 361 times 10minus4 110 times 10minus4 mdash mdash mdashNH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10

minus5

138 times 10minus5 mdash mdash mdash

HNO2 175 times 10minus4

140 times 10minus4 mdash mdash mdash

Note solvent = water dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) = 303K and frequency (119891) = 20 kHz

bubble contents are N2

gas So the total number of radicalsper bubble in N

2

bubbling is always lower than the other gasbubbles The trend of production of ∙OH radical per bubblewith various gases bubbling is as follows O

2

gt Air gt Ar gtN2

N2

+O∙ 999448999471 N∙ +NO (3)

N2

+∙OH 999448999471 N

2

H +O∙ (4)

N2

+∙OH 999448999471 N

2

O +H∙ (5)

N2

+∙OH 999448999471 NH +NO (6)

N2

+H∙ 999448999471 N2

H (7)

N2

+H∙ 999448999471 NH + N∙ (8)

N + ∙OH 999448999471 NO +H∙ (9)

N2

O +O∙ 999448999471 2NO (10)

NO + ∙OH 999448999471 NO2

(11)

NH + ∙OH 999448999471 NH2

+O∙ (12)

NH2

+O∙ 999448999471 H∙ +HNO (13)

HNO +O∙ 999448999471 NH +O2

(14)

HNO +O∙ 999448999471 NO + ∙OH (15)

HNO + ∙OH 999448999471 NO +H2

O (16)

N +O2

999448999471 NO +O∙ (17)

NO +O2

999448999471 NO2

+O∙ (18)

NH +O2

999448999471 HNO +O∙ (19)

NH +O2

999448999471 NO + ∙OH (20)

N2

+O2

999448999471 N2

O +O∙ (21)

H∙ +O2

999448999471 HO2

∙ (22)∙OH+O

2

999448999471 HO2

+O∙ (23)

O∙ +O2

rarr O3

(24)

2HO2

999448999471 H2

O2

+O2

(25)

Chinese Journal of Engineering 11

Table 5 Simulation summary of system temperature (119879119900

) dependent sonochemical process

System temperature119879 = 283K 119879 = 303K 119879 = 323K 119879 = 343K 119879 = 373K

Conditions at the first collapse of the bubble119879max = 3989K 119879max = 3999K 119879max = 3733K 119879max = 2683K 119879max = 8117K119875max = 6815MPa 119875max = 6967MPa 119875max = 6239MPa 119875max = 1753MPa 119875max = 179MPa119881turb = 035ms 119881turb = 036ms 119881turb = 045ms 119881turb = 108ms 119881turb = 463ms119875AW = 2475MPa 119875AW = 2404MPa 119875AW = 2156MPa 119875AW = 443MPa 119875AW = 220 kPa

119873N2 = 138 times 1010

119873N2 = 128 times 1010

119873N2 = 121 times 1010

119873N2 = 113 times 1010

119873N2 = 104 times 1010

119873O2 = 366 times 109 119873O2 = 341 times 10

9 119873O2 = 320 times 109 119873O2 = 302 times 10

9 119873O2 = 277 times 109

119873W = 794 times 108 119873W = 291 times 10

9 119873W = 123 times 1010 119873W = 815 times 10

10 119873W = 179 times 1012

Species Equilibrium composition of species in the bubble at collapse283K 303K 323K 343K 373K

N2 707 times 10minus1 626 times 10minus1 413 times 10minus1 116 times 10minus1 600 times 10minus3

O2 145 times 10minus1

128 times 10minus1

884 times 10minus2

283 times 10minus2

200 times 10minus3

H2O 163 times 10minus2 141 times 10minus2 121 times 10minus2 280 times 10minus2 993 times 10minus1

N 172 times 10minus5 156 times 10minus5 384 times 10minus6 mdash mdashO 667 times 10

minus3

595 times 10minus3

244 times 10minus3

569 times 10minus5 mdash

H 321 times 10minus4 283 times 10minus4 106 times 10minus4 257 times 10minus6 mdashO3 189 times 10minus5 170 times 10minus5 838 times 10minus6 228 times 10minus7 mdashH2 291 times 10minus4 253 times 10minus4 130 times 10minus4 229 times 10minus5 mdashOH 108 times 10

minus2

951 times 10minus3

527 times 10minus3

808 times 10minus4 mdash

HO2 631 times 10minus4 559 times 10minus4 325 times 10minus4 422 times 10minus5 mdashH2O2 228 times 10minus5 200 times 10minus5 136 times 10minus5 460 times 10minus6 mdashNO 951 times 10

minus2

847 times 10minus2

472 times 10minus2

457 times 10minus3 mdash

NO2 190 times 10minus3 170 times 10minus3 104 times 10minus3 111 times 10minus4 mdashN2O 401 times 10minus4 361 times 10minus4 188 times 10minus4 869 times 10minus6 mdashNH 189 times 10

minus6

170 times 10minus6 mdash mdash mdash

HNO 667 times 10minus5 595 times 10minus5 274 times 10minus5 969 times 10minus7 mdashHNO2 196 times 10minus4 175 times 10minus4 112 times 10minus4 176 times 10minus5 mdashNote solvent = water dissolved gas = air initial bubble size (119877

0) = 5 120583m static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz

35 Type of Solvent or Cavitation Medium The solvent orcavitation medium is another important factor that affectsdirectly on the sonochemical process In order to assess thesuitability of solvent for cavitation we have chosen threesolvents with different physicochemical properties namelywater toluene and n-hexane as shown in Table 2 To addressthis issue we have presented the numerical solution withvarious solvent as cavitation medium in Figure 5 and Table 7which lists the temperature and pressure peak reached at themoment of collapse with various equilibrium compositionsof species The number of ∙OH radical production is highestwhen water is used as cavitation medium This can beattributed to the lower surface tension and higher vaporpressure of the organic solvent The production of ∙OHradical in water is typically two orders of magnitude higherthan that in toluene So due to the low intensity of bubblecollapse organic solvents are not able to generate sufficientnumbers of radical in-situ for sonochemical reactions

4 Conclusions

The lower is the system temperature the higher is thecavitation effects that is when the system temperature is

moderately low the effect of cavitation is more In this presentstudy the radical formation due to cavitation is highest whenthe system temperature is 283K So the system with lowoperating temperature and cavitation medium contents withsmall initial bubble radius is always preferable for sono-chemical reactions since this type of sonochemical reactionsystems are able to generate large amount of highly oxidizingspecies Due to the high vapor pressure and low surfacetension organic solvents cannot produce large amount ofradicals in the reaction medium thus they are not suitablefor sonochemical reactions However they could be goodsolvents for extraction or other processes using ultrasoundMoreover depending on the process requirement one canchoose the system with different gas bubbling and aqueousor organic solvents for conducting experiments

Nomenclature

119862119881119894

Heat capacity at constant volume Jkgminus1 Kminus1

119888L Velocity of sound in liquid medium m sminus1119888W Velocity of sound in water m sminus1

12 Chinese Journal of Engineering

Table 6 Effect of dissolved gas content on sonochemical process

Conditions at the first collapse of the bubbleAir bubble Nitrogen bubble Oxygen bubble Argon bubble119879max = 3999K 119879max = 4379K 119879max = 4155K 119879max = 4551K119875max = 6967MPa 119875max = 7723MPa 119875max = 7582MPa 119875max = 7866MPa119881turb = 036ms 119881turb = 037ms 119881turb = 037ms 119881turb = 037ms119875AW = 2404MPa 119875AW = 2825MPa 119875AW = 3078MPa 119875AW = 2728MPa

119873N2 = 128 times 1010 119873N2 = 163 times 10

10 119873O2 = 163 times 1010 119873Ar = 163 times 10

10

119873O2 = 341 times 109

119873W = 388 times 109

119873W = 388 times 109

119873W = 254 times 109

119873W = 291 times 109

Species Equilibrium composition of species in the bubble at collapseAir bubble Nitrogen bubble Oxygen bubble Argon bubble

N2 626 times 10minus1 805 times 10minus1 mdash mdashO2 128 times 10minus1 280 times 10minus4 793 times 10minus1 109 times 10minus3

Ar mdash mdash mdash 865 times 10minus1

H2O 141 times 10minus2 969 times 10minus3 113 times 10minus2 921 times 10minus3

N 156 times 10minus5 585 times 10minus5 mdash mdashO 595 times 10minus3 506 times 10minus4 187 times 10minus2 134 times 10minus3

H 283 times 10minus4

248 times 10minus3

221 times 10minus4

259 times 10minus3

N3 mdash 145 times 10minus6 mdash mdashO3 170 times 10minus5 mdash 328 times 10minus4 mdashH2 253 times 10

minus4

673 times 10minus3

103 times 10minus4

431 times 10minus3

OH 951 times 10minus3 250 times 10minus3 157 times 10minus2 409 times 10minus3

HO2 559 times 10minus4 677 times 10minus6 234 times 10minus3 207 times 10minus5

H2O2 200 times 10minus5

886 times 10minus7

475 times 10minus5

179 times 10minus6

NO 847 times 10minus2 565 times 10minus3 mdash mdashNO2 170 times 10minus3 493 times 10minus6 mdash mdashN2O 361 times 10

minus4

302 times 10minus5 mdash mdash

NH 170 times 10minus6

268 times 10minus5 mdash mdash

NH2 mdash 242 times 10minus5 mdash mdashNH3 mdash 178 times 10minus5 mdash mdashHNO 595 times 10

minus5

225 times 10minus5 mdash mdash

HNO2 175 times 10minus4 216 times 10minus6 mdash mdashNote solvent = water initial bubble size (119877

0) = 5 120583m temperature (119879) = 303K static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz O2 gt air gt Ar gt

N2

119888T Velocity of sound in toluene m sminus1119888H Velocity of sound in n-hexane m sminus1119863w Diffusion coefficient of solvent vapor m2

sminus1119891 Frequency of ultrasound wave Hz119891119894

Translational and rotational degrees offreedom

ℎ Van der Waalrsquos hard core radius m119868diffw Instantaneous diffusive penetration depth

for water molecules119896 Boltzmann constant J Kminus1119873W Number of water molecules trapped in the

bubble119873N2

Number of N2

molecules in the bubble119873O2

Number of oxygenmolecules in the bubble119873T Number of toluenemolecules in the bubble119873H Number of n-hexane molecules in the

bubble

119873Ar Number of Ar molecules in the bubble119873tot Total number of molecules (gas + vapor) in

the bubble119875119900

Static pressure in the liquid medium Pa119875max Pressure peak reached in the bubble at the

time of first collapse Pa119875AW Pressure amplitude of the acoustic wave

generated by the cavitation bubble Pa119876 Heat conducted across bubble wall J sminus1119877 Radius of the bubble m119877119900

Initial radius of the cavitation bubble m119889119877119889119905 Bubble wall velocity m sminus1119905 Time s119879 Temperature of the bubble contents K119879119900

Ambient (or bulk liquid medium) temper-ature K

119879max Temperature peak reached in the bubble atthe time of first collapse K

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 6: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

6 Chinese Journal of Engineering

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

5

10

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

1500

3000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or

mol

ecul

es

3 middot 1010

15 middot 1010 1 middot 1012

2 middot 1012

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

1000

2000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104

(d)

0 1 2 3 4 5

0

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus050 1 2 3 4 5

1

minus05

minus2

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

150

300

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

283K

0 1 2 3 4 50

30

60

343K

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 3 Simulations of radial motion of 5 micron air bubble in water at 283K and 343K 119891 = 20 kHz 119875A = 150 kPa and 119875119900 = 100 kPaTime history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d) pressure inside thebubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 7

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

1 middot 1011

5 middot 1010

1 middot 1011

5 middot 1010

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104 1 middot 104

(d)

0 1 2 3 4 5

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus1

minus025

0 1 2 3 4 5

05

minus1

minus025

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

200

400

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

Oxygen bubble

0 1 2 3 4 50

150

300

Nitrogen bubble

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 4 Simulations of radial motion of 5 micron air bubble in water with O2

bubble and N2

bubble 119891 = 20 kHz 119875A = 150 kPa and119875119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

8 Chinese Journal of Engineering

0 1 2 3 4 50

2

4

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

750

1500

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No

of t

olue

ne

vap

mol

ecul

es

No of acoustic cycles0 1 2 3 4 5

0

No of acoustic cycles

No

of h

exan

eva

pm

olec

ules

1 middot 105

2 middot 105 3 middot 1011

15 middot 1011

(c)

1 middot 104

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5

Osc

illat

ory

velo

city

(ms

)

minus03

minus01

No of acoustic cycles0 1 2 3 4 5

0005

Osc

illat

ory

velo

city

(ms

)

minus001

minus00025

No of acoustic cycles

(e)

0 1 2 3 4 50

200

400

Acou

stic w

ave

ampl

itude

(bar

)

Toluene

No of acoustic cycles0 1 2 3 4 5

0

1

2

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

n-hexane

(f)

Figure 5 Simulations of radial motion of 5 micron air bubble in toluene and n-hexane as cavitation medium 119891 = 35 kHz 119875A = 150 kPaand 119875

119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 9

Table 3 Simulation summary of initial bubble size (119877119900

) dependent sonochemical process

Conditions at the first collapse of the bubble119877119900

= 5 120583m 119877119900

= 25 120583m 119877119900

= 50 120583m 119877119900

= 100 120583m 119877119900

= 200 120583m119879max = 3999K 119879max = 1688K 119879max = 7785K 119879max = 409K 119879max = 3299K119875max = 6967MPa 119875max = 3057MPa 119875max = 256MPa 119875max = 288 kPa 119875max = 136 kPa119881turb = 036ms 119881turb = 611ms 119881turb = 62ms 119881turb = 795ms 119881turb = 112ms119875AW = 2404MPa 119875AW = 880MPa 119875AW = 063MPa 119875AW = 027MPa 119875AW = 035 kPa

119873N2 = 128 times 1010 119873N2 = 132 times 10

12 119873N2 = 103 times 1013 119873N2 = 811 times 10

13 119873N2 = 644 times 1014

119873O2 = 341 times 109 119873O2 = 351 times 10

11 119873O2 = 273 times 1012 119873O2 = 216 times 10

13 119873O2 = 171 times 1014

119873W = 291 times 109

119873W = 25 times 1011

119873W = 908 times 1011

119873W = 298 times 1012

119873W = 115 times 1013

Species Equilibrium composition of species in the bubble at collapse5120583m 25 120583m 50 120583m 100120583m 200120583m

N2 626 times 10minus1 686 times 10minus1 738 times 10minus1 768 times 10minus1 779 times 10minus1

O2 128 times 10minus1 182 times 10minus1 196 times 10minus1 204 times 10minus1 207 times 10minus1

H2O 141 times 10minus2 130 times 10minus1 650 times 10minus2 280 times 10minus2 140 times 10minus2

N 156 times 10minus5 mdash mdash mdash mdash

O 595 times 10minus3 mdash mdash mdash mdashH 283 times 10minus4 mdash mdash mdash mdashO3 170 times 10

minus5 mdash mdash mdash mdashH2 253 times 10minus4 mdash mdash mdash mdashOH 951 times 10minus3 903 times 10minus5 mdash mdash mdashHO2 559 times 10

minus4

581 times 10minus6 mdash mdash mdash

H2O2 200 times 10minus5 mdash mdash mdash mdashNO 847 times 10minus2 258 times 10minus3 149 times 10minus6 mdash mdashNO2 170 times 10minus3 127 times 10minus4 284 times 10minus6 mdash mdashN2O 361 times 10

minus4

218 times 10minus6 mdash mdash mdash

NH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10minus5 mdash mdash mdash mdashHNO2 175 times 10

minus4

706 times 10minus6 mdash mdash mdash

Note solvent = water temperature (119879) = 303K static pressure (1198750) = 100 kPa dissolved gas = air and frequency (119891) = 20 kHz

ambient static pressure (ie 100 kPa) and the productionof ∙OH radical decreases as the static pressure approachesto the magnitude of acoustic pressure that is 150 kPa Theproduction of ∙OH radical at 100 kPa is typically 15 foldhigher than the ∙OH radical production at 120 kPa while at150 kPa or higher static pressure no ∙OH radical formationwas seenThis result can be attributed to the temperature peakreached at the moment of collapse of the bubble At the timeof transient collapse the highest temperature peak (3999K)was seen when the pressure was 100 kPa while the lowesttemperature peak (sim313 K) was observed with elevated staticpressure of 300 kPa

33 System Operating Temperature Another important fac-tor that affects the transient cavitation is system temperatureTo study the temperature effect on sonochemical processthe numerical simulations were run in the temperature rangefrom 283 to 373K (viz 283 303 323 343 and 373 K)The sim-ulation results are depicted in Figure 3 As the temperaturein the system increases the formation of oxidizing speciesdue to transient cavitation of bubbles reduces drasticallyThiscould be attributed to the effects of bubble radius as discussedin the earlier section In this case vapor bubbles grow

with increasing the temperature through the phenomenonof boiling [20] So the lower the temperature means thehigher the cavitation effects in the system Table 5 shows thatthe production of ∙OH radical is highest with the lowesttemperature that is at 283K while at the boiling point ofwater no ∙OH radical formation has been observed Theoverall trend of the ∙OH radical production under variousoperating temperature is 283K gt 303K gt 323K gt 343K

34 Type of Dissolved Gas Content The type of dissolvedgas has an impact on bubble nucleation rate as described inthe literatures [15 37] The simulation results for four gasesare shown in Table 6 and Figure 4 The production of ∙OHradical as well as H

2

O2

is highest for O2

bubble followed byair Ar and N

2

bubble Also the generation of O3

per bubblefor oxygen bubble is one order of magnitude higher thanthe O

3

generation by air bubble The radicals by air bubbleare formed through the reactions (3)ndash(22) while (24) and(25) represent the radical formation by O

2

bubble [39] Theproduction of radicals is least with N

2

bubble as compared toother gas bubbles This is due to the scavenging of radicals byN2

molecules through the reactions (3)ndash(16) Moreover thereis no regeneration of ∙OH and O∙ radicals by O

2

when the

10 Chinese Journal of Engineering

Table 4 Simulation summary of sonochemical process under various static pressures (119875119900

)

Conditions at the first collapse of the bubble119875119900

= 100 kPa 119875119900

= 120 kPa 119875119900

= 150 kPa 119875119900

= 200 kPa 119875119900

= 300 kPa119879max = 3999K 119879max = 3024K 119879max = 9773K 119879max = 3534K 119879max = 3127K119875max = 6967MPa 119875max = 2863MPa 119875max = 462MPa 119875max = 416 kPa 119875max = 477 kPa119881turb = 036ms 119881turb = 021ms 119881turb = 007ms 119881turb = 0008ms 119881turb = 0002ms119875AW = 2404MPa 119875AW = 543MPa 119875AW = 120 kPa 119875AW = 2 kPa 119875AW = 06 kPa

119873N2 = 128 times 1010 119873N2 = 148 times 10

10 119873N2 = 178 times 1010 119873N2 = 228 times 10

10 119873N2 = 328 times 1010

119873O2 = 341 times 109

119873O2 = 395 times 109

119873O2 = 474 times 109

119873O2 = 607 times 109

119873O2 = 873 times 109

119873W = 291 times 109

119873W = 181 times 109

119873W = 886 times 108

119873W = 819 times 1010

119873W = 381 times 108

Species Equilibrium composition of species in the bubble at collapse1 bar 12 bar 15 bar 2 bar 3 bar

N2 626 times 10minus1 699 times 10minus1 760 times 10minus1 768 times 10minus1 783 times 10minus1

O2 128 times 10minus1 167 times 10minus1 202 times 10minus1 204 times 10minus1 208 times 10minus1

H2O 141 times 10minus2

745 times 10minus2

380 times 10minus2

280 times 10minus2

900 times 10minus3

N 156 times 10minus5 mdash mdash mdash mdashO 595 times 10minus3 935 times 10minus4 mdash mdash mdashH 283 times 10minus4 409 times 10minus5 mdash mdash mdashO3 170 times 10

minus5

371 times 10minus6 mdash mdash mdash

H2 253 times 10minus4 167 times 10minus4 mdash mdash mdashOH 951 times 10minus3 633 times 10minus3 mdash mdash mdashHO2 559 times 10

minus4

360 times 10minus4 mdash mdash mdash

H2O2 200 times 10minus5 274 times 10minus5 mdash mdash mdashNO 847 times 10minus2 430 times 10minus2 264 times 10minus5 mdash mdashNO2 170 times 10

minus3

103 times 10minus3

109 times 10minus5 mdash mdash

N2O 361 times 10minus4 110 times 10minus4 mdash mdash mdashNH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10

minus5

138 times 10minus5 mdash mdash mdash

HNO2 175 times 10minus4

140 times 10minus4 mdash mdash mdash

Note solvent = water dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) = 303K and frequency (119891) = 20 kHz

bubble contents are N2

gas So the total number of radicalsper bubble in N

2

bubbling is always lower than the other gasbubbles The trend of production of ∙OH radical per bubblewith various gases bubbling is as follows O

2

gt Air gt Ar gtN2

N2

+O∙ 999448999471 N∙ +NO (3)

N2

+∙OH 999448999471 N

2

H +O∙ (4)

N2

+∙OH 999448999471 N

2

O +H∙ (5)

N2

+∙OH 999448999471 NH +NO (6)

N2

+H∙ 999448999471 N2

H (7)

N2

+H∙ 999448999471 NH + N∙ (8)

N + ∙OH 999448999471 NO +H∙ (9)

N2

O +O∙ 999448999471 2NO (10)

NO + ∙OH 999448999471 NO2

(11)

NH + ∙OH 999448999471 NH2

+O∙ (12)

NH2

+O∙ 999448999471 H∙ +HNO (13)

HNO +O∙ 999448999471 NH +O2

(14)

HNO +O∙ 999448999471 NO + ∙OH (15)

HNO + ∙OH 999448999471 NO +H2

O (16)

N +O2

999448999471 NO +O∙ (17)

NO +O2

999448999471 NO2

+O∙ (18)

NH +O2

999448999471 HNO +O∙ (19)

NH +O2

999448999471 NO + ∙OH (20)

N2

+O2

999448999471 N2

O +O∙ (21)

H∙ +O2

999448999471 HO2

∙ (22)∙OH+O

2

999448999471 HO2

+O∙ (23)

O∙ +O2

rarr O3

(24)

2HO2

999448999471 H2

O2

+O2

(25)

Chinese Journal of Engineering 11

Table 5 Simulation summary of system temperature (119879119900

) dependent sonochemical process

System temperature119879 = 283K 119879 = 303K 119879 = 323K 119879 = 343K 119879 = 373K

Conditions at the first collapse of the bubble119879max = 3989K 119879max = 3999K 119879max = 3733K 119879max = 2683K 119879max = 8117K119875max = 6815MPa 119875max = 6967MPa 119875max = 6239MPa 119875max = 1753MPa 119875max = 179MPa119881turb = 035ms 119881turb = 036ms 119881turb = 045ms 119881turb = 108ms 119881turb = 463ms119875AW = 2475MPa 119875AW = 2404MPa 119875AW = 2156MPa 119875AW = 443MPa 119875AW = 220 kPa

119873N2 = 138 times 1010

119873N2 = 128 times 1010

119873N2 = 121 times 1010

119873N2 = 113 times 1010

119873N2 = 104 times 1010

119873O2 = 366 times 109 119873O2 = 341 times 10

9 119873O2 = 320 times 109 119873O2 = 302 times 10

9 119873O2 = 277 times 109

119873W = 794 times 108 119873W = 291 times 10

9 119873W = 123 times 1010 119873W = 815 times 10

10 119873W = 179 times 1012

Species Equilibrium composition of species in the bubble at collapse283K 303K 323K 343K 373K

N2 707 times 10minus1 626 times 10minus1 413 times 10minus1 116 times 10minus1 600 times 10minus3

O2 145 times 10minus1

128 times 10minus1

884 times 10minus2

283 times 10minus2

200 times 10minus3

H2O 163 times 10minus2 141 times 10minus2 121 times 10minus2 280 times 10minus2 993 times 10minus1

N 172 times 10minus5 156 times 10minus5 384 times 10minus6 mdash mdashO 667 times 10

minus3

595 times 10minus3

244 times 10minus3

569 times 10minus5 mdash

H 321 times 10minus4 283 times 10minus4 106 times 10minus4 257 times 10minus6 mdashO3 189 times 10minus5 170 times 10minus5 838 times 10minus6 228 times 10minus7 mdashH2 291 times 10minus4 253 times 10minus4 130 times 10minus4 229 times 10minus5 mdashOH 108 times 10

minus2

951 times 10minus3

527 times 10minus3

808 times 10minus4 mdash

HO2 631 times 10minus4 559 times 10minus4 325 times 10minus4 422 times 10minus5 mdashH2O2 228 times 10minus5 200 times 10minus5 136 times 10minus5 460 times 10minus6 mdashNO 951 times 10

minus2

847 times 10minus2

472 times 10minus2

457 times 10minus3 mdash

NO2 190 times 10minus3 170 times 10minus3 104 times 10minus3 111 times 10minus4 mdashN2O 401 times 10minus4 361 times 10minus4 188 times 10minus4 869 times 10minus6 mdashNH 189 times 10

minus6

170 times 10minus6 mdash mdash mdash

HNO 667 times 10minus5 595 times 10minus5 274 times 10minus5 969 times 10minus7 mdashHNO2 196 times 10minus4 175 times 10minus4 112 times 10minus4 176 times 10minus5 mdashNote solvent = water dissolved gas = air initial bubble size (119877

0) = 5 120583m static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz

35 Type of Solvent or Cavitation Medium The solvent orcavitation medium is another important factor that affectsdirectly on the sonochemical process In order to assess thesuitability of solvent for cavitation we have chosen threesolvents with different physicochemical properties namelywater toluene and n-hexane as shown in Table 2 To addressthis issue we have presented the numerical solution withvarious solvent as cavitation medium in Figure 5 and Table 7which lists the temperature and pressure peak reached at themoment of collapse with various equilibrium compositionsof species The number of ∙OH radical production is highestwhen water is used as cavitation medium This can beattributed to the lower surface tension and higher vaporpressure of the organic solvent The production of ∙OHradical in water is typically two orders of magnitude higherthan that in toluene So due to the low intensity of bubblecollapse organic solvents are not able to generate sufficientnumbers of radical in-situ for sonochemical reactions

4 Conclusions

The lower is the system temperature the higher is thecavitation effects that is when the system temperature is

moderately low the effect of cavitation is more In this presentstudy the radical formation due to cavitation is highest whenthe system temperature is 283K So the system with lowoperating temperature and cavitation medium contents withsmall initial bubble radius is always preferable for sono-chemical reactions since this type of sonochemical reactionsystems are able to generate large amount of highly oxidizingspecies Due to the high vapor pressure and low surfacetension organic solvents cannot produce large amount ofradicals in the reaction medium thus they are not suitablefor sonochemical reactions However they could be goodsolvents for extraction or other processes using ultrasoundMoreover depending on the process requirement one canchoose the system with different gas bubbling and aqueousor organic solvents for conducting experiments

Nomenclature

119862119881119894

Heat capacity at constant volume Jkgminus1 Kminus1

119888L Velocity of sound in liquid medium m sminus1119888W Velocity of sound in water m sminus1

12 Chinese Journal of Engineering

Table 6 Effect of dissolved gas content on sonochemical process

Conditions at the first collapse of the bubbleAir bubble Nitrogen bubble Oxygen bubble Argon bubble119879max = 3999K 119879max = 4379K 119879max = 4155K 119879max = 4551K119875max = 6967MPa 119875max = 7723MPa 119875max = 7582MPa 119875max = 7866MPa119881turb = 036ms 119881turb = 037ms 119881turb = 037ms 119881turb = 037ms119875AW = 2404MPa 119875AW = 2825MPa 119875AW = 3078MPa 119875AW = 2728MPa

119873N2 = 128 times 1010 119873N2 = 163 times 10

10 119873O2 = 163 times 1010 119873Ar = 163 times 10

10

119873O2 = 341 times 109

119873W = 388 times 109

119873W = 388 times 109

119873W = 254 times 109

119873W = 291 times 109

Species Equilibrium composition of species in the bubble at collapseAir bubble Nitrogen bubble Oxygen bubble Argon bubble

N2 626 times 10minus1 805 times 10minus1 mdash mdashO2 128 times 10minus1 280 times 10minus4 793 times 10minus1 109 times 10minus3

Ar mdash mdash mdash 865 times 10minus1

H2O 141 times 10minus2 969 times 10minus3 113 times 10minus2 921 times 10minus3

N 156 times 10minus5 585 times 10minus5 mdash mdashO 595 times 10minus3 506 times 10minus4 187 times 10minus2 134 times 10minus3

H 283 times 10minus4

248 times 10minus3

221 times 10minus4

259 times 10minus3

N3 mdash 145 times 10minus6 mdash mdashO3 170 times 10minus5 mdash 328 times 10minus4 mdashH2 253 times 10

minus4

673 times 10minus3

103 times 10minus4

431 times 10minus3

OH 951 times 10minus3 250 times 10minus3 157 times 10minus2 409 times 10minus3

HO2 559 times 10minus4 677 times 10minus6 234 times 10minus3 207 times 10minus5

H2O2 200 times 10minus5

886 times 10minus7

475 times 10minus5

179 times 10minus6

NO 847 times 10minus2 565 times 10minus3 mdash mdashNO2 170 times 10minus3 493 times 10minus6 mdash mdashN2O 361 times 10

minus4

302 times 10minus5 mdash mdash

NH 170 times 10minus6

268 times 10minus5 mdash mdash

NH2 mdash 242 times 10minus5 mdash mdashNH3 mdash 178 times 10minus5 mdash mdashHNO 595 times 10

minus5

225 times 10minus5 mdash mdash

HNO2 175 times 10minus4 216 times 10minus6 mdash mdashNote solvent = water initial bubble size (119877

0) = 5 120583m temperature (119879) = 303K static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz O2 gt air gt Ar gt

N2

119888T Velocity of sound in toluene m sminus1119888H Velocity of sound in n-hexane m sminus1119863w Diffusion coefficient of solvent vapor m2

sminus1119891 Frequency of ultrasound wave Hz119891119894

Translational and rotational degrees offreedom

ℎ Van der Waalrsquos hard core radius m119868diffw Instantaneous diffusive penetration depth

for water molecules119896 Boltzmann constant J Kminus1119873W Number of water molecules trapped in the

bubble119873N2

Number of N2

molecules in the bubble119873O2

Number of oxygenmolecules in the bubble119873T Number of toluenemolecules in the bubble119873H Number of n-hexane molecules in the

bubble

119873Ar Number of Ar molecules in the bubble119873tot Total number of molecules (gas + vapor) in

the bubble119875119900

Static pressure in the liquid medium Pa119875max Pressure peak reached in the bubble at the

time of first collapse Pa119875AW Pressure amplitude of the acoustic wave

generated by the cavitation bubble Pa119876 Heat conducted across bubble wall J sminus1119877 Radius of the bubble m119877119900

Initial radius of the cavitation bubble m119889119877119889119905 Bubble wall velocity m sminus1119905 Time s119879 Temperature of the bubble contents K119879119900

Ambient (or bulk liquid medium) temper-ature K

119879max Temperature peak reached in the bubble atthe time of first collapse K

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 7: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

Chinese Journal of Engineering 7

0 1 2 3 4 50

3

6

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

0 1 2 3 4 50

No of acoustic cycles

No

of w

ater

vap

or m

olec

ules

1 middot 1011

5 middot 1010

1 middot 1011

5 middot 1010

(c)

0 1 2 3 4 50

5000

No of acoustic cycles

Pres

sure

(bar

)

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles

1 middot 104 1 middot 104

(d)

0 1 2 3 4 5

05

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

minus1

minus025

0 1 2 3 4 5

05

minus1

minus025

No of acoustic cyclesOsc

illat

ory

velo

city

(ms

)

(e)

0 1 2 3 4 50

200

400

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

Oxygen bubble

0 1 2 3 4 50

150

300

Nitrogen bubble

No of acoustic cycles

Acou

stic w

ave

ampl

itude

(bar

)

(f)

Figure 4 Simulations of radial motion of 5 micron air bubble in water with O2

bubble and N2

bubble 119891 = 20 kHz 119875A = 150 kPa and119875119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

8 Chinese Journal of Engineering

0 1 2 3 4 50

2

4

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

750

1500

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No

of t

olue

ne

vap

mol

ecul

es

No of acoustic cycles0 1 2 3 4 5

0

No of acoustic cycles

No

of h

exan

eva

pm

olec

ules

1 middot 105

2 middot 105 3 middot 1011

15 middot 1011

(c)

1 middot 104

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5

Osc

illat

ory

velo

city

(ms

)

minus03

minus01

No of acoustic cycles0 1 2 3 4 5

0005

Osc

illat

ory

velo

city

(ms

)

minus001

minus00025

No of acoustic cycles

(e)

0 1 2 3 4 50

200

400

Acou

stic w

ave

ampl

itude

(bar

)

Toluene

No of acoustic cycles0 1 2 3 4 5

0

1

2

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

n-hexane

(f)

Figure 5 Simulations of radial motion of 5 micron air bubble in toluene and n-hexane as cavitation medium 119891 = 35 kHz 119875A = 150 kPaand 119875

119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 9

Table 3 Simulation summary of initial bubble size (119877119900

) dependent sonochemical process

Conditions at the first collapse of the bubble119877119900

= 5 120583m 119877119900

= 25 120583m 119877119900

= 50 120583m 119877119900

= 100 120583m 119877119900

= 200 120583m119879max = 3999K 119879max = 1688K 119879max = 7785K 119879max = 409K 119879max = 3299K119875max = 6967MPa 119875max = 3057MPa 119875max = 256MPa 119875max = 288 kPa 119875max = 136 kPa119881turb = 036ms 119881turb = 611ms 119881turb = 62ms 119881turb = 795ms 119881turb = 112ms119875AW = 2404MPa 119875AW = 880MPa 119875AW = 063MPa 119875AW = 027MPa 119875AW = 035 kPa

119873N2 = 128 times 1010 119873N2 = 132 times 10

12 119873N2 = 103 times 1013 119873N2 = 811 times 10

13 119873N2 = 644 times 1014

119873O2 = 341 times 109 119873O2 = 351 times 10

11 119873O2 = 273 times 1012 119873O2 = 216 times 10

13 119873O2 = 171 times 1014

119873W = 291 times 109

119873W = 25 times 1011

119873W = 908 times 1011

119873W = 298 times 1012

119873W = 115 times 1013

Species Equilibrium composition of species in the bubble at collapse5120583m 25 120583m 50 120583m 100120583m 200120583m

N2 626 times 10minus1 686 times 10minus1 738 times 10minus1 768 times 10minus1 779 times 10minus1

O2 128 times 10minus1 182 times 10minus1 196 times 10minus1 204 times 10minus1 207 times 10minus1

H2O 141 times 10minus2 130 times 10minus1 650 times 10minus2 280 times 10minus2 140 times 10minus2

N 156 times 10minus5 mdash mdash mdash mdash

O 595 times 10minus3 mdash mdash mdash mdashH 283 times 10minus4 mdash mdash mdash mdashO3 170 times 10

minus5 mdash mdash mdash mdashH2 253 times 10minus4 mdash mdash mdash mdashOH 951 times 10minus3 903 times 10minus5 mdash mdash mdashHO2 559 times 10

minus4

581 times 10minus6 mdash mdash mdash

H2O2 200 times 10minus5 mdash mdash mdash mdashNO 847 times 10minus2 258 times 10minus3 149 times 10minus6 mdash mdashNO2 170 times 10minus3 127 times 10minus4 284 times 10minus6 mdash mdashN2O 361 times 10

minus4

218 times 10minus6 mdash mdash mdash

NH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10minus5 mdash mdash mdash mdashHNO2 175 times 10

minus4

706 times 10minus6 mdash mdash mdash

Note solvent = water temperature (119879) = 303K static pressure (1198750) = 100 kPa dissolved gas = air and frequency (119891) = 20 kHz

ambient static pressure (ie 100 kPa) and the productionof ∙OH radical decreases as the static pressure approachesto the magnitude of acoustic pressure that is 150 kPa Theproduction of ∙OH radical at 100 kPa is typically 15 foldhigher than the ∙OH radical production at 120 kPa while at150 kPa or higher static pressure no ∙OH radical formationwas seenThis result can be attributed to the temperature peakreached at the moment of collapse of the bubble At the timeof transient collapse the highest temperature peak (3999K)was seen when the pressure was 100 kPa while the lowesttemperature peak (sim313 K) was observed with elevated staticpressure of 300 kPa

33 System Operating Temperature Another important fac-tor that affects the transient cavitation is system temperatureTo study the temperature effect on sonochemical processthe numerical simulations were run in the temperature rangefrom 283 to 373K (viz 283 303 323 343 and 373 K)The sim-ulation results are depicted in Figure 3 As the temperaturein the system increases the formation of oxidizing speciesdue to transient cavitation of bubbles reduces drasticallyThiscould be attributed to the effects of bubble radius as discussedin the earlier section In this case vapor bubbles grow

with increasing the temperature through the phenomenonof boiling [20] So the lower the temperature means thehigher the cavitation effects in the system Table 5 shows thatthe production of ∙OH radical is highest with the lowesttemperature that is at 283K while at the boiling point ofwater no ∙OH radical formation has been observed Theoverall trend of the ∙OH radical production under variousoperating temperature is 283K gt 303K gt 323K gt 343K

34 Type of Dissolved Gas Content The type of dissolvedgas has an impact on bubble nucleation rate as described inthe literatures [15 37] The simulation results for four gasesare shown in Table 6 and Figure 4 The production of ∙OHradical as well as H

2

O2

is highest for O2

bubble followed byair Ar and N

2

bubble Also the generation of O3

per bubblefor oxygen bubble is one order of magnitude higher thanthe O

3

generation by air bubble The radicals by air bubbleare formed through the reactions (3)ndash(22) while (24) and(25) represent the radical formation by O

2

bubble [39] Theproduction of radicals is least with N

2

bubble as compared toother gas bubbles This is due to the scavenging of radicals byN2

molecules through the reactions (3)ndash(16) Moreover thereis no regeneration of ∙OH and O∙ radicals by O

2

when the

10 Chinese Journal of Engineering

Table 4 Simulation summary of sonochemical process under various static pressures (119875119900

)

Conditions at the first collapse of the bubble119875119900

= 100 kPa 119875119900

= 120 kPa 119875119900

= 150 kPa 119875119900

= 200 kPa 119875119900

= 300 kPa119879max = 3999K 119879max = 3024K 119879max = 9773K 119879max = 3534K 119879max = 3127K119875max = 6967MPa 119875max = 2863MPa 119875max = 462MPa 119875max = 416 kPa 119875max = 477 kPa119881turb = 036ms 119881turb = 021ms 119881turb = 007ms 119881turb = 0008ms 119881turb = 0002ms119875AW = 2404MPa 119875AW = 543MPa 119875AW = 120 kPa 119875AW = 2 kPa 119875AW = 06 kPa

119873N2 = 128 times 1010 119873N2 = 148 times 10

10 119873N2 = 178 times 1010 119873N2 = 228 times 10

10 119873N2 = 328 times 1010

119873O2 = 341 times 109

119873O2 = 395 times 109

119873O2 = 474 times 109

119873O2 = 607 times 109

119873O2 = 873 times 109

119873W = 291 times 109

119873W = 181 times 109

119873W = 886 times 108

119873W = 819 times 1010

119873W = 381 times 108

Species Equilibrium composition of species in the bubble at collapse1 bar 12 bar 15 bar 2 bar 3 bar

N2 626 times 10minus1 699 times 10minus1 760 times 10minus1 768 times 10minus1 783 times 10minus1

O2 128 times 10minus1 167 times 10minus1 202 times 10minus1 204 times 10minus1 208 times 10minus1

H2O 141 times 10minus2

745 times 10minus2

380 times 10minus2

280 times 10minus2

900 times 10minus3

N 156 times 10minus5 mdash mdash mdash mdashO 595 times 10minus3 935 times 10minus4 mdash mdash mdashH 283 times 10minus4 409 times 10minus5 mdash mdash mdashO3 170 times 10

minus5

371 times 10minus6 mdash mdash mdash

H2 253 times 10minus4 167 times 10minus4 mdash mdash mdashOH 951 times 10minus3 633 times 10minus3 mdash mdash mdashHO2 559 times 10

minus4

360 times 10minus4 mdash mdash mdash

H2O2 200 times 10minus5 274 times 10minus5 mdash mdash mdashNO 847 times 10minus2 430 times 10minus2 264 times 10minus5 mdash mdashNO2 170 times 10

minus3

103 times 10minus3

109 times 10minus5 mdash mdash

N2O 361 times 10minus4 110 times 10minus4 mdash mdash mdashNH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10

minus5

138 times 10minus5 mdash mdash mdash

HNO2 175 times 10minus4

140 times 10minus4 mdash mdash mdash

Note solvent = water dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) = 303K and frequency (119891) = 20 kHz

bubble contents are N2

gas So the total number of radicalsper bubble in N

2

bubbling is always lower than the other gasbubbles The trend of production of ∙OH radical per bubblewith various gases bubbling is as follows O

2

gt Air gt Ar gtN2

N2

+O∙ 999448999471 N∙ +NO (3)

N2

+∙OH 999448999471 N

2

H +O∙ (4)

N2

+∙OH 999448999471 N

2

O +H∙ (5)

N2

+∙OH 999448999471 NH +NO (6)

N2

+H∙ 999448999471 N2

H (7)

N2

+H∙ 999448999471 NH + N∙ (8)

N + ∙OH 999448999471 NO +H∙ (9)

N2

O +O∙ 999448999471 2NO (10)

NO + ∙OH 999448999471 NO2

(11)

NH + ∙OH 999448999471 NH2

+O∙ (12)

NH2

+O∙ 999448999471 H∙ +HNO (13)

HNO +O∙ 999448999471 NH +O2

(14)

HNO +O∙ 999448999471 NO + ∙OH (15)

HNO + ∙OH 999448999471 NO +H2

O (16)

N +O2

999448999471 NO +O∙ (17)

NO +O2

999448999471 NO2

+O∙ (18)

NH +O2

999448999471 HNO +O∙ (19)

NH +O2

999448999471 NO + ∙OH (20)

N2

+O2

999448999471 N2

O +O∙ (21)

H∙ +O2

999448999471 HO2

∙ (22)∙OH+O

2

999448999471 HO2

+O∙ (23)

O∙ +O2

rarr O3

(24)

2HO2

999448999471 H2

O2

+O2

(25)

Chinese Journal of Engineering 11

Table 5 Simulation summary of system temperature (119879119900

) dependent sonochemical process

System temperature119879 = 283K 119879 = 303K 119879 = 323K 119879 = 343K 119879 = 373K

Conditions at the first collapse of the bubble119879max = 3989K 119879max = 3999K 119879max = 3733K 119879max = 2683K 119879max = 8117K119875max = 6815MPa 119875max = 6967MPa 119875max = 6239MPa 119875max = 1753MPa 119875max = 179MPa119881turb = 035ms 119881turb = 036ms 119881turb = 045ms 119881turb = 108ms 119881turb = 463ms119875AW = 2475MPa 119875AW = 2404MPa 119875AW = 2156MPa 119875AW = 443MPa 119875AW = 220 kPa

119873N2 = 138 times 1010

119873N2 = 128 times 1010

119873N2 = 121 times 1010

119873N2 = 113 times 1010

119873N2 = 104 times 1010

119873O2 = 366 times 109 119873O2 = 341 times 10

9 119873O2 = 320 times 109 119873O2 = 302 times 10

9 119873O2 = 277 times 109

119873W = 794 times 108 119873W = 291 times 10

9 119873W = 123 times 1010 119873W = 815 times 10

10 119873W = 179 times 1012

Species Equilibrium composition of species in the bubble at collapse283K 303K 323K 343K 373K

N2 707 times 10minus1 626 times 10minus1 413 times 10minus1 116 times 10minus1 600 times 10minus3

O2 145 times 10minus1

128 times 10minus1

884 times 10minus2

283 times 10minus2

200 times 10minus3

H2O 163 times 10minus2 141 times 10minus2 121 times 10minus2 280 times 10minus2 993 times 10minus1

N 172 times 10minus5 156 times 10minus5 384 times 10minus6 mdash mdashO 667 times 10

minus3

595 times 10minus3

244 times 10minus3

569 times 10minus5 mdash

H 321 times 10minus4 283 times 10minus4 106 times 10minus4 257 times 10minus6 mdashO3 189 times 10minus5 170 times 10minus5 838 times 10minus6 228 times 10minus7 mdashH2 291 times 10minus4 253 times 10minus4 130 times 10minus4 229 times 10minus5 mdashOH 108 times 10

minus2

951 times 10minus3

527 times 10minus3

808 times 10minus4 mdash

HO2 631 times 10minus4 559 times 10minus4 325 times 10minus4 422 times 10minus5 mdashH2O2 228 times 10minus5 200 times 10minus5 136 times 10minus5 460 times 10minus6 mdashNO 951 times 10

minus2

847 times 10minus2

472 times 10minus2

457 times 10minus3 mdash

NO2 190 times 10minus3 170 times 10minus3 104 times 10minus3 111 times 10minus4 mdashN2O 401 times 10minus4 361 times 10minus4 188 times 10minus4 869 times 10minus6 mdashNH 189 times 10

minus6

170 times 10minus6 mdash mdash mdash

HNO 667 times 10minus5 595 times 10minus5 274 times 10minus5 969 times 10minus7 mdashHNO2 196 times 10minus4 175 times 10minus4 112 times 10minus4 176 times 10minus5 mdashNote solvent = water dissolved gas = air initial bubble size (119877

0) = 5 120583m static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz

35 Type of Solvent or Cavitation Medium The solvent orcavitation medium is another important factor that affectsdirectly on the sonochemical process In order to assess thesuitability of solvent for cavitation we have chosen threesolvents with different physicochemical properties namelywater toluene and n-hexane as shown in Table 2 To addressthis issue we have presented the numerical solution withvarious solvent as cavitation medium in Figure 5 and Table 7which lists the temperature and pressure peak reached at themoment of collapse with various equilibrium compositionsof species The number of ∙OH radical production is highestwhen water is used as cavitation medium This can beattributed to the lower surface tension and higher vaporpressure of the organic solvent The production of ∙OHradical in water is typically two orders of magnitude higherthan that in toluene So due to the low intensity of bubblecollapse organic solvents are not able to generate sufficientnumbers of radical in-situ for sonochemical reactions

4 Conclusions

The lower is the system temperature the higher is thecavitation effects that is when the system temperature is

moderately low the effect of cavitation is more In this presentstudy the radical formation due to cavitation is highest whenthe system temperature is 283K So the system with lowoperating temperature and cavitation medium contents withsmall initial bubble radius is always preferable for sono-chemical reactions since this type of sonochemical reactionsystems are able to generate large amount of highly oxidizingspecies Due to the high vapor pressure and low surfacetension organic solvents cannot produce large amount ofradicals in the reaction medium thus they are not suitablefor sonochemical reactions However they could be goodsolvents for extraction or other processes using ultrasoundMoreover depending on the process requirement one canchoose the system with different gas bubbling and aqueousor organic solvents for conducting experiments

Nomenclature

119862119881119894

Heat capacity at constant volume Jkgminus1 Kminus1

119888L Velocity of sound in liquid medium m sminus1119888W Velocity of sound in water m sminus1

12 Chinese Journal of Engineering

Table 6 Effect of dissolved gas content on sonochemical process

Conditions at the first collapse of the bubbleAir bubble Nitrogen bubble Oxygen bubble Argon bubble119879max = 3999K 119879max = 4379K 119879max = 4155K 119879max = 4551K119875max = 6967MPa 119875max = 7723MPa 119875max = 7582MPa 119875max = 7866MPa119881turb = 036ms 119881turb = 037ms 119881turb = 037ms 119881turb = 037ms119875AW = 2404MPa 119875AW = 2825MPa 119875AW = 3078MPa 119875AW = 2728MPa

119873N2 = 128 times 1010 119873N2 = 163 times 10

10 119873O2 = 163 times 1010 119873Ar = 163 times 10

10

119873O2 = 341 times 109

119873W = 388 times 109

119873W = 388 times 109

119873W = 254 times 109

119873W = 291 times 109

Species Equilibrium composition of species in the bubble at collapseAir bubble Nitrogen bubble Oxygen bubble Argon bubble

N2 626 times 10minus1 805 times 10minus1 mdash mdashO2 128 times 10minus1 280 times 10minus4 793 times 10minus1 109 times 10minus3

Ar mdash mdash mdash 865 times 10minus1

H2O 141 times 10minus2 969 times 10minus3 113 times 10minus2 921 times 10minus3

N 156 times 10minus5 585 times 10minus5 mdash mdashO 595 times 10minus3 506 times 10minus4 187 times 10minus2 134 times 10minus3

H 283 times 10minus4

248 times 10minus3

221 times 10minus4

259 times 10minus3

N3 mdash 145 times 10minus6 mdash mdashO3 170 times 10minus5 mdash 328 times 10minus4 mdashH2 253 times 10

minus4

673 times 10minus3

103 times 10minus4

431 times 10minus3

OH 951 times 10minus3 250 times 10minus3 157 times 10minus2 409 times 10minus3

HO2 559 times 10minus4 677 times 10minus6 234 times 10minus3 207 times 10minus5

H2O2 200 times 10minus5

886 times 10minus7

475 times 10minus5

179 times 10minus6

NO 847 times 10minus2 565 times 10minus3 mdash mdashNO2 170 times 10minus3 493 times 10minus6 mdash mdashN2O 361 times 10

minus4

302 times 10minus5 mdash mdash

NH 170 times 10minus6

268 times 10minus5 mdash mdash

NH2 mdash 242 times 10minus5 mdash mdashNH3 mdash 178 times 10minus5 mdash mdashHNO 595 times 10

minus5

225 times 10minus5 mdash mdash

HNO2 175 times 10minus4 216 times 10minus6 mdash mdashNote solvent = water initial bubble size (119877

0) = 5 120583m temperature (119879) = 303K static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz O2 gt air gt Ar gt

N2

119888T Velocity of sound in toluene m sminus1119888H Velocity of sound in n-hexane m sminus1119863w Diffusion coefficient of solvent vapor m2

sminus1119891 Frequency of ultrasound wave Hz119891119894

Translational and rotational degrees offreedom

ℎ Van der Waalrsquos hard core radius m119868diffw Instantaneous diffusive penetration depth

for water molecules119896 Boltzmann constant J Kminus1119873W Number of water molecules trapped in the

bubble119873N2

Number of N2

molecules in the bubble119873O2

Number of oxygenmolecules in the bubble119873T Number of toluenemolecules in the bubble119873H Number of n-hexane molecules in the

bubble

119873Ar Number of Ar molecules in the bubble119873tot Total number of molecules (gas + vapor) in

the bubble119875119900

Static pressure in the liquid medium Pa119875max Pressure peak reached in the bubble at the

time of first collapse Pa119875AW Pressure amplitude of the acoustic wave

generated by the cavitation bubble Pa119876 Heat conducted across bubble wall J sminus1119877 Radius of the bubble m119877119900

Initial radius of the cavitation bubble m119889119877119889119905 Bubble wall velocity m sminus1119905 Time s119879 Temperature of the bubble contents K119879119900

Ambient (or bulk liquid medium) temper-ature K

119879max Temperature peak reached in the bubble atthe time of first collapse K

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 8: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

8 Chinese Journal of Engineering

0 1 2 3 4 50

2

4

No of acoustic cycles0 1 2 3 4 5

0

3

6

No of acoustic cycles

Radi

us (R

Ro)

Radi

us (R

Ro)

(a)

0 1 2 3 4 50

3000

6000

Tem

pera

ture

(K)

No of acoustic cycles0 1 2 3 4 5

0

750

1500

Tem

pera

ture

(K)

No of acoustic cycles

(b)

0 1 2 3 4 50

No

of t

olue

ne

vap

mol

ecul

es

No of acoustic cycles0 1 2 3 4 5

0

No of acoustic cycles

No

of h

exan

eva

pm

olec

ules

1 middot 105

2 middot 105 3 middot 1011

15 middot 1011

(c)

1 middot 104

0 1 2 3 4 50

5000

Pres

sure

(bar

)

No of acoustic cycles0 1 2 3 4 5

0

500

1000

Pres

sure

(bar

)

No of acoustic cycles

(d)

0 1 2 3 4 5

Osc

illat

ory

velo

city

(ms

)

minus03

minus01

No of acoustic cycles0 1 2 3 4 5

0005

Osc

illat

ory

velo

city

(ms

)

minus001

minus00025

No of acoustic cycles

(e)

0 1 2 3 4 50

200

400

Acou

stic w

ave

ampl

itude

(bar

)

Toluene

No of acoustic cycles0 1 2 3 4 5

0

1

2

Acou

stic w

ave

ampl

itude

(bar

)

No of acoustic cycles

n-hexane

(f)

Figure 5 Simulations of radial motion of 5 micron air bubble in toluene and n-hexane as cavitation medium 119891 = 35 kHz 119875A = 150 kPaand 119875

119900

= 100 kPa Time history of (a) radius of the bubble (b) temperature inside the bubble (c) water vapor evaporation in the bubble (d)pressure inside the bubble (e) microturbulence generated by the bubble and (f) acoustic waves emitted by the bubble

Chinese Journal of Engineering 9

Table 3 Simulation summary of initial bubble size (119877119900

) dependent sonochemical process

Conditions at the first collapse of the bubble119877119900

= 5 120583m 119877119900

= 25 120583m 119877119900

= 50 120583m 119877119900

= 100 120583m 119877119900

= 200 120583m119879max = 3999K 119879max = 1688K 119879max = 7785K 119879max = 409K 119879max = 3299K119875max = 6967MPa 119875max = 3057MPa 119875max = 256MPa 119875max = 288 kPa 119875max = 136 kPa119881turb = 036ms 119881turb = 611ms 119881turb = 62ms 119881turb = 795ms 119881turb = 112ms119875AW = 2404MPa 119875AW = 880MPa 119875AW = 063MPa 119875AW = 027MPa 119875AW = 035 kPa

119873N2 = 128 times 1010 119873N2 = 132 times 10

12 119873N2 = 103 times 1013 119873N2 = 811 times 10

13 119873N2 = 644 times 1014

119873O2 = 341 times 109 119873O2 = 351 times 10

11 119873O2 = 273 times 1012 119873O2 = 216 times 10

13 119873O2 = 171 times 1014

119873W = 291 times 109

119873W = 25 times 1011

119873W = 908 times 1011

119873W = 298 times 1012

119873W = 115 times 1013

Species Equilibrium composition of species in the bubble at collapse5120583m 25 120583m 50 120583m 100120583m 200120583m

N2 626 times 10minus1 686 times 10minus1 738 times 10minus1 768 times 10minus1 779 times 10minus1

O2 128 times 10minus1 182 times 10minus1 196 times 10minus1 204 times 10minus1 207 times 10minus1

H2O 141 times 10minus2 130 times 10minus1 650 times 10minus2 280 times 10minus2 140 times 10minus2

N 156 times 10minus5 mdash mdash mdash mdash

O 595 times 10minus3 mdash mdash mdash mdashH 283 times 10minus4 mdash mdash mdash mdashO3 170 times 10

minus5 mdash mdash mdash mdashH2 253 times 10minus4 mdash mdash mdash mdashOH 951 times 10minus3 903 times 10minus5 mdash mdash mdashHO2 559 times 10

minus4

581 times 10minus6 mdash mdash mdash

H2O2 200 times 10minus5 mdash mdash mdash mdashNO 847 times 10minus2 258 times 10minus3 149 times 10minus6 mdash mdashNO2 170 times 10minus3 127 times 10minus4 284 times 10minus6 mdash mdashN2O 361 times 10

minus4

218 times 10minus6 mdash mdash mdash

NH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10minus5 mdash mdash mdash mdashHNO2 175 times 10

minus4

706 times 10minus6 mdash mdash mdash

Note solvent = water temperature (119879) = 303K static pressure (1198750) = 100 kPa dissolved gas = air and frequency (119891) = 20 kHz

ambient static pressure (ie 100 kPa) and the productionof ∙OH radical decreases as the static pressure approachesto the magnitude of acoustic pressure that is 150 kPa Theproduction of ∙OH radical at 100 kPa is typically 15 foldhigher than the ∙OH radical production at 120 kPa while at150 kPa or higher static pressure no ∙OH radical formationwas seenThis result can be attributed to the temperature peakreached at the moment of collapse of the bubble At the timeof transient collapse the highest temperature peak (3999K)was seen when the pressure was 100 kPa while the lowesttemperature peak (sim313 K) was observed with elevated staticpressure of 300 kPa

33 System Operating Temperature Another important fac-tor that affects the transient cavitation is system temperatureTo study the temperature effect on sonochemical processthe numerical simulations were run in the temperature rangefrom 283 to 373K (viz 283 303 323 343 and 373 K)The sim-ulation results are depicted in Figure 3 As the temperaturein the system increases the formation of oxidizing speciesdue to transient cavitation of bubbles reduces drasticallyThiscould be attributed to the effects of bubble radius as discussedin the earlier section In this case vapor bubbles grow

with increasing the temperature through the phenomenonof boiling [20] So the lower the temperature means thehigher the cavitation effects in the system Table 5 shows thatthe production of ∙OH radical is highest with the lowesttemperature that is at 283K while at the boiling point ofwater no ∙OH radical formation has been observed Theoverall trend of the ∙OH radical production under variousoperating temperature is 283K gt 303K gt 323K gt 343K

34 Type of Dissolved Gas Content The type of dissolvedgas has an impact on bubble nucleation rate as described inthe literatures [15 37] The simulation results for four gasesare shown in Table 6 and Figure 4 The production of ∙OHradical as well as H

2

O2

is highest for O2

bubble followed byair Ar and N

2

bubble Also the generation of O3

per bubblefor oxygen bubble is one order of magnitude higher thanthe O

3

generation by air bubble The radicals by air bubbleare formed through the reactions (3)ndash(22) while (24) and(25) represent the radical formation by O

2

bubble [39] Theproduction of radicals is least with N

2

bubble as compared toother gas bubbles This is due to the scavenging of radicals byN2

molecules through the reactions (3)ndash(16) Moreover thereis no regeneration of ∙OH and O∙ radicals by O

2

when the

10 Chinese Journal of Engineering

Table 4 Simulation summary of sonochemical process under various static pressures (119875119900

)

Conditions at the first collapse of the bubble119875119900

= 100 kPa 119875119900

= 120 kPa 119875119900

= 150 kPa 119875119900

= 200 kPa 119875119900

= 300 kPa119879max = 3999K 119879max = 3024K 119879max = 9773K 119879max = 3534K 119879max = 3127K119875max = 6967MPa 119875max = 2863MPa 119875max = 462MPa 119875max = 416 kPa 119875max = 477 kPa119881turb = 036ms 119881turb = 021ms 119881turb = 007ms 119881turb = 0008ms 119881turb = 0002ms119875AW = 2404MPa 119875AW = 543MPa 119875AW = 120 kPa 119875AW = 2 kPa 119875AW = 06 kPa

119873N2 = 128 times 1010 119873N2 = 148 times 10

10 119873N2 = 178 times 1010 119873N2 = 228 times 10

10 119873N2 = 328 times 1010

119873O2 = 341 times 109

119873O2 = 395 times 109

119873O2 = 474 times 109

119873O2 = 607 times 109

119873O2 = 873 times 109

119873W = 291 times 109

119873W = 181 times 109

119873W = 886 times 108

119873W = 819 times 1010

119873W = 381 times 108

Species Equilibrium composition of species in the bubble at collapse1 bar 12 bar 15 bar 2 bar 3 bar

N2 626 times 10minus1 699 times 10minus1 760 times 10minus1 768 times 10minus1 783 times 10minus1

O2 128 times 10minus1 167 times 10minus1 202 times 10minus1 204 times 10minus1 208 times 10minus1

H2O 141 times 10minus2

745 times 10minus2

380 times 10minus2

280 times 10minus2

900 times 10minus3

N 156 times 10minus5 mdash mdash mdash mdashO 595 times 10minus3 935 times 10minus4 mdash mdash mdashH 283 times 10minus4 409 times 10minus5 mdash mdash mdashO3 170 times 10

minus5

371 times 10minus6 mdash mdash mdash

H2 253 times 10minus4 167 times 10minus4 mdash mdash mdashOH 951 times 10minus3 633 times 10minus3 mdash mdash mdashHO2 559 times 10

minus4

360 times 10minus4 mdash mdash mdash

H2O2 200 times 10minus5 274 times 10minus5 mdash mdash mdashNO 847 times 10minus2 430 times 10minus2 264 times 10minus5 mdash mdashNO2 170 times 10

minus3

103 times 10minus3

109 times 10minus5 mdash mdash

N2O 361 times 10minus4 110 times 10minus4 mdash mdash mdashNH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10

minus5

138 times 10minus5 mdash mdash mdash

HNO2 175 times 10minus4

140 times 10minus4 mdash mdash mdash

Note solvent = water dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) = 303K and frequency (119891) = 20 kHz

bubble contents are N2

gas So the total number of radicalsper bubble in N

2

bubbling is always lower than the other gasbubbles The trend of production of ∙OH radical per bubblewith various gases bubbling is as follows O

2

gt Air gt Ar gtN2

N2

+O∙ 999448999471 N∙ +NO (3)

N2

+∙OH 999448999471 N

2

H +O∙ (4)

N2

+∙OH 999448999471 N

2

O +H∙ (5)

N2

+∙OH 999448999471 NH +NO (6)

N2

+H∙ 999448999471 N2

H (7)

N2

+H∙ 999448999471 NH + N∙ (8)

N + ∙OH 999448999471 NO +H∙ (9)

N2

O +O∙ 999448999471 2NO (10)

NO + ∙OH 999448999471 NO2

(11)

NH + ∙OH 999448999471 NH2

+O∙ (12)

NH2

+O∙ 999448999471 H∙ +HNO (13)

HNO +O∙ 999448999471 NH +O2

(14)

HNO +O∙ 999448999471 NO + ∙OH (15)

HNO + ∙OH 999448999471 NO +H2

O (16)

N +O2

999448999471 NO +O∙ (17)

NO +O2

999448999471 NO2

+O∙ (18)

NH +O2

999448999471 HNO +O∙ (19)

NH +O2

999448999471 NO + ∙OH (20)

N2

+O2

999448999471 N2

O +O∙ (21)

H∙ +O2

999448999471 HO2

∙ (22)∙OH+O

2

999448999471 HO2

+O∙ (23)

O∙ +O2

rarr O3

(24)

2HO2

999448999471 H2

O2

+O2

(25)

Chinese Journal of Engineering 11

Table 5 Simulation summary of system temperature (119879119900

) dependent sonochemical process

System temperature119879 = 283K 119879 = 303K 119879 = 323K 119879 = 343K 119879 = 373K

Conditions at the first collapse of the bubble119879max = 3989K 119879max = 3999K 119879max = 3733K 119879max = 2683K 119879max = 8117K119875max = 6815MPa 119875max = 6967MPa 119875max = 6239MPa 119875max = 1753MPa 119875max = 179MPa119881turb = 035ms 119881turb = 036ms 119881turb = 045ms 119881turb = 108ms 119881turb = 463ms119875AW = 2475MPa 119875AW = 2404MPa 119875AW = 2156MPa 119875AW = 443MPa 119875AW = 220 kPa

119873N2 = 138 times 1010

119873N2 = 128 times 1010

119873N2 = 121 times 1010

119873N2 = 113 times 1010

119873N2 = 104 times 1010

119873O2 = 366 times 109 119873O2 = 341 times 10

9 119873O2 = 320 times 109 119873O2 = 302 times 10

9 119873O2 = 277 times 109

119873W = 794 times 108 119873W = 291 times 10

9 119873W = 123 times 1010 119873W = 815 times 10

10 119873W = 179 times 1012

Species Equilibrium composition of species in the bubble at collapse283K 303K 323K 343K 373K

N2 707 times 10minus1 626 times 10minus1 413 times 10minus1 116 times 10minus1 600 times 10minus3

O2 145 times 10minus1

128 times 10minus1

884 times 10minus2

283 times 10minus2

200 times 10minus3

H2O 163 times 10minus2 141 times 10minus2 121 times 10minus2 280 times 10minus2 993 times 10minus1

N 172 times 10minus5 156 times 10minus5 384 times 10minus6 mdash mdashO 667 times 10

minus3

595 times 10minus3

244 times 10minus3

569 times 10minus5 mdash

H 321 times 10minus4 283 times 10minus4 106 times 10minus4 257 times 10minus6 mdashO3 189 times 10minus5 170 times 10minus5 838 times 10minus6 228 times 10minus7 mdashH2 291 times 10minus4 253 times 10minus4 130 times 10minus4 229 times 10minus5 mdashOH 108 times 10

minus2

951 times 10minus3

527 times 10minus3

808 times 10minus4 mdash

HO2 631 times 10minus4 559 times 10minus4 325 times 10minus4 422 times 10minus5 mdashH2O2 228 times 10minus5 200 times 10minus5 136 times 10minus5 460 times 10minus6 mdashNO 951 times 10

minus2

847 times 10minus2

472 times 10minus2

457 times 10minus3 mdash

NO2 190 times 10minus3 170 times 10minus3 104 times 10minus3 111 times 10minus4 mdashN2O 401 times 10minus4 361 times 10minus4 188 times 10minus4 869 times 10minus6 mdashNH 189 times 10

minus6

170 times 10minus6 mdash mdash mdash

HNO 667 times 10minus5 595 times 10minus5 274 times 10minus5 969 times 10minus7 mdashHNO2 196 times 10minus4 175 times 10minus4 112 times 10minus4 176 times 10minus5 mdashNote solvent = water dissolved gas = air initial bubble size (119877

0) = 5 120583m static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz

35 Type of Solvent or Cavitation Medium The solvent orcavitation medium is another important factor that affectsdirectly on the sonochemical process In order to assess thesuitability of solvent for cavitation we have chosen threesolvents with different physicochemical properties namelywater toluene and n-hexane as shown in Table 2 To addressthis issue we have presented the numerical solution withvarious solvent as cavitation medium in Figure 5 and Table 7which lists the temperature and pressure peak reached at themoment of collapse with various equilibrium compositionsof species The number of ∙OH radical production is highestwhen water is used as cavitation medium This can beattributed to the lower surface tension and higher vaporpressure of the organic solvent The production of ∙OHradical in water is typically two orders of magnitude higherthan that in toluene So due to the low intensity of bubblecollapse organic solvents are not able to generate sufficientnumbers of radical in-situ for sonochemical reactions

4 Conclusions

The lower is the system temperature the higher is thecavitation effects that is when the system temperature is

moderately low the effect of cavitation is more In this presentstudy the radical formation due to cavitation is highest whenthe system temperature is 283K So the system with lowoperating temperature and cavitation medium contents withsmall initial bubble radius is always preferable for sono-chemical reactions since this type of sonochemical reactionsystems are able to generate large amount of highly oxidizingspecies Due to the high vapor pressure and low surfacetension organic solvents cannot produce large amount ofradicals in the reaction medium thus they are not suitablefor sonochemical reactions However they could be goodsolvents for extraction or other processes using ultrasoundMoreover depending on the process requirement one canchoose the system with different gas bubbling and aqueousor organic solvents for conducting experiments

Nomenclature

119862119881119894

Heat capacity at constant volume Jkgminus1 Kminus1

119888L Velocity of sound in liquid medium m sminus1119888W Velocity of sound in water m sminus1

12 Chinese Journal of Engineering

Table 6 Effect of dissolved gas content on sonochemical process

Conditions at the first collapse of the bubbleAir bubble Nitrogen bubble Oxygen bubble Argon bubble119879max = 3999K 119879max = 4379K 119879max = 4155K 119879max = 4551K119875max = 6967MPa 119875max = 7723MPa 119875max = 7582MPa 119875max = 7866MPa119881turb = 036ms 119881turb = 037ms 119881turb = 037ms 119881turb = 037ms119875AW = 2404MPa 119875AW = 2825MPa 119875AW = 3078MPa 119875AW = 2728MPa

119873N2 = 128 times 1010 119873N2 = 163 times 10

10 119873O2 = 163 times 1010 119873Ar = 163 times 10

10

119873O2 = 341 times 109

119873W = 388 times 109

119873W = 388 times 109

119873W = 254 times 109

119873W = 291 times 109

Species Equilibrium composition of species in the bubble at collapseAir bubble Nitrogen bubble Oxygen bubble Argon bubble

N2 626 times 10minus1 805 times 10minus1 mdash mdashO2 128 times 10minus1 280 times 10minus4 793 times 10minus1 109 times 10minus3

Ar mdash mdash mdash 865 times 10minus1

H2O 141 times 10minus2 969 times 10minus3 113 times 10minus2 921 times 10minus3

N 156 times 10minus5 585 times 10minus5 mdash mdashO 595 times 10minus3 506 times 10minus4 187 times 10minus2 134 times 10minus3

H 283 times 10minus4

248 times 10minus3

221 times 10minus4

259 times 10minus3

N3 mdash 145 times 10minus6 mdash mdashO3 170 times 10minus5 mdash 328 times 10minus4 mdashH2 253 times 10

minus4

673 times 10minus3

103 times 10minus4

431 times 10minus3

OH 951 times 10minus3 250 times 10minus3 157 times 10minus2 409 times 10minus3

HO2 559 times 10minus4 677 times 10minus6 234 times 10minus3 207 times 10minus5

H2O2 200 times 10minus5

886 times 10minus7

475 times 10minus5

179 times 10minus6

NO 847 times 10minus2 565 times 10minus3 mdash mdashNO2 170 times 10minus3 493 times 10minus6 mdash mdashN2O 361 times 10

minus4

302 times 10minus5 mdash mdash

NH 170 times 10minus6

268 times 10minus5 mdash mdash

NH2 mdash 242 times 10minus5 mdash mdashNH3 mdash 178 times 10minus5 mdash mdashHNO 595 times 10

minus5

225 times 10minus5 mdash mdash

HNO2 175 times 10minus4 216 times 10minus6 mdash mdashNote solvent = water initial bubble size (119877

0) = 5 120583m temperature (119879) = 303K static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz O2 gt air gt Ar gt

N2

119888T Velocity of sound in toluene m sminus1119888H Velocity of sound in n-hexane m sminus1119863w Diffusion coefficient of solvent vapor m2

sminus1119891 Frequency of ultrasound wave Hz119891119894

Translational and rotational degrees offreedom

ℎ Van der Waalrsquos hard core radius m119868diffw Instantaneous diffusive penetration depth

for water molecules119896 Boltzmann constant J Kminus1119873W Number of water molecules trapped in the

bubble119873N2

Number of N2

molecules in the bubble119873O2

Number of oxygenmolecules in the bubble119873T Number of toluenemolecules in the bubble119873H Number of n-hexane molecules in the

bubble

119873Ar Number of Ar molecules in the bubble119873tot Total number of molecules (gas + vapor) in

the bubble119875119900

Static pressure in the liquid medium Pa119875max Pressure peak reached in the bubble at the

time of first collapse Pa119875AW Pressure amplitude of the acoustic wave

generated by the cavitation bubble Pa119876 Heat conducted across bubble wall J sminus1119877 Radius of the bubble m119877119900

Initial radius of the cavitation bubble m119889119877119889119905 Bubble wall velocity m sminus1119905 Time s119879 Temperature of the bubble contents K119879119900

Ambient (or bulk liquid medium) temper-ature K

119879max Temperature peak reached in the bubble atthe time of first collapse K

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 9: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

Chinese Journal of Engineering 9

Table 3 Simulation summary of initial bubble size (119877119900

) dependent sonochemical process

Conditions at the first collapse of the bubble119877119900

= 5 120583m 119877119900

= 25 120583m 119877119900

= 50 120583m 119877119900

= 100 120583m 119877119900

= 200 120583m119879max = 3999K 119879max = 1688K 119879max = 7785K 119879max = 409K 119879max = 3299K119875max = 6967MPa 119875max = 3057MPa 119875max = 256MPa 119875max = 288 kPa 119875max = 136 kPa119881turb = 036ms 119881turb = 611ms 119881turb = 62ms 119881turb = 795ms 119881turb = 112ms119875AW = 2404MPa 119875AW = 880MPa 119875AW = 063MPa 119875AW = 027MPa 119875AW = 035 kPa

119873N2 = 128 times 1010 119873N2 = 132 times 10

12 119873N2 = 103 times 1013 119873N2 = 811 times 10

13 119873N2 = 644 times 1014

119873O2 = 341 times 109 119873O2 = 351 times 10

11 119873O2 = 273 times 1012 119873O2 = 216 times 10

13 119873O2 = 171 times 1014

119873W = 291 times 109

119873W = 25 times 1011

119873W = 908 times 1011

119873W = 298 times 1012

119873W = 115 times 1013

Species Equilibrium composition of species in the bubble at collapse5120583m 25 120583m 50 120583m 100120583m 200120583m

N2 626 times 10minus1 686 times 10minus1 738 times 10minus1 768 times 10minus1 779 times 10minus1

O2 128 times 10minus1 182 times 10minus1 196 times 10minus1 204 times 10minus1 207 times 10minus1

H2O 141 times 10minus2 130 times 10minus1 650 times 10minus2 280 times 10minus2 140 times 10minus2

N 156 times 10minus5 mdash mdash mdash mdash

O 595 times 10minus3 mdash mdash mdash mdashH 283 times 10minus4 mdash mdash mdash mdashO3 170 times 10

minus5 mdash mdash mdash mdashH2 253 times 10minus4 mdash mdash mdash mdashOH 951 times 10minus3 903 times 10minus5 mdash mdash mdashHO2 559 times 10

minus4

581 times 10minus6 mdash mdash mdash

H2O2 200 times 10minus5 mdash mdash mdash mdashNO 847 times 10minus2 258 times 10minus3 149 times 10minus6 mdash mdashNO2 170 times 10minus3 127 times 10minus4 284 times 10minus6 mdash mdashN2O 361 times 10

minus4

218 times 10minus6 mdash mdash mdash

NH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10minus5 mdash mdash mdash mdashHNO2 175 times 10

minus4

706 times 10minus6 mdash mdash mdash

Note solvent = water temperature (119879) = 303K static pressure (1198750) = 100 kPa dissolved gas = air and frequency (119891) = 20 kHz

ambient static pressure (ie 100 kPa) and the productionof ∙OH radical decreases as the static pressure approachesto the magnitude of acoustic pressure that is 150 kPa Theproduction of ∙OH radical at 100 kPa is typically 15 foldhigher than the ∙OH radical production at 120 kPa while at150 kPa or higher static pressure no ∙OH radical formationwas seenThis result can be attributed to the temperature peakreached at the moment of collapse of the bubble At the timeof transient collapse the highest temperature peak (3999K)was seen when the pressure was 100 kPa while the lowesttemperature peak (sim313 K) was observed with elevated staticpressure of 300 kPa

33 System Operating Temperature Another important fac-tor that affects the transient cavitation is system temperatureTo study the temperature effect on sonochemical processthe numerical simulations were run in the temperature rangefrom 283 to 373K (viz 283 303 323 343 and 373 K)The sim-ulation results are depicted in Figure 3 As the temperaturein the system increases the formation of oxidizing speciesdue to transient cavitation of bubbles reduces drasticallyThiscould be attributed to the effects of bubble radius as discussedin the earlier section In this case vapor bubbles grow

with increasing the temperature through the phenomenonof boiling [20] So the lower the temperature means thehigher the cavitation effects in the system Table 5 shows thatthe production of ∙OH radical is highest with the lowesttemperature that is at 283K while at the boiling point ofwater no ∙OH radical formation has been observed Theoverall trend of the ∙OH radical production under variousoperating temperature is 283K gt 303K gt 323K gt 343K

34 Type of Dissolved Gas Content The type of dissolvedgas has an impact on bubble nucleation rate as described inthe literatures [15 37] The simulation results for four gasesare shown in Table 6 and Figure 4 The production of ∙OHradical as well as H

2

O2

is highest for O2

bubble followed byair Ar and N

2

bubble Also the generation of O3

per bubblefor oxygen bubble is one order of magnitude higher thanthe O

3

generation by air bubble The radicals by air bubbleare formed through the reactions (3)ndash(22) while (24) and(25) represent the radical formation by O

2

bubble [39] Theproduction of radicals is least with N

2

bubble as compared toother gas bubbles This is due to the scavenging of radicals byN2

molecules through the reactions (3)ndash(16) Moreover thereis no regeneration of ∙OH and O∙ radicals by O

2

when the

10 Chinese Journal of Engineering

Table 4 Simulation summary of sonochemical process under various static pressures (119875119900

)

Conditions at the first collapse of the bubble119875119900

= 100 kPa 119875119900

= 120 kPa 119875119900

= 150 kPa 119875119900

= 200 kPa 119875119900

= 300 kPa119879max = 3999K 119879max = 3024K 119879max = 9773K 119879max = 3534K 119879max = 3127K119875max = 6967MPa 119875max = 2863MPa 119875max = 462MPa 119875max = 416 kPa 119875max = 477 kPa119881turb = 036ms 119881turb = 021ms 119881turb = 007ms 119881turb = 0008ms 119881turb = 0002ms119875AW = 2404MPa 119875AW = 543MPa 119875AW = 120 kPa 119875AW = 2 kPa 119875AW = 06 kPa

119873N2 = 128 times 1010 119873N2 = 148 times 10

10 119873N2 = 178 times 1010 119873N2 = 228 times 10

10 119873N2 = 328 times 1010

119873O2 = 341 times 109

119873O2 = 395 times 109

119873O2 = 474 times 109

119873O2 = 607 times 109

119873O2 = 873 times 109

119873W = 291 times 109

119873W = 181 times 109

119873W = 886 times 108

119873W = 819 times 1010

119873W = 381 times 108

Species Equilibrium composition of species in the bubble at collapse1 bar 12 bar 15 bar 2 bar 3 bar

N2 626 times 10minus1 699 times 10minus1 760 times 10minus1 768 times 10minus1 783 times 10minus1

O2 128 times 10minus1 167 times 10minus1 202 times 10minus1 204 times 10minus1 208 times 10minus1

H2O 141 times 10minus2

745 times 10minus2

380 times 10minus2

280 times 10minus2

900 times 10minus3

N 156 times 10minus5 mdash mdash mdash mdashO 595 times 10minus3 935 times 10minus4 mdash mdash mdashH 283 times 10minus4 409 times 10minus5 mdash mdash mdashO3 170 times 10

minus5

371 times 10minus6 mdash mdash mdash

H2 253 times 10minus4 167 times 10minus4 mdash mdash mdashOH 951 times 10minus3 633 times 10minus3 mdash mdash mdashHO2 559 times 10

minus4

360 times 10minus4 mdash mdash mdash

H2O2 200 times 10minus5 274 times 10minus5 mdash mdash mdashNO 847 times 10minus2 430 times 10minus2 264 times 10minus5 mdash mdashNO2 170 times 10

minus3

103 times 10minus3

109 times 10minus5 mdash mdash

N2O 361 times 10minus4 110 times 10minus4 mdash mdash mdashNH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10

minus5

138 times 10minus5 mdash mdash mdash

HNO2 175 times 10minus4

140 times 10minus4 mdash mdash mdash

Note solvent = water dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) = 303K and frequency (119891) = 20 kHz

bubble contents are N2

gas So the total number of radicalsper bubble in N

2

bubbling is always lower than the other gasbubbles The trend of production of ∙OH radical per bubblewith various gases bubbling is as follows O

2

gt Air gt Ar gtN2

N2

+O∙ 999448999471 N∙ +NO (3)

N2

+∙OH 999448999471 N

2

H +O∙ (4)

N2

+∙OH 999448999471 N

2

O +H∙ (5)

N2

+∙OH 999448999471 NH +NO (6)

N2

+H∙ 999448999471 N2

H (7)

N2

+H∙ 999448999471 NH + N∙ (8)

N + ∙OH 999448999471 NO +H∙ (9)

N2

O +O∙ 999448999471 2NO (10)

NO + ∙OH 999448999471 NO2

(11)

NH + ∙OH 999448999471 NH2

+O∙ (12)

NH2

+O∙ 999448999471 H∙ +HNO (13)

HNO +O∙ 999448999471 NH +O2

(14)

HNO +O∙ 999448999471 NO + ∙OH (15)

HNO + ∙OH 999448999471 NO +H2

O (16)

N +O2

999448999471 NO +O∙ (17)

NO +O2

999448999471 NO2

+O∙ (18)

NH +O2

999448999471 HNO +O∙ (19)

NH +O2

999448999471 NO + ∙OH (20)

N2

+O2

999448999471 N2

O +O∙ (21)

H∙ +O2

999448999471 HO2

∙ (22)∙OH+O

2

999448999471 HO2

+O∙ (23)

O∙ +O2

rarr O3

(24)

2HO2

999448999471 H2

O2

+O2

(25)

Chinese Journal of Engineering 11

Table 5 Simulation summary of system temperature (119879119900

) dependent sonochemical process

System temperature119879 = 283K 119879 = 303K 119879 = 323K 119879 = 343K 119879 = 373K

Conditions at the first collapse of the bubble119879max = 3989K 119879max = 3999K 119879max = 3733K 119879max = 2683K 119879max = 8117K119875max = 6815MPa 119875max = 6967MPa 119875max = 6239MPa 119875max = 1753MPa 119875max = 179MPa119881turb = 035ms 119881turb = 036ms 119881turb = 045ms 119881turb = 108ms 119881turb = 463ms119875AW = 2475MPa 119875AW = 2404MPa 119875AW = 2156MPa 119875AW = 443MPa 119875AW = 220 kPa

119873N2 = 138 times 1010

119873N2 = 128 times 1010

119873N2 = 121 times 1010

119873N2 = 113 times 1010

119873N2 = 104 times 1010

119873O2 = 366 times 109 119873O2 = 341 times 10

9 119873O2 = 320 times 109 119873O2 = 302 times 10

9 119873O2 = 277 times 109

119873W = 794 times 108 119873W = 291 times 10

9 119873W = 123 times 1010 119873W = 815 times 10

10 119873W = 179 times 1012

Species Equilibrium composition of species in the bubble at collapse283K 303K 323K 343K 373K

N2 707 times 10minus1 626 times 10minus1 413 times 10minus1 116 times 10minus1 600 times 10minus3

O2 145 times 10minus1

128 times 10minus1

884 times 10minus2

283 times 10minus2

200 times 10minus3

H2O 163 times 10minus2 141 times 10minus2 121 times 10minus2 280 times 10minus2 993 times 10minus1

N 172 times 10minus5 156 times 10minus5 384 times 10minus6 mdash mdashO 667 times 10

minus3

595 times 10minus3

244 times 10minus3

569 times 10minus5 mdash

H 321 times 10minus4 283 times 10minus4 106 times 10minus4 257 times 10minus6 mdashO3 189 times 10minus5 170 times 10minus5 838 times 10minus6 228 times 10minus7 mdashH2 291 times 10minus4 253 times 10minus4 130 times 10minus4 229 times 10minus5 mdashOH 108 times 10

minus2

951 times 10minus3

527 times 10minus3

808 times 10minus4 mdash

HO2 631 times 10minus4 559 times 10minus4 325 times 10minus4 422 times 10minus5 mdashH2O2 228 times 10minus5 200 times 10minus5 136 times 10minus5 460 times 10minus6 mdashNO 951 times 10

minus2

847 times 10minus2

472 times 10minus2

457 times 10minus3 mdash

NO2 190 times 10minus3 170 times 10minus3 104 times 10minus3 111 times 10minus4 mdashN2O 401 times 10minus4 361 times 10minus4 188 times 10minus4 869 times 10minus6 mdashNH 189 times 10

minus6

170 times 10minus6 mdash mdash mdash

HNO 667 times 10minus5 595 times 10minus5 274 times 10minus5 969 times 10minus7 mdashHNO2 196 times 10minus4 175 times 10minus4 112 times 10minus4 176 times 10minus5 mdashNote solvent = water dissolved gas = air initial bubble size (119877

0) = 5 120583m static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz

35 Type of Solvent or Cavitation Medium The solvent orcavitation medium is another important factor that affectsdirectly on the sonochemical process In order to assess thesuitability of solvent for cavitation we have chosen threesolvents with different physicochemical properties namelywater toluene and n-hexane as shown in Table 2 To addressthis issue we have presented the numerical solution withvarious solvent as cavitation medium in Figure 5 and Table 7which lists the temperature and pressure peak reached at themoment of collapse with various equilibrium compositionsof species The number of ∙OH radical production is highestwhen water is used as cavitation medium This can beattributed to the lower surface tension and higher vaporpressure of the organic solvent The production of ∙OHradical in water is typically two orders of magnitude higherthan that in toluene So due to the low intensity of bubblecollapse organic solvents are not able to generate sufficientnumbers of radical in-situ for sonochemical reactions

4 Conclusions

The lower is the system temperature the higher is thecavitation effects that is when the system temperature is

moderately low the effect of cavitation is more In this presentstudy the radical formation due to cavitation is highest whenthe system temperature is 283K So the system with lowoperating temperature and cavitation medium contents withsmall initial bubble radius is always preferable for sono-chemical reactions since this type of sonochemical reactionsystems are able to generate large amount of highly oxidizingspecies Due to the high vapor pressure and low surfacetension organic solvents cannot produce large amount ofradicals in the reaction medium thus they are not suitablefor sonochemical reactions However they could be goodsolvents for extraction or other processes using ultrasoundMoreover depending on the process requirement one canchoose the system with different gas bubbling and aqueousor organic solvents for conducting experiments

Nomenclature

119862119881119894

Heat capacity at constant volume Jkgminus1 Kminus1

119888L Velocity of sound in liquid medium m sminus1119888W Velocity of sound in water m sminus1

12 Chinese Journal of Engineering

Table 6 Effect of dissolved gas content on sonochemical process

Conditions at the first collapse of the bubbleAir bubble Nitrogen bubble Oxygen bubble Argon bubble119879max = 3999K 119879max = 4379K 119879max = 4155K 119879max = 4551K119875max = 6967MPa 119875max = 7723MPa 119875max = 7582MPa 119875max = 7866MPa119881turb = 036ms 119881turb = 037ms 119881turb = 037ms 119881turb = 037ms119875AW = 2404MPa 119875AW = 2825MPa 119875AW = 3078MPa 119875AW = 2728MPa

119873N2 = 128 times 1010 119873N2 = 163 times 10

10 119873O2 = 163 times 1010 119873Ar = 163 times 10

10

119873O2 = 341 times 109

119873W = 388 times 109

119873W = 388 times 109

119873W = 254 times 109

119873W = 291 times 109

Species Equilibrium composition of species in the bubble at collapseAir bubble Nitrogen bubble Oxygen bubble Argon bubble

N2 626 times 10minus1 805 times 10minus1 mdash mdashO2 128 times 10minus1 280 times 10minus4 793 times 10minus1 109 times 10minus3

Ar mdash mdash mdash 865 times 10minus1

H2O 141 times 10minus2 969 times 10minus3 113 times 10minus2 921 times 10minus3

N 156 times 10minus5 585 times 10minus5 mdash mdashO 595 times 10minus3 506 times 10minus4 187 times 10minus2 134 times 10minus3

H 283 times 10minus4

248 times 10minus3

221 times 10minus4

259 times 10minus3

N3 mdash 145 times 10minus6 mdash mdashO3 170 times 10minus5 mdash 328 times 10minus4 mdashH2 253 times 10

minus4

673 times 10minus3

103 times 10minus4

431 times 10minus3

OH 951 times 10minus3 250 times 10minus3 157 times 10minus2 409 times 10minus3

HO2 559 times 10minus4 677 times 10minus6 234 times 10minus3 207 times 10minus5

H2O2 200 times 10minus5

886 times 10minus7

475 times 10minus5

179 times 10minus6

NO 847 times 10minus2 565 times 10minus3 mdash mdashNO2 170 times 10minus3 493 times 10minus6 mdash mdashN2O 361 times 10

minus4

302 times 10minus5 mdash mdash

NH 170 times 10minus6

268 times 10minus5 mdash mdash

NH2 mdash 242 times 10minus5 mdash mdashNH3 mdash 178 times 10minus5 mdash mdashHNO 595 times 10

minus5

225 times 10minus5 mdash mdash

HNO2 175 times 10minus4 216 times 10minus6 mdash mdashNote solvent = water initial bubble size (119877

0) = 5 120583m temperature (119879) = 303K static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz O2 gt air gt Ar gt

N2

119888T Velocity of sound in toluene m sminus1119888H Velocity of sound in n-hexane m sminus1119863w Diffusion coefficient of solvent vapor m2

sminus1119891 Frequency of ultrasound wave Hz119891119894

Translational and rotational degrees offreedom

ℎ Van der Waalrsquos hard core radius m119868diffw Instantaneous diffusive penetration depth

for water molecules119896 Boltzmann constant J Kminus1119873W Number of water molecules trapped in the

bubble119873N2

Number of N2

molecules in the bubble119873O2

Number of oxygenmolecules in the bubble119873T Number of toluenemolecules in the bubble119873H Number of n-hexane molecules in the

bubble

119873Ar Number of Ar molecules in the bubble119873tot Total number of molecules (gas + vapor) in

the bubble119875119900

Static pressure in the liquid medium Pa119875max Pressure peak reached in the bubble at the

time of first collapse Pa119875AW Pressure amplitude of the acoustic wave

generated by the cavitation bubble Pa119876 Heat conducted across bubble wall J sminus1119877 Radius of the bubble m119877119900

Initial radius of the cavitation bubble m119889119877119889119905 Bubble wall velocity m sminus1119905 Time s119879 Temperature of the bubble contents K119879119900

Ambient (or bulk liquid medium) temper-ature K

119879max Temperature peak reached in the bubble atthe time of first collapse K

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 10: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

10 Chinese Journal of Engineering

Table 4 Simulation summary of sonochemical process under various static pressures (119875119900

)

Conditions at the first collapse of the bubble119875119900

= 100 kPa 119875119900

= 120 kPa 119875119900

= 150 kPa 119875119900

= 200 kPa 119875119900

= 300 kPa119879max = 3999K 119879max = 3024K 119879max = 9773K 119879max = 3534K 119879max = 3127K119875max = 6967MPa 119875max = 2863MPa 119875max = 462MPa 119875max = 416 kPa 119875max = 477 kPa119881turb = 036ms 119881turb = 021ms 119881turb = 007ms 119881turb = 0008ms 119881turb = 0002ms119875AW = 2404MPa 119875AW = 543MPa 119875AW = 120 kPa 119875AW = 2 kPa 119875AW = 06 kPa

119873N2 = 128 times 1010 119873N2 = 148 times 10

10 119873N2 = 178 times 1010 119873N2 = 228 times 10

10 119873N2 = 328 times 1010

119873O2 = 341 times 109

119873O2 = 395 times 109

119873O2 = 474 times 109

119873O2 = 607 times 109

119873O2 = 873 times 109

119873W = 291 times 109

119873W = 181 times 109

119873W = 886 times 108

119873W = 819 times 1010

119873W = 381 times 108

Species Equilibrium composition of species in the bubble at collapse1 bar 12 bar 15 bar 2 bar 3 bar

N2 626 times 10minus1 699 times 10minus1 760 times 10minus1 768 times 10minus1 783 times 10minus1

O2 128 times 10minus1 167 times 10minus1 202 times 10minus1 204 times 10minus1 208 times 10minus1

H2O 141 times 10minus2

745 times 10minus2

380 times 10minus2

280 times 10minus2

900 times 10minus3

N 156 times 10minus5 mdash mdash mdash mdashO 595 times 10minus3 935 times 10minus4 mdash mdash mdashH 283 times 10minus4 409 times 10minus5 mdash mdash mdashO3 170 times 10

minus5

371 times 10minus6 mdash mdash mdash

H2 253 times 10minus4 167 times 10minus4 mdash mdash mdashOH 951 times 10minus3 633 times 10minus3 mdash mdash mdashHO2 559 times 10

minus4

360 times 10minus4 mdash mdash mdash

H2O2 200 times 10minus5 274 times 10minus5 mdash mdash mdashNO 847 times 10minus2 430 times 10minus2 264 times 10minus5 mdash mdashNO2 170 times 10

minus3

103 times 10minus3

109 times 10minus5 mdash mdash

N2O 361 times 10minus4 110 times 10minus4 mdash mdash mdashNH 170 times 10minus6 mdash mdash mdash mdashHNO 595 times 10

minus5

138 times 10minus5 mdash mdash mdash

HNO2 175 times 10minus4

140 times 10minus4 mdash mdash mdash

Note solvent = water dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) = 303K and frequency (119891) = 20 kHz

bubble contents are N2

gas So the total number of radicalsper bubble in N

2

bubbling is always lower than the other gasbubbles The trend of production of ∙OH radical per bubblewith various gases bubbling is as follows O

2

gt Air gt Ar gtN2

N2

+O∙ 999448999471 N∙ +NO (3)

N2

+∙OH 999448999471 N

2

H +O∙ (4)

N2

+∙OH 999448999471 N

2

O +H∙ (5)

N2

+∙OH 999448999471 NH +NO (6)

N2

+H∙ 999448999471 N2

H (7)

N2

+H∙ 999448999471 NH + N∙ (8)

N + ∙OH 999448999471 NO +H∙ (9)

N2

O +O∙ 999448999471 2NO (10)

NO + ∙OH 999448999471 NO2

(11)

NH + ∙OH 999448999471 NH2

+O∙ (12)

NH2

+O∙ 999448999471 H∙ +HNO (13)

HNO +O∙ 999448999471 NH +O2

(14)

HNO +O∙ 999448999471 NO + ∙OH (15)

HNO + ∙OH 999448999471 NO +H2

O (16)

N +O2

999448999471 NO +O∙ (17)

NO +O2

999448999471 NO2

+O∙ (18)

NH +O2

999448999471 HNO +O∙ (19)

NH +O2

999448999471 NO + ∙OH (20)

N2

+O2

999448999471 N2

O +O∙ (21)

H∙ +O2

999448999471 HO2

∙ (22)∙OH+O

2

999448999471 HO2

+O∙ (23)

O∙ +O2

rarr O3

(24)

2HO2

999448999471 H2

O2

+O2

(25)

Chinese Journal of Engineering 11

Table 5 Simulation summary of system temperature (119879119900

) dependent sonochemical process

System temperature119879 = 283K 119879 = 303K 119879 = 323K 119879 = 343K 119879 = 373K

Conditions at the first collapse of the bubble119879max = 3989K 119879max = 3999K 119879max = 3733K 119879max = 2683K 119879max = 8117K119875max = 6815MPa 119875max = 6967MPa 119875max = 6239MPa 119875max = 1753MPa 119875max = 179MPa119881turb = 035ms 119881turb = 036ms 119881turb = 045ms 119881turb = 108ms 119881turb = 463ms119875AW = 2475MPa 119875AW = 2404MPa 119875AW = 2156MPa 119875AW = 443MPa 119875AW = 220 kPa

119873N2 = 138 times 1010

119873N2 = 128 times 1010

119873N2 = 121 times 1010

119873N2 = 113 times 1010

119873N2 = 104 times 1010

119873O2 = 366 times 109 119873O2 = 341 times 10

9 119873O2 = 320 times 109 119873O2 = 302 times 10

9 119873O2 = 277 times 109

119873W = 794 times 108 119873W = 291 times 10

9 119873W = 123 times 1010 119873W = 815 times 10

10 119873W = 179 times 1012

Species Equilibrium composition of species in the bubble at collapse283K 303K 323K 343K 373K

N2 707 times 10minus1 626 times 10minus1 413 times 10minus1 116 times 10minus1 600 times 10minus3

O2 145 times 10minus1

128 times 10minus1

884 times 10minus2

283 times 10minus2

200 times 10minus3

H2O 163 times 10minus2 141 times 10minus2 121 times 10minus2 280 times 10minus2 993 times 10minus1

N 172 times 10minus5 156 times 10minus5 384 times 10minus6 mdash mdashO 667 times 10

minus3

595 times 10minus3

244 times 10minus3

569 times 10minus5 mdash

H 321 times 10minus4 283 times 10minus4 106 times 10minus4 257 times 10minus6 mdashO3 189 times 10minus5 170 times 10minus5 838 times 10minus6 228 times 10minus7 mdashH2 291 times 10minus4 253 times 10minus4 130 times 10minus4 229 times 10minus5 mdashOH 108 times 10

minus2

951 times 10minus3

527 times 10minus3

808 times 10minus4 mdash

HO2 631 times 10minus4 559 times 10minus4 325 times 10minus4 422 times 10minus5 mdashH2O2 228 times 10minus5 200 times 10minus5 136 times 10minus5 460 times 10minus6 mdashNO 951 times 10

minus2

847 times 10minus2

472 times 10minus2

457 times 10minus3 mdash

NO2 190 times 10minus3 170 times 10minus3 104 times 10minus3 111 times 10minus4 mdashN2O 401 times 10minus4 361 times 10minus4 188 times 10minus4 869 times 10minus6 mdashNH 189 times 10

minus6

170 times 10minus6 mdash mdash mdash

HNO 667 times 10minus5 595 times 10minus5 274 times 10minus5 969 times 10minus7 mdashHNO2 196 times 10minus4 175 times 10minus4 112 times 10minus4 176 times 10minus5 mdashNote solvent = water dissolved gas = air initial bubble size (119877

0) = 5 120583m static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz

35 Type of Solvent or Cavitation Medium The solvent orcavitation medium is another important factor that affectsdirectly on the sonochemical process In order to assess thesuitability of solvent for cavitation we have chosen threesolvents with different physicochemical properties namelywater toluene and n-hexane as shown in Table 2 To addressthis issue we have presented the numerical solution withvarious solvent as cavitation medium in Figure 5 and Table 7which lists the temperature and pressure peak reached at themoment of collapse with various equilibrium compositionsof species The number of ∙OH radical production is highestwhen water is used as cavitation medium This can beattributed to the lower surface tension and higher vaporpressure of the organic solvent The production of ∙OHradical in water is typically two orders of magnitude higherthan that in toluene So due to the low intensity of bubblecollapse organic solvents are not able to generate sufficientnumbers of radical in-situ for sonochemical reactions

4 Conclusions

The lower is the system temperature the higher is thecavitation effects that is when the system temperature is

moderately low the effect of cavitation is more In this presentstudy the radical formation due to cavitation is highest whenthe system temperature is 283K So the system with lowoperating temperature and cavitation medium contents withsmall initial bubble radius is always preferable for sono-chemical reactions since this type of sonochemical reactionsystems are able to generate large amount of highly oxidizingspecies Due to the high vapor pressure and low surfacetension organic solvents cannot produce large amount ofradicals in the reaction medium thus they are not suitablefor sonochemical reactions However they could be goodsolvents for extraction or other processes using ultrasoundMoreover depending on the process requirement one canchoose the system with different gas bubbling and aqueousor organic solvents for conducting experiments

Nomenclature

119862119881119894

Heat capacity at constant volume Jkgminus1 Kminus1

119888L Velocity of sound in liquid medium m sminus1119888W Velocity of sound in water m sminus1

12 Chinese Journal of Engineering

Table 6 Effect of dissolved gas content on sonochemical process

Conditions at the first collapse of the bubbleAir bubble Nitrogen bubble Oxygen bubble Argon bubble119879max = 3999K 119879max = 4379K 119879max = 4155K 119879max = 4551K119875max = 6967MPa 119875max = 7723MPa 119875max = 7582MPa 119875max = 7866MPa119881turb = 036ms 119881turb = 037ms 119881turb = 037ms 119881turb = 037ms119875AW = 2404MPa 119875AW = 2825MPa 119875AW = 3078MPa 119875AW = 2728MPa

119873N2 = 128 times 1010 119873N2 = 163 times 10

10 119873O2 = 163 times 1010 119873Ar = 163 times 10

10

119873O2 = 341 times 109

119873W = 388 times 109

119873W = 388 times 109

119873W = 254 times 109

119873W = 291 times 109

Species Equilibrium composition of species in the bubble at collapseAir bubble Nitrogen bubble Oxygen bubble Argon bubble

N2 626 times 10minus1 805 times 10minus1 mdash mdashO2 128 times 10minus1 280 times 10minus4 793 times 10minus1 109 times 10minus3

Ar mdash mdash mdash 865 times 10minus1

H2O 141 times 10minus2 969 times 10minus3 113 times 10minus2 921 times 10minus3

N 156 times 10minus5 585 times 10minus5 mdash mdashO 595 times 10minus3 506 times 10minus4 187 times 10minus2 134 times 10minus3

H 283 times 10minus4

248 times 10minus3

221 times 10minus4

259 times 10minus3

N3 mdash 145 times 10minus6 mdash mdashO3 170 times 10minus5 mdash 328 times 10minus4 mdashH2 253 times 10

minus4

673 times 10minus3

103 times 10minus4

431 times 10minus3

OH 951 times 10minus3 250 times 10minus3 157 times 10minus2 409 times 10minus3

HO2 559 times 10minus4 677 times 10minus6 234 times 10minus3 207 times 10minus5

H2O2 200 times 10minus5

886 times 10minus7

475 times 10minus5

179 times 10minus6

NO 847 times 10minus2 565 times 10minus3 mdash mdashNO2 170 times 10minus3 493 times 10minus6 mdash mdashN2O 361 times 10

minus4

302 times 10minus5 mdash mdash

NH 170 times 10minus6

268 times 10minus5 mdash mdash

NH2 mdash 242 times 10minus5 mdash mdashNH3 mdash 178 times 10minus5 mdash mdashHNO 595 times 10

minus5

225 times 10minus5 mdash mdash

HNO2 175 times 10minus4 216 times 10minus6 mdash mdashNote solvent = water initial bubble size (119877

0) = 5 120583m temperature (119879) = 303K static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz O2 gt air gt Ar gt

N2

119888T Velocity of sound in toluene m sminus1119888H Velocity of sound in n-hexane m sminus1119863w Diffusion coefficient of solvent vapor m2

sminus1119891 Frequency of ultrasound wave Hz119891119894

Translational and rotational degrees offreedom

ℎ Van der Waalrsquos hard core radius m119868diffw Instantaneous diffusive penetration depth

for water molecules119896 Boltzmann constant J Kminus1119873W Number of water molecules trapped in the

bubble119873N2

Number of N2

molecules in the bubble119873O2

Number of oxygenmolecules in the bubble119873T Number of toluenemolecules in the bubble119873H Number of n-hexane molecules in the

bubble

119873Ar Number of Ar molecules in the bubble119873tot Total number of molecules (gas + vapor) in

the bubble119875119900

Static pressure in the liquid medium Pa119875max Pressure peak reached in the bubble at the

time of first collapse Pa119875AW Pressure amplitude of the acoustic wave

generated by the cavitation bubble Pa119876 Heat conducted across bubble wall J sminus1119877 Radius of the bubble m119877119900

Initial radius of the cavitation bubble m119889119877119889119905 Bubble wall velocity m sminus1119905 Time s119879 Temperature of the bubble contents K119879119900

Ambient (or bulk liquid medium) temper-ature K

119879max Temperature peak reached in the bubble atthe time of first collapse K

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 11: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

Chinese Journal of Engineering 11

Table 5 Simulation summary of system temperature (119879119900

) dependent sonochemical process

System temperature119879 = 283K 119879 = 303K 119879 = 323K 119879 = 343K 119879 = 373K

Conditions at the first collapse of the bubble119879max = 3989K 119879max = 3999K 119879max = 3733K 119879max = 2683K 119879max = 8117K119875max = 6815MPa 119875max = 6967MPa 119875max = 6239MPa 119875max = 1753MPa 119875max = 179MPa119881turb = 035ms 119881turb = 036ms 119881turb = 045ms 119881turb = 108ms 119881turb = 463ms119875AW = 2475MPa 119875AW = 2404MPa 119875AW = 2156MPa 119875AW = 443MPa 119875AW = 220 kPa

119873N2 = 138 times 1010

119873N2 = 128 times 1010

119873N2 = 121 times 1010

119873N2 = 113 times 1010

119873N2 = 104 times 1010

119873O2 = 366 times 109 119873O2 = 341 times 10

9 119873O2 = 320 times 109 119873O2 = 302 times 10

9 119873O2 = 277 times 109

119873W = 794 times 108 119873W = 291 times 10

9 119873W = 123 times 1010 119873W = 815 times 10

10 119873W = 179 times 1012

Species Equilibrium composition of species in the bubble at collapse283K 303K 323K 343K 373K

N2 707 times 10minus1 626 times 10minus1 413 times 10minus1 116 times 10minus1 600 times 10minus3

O2 145 times 10minus1

128 times 10minus1

884 times 10minus2

283 times 10minus2

200 times 10minus3

H2O 163 times 10minus2 141 times 10minus2 121 times 10minus2 280 times 10minus2 993 times 10minus1

N 172 times 10minus5 156 times 10minus5 384 times 10minus6 mdash mdashO 667 times 10

minus3

595 times 10minus3

244 times 10minus3

569 times 10minus5 mdash

H 321 times 10minus4 283 times 10minus4 106 times 10minus4 257 times 10minus6 mdashO3 189 times 10minus5 170 times 10minus5 838 times 10minus6 228 times 10minus7 mdashH2 291 times 10minus4 253 times 10minus4 130 times 10minus4 229 times 10minus5 mdashOH 108 times 10

minus2

951 times 10minus3

527 times 10minus3

808 times 10minus4 mdash

HO2 631 times 10minus4 559 times 10minus4 325 times 10minus4 422 times 10minus5 mdashH2O2 228 times 10minus5 200 times 10minus5 136 times 10minus5 460 times 10minus6 mdashNO 951 times 10

minus2

847 times 10minus2

472 times 10minus2

457 times 10minus3 mdash

NO2 190 times 10minus3 170 times 10minus3 104 times 10minus3 111 times 10minus4 mdashN2O 401 times 10minus4 361 times 10minus4 188 times 10minus4 869 times 10minus6 mdashNH 189 times 10

minus6

170 times 10minus6 mdash mdash mdash

HNO 667 times 10minus5 595 times 10minus5 274 times 10minus5 969 times 10minus7 mdashHNO2 196 times 10minus4 175 times 10minus4 112 times 10minus4 176 times 10minus5 mdashNote solvent = water dissolved gas = air initial bubble size (119877

0) = 5 120583m static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz

35 Type of Solvent or Cavitation Medium The solvent orcavitation medium is another important factor that affectsdirectly on the sonochemical process In order to assess thesuitability of solvent for cavitation we have chosen threesolvents with different physicochemical properties namelywater toluene and n-hexane as shown in Table 2 To addressthis issue we have presented the numerical solution withvarious solvent as cavitation medium in Figure 5 and Table 7which lists the temperature and pressure peak reached at themoment of collapse with various equilibrium compositionsof species The number of ∙OH radical production is highestwhen water is used as cavitation medium This can beattributed to the lower surface tension and higher vaporpressure of the organic solvent The production of ∙OHradical in water is typically two orders of magnitude higherthan that in toluene So due to the low intensity of bubblecollapse organic solvents are not able to generate sufficientnumbers of radical in-situ for sonochemical reactions

4 Conclusions

The lower is the system temperature the higher is thecavitation effects that is when the system temperature is

moderately low the effect of cavitation is more In this presentstudy the radical formation due to cavitation is highest whenthe system temperature is 283K So the system with lowoperating temperature and cavitation medium contents withsmall initial bubble radius is always preferable for sono-chemical reactions since this type of sonochemical reactionsystems are able to generate large amount of highly oxidizingspecies Due to the high vapor pressure and low surfacetension organic solvents cannot produce large amount ofradicals in the reaction medium thus they are not suitablefor sonochemical reactions However they could be goodsolvents for extraction or other processes using ultrasoundMoreover depending on the process requirement one canchoose the system with different gas bubbling and aqueousor organic solvents for conducting experiments

Nomenclature

119862119881119894

Heat capacity at constant volume Jkgminus1 Kminus1

119888L Velocity of sound in liquid medium m sminus1119888W Velocity of sound in water m sminus1

12 Chinese Journal of Engineering

Table 6 Effect of dissolved gas content on sonochemical process

Conditions at the first collapse of the bubbleAir bubble Nitrogen bubble Oxygen bubble Argon bubble119879max = 3999K 119879max = 4379K 119879max = 4155K 119879max = 4551K119875max = 6967MPa 119875max = 7723MPa 119875max = 7582MPa 119875max = 7866MPa119881turb = 036ms 119881turb = 037ms 119881turb = 037ms 119881turb = 037ms119875AW = 2404MPa 119875AW = 2825MPa 119875AW = 3078MPa 119875AW = 2728MPa

119873N2 = 128 times 1010 119873N2 = 163 times 10

10 119873O2 = 163 times 1010 119873Ar = 163 times 10

10

119873O2 = 341 times 109

119873W = 388 times 109

119873W = 388 times 109

119873W = 254 times 109

119873W = 291 times 109

Species Equilibrium composition of species in the bubble at collapseAir bubble Nitrogen bubble Oxygen bubble Argon bubble

N2 626 times 10minus1 805 times 10minus1 mdash mdashO2 128 times 10minus1 280 times 10minus4 793 times 10minus1 109 times 10minus3

Ar mdash mdash mdash 865 times 10minus1

H2O 141 times 10minus2 969 times 10minus3 113 times 10minus2 921 times 10minus3

N 156 times 10minus5 585 times 10minus5 mdash mdashO 595 times 10minus3 506 times 10minus4 187 times 10minus2 134 times 10minus3

H 283 times 10minus4

248 times 10minus3

221 times 10minus4

259 times 10minus3

N3 mdash 145 times 10minus6 mdash mdashO3 170 times 10minus5 mdash 328 times 10minus4 mdashH2 253 times 10

minus4

673 times 10minus3

103 times 10minus4

431 times 10minus3

OH 951 times 10minus3 250 times 10minus3 157 times 10minus2 409 times 10minus3

HO2 559 times 10minus4 677 times 10minus6 234 times 10minus3 207 times 10minus5

H2O2 200 times 10minus5

886 times 10minus7

475 times 10minus5

179 times 10minus6

NO 847 times 10minus2 565 times 10minus3 mdash mdashNO2 170 times 10minus3 493 times 10minus6 mdash mdashN2O 361 times 10

minus4

302 times 10minus5 mdash mdash

NH 170 times 10minus6

268 times 10minus5 mdash mdash

NH2 mdash 242 times 10minus5 mdash mdashNH3 mdash 178 times 10minus5 mdash mdashHNO 595 times 10

minus5

225 times 10minus5 mdash mdash

HNO2 175 times 10minus4 216 times 10minus6 mdash mdashNote solvent = water initial bubble size (119877

0) = 5 120583m temperature (119879) = 303K static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz O2 gt air gt Ar gt

N2

119888T Velocity of sound in toluene m sminus1119888H Velocity of sound in n-hexane m sminus1119863w Diffusion coefficient of solvent vapor m2

sminus1119891 Frequency of ultrasound wave Hz119891119894

Translational and rotational degrees offreedom

ℎ Van der Waalrsquos hard core radius m119868diffw Instantaneous diffusive penetration depth

for water molecules119896 Boltzmann constant J Kminus1119873W Number of water molecules trapped in the

bubble119873N2

Number of N2

molecules in the bubble119873O2

Number of oxygenmolecules in the bubble119873T Number of toluenemolecules in the bubble119873H Number of n-hexane molecules in the

bubble

119873Ar Number of Ar molecules in the bubble119873tot Total number of molecules (gas + vapor) in

the bubble119875119900

Static pressure in the liquid medium Pa119875max Pressure peak reached in the bubble at the

time of first collapse Pa119875AW Pressure amplitude of the acoustic wave

generated by the cavitation bubble Pa119876 Heat conducted across bubble wall J sminus1119877 Radius of the bubble m119877119900

Initial radius of the cavitation bubble m119889119877119889119905 Bubble wall velocity m sminus1119905 Time s119879 Temperature of the bubble contents K119879119900

Ambient (or bulk liquid medium) temper-ature K

119879max Temperature peak reached in the bubble atthe time of first collapse K

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 12: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

12 Chinese Journal of Engineering

Table 6 Effect of dissolved gas content on sonochemical process

Conditions at the first collapse of the bubbleAir bubble Nitrogen bubble Oxygen bubble Argon bubble119879max = 3999K 119879max = 4379K 119879max = 4155K 119879max = 4551K119875max = 6967MPa 119875max = 7723MPa 119875max = 7582MPa 119875max = 7866MPa119881turb = 036ms 119881turb = 037ms 119881turb = 037ms 119881turb = 037ms119875AW = 2404MPa 119875AW = 2825MPa 119875AW = 3078MPa 119875AW = 2728MPa

119873N2 = 128 times 1010 119873N2 = 163 times 10

10 119873O2 = 163 times 1010 119873Ar = 163 times 10

10

119873O2 = 341 times 109

119873W = 388 times 109

119873W = 388 times 109

119873W = 254 times 109

119873W = 291 times 109

Species Equilibrium composition of species in the bubble at collapseAir bubble Nitrogen bubble Oxygen bubble Argon bubble

N2 626 times 10minus1 805 times 10minus1 mdash mdashO2 128 times 10minus1 280 times 10minus4 793 times 10minus1 109 times 10minus3

Ar mdash mdash mdash 865 times 10minus1

H2O 141 times 10minus2 969 times 10minus3 113 times 10minus2 921 times 10minus3

N 156 times 10minus5 585 times 10minus5 mdash mdashO 595 times 10minus3 506 times 10minus4 187 times 10minus2 134 times 10minus3

H 283 times 10minus4

248 times 10minus3

221 times 10minus4

259 times 10minus3

N3 mdash 145 times 10minus6 mdash mdashO3 170 times 10minus5 mdash 328 times 10minus4 mdashH2 253 times 10

minus4

673 times 10minus3

103 times 10minus4

431 times 10minus3

OH 951 times 10minus3 250 times 10minus3 157 times 10minus2 409 times 10minus3

HO2 559 times 10minus4 677 times 10minus6 234 times 10minus3 207 times 10minus5

H2O2 200 times 10minus5

886 times 10minus7

475 times 10minus5

179 times 10minus6

NO 847 times 10minus2 565 times 10minus3 mdash mdashNO2 170 times 10minus3 493 times 10minus6 mdash mdashN2O 361 times 10

minus4

302 times 10minus5 mdash mdash

NH 170 times 10minus6

268 times 10minus5 mdash mdash

NH2 mdash 242 times 10minus5 mdash mdashNH3 mdash 178 times 10minus5 mdash mdashHNO 595 times 10

minus5

225 times 10minus5 mdash mdash

HNO2 175 times 10minus4 216 times 10minus6 mdash mdashNote solvent = water initial bubble size (119877

0) = 5 120583m temperature (119879) = 303K static pressure (119875

0) = 100 kPa and frequency (119891) = 20 kHz O2 gt air gt Ar gt

N2

119888T Velocity of sound in toluene m sminus1119888H Velocity of sound in n-hexane m sminus1119863w Diffusion coefficient of solvent vapor m2

sminus1119891 Frequency of ultrasound wave Hz119891119894

Translational and rotational degrees offreedom

ℎ Van der Waalrsquos hard core radius m119868diffw Instantaneous diffusive penetration depth

for water molecules119896 Boltzmann constant J Kminus1119873W Number of water molecules trapped in the

bubble119873N2

Number of N2

molecules in the bubble119873O2

Number of oxygenmolecules in the bubble119873T Number of toluenemolecules in the bubble119873H Number of n-hexane molecules in the

bubble

119873Ar Number of Ar molecules in the bubble119873tot Total number of molecules (gas + vapor) in

the bubble119875119900

Static pressure in the liquid medium Pa119875max Pressure peak reached in the bubble at the

time of first collapse Pa119875AW Pressure amplitude of the acoustic wave

generated by the cavitation bubble Pa119876 Heat conducted across bubble wall J sminus1119877 Radius of the bubble m119877119900

Initial radius of the cavitation bubble m119889119877119889119905 Bubble wall velocity m sminus1119905 Time s119879 Temperature of the bubble contents K119879119900

Ambient (or bulk liquid medium) temper-ature K

119879max Temperature peak reached in the bubble atthe time of first collapse K

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 13: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

Chinese Journal of Engineering 13

Table 7 Simulation summary of sonochemical process with differ-ent solvent as cavitation medium

Conditions at the first collapse of the bubbleH2O2 C6H5ndashCH3 C6H12

119879max = 3179K 119879max = 4835K 119879max = 1151K119875max = 355MPa 119875max = 9617MPa 119875max = 4455MPa119881turb = 025ms 119881turb = 015ms 119881turb = 0005ms119875AW = 1261MPa 119875AW = 3016MPa 119875AW = 188 kPa

119873N2 = 131 times 1010

119873N2 = 113 times 109

119873N2 = 107 times 1010

119873O2 = 347 times 109

119873O2 = 299 times 108

119873O2 = 285 times 109

119873W = 121 times 109 119873T = 402 times 10

3 119873H = 605 times 1010

SpeciesEquilibrium composition of species in the bubble at

collapseH2O2 C6H5ndashCH3 C6H12

N2 709 times 10minus1 717 times 10minus1 140 times 10minus1

O2 166 times 10minus1 126 times 10minus1 mdashH2O 537 times 10

minus2 mdash 628 times 10minus2

N mdash 192 times 10minus4 mdash

O 138 times 10minus3 206 times 10minus2 mdashH 590 times 10minus5 151 times 10minus6 mdashN3 mdash 386 times 10

minus6 mdashO3 544 times 10minus6 384 times 10minus5 mdashH2 177 times 10minus4 mdash 898 times 10minus1

OH 696 times 10minus3

195 times 10minus5 mdash

HO2 410 times 10minus4 104 times 10minus6 mdashH2O2 268 times 10minus5 mdash mdashNO 514 times 10

minus2

142 times 10minus1 mdash

NO2 123 times 10minus3

229 times 10minus3 mdash

NO3 mdash 166 times 10minus6 mdashN2O 149 times 10minus4 748 times 10minus4 mdashN2O3 mdash 115 times 10

minus6 mdashHNO 191 times 10minus5 mdash mdashHNO2 157 times 10minus4 mdash mdashCO mdash 710 times 10

minus6

118 times 10minus2

CO2 mdash 126 times 10minus5 702 times 10minus4

NH3 mdash mdash 990 times 10minus3

HCN mdash mdash 148 times 10minus5

CH4 mdash mdash 237C2H4 mdash mdash 111 times 10minus4

C2H6 mdash mdash 409 times 10minus3

Note dissolved gas = air initial bubble size (1198770) = 5 120583m temperature (119879) =

303K static pressure (1198750) = 100 kPa and frequency (119891) = 35 kHz

119881turb Average velocity of the microturbulencein the medium generated by ultrasoundand cavitation in the medium (estimated at1mm distance from bubble center) m sminus1

120588L Density of the liquid kg mminus3120592 Kinematic viscosity of liquid m2 sminus1120590 Surface tension of liquid N mminus1120581 Thermal conductivity of bubble contents

W mminus1 Kminus1120582 Thermal diffusivity of bubble contents m2

sminus1

120579 Characteristic vibrational temperature(s) ofthe species K

Conflict of Interests

The authors of the paper do not have any direct financialrelation that might lead to a conflict of interest for any of theauthors

References

[1] J O Hirschfelder C F Curtiss and R B BirdMolecularTheoryof Gases and Liquids John Wiley amp Sons New York NY USA1954

[2] E U Condon and H Odishaw Handbook of Physics McGraw-Hill New York NY USA 1958

[3] R C Reid J M Prausnitz and B E Poling Properties of Gasesand Liquids McGraw-Hill New York NY USA 1987

[4] H Xu B W Zeiger and K S Suslick ldquoSonochemical synthesisof nanomaterialsrdquo Chemical Society Reviews vol 42 pp 2555ndash2567 2013

[5] J H Bang and K S Suslick ldquoApplications of ultrasound to thesynthesis of nanostructuredmaterialsrdquoAdvancedMaterials vol22 no 10 pp 1039ndash1059 2010

[6] S Kanmuri and V S Moholkar ldquoMechanistic aspects ofsonochemical copolymerization of butyl acrylate and methylmethacrylaterdquo Polymer vol 51 no 14 pp 3249ndash3261 2010

[7] M Sivakumar A Gedanken W Zhong et al ldquoNanophaseformation of strontium hexaferrite fine powder by the sono-chemical method using Fe(CO)

5

rdquo Journal of Magnetism andMagnetic Materials vol 268 no 1-2 pp 95ndash104 2004

[8] P R Gogate and G S Bhosale ldquoComparison of effectiveness ofacoustic and hydrodynamic cavitation in combined treatmentschemes for degradation of dye wastewatersrdquo Chemical Engi-neering and Processing Process Intensificationdoi 2013

[9] S Chakma and V S Moholkar ldquoPhysical mechanism of sono-fenton processrdquo AIChE Journal 2013

[10] J B Bhasarkar S Chakma and V S Moholkar ldquoMechanis-tic features of oxidative desulfurization using sono-fenton-peracetic acid (UltrasoundFe2+-CH

3

COOH-H2

O2

) systemrdquoIndustrial amp Engineering Chemistry Research vol 52 no 26 pp9038ndash9047 2013

[11] P Braeutigam M Franke R J Schneider A Lehmann AStolle and B Ondruschka ldquoDegradation of carbamazepine inenvironmentally relevant concentrations in water by Hydrody-nam ic-Acoustic-Cavitation (HAC)rdquo Water Research vol 46no 7 pp 2469ndash2477 2012

[12] J Madhavan P S S Kumar S Anandan M Zhou FGrieser and M Ashokkumar ldquoUltrasound assisted photocat-alytic degradation of diclofenac in an aqueous environmentrdquoChemosphere vol 80 no 7 pp 747ndash752 2010

[13] P A Parkar H A Choudhary andV SMoholkar ldquoMechanisticand kinetic investigations in ultrasound assisted acid catalyzedbiodiesel synthesisrdquo Chemical Engineering Journal vol 187 pp248ndash260 2012

[14] H A Choudhury S Chakma andV SMoholkar ldquoMechanisticinsight into sonochemical biodiesel synthesis using heteroge-neous base catalystrdquo Ultrasonics Sonochemistry 2013

[15] J Rooze E V Rebrov J C Schouten and J T F KeurentjesldquoDissolved gas and ultrasonic cavitationmdasha reviewrdquoUltrasonicsSonochemistry vol 20 pp 1ndash11 2013

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 14: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

14 Chinese Journal of Engineering

[16] K D Bhatte S-I Fujita M Arai A B Pandit and BM Bhanage ldquoUltrasound assisted additive free synthesis ofnanocrystalline zinc oxiderdquo Ultrasonics Sonochemistry vol 18no 1 pp 54ndash58 2011

[17] K S SuslickMMMdleleni and J T Ries ldquoChemistry inducedby hydrodynamic cavitationrdquo Journal of the American ChemicalSociety vol 119 no 39 pp 9303ndash9304 1997

[18] J S Krishnan P Dwivedi and V S Moholkar ldquoNumericalinvestigation into the chemistry induced by hydrodynamiccavitationrdquo Industrial and Engineering Chemistry Research vol45 no 4 pp 1493ndash1504 2006

[19] T G LeightTheAcoustic Bubble Academic Press London UK1995

[20] Y T Shah A B Pandit and V S MoholkarCavitation ReactionEngineering Kluwer AcademicPlenum New York NY USA1999

[21] K S Suslick ldquoSonochemistryrdquo Science vol 247 no 4949 pp1439ndash1445 1990

[22] T Sivasankar and V S Moholkar ldquoMechanistic approach tointensification of sonochemical degradation of phenolrdquo Chem-ical Engineering Journal vol 149 no 1ndash3 pp 57ndash69 2009

[23] R Andreozzi V Caprio A Insola and R Marotta ldquoAdvancedoxidation processes (AOP) for water purification and recoveryrdquoCatalysis Today vol 53 no 1 pp 51ndash59 1999

[24] R E Apfel ldquoAcoustic cavitation inceptionrdquo Ultrasonics vol 22no 4 pp 167ndash173 1984

[25] C Gong and D P Hart ldquoUltrasound induced cavitationand sonochemical yieldsrdquo Journal of the Acoustical Society ofAmerica vol 104 no 5 pp 2675ndash2682 1998

[26] K S Suslick Y Didenko M M Fang et al ldquoAcoustic cavitationand its chemical consequencesrdquo Philosophical Transactions ofthe Royal Society A vol 357 no 1751 pp 335ndash353 1999

[27] P R Gogate and A B Pandit ldquoA review of imperative technolo-gies for wastewater treatment II hybrid methodsrdquo Advances inEnvironmental Research vol 8 no 3-4 pp 553ndash597 2004

[28] R Toegel B Gompf R Pecha and D Lohse ldquoDoes water vaporprevent upscaling sonoluminescencerdquo Physical Review Lettersvol 85 no 15 pp 3165ndash3168 2000

[29] B D Storey and A J Szeri ldquoWater vapour sonoluminescenceand sono chemistryrdquo Proceedings of the Royal Society A vol 456no 1999 pp 1685ndash1709 2000

[30] J B Keller and M Miksis ldquoBubble oscillations of large ampli-tuderdquo Journal of the Acoustical Society of America vol 68 no 2pp 628ndash633 1980

[31] R B Bird W E Stewart and E N Lightfoot LightfootTransport Phenomena JohnWiley amp Sons New York NY USA2nd edition 2001

[32] WH Press S A Teukolsky B P Flannery andW T VetterlingNumerical Recipes Cambridge University Press New York NYUSA 2nd edition 1992

[33] G Eriksson ldquoThermodynamic studies of high temperatureequilibriamdashXII SOLGAMIX a computer program for cal-culation of equilibrium composition in multiphase systemsrdquoChemica scripta vol 8 pp 100ndash103 1975

[34] SGrossmann SHilgenfeldtM Zomack andD Lohse ldquoSoundradiation of 3-MHzdriven gas bubblesrdquo Journal of theAcousticalSociety of America vol 102 no 2 pp 1223ndash1230 1997

[35] V S Moholkar and M M C G Warmoeskerken ldquoIntegratedapproach to optimization of an ultrasonic processorrdquo AIChEJournal vol 49 no 11 pp 2918ndash2932 2003

[36] FACTSAGE httpwwwfactsagecom[37] P Kumar and V S Moholkar ldquoNumerical assessment of hydro-

dynamic cavitation reactors using organic solventsrdquo Industrialand Engineering Chemistry Research vol 50 no 8 pp 4769ndash4775 2011

[38] S Chakma and V S Moholkar ldquoMechanistic features of ultra-sonic desorption of aromatic pollutantsrdquo Chemical EngineeringJournal vol 175 no 1 pp 356ndash367 2011

[39] A Prosperetti and A Lezzi ldquoBubble Dynamics in a compress-ible liquid part 1 first order theoryrdquo Journal of Fluid Mechanicsvol 168 pp 457ndash478 1986

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 15: Research Article Numerical Simulation and Investigation of ...downloads.hindawi.com/journals/cje/2013/362682.pdf · No. of acoustic cycles 012345 0 No. of acoustic cycles No. of water

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of