research article new delay-dependent robust exponential ...new delay-dependent robust exponential...

19
Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 268905, 18 pages http://dx.doi.org/10.1155/2013/268905 Research Article New Delay-Dependent Robust Exponential Stability Criteria of LPD Neutral Systems with Mixed Time-Varying Delays and Nonlinear Perturbations Sirada Pinjai and Kanit Mukdasai Department of Mathematics, Khon Kaen University, Khon Kaen 40002, ailand Correspondence should be addressed to Kanit Mukdasai; [email protected] Received 15 July 2013; Revised 30 September 2013; Accepted 2 October 2013 Academic Editor: Jitao Sun Copyright Β© 2013 S. Pinjai and K. Mukdasai. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. is paper is concerned with the problem of robust exponential stability for linear parameter-dependent (LPD) neutral systems with mixed time-varying delays and nonlinear perturbations. Based on a new parameter-dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, decomposition technique of coefficient matrix, free-weighting matrices, Cauchy’s inequality, modified version of Jensen’s inequality, model transformation, and linear matrix inequality technique, new delay-dependent robust exponential stability criteria are established in terms of linear matrix inequalities (LMIs). Numerical examples are given to show the effectiveness and less conservativeness of the proposed methods. 1. Introduction Over the past decades, the problem of stability for neutral differential systems, which have delays in both their state and the derivatives of their states, has been widely investigated by many researchers, especially in the last decade. It is well known that nonlinearities, as time delays, may cause instability and poor performance of practical systems such as engineering, biology, and economics [1]. e problems of various stability and stabilization for dynamical systems with or without state delays and nonlinear perturbations have been intensively studied in the past years by many researchers of mathematics and control communities [1–35]. Stability criteria for dynamical systems with time delay are generally divided into two classes: delay-independent one and delay- dependent one. Delay-independent stability criteria tend to be more conservative, especially for small size delay; such criteria do not give any information on the size of the delay. On the other hand, delay-dependent stability criteria are concerned with the size of the delay and usually provide a maximal delay size. Recently, many researchers have studied the stability problem for neutral systems with time-varying delays and nonlinear perturbations have appeared [29, 31]. Furthermore, the convergence rates are essential for the practical system; then the exponential stability analysis of time delay systems has been favorably approved in the past decades; see, for example, [3, 9, 10, 14, 18–21, 25–28]. In addition, many researchers have paid attention to the problem of stability for linear systems with polytope uncer- tainties. e linear systems with polytopic-type uncertainties are called linear parameter-dependent (LPD) systems. at is, the uncertain state matrices are in the polytope con- sisting of all convex combination of known matrices. Most of sufficient (or necessary and sufficient) conditions have been obtained via Lyapunov-Krasovskii theory approaches in which parameter-dependent Lyapunov-Krasovskii func- tional has been employed. ese conditions are always expressed in terms of linear matrix inequalities (LMIs). e results have been obtained for robust stability for LPD systems in which time-delay occurs in state variable; for example, [17, 18] presented sufficient conditions for robust

Upload: others

Post on 30-Jan-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

  • Hindawi Publishing CorporationJournal of Applied MathematicsVolume 2013, Article ID 268905, 18 pageshttp://dx.doi.org/10.1155/2013/268905

    Research ArticleNew Delay-Dependent Robust Exponential StabilityCriteria of LPD Neutral Systems with Mixed Time-VaryingDelays and Nonlinear Perturbations

    Sirada Pinjai and Kanit Mukdasai

    Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand

    Correspondence should be addressed to Kanit Mukdasai; [email protected]

    Received 15 July 2013; Revised 30 September 2013; Accepted 2 October 2013

    Academic Editor: Jitao Sun

    Copyright Β© 2013 S. Pinjai and K. Mukdasai. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

    This paper is concernedwith the problemof robust exponential stability for linear parameter-dependent (LPD) neutral systemswithmixed time-varying delays and nonlinear perturbations. Based on a new parameter-dependent Lyapunov-Krasovskii functional,Leibniz-Newton formula, decomposition technique of coefficient matrix, free-weighting matrices, Cauchy’s inequality, modifiedversion of Jensen’s inequality, model transformation, and linear matrix inequality technique, new delay-dependent robustexponential stability criteria are established in terms of linear matrix inequalities (LMIs). Numerical examples are given to showthe effectiveness and less conservativeness of the proposed methods.

    1. Introduction

    Over the past decades, the problem of stability for neutraldifferential systems, which have delays in both their state andthe derivatives of their states, has been widely investigatedby many researchers, especially in the last decade. It iswell known that nonlinearities, as time delays, may causeinstability and poor performance of practical systems suchas engineering, biology, and economics [1]. The problemsof various stability and stabilization for dynamical systemswith or without state delays and nonlinear perturbations havebeen intensively studied in the past years bymany researchersof mathematics and control communities [1–35]. Stabilitycriteria for dynamical systems with time delay are generallydivided into two classes: delay-independent one and delay-dependent one. Delay-independent stability criteria tend tobe more conservative, especially for small size delay; suchcriteria do not give any information on the size of the delay.On the other hand, delay-dependent stability criteria areconcerned with the size of the delay and usually provide amaximal delay size.

    Recently, many researchers have studied the stabilityproblem for neutral systems with time-varying delays andnonlinear perturbations have appeared [29, 31]. Furthermore,the convergence rates are essential for the practical system;then the exponential stability analysis of time delay systemshas been favorably approved in the past decades; see, forexample, [3, 9, 10, 14, 18–21, 25–28].

    In addition, many researchers have paid attention to theproblem of stability for linear systems with polytope uncer-tainties. The linear systems with polytopic-type uncertaintiesare called linear parameter-dependent (LPD) systems. Thatis, the uncertain state matrices are in the polytope con-sisting of all convex combination of known matrices. Mostof sufficient (or necessary and sufficient) conditions havebeen obtained via Lyapunov-Krasovskii theory approachesin which parameter-dependent Lyapunov-Krasovskii func-tional has been employed. These conditions are alwaysexpressed in terms of linear matrix inequalities (LMIs).The results have been obtained for robust stability for LPDsystems in which time-delay occurs in state variable; forexample, [17, 18] presented sufficient conditions for robust

  • 2 Journal of Applied Mathematics

    stability of LPD discrete-time systems with delays. Moreover,robust stability of LPD continuous-time systems with delayswas studied in [6, 19, 22, 30].

    In consequence, it is important and interesting to studythe problem of robust exponential stability for neutral sys-tems with parametric uncertainties. This paper investigatesthe robust exponential stability analysis for LPD neutralsystems with mixed time-varying delays and nonlinear per-turbations. Based on combination of Leibniz-Newton for-mula, free-weighting matrices, Cauchy’s inequality, modifiedversion of Jensen’s inequality, decomposition technique ofcoefficient matrix, the use of suitable parameter-dependentLyapunov-Krasovskii functional, model transformation, andlinear matrix inequality technique, new delay-dependentrobust exponential stability criteria for these systems will beobtained in terms of LMIs. Finally, numerical examples willbe given to show the effectiveness of the obtained results.

    2. Problem Formulation and Preliminaries

    We introduce some notations, a definition, and lemmas thatwill be used throughout the paper. 𝑅+ denotes the set ofall real nonnegative numbers; 𝑅𝑛 denotes the 𝑛-dimensionalspace with the vector norm β€– β‹… β€–; β€–π‘₯β€– denotes the Euclideanvector norm of π‘₯ ∈ 𝑅𝑛; π‘…π‘›Γ—π‘Ÿ denotes the set of 𝑛 Γ— π‘Ÿreal matrices; 𝐴𝑇 denotes the transpose of the matrix 𝐴;𝐴 is symmetric if 𝐴 = 𝐴𝑇; 𝐼 denotes the identity matrix;πœ†(𝐴) denotes the set of all eigenvalues of 𝐴; πœ†max(𝐴) =max{Re πœ† : πœ† ∈ πœ†(𝐴)}; πœ†min(𝐴) = min{Re πœ† : πœ† ∈ πœ†(𝐴)};πœ†max(𝐴(𝛼)) = max{πœ†max(𝐴 𝑖) : 𝑖 = 1, 2, . . . , 𝑁}; πœ†min(𝐴(𝛼)) =min{πœ†min(𝐴 𝑖) : 𝑖 = 1, 2, . . . , 𝑁}; 𝐢([βˆ’π‘, 0], 𝑅

    𝑛) denotes the

    space of all continuous vector functions mapping [βˆ’π‘, 0] into𝑅𝑛, where 𝑏 = max{β„Ž, π‘Ÿ}, β„Ž, π‘Ÿ ∈ 𝑅+; βˆ— represents the elements

    below the main diagonal of a symmetric matrix.Consider the system described by the following state

    equations of the form:

    οΏ½Μ‡οΏ½ (𝑑) = 𝐴 (𝛼) π‘₯ (𝑑) + 𝐡 (𝛼) π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    + 𝐢 (𝛼) οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑)) + 𝑓 (𝑑, π‘₯ (𝑑))

    + 𝑔 (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑))) + 𝑀 (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))) , 𝑑 > 0;

    π‘₯ (𝑑 + 𝑑0) = πœ™ (𝑑) , οΏ½Μ‡οΏ½ (𝑑 + 𝑑

    0) = πœ“ (𝑑) , 𝑑 ∈ [βˆ’π‘, 0] ,

    (1)

    where π‘₯(𝑑) ∈ 𝑅𝑛 is the state variable and 𝐴(𝛼), 𝐡(𝛼), 𝐢(𝛼) βˆˆπ‘…π‘›Γ—π‘› are uncertain matrices belonging to the polytope

    𝐴 (𝛼) =

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖𝐴𝑖, 𝐡 (𝛼) =

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖𝐡𝑖, 𝐢 (𝛼) =

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖𝐢𝑖,

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖= 1, 𝛼

    𝑖β‰₯ 0, 𝐴

    𝑖, 𝐡𝑖, πΆπ‘–βˆˆ 𝑅𝑛×𝑛

    , 𝑖 = 1, . . . , 𝑁.

    (2)

    β„Ž(𝑑) and π‘Ÿ(𝑑) are discrete and neutral time-varying delays,respectively,

    0 ≀ β„Ž (𝑑) ≀ β„Ž, β„ŽΜ‡ (𝑑) ≀ β„Žπ‘‘, (3)

    0 ≀ π‘Ÿ (𝑑) ≀ π‘Ÿ, Μ‡π‘Ÿ (𝑑) ≀ π‘Ÿπ‘‘, (4)

    where β„Ž, π‘Ÿ, β„Žπ‘‘, and π‘Ÿ

    𝑑are given positive real constants.

    Consider the initial functions πœ™(𝑑),πœ“(𝑑) ∈ 𝐢([βˆ’π‘, 0], 𝑅𝑛)withthe norm β€–πœ™β€– = sup

    π‘‘βˆˆ[βˆ’π‘,0]β€–πœ™(𝑑)β€– and β€–πœ“β€– = sup

    π‘‘βˆˆ[βˆ’π‘,0]β€–πœ“(𝑑)β€–.

    The uncertainties 𝑓(𝑑, π‘₯(𝑑)), 𝑔(𝑑, π‘₯(𝑑 βˆ’ β„Ž(𝑑))), and 𝑀(𝑑, οΏ½Μ‡οΏ½(𝑑 βˆ’π‘Ÿ(𝑑))) are the nonlinear perturbations with respect to currentstate π‘₯(𝑑), discrete delayed state π‘₯(𝑑 βˆ’ β„Ž(𝑑)), and neutraldelayed state οΏ½Μ‡οΏ½(𝑑 βˆ’ π‘Ÿ(𝑑)), respectively, and are bounded inmagnitude:

    𝑓𝑇

    (𝑑, π‘₯ (𝑑)) 𝑓 (𝑑, π‘₯ (𝑑)) ≀ πœ‚2

    π‘₯𝑇

    (𝑑) π‘₯ (𝑑) ,

    𝑔𝑇

    (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑))) 𝑔 (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑)))

    ≀ 𝜌2

    π‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑)) π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) ,

    𝑀𝑇

    (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))) 𝑀 (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑)))

    ≀ 𝛾2

    �̇�𝑇

    (𝑑 βˆ’ π‘Ÿ (𝑑)) οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑)) ,

    (5)

    where πœ‚, 𝜌, and 𝛾 are given positive real constants.In order to improve the bound of the discrete time-

    varying delayed β„Ž(𝑑) in system (1), let us decompose theconstant matrix 𝐡(𝛼) as

    𝐡 (𝛼) = 𝐡1(𝛼) + 𝐡

    2(𝛼) , (6)

    where 𝐡1(𝛼) = βˆ‘

    𝑁

    𝑖=1𝛼𝑖𝐡1

    𝑖, 𝐡2(𝛼) = βˆ‘

    𝑁

    𝑖=1𝛼𝑖𝐡2

    𝑖, and βˆ‘π‘

    𝑖=1𝛼𝑖= 1,

    𝛼𝑖β‰₯ 0 with 𝐡1

    𝑖, 𝐡2

    π‘–βˆˆ 𝑅𝑛×𝑛, 𝑖 = 1, . . . , 𝑁 being real constant

    matrices. By Leibniz-Newton formula, we have

    0 = π‘₯ (𝑑) βˆ’ π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) βˆ’ ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠. (7)

    By utilizing the following zero equation, we obtain

    0 = 𝐺π‘₯ (𝑑) βˆ’ 𝐺π‘₯ (𝑑 βˆ’ π›½β„Ž (𝑑)) βˆ’ 𝐺∫

    𝑑

    π‘‘βˆ’π›½β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠, (8)

    where 𝛽 is a given positive real constant and 𝐺 ∈ 𝑅𝑛×𝑛 will bechosen to guarantee the robust exponential stability of system(1). By (6), (7), and (8), system (1) can be represented by theform

    οΏ½Μ‡οΏ½ (𝑑) = [𝐴 (𝛼) + 𝐡1(𝛼) + 𝐺] π‘₯ (𝑑) + 𝐡

    2(𝛼) π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    βˆ’ 𝐺π‘₯ (𝑑 βˆ’ π›½β„Ž (𝑑)) + 𝑓 (𝑑, π‘₯ (𝑑))

    + 𝑔 (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑))) + 𝑀 (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑)))

    + 𝐢 (𝛼) οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑)) βˆ’ 𝐡1(𝛼) ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    βˆ’ 𝐺∫

    𝑑

    π‘‘βˆ’π›½β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠.

    (9)

  • Journal of Applied Mathematics 3

    Definition 1. The system (1) is robustly exponentially stable,if there exist positive real constants π‘˜ and 𝑀 such that, foreach πœ™(𝑑), πœ“(𝑑) ∈ 𝐢([βˆ’π‘, 0], 𝑅𝑛), the solution π‘₯(𝑑, πœ™, πœ“) of thesystem (1) satisfies

    π‘₯ (𝑑, πœ™, πœ“) ≀ 𝑀max {

    πœ™ ,πœ“

    } π‘’βˆ’π‘˜π‘‘

    , βˆ€π‘‘ ∈ 𝑅+

    . (10)

    Lemma 2 (Cauchy inequality). For any constant symmetricpositive definite matrix 𝑃 ∈ 𝑅𝑛×𝑛 and π‘Ž, 𝑏 ∈ 𝑅𝑛, one has

    Β±2π‘Žπ‘‡

    𝑏 ≀ π‘Žπ‘‡

    π‘ƒπ‘Ž + 𝑏𝑇

    π‘ƒβˆ’1

    𝑏. (11)

    Lemma 3 (see [15]). The following inequality holds for any π‘Ž βˆˆπ‘…π‘›, 𝑏 ∈ π‘…π‘š,𝑁,π‘Œ ∈ π‘…π‘›Γ—π‘š,𝑋 ∈ 𝑅𝑛×𝑛, and 𝑍 ∈ π‘…π‘šΓ—π‘š:

    βˆ’2π‘Žπ‘‡

    𝑁𝑏 ≀ [π‘Ž

    𝑏]

    𝑇

    [𝑋 π‘Œ βˆ’ 𝑁

    βˆ— 𝑍][

    π‘Ž

    𝑏] , (12)

    where [𝑋 π‘Œβˆ— 𝑍

    ] β‰₯ 0.

    Lemma4. For any constant symmetric positive definitematrix𝑄 ∈ 𝑅

    𝑛×𝑛 and β„Ž(𝑑) which is discrete time-varying delayswith (3), vector function πœ” : [βˆ’β„Ž, 0] β†’ 𝑅𝑛 such that theintegrations concerned are well defined; then

    β„Žβˆ«

    0

    βˆ’β„Ž

    πœ”π‘‡

    (𝑠) π‘„πœ” (𝑠) 𝑑𝑠 β‰₯ ∫

    0

    βˆ’β„Ž(𝑑)

    πœ”π‘‡

    (𝑠) π‘‘π‘ π‘„βˆ«

    0

    βˆ’β„Ž(𝑑)

    πœ” (𝑠) 𝑑𝑠.

    (13)

    Proof. From Lemma 2, it is easy to see that

    β„Žβˆ«

    0

    βˆ’β„Ž

    πœ”π‘‡

    (𝑠) π‘„πœ” (𝑠) 𝑑𝑠 = β„Žβˆ«

    0

    βˆ’β„Ž(𝑑)

    πœ”π‘‡

    (𝑠) π‘„πœ” (𝑠) 𝑑𝑠

    + β„Žβˆ«

    βˆ’β„Ž(𝑑)

    βˆ’β„Ž

    πœ”π‘‡

    (𝑠) π‘„πœ” (𝑠) 𝑑𝑠

    β‰₯ β„Ž (𝑑) ∫

    0

    βˆ’β„Ž(𝑑)

    πœ”π‘‡

    (𝑠) π‘„πœ” (𝑠) 𝑑𝑠

    =1

    2∬

    0

    βˆ’β„Ž(𝑑)

    [πœ”π‘‡

    (𝑠) π‘„πœ” (𝑠)

    + πœ”π‘‡

    (πœ‰) π‘„πœ” (πœ‰)] π‘‘π‘ π‘‘πœ‰

    β‰₯1

    2∬

    0

    βˆ’β„Ž(𝑑)

    2πœ”π‘‡

    (𝑠) 𝑄1/2𝑇

    Γ— 𝑄1/2

    πœ” (πœ‰) 𝑑𝑠 π‘‘πœ‰

    = ∫

    0

    βˆ’β„Ž(𝑑)

    πœ”π‘‡

    (𝑠) π‘‘π‘ π‘„βˆ«

    0

    βˆ’β„Ž(𝑑)

    πœ” (𝑠) 𝑑𝑠.

    (14)

    Lemma 5. Let π‘₯(𝑑) ∈ 𝑅𝑛 be a vector-valued function with firstorder continuous derivative entries.Then, the following integralinequality holds for any matrices 𝑀

    π‘–βˆˆ 𝑅𝑛×𝑛

    , 𝑖 = 1, 2, . . . , 5,

    and β„Ž(𝑑) is discrete time-varying delays with (3) and symmetricpositive definite matrix 𝑋 ∈ 𝑅𝑛×𝑛:

    βˆ’βˆ«

    𝑑

    π‘‘βˆ’β„Ž

    �̇�𝑇

    (𝑠)𝑋�̇� (𝑠) 𝑑𝑠 ≀ [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    Γ— [𝑀1+𝑀𝑇

    1βˆ’π‘€π‘‡

    1+𝑀2

    βˆ— βˆ’π‘€2βˆ’π‘€π‘‡

    2

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    + β„Ž[π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    [𝑀3

    𝑀4

    βˆ— 𝑀5

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))] ,

    (15)

    where

    [

    [

    𝑋 𝑀1

    𝑀2

    βˆ— 𝑀3

    𝑀4

    βˆ— βˆ— 𝑀5

    ]

    ]

    β‰₯ 0. (16)

    Proof. From the Leibniz-Newton formula, one has

    0 = π‘₯ (𝑑) βˆ’ π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) βˆ’ ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑑) 𝑑𝑠. (17)

    Therefore, for any 𝐻1, 𝐻2∈ 𝑅𝑛×𝑛, the following equation is

    true:

    0 = 2 [π‘₯𝑇

    (𝑑) βˆ’ π‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑)) βˆ’ ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑑) 𝑑𝑠]

    Γ— [𝐻1π‘₯ (𝑑) + 𝐻

    2π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    = 2π‘₯𝑇

    (𝑑)𝐻1π‘₯ (𝑑) + 2π‘₯

    𝑇

    (𝑑)𝐻2π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    βˆ’ 2π‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑))𝐻1π‘₯ (𝑑)

    βˆ’ 2π‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑))𝐻𝑇

    2π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    βˆ’ 2∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠) 𝑑𝑠𝐻1π‘₯ (𝑑)

    βˆ’ 2∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠) 𝑑𝑠𝐻2π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    = [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    [

    [

    𝐻1+ 𝐻𝑇

    1βˆ’π»π‘‡

    1+ 𝐻2

    βˆ— βˆ’π»2βˆ’ 𝐻𝑇

    2

    ]

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    βˆ’ 2∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠) [𝐻1

    𝐻2] [

    π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))] 𝑑𝑠.

    (18)

  • 4 Journal of Applied Mathematics

    Using Lemma 3 with π‘Ž = οΏ½Μ‡οΏ½(𝑠), 𝑏 = [ π‘₯(𝑑)π‘₯(π‘‘βˆ’β„Ž(𝑑))

    ], 𝑁 = [𝐻1

    𝐻2], π‘Œ = [𝑀

    1𝑀2], and 𝑍 = [𝑀3 𝑀4

    βˆ— 𝑀5], we obtain

    βˆ’ 2∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠) [𝐻1

    𝐻2] [

    π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))] 𝑑𝑠

    ≀ ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    [

    [

    οΏ½Μ‡οΏ½ (𝑠)

    π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    ]

    ]

    𝑇

    [

    [

    𝑋 𝑀1βˆ’ 𝐻1

    𝑀2βˆ’ 𝐻2

    βˆ— 𝑀3

    𝑀4

    βˆ— βˆ— 𝑀5

    ]

    ]

    Γ— [

    [

    οΏ½Μ‡οΏ½ (𝑠)

    π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    ]

    ]

    𝑑𝑠

    = ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠)𝑋�̇� (𝑠) 𝑑𝑠

    + [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    Γ— [𝑀1+𝑀𝑇

    1βˆ’ 𝐻1βˆ’ 𝐻𝑇

    1βˆ’π‘€π‘‡

    1+𝑀2+ 𝐻𝑇

    1βˆ’ 𝐻2

    βˆ— βˆ’π‘€2βˆ’π‘€π‘‡

    2+ 𝐻2+ 𝐻𝑇

    2

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))] + β„Ž (𝑑) [

    π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    [𝑀3

    𝑀4

    βˆ— 𝑀5

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    ≀ ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠)𝑋�̇� (𝑠) 𝑑𝑠 + [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    Γ— ([𝑀1+𝑀𝑇

    1βˆ’π‘€π‘‡

    1+𝑀2

    βˆ— βˆ’π‘€2βˆ’π‘€π‘‡

    2

    ]

    βˆ’ [𝐻1+ 𝐻𝑇

    1βˆ’π»π‘‡

    1+ 𝐻2

    βˆ— βˆ’π»2βˆ’ 𝐻𝑇

    2

    ]) [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    + β„Ž[π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    [𝑀3

    𝑀4

    βˆ— 𝑀5

    ] [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))] .

    (19)

    Substituting (19) into (18), we obtain

    βˆ’βˆ«

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠)𝑋�̇� (𝑠) 𝑑𝑠 ≀ [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    Γ— [𝐻1+ 𝐻𝑇

    1βˆ’π»π‘‡

    1+ 𝐻2

    βˆ— βˆ’π»2βˆ’ 𝐻𝑇

    2

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    + [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    Γ— ([

    [

    𝑀1+𝑀𝑇

    1βˆ’π‘€π‘‡

    1+𝑀2

    βˆ— βˆ’π‘€2βˆ’π‘€π‘‡

    2

    ]

    ]

    βˆ’ [𝐻1+ 𝐻𝑇

    1βˆ’π»π‘‡

    1+ 𝐻2

    βˆ— βˆ’π»2βˆ’ 𝐻𝑇

    2

    ])

    Γ— [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    + β„Ž[π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    [𝑀3

    𝑀4

    βˆ— 𝑀5

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    = [π‘₯(𝑑)

    π‘₯(𝑑 βˆ’ β„Ž(𝑑))]

    𝑇

    Γ— [𝑀1+𝑀𝑇

    1βˆ’π‘€π‘‡

    1+𝑀2

    βˆ— βˆ’π‘€2βˆ’π‘€π‘‡

    2

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    + β„Ž[π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    [𝑀3

    𝑀4

    βˆ— 𝑀5

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))] .

    (20)

    From (3), it is clear that

    βˆ’βˆ«

    𝑑

    π‘‘βˆ’β„Ž

    �̇�𝑇

    (𝑠)𝑋�̇� (𝑠) 𝑑𝑠 ≀ βˆ’βˆ«

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠)𝑋�̇� (𝑠) 𝑑𝑠. (21)

    From (20) and (21), the integral inequality becomes

    βˆ’βˆ«

    𝑑

    π‘‘βˆ’β„Ž

    �̇�𝑇

    (𝑠)𝑋�̇� (𝑠) 𝑑𝑠 ≀ [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    Γ— [

    [

    𝑀1+𝑀𝑇

    1βˆ’π‘€π‘‡

    1+𝑀2

    βˆ— βˆ’π‘€2βˆ’π‘€π‘‡

    2

    ]

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    + β„Ž[π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    𝑇

    [𝑀3

    𝑀4

    βˆ— 𝑀5

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯ (𝑑 βˆ’ β„Ž (𝑑))] .

    (22)

    The proof of the theorem is complete.

  • Journal of Applied Mathematics 5

    Remark 6. In Lemma 4 and Lemma 5, we have modified themethod from [8, 33], respectively.

    3. Main results

    3.1. Robust Exponential Stability Criteria. In this section,robust exponential stability criteria dependent on mixedtime-varying delays of LPD neutral delayed system (1) withnonlinear perturbations via linear matrix inequality (LMI)approach will be presented. We introduce the followingnotations for later use:

    𝑃𝑗(𝛼) =

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖𝑃𝑗

    𝑖, 𝑍

    1(𝛼) =

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖𝑍1

    𝑖,

    𝑅𝑝(𝛼) =

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖𝑅𝑝

    𝑖, 𝑁

    𝑗(𝛼) =

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖𝑁𝑗

    𝑖,

    𝑂𝑗(𝛼) =

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖𝑂𝑗

    𝑖, π‘Š

    𝑗(𝛼) =

    𝑁

    βˆ‘

    𝑖=1

    π›Όπ‘–π‘Šπ‘—

    𝑖,

    𝑀𝑗(𝛼) =

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖𝑀𝑗

    𝑖,

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖= 1, 𝛼

    𝑖β‰₯ 0,

    𝑃𝑗

    𝑖, 𝑍1

    𝑖, 𝑅𝑝

    𝑖,π‘Šπ‘—

    𝑖, 𝑁𝑗

    𝑖, 𝑂𝑗

    𝑖,𝑀𝑗

    π‘–βˆˆ 𝑅𝑛×𝑛

    ,

    𝑗 = 1, 2, . . . , 10, 𝑝 = 1, 2, . . . , 6, 𝑖 = 1, 2, . . . , 𝑁;

    βˆ‘

    𝑖,𝑗

    =

    [[[[[[[[[[[[[[[[[

    [

    Ξ£1,1

    𝑖,𝑗Σ1,2

    𝑖,𝑗Σ1,3

    𝑖,𝑗Σ1,4

    𝑖,𝑗Σ1,5

    𝑖,𝑗Σ1,6

    𝑖,𝑗Σ1,7

    𝑖,𝑗Σ1,8

    𝑖,𝑗Σ1,9

    𝑖,𝑗Σ1,10

    𝑖,𝑗

    βˆ— Ξ£2,2

    𝑖,𝑗Σ2,3

    𝑖,𝑗Σ2,4

    𝑖,𝑗Σ2,5

    𝑖,𝑗Σ2,6

    𝑖,𝑗Σ2,7

    𝑖,𝑗Σ2,8

    𝑖,𝑗Σ2,9

    𝑖,𝑗Σ2,10

    𝑖,𝑗

    βˆ— βˆ— Ξ£3,3

    𝑖Σ3,4

    𝑖,𝑗Σ3,5

    𝑖Σ3,6

    𝑖Σ3,7

    𝑖,𝑗Σ3,8

    𝑖Σ3,9

    𝑖Σ3,10

    𝑖

    βˆ— βˆ— βˆ— Ξ£4,4

    𝑖,𝑗Σ4,5

    𝑖,𝑗Σ4,6

    𝑖,𝑗Σ4,7

    𝑖,𝑗Σ4,8

    𝑖Σ4,9

    𝑖Σ4,10

    𝑖

    βˆ— βˆ— βˆ— βˆ— Ξ£5,5

    𝑖Σ5,6

    𝑖Σ5,7

    𝑖,𝑗Σ5,8

    𝑖Σ5,9

    𝑖Σ5,10

    𝑖

    βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£6,6

    𝑖Σ6,7

    𝑖,𝑗Σ6,8

    𝑖Σ6,9

    𝑖Σ6,10

    𝑖

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£7,7

    𝑖,𝑗Σ7,8

    𝑖,𝑗Σ7,9

    𝑖,𝑗Σ7,10

    𝑖,𝑗

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£8,8

    𝑖Σ8,9

    𝑖Σ8,10

    𝑖

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£9,9

    𝑖Σ9,10

    𝑖

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£10,10

    𝑖

    ]]]]]]]]]]]]]]]]]

    ]

    ,

    (23)

    where

    Ξ£1,1

    𝑖,𝑗= 𝐴𝑇

    𝑖𝑃1

    𝑗+ 𝐡1

    𝑖

    𝑇

    𝑃1

    𝑗+ 𝑃1

    𝑖𝐴𝑗+ 𝑃1

    𝑖𝐡1

    𝑗+ 𝑍1

    𝑖+ 𝑍1

    𝑖

    𝑇

    + 𝑃3

    𝑖+ 𝑃4

    𝑖+ β„Žπ‘€

    1

    𝑖

    𝑇

    + β„Žπ‘€1

    π‘–βˆ’ π‘’βˆ’2π‘˜β„Ž

    𝑃9

    𝑖

    βˆ’ π‘’βˆ’2π‘˜π›½β„Ž

    𝑃10

    𝑖+ β„Ž2

    𝑀3

    𝑖+ π›½β„Žπ‘€

    6

    𝑖+ π›½β„Žπ‘€

    6

    𝑖

    𝑇

    + 𝛽2

    β„Ž2

    𝑀8

    𝑖

    + 𝑁1

    𝑖

    𝑇

    + 𝑁1

    𝑖+ 𝑂1

    𝑖

    𝑇

    + 𝑂1

    𝑖+ 𝐴𝑇

    π‘–π‘Š1

    𝑗+π‘Š1

    𝑖

    𝑇

    𝐴𝑗

    + 𝐡1

    𝑖

    𝑇

    π‘Š1

    𝑗+π‘Š1

    𝑖

    𝑇

    𝐡1

    𝑗+ πœ–1πœ‚2

    𝐼 + 2π‘˜π‘ƒ1

    𝑖,

    Ξ£1,2

    𝑖,𝑗= 𝑃1

    𝑖𝐡2

    π‘—βˆ’ β„Žπ‘€

    1

    𝑖

    𝑇

    + β„Žπ‘€2

    𝑖+ β„Ž2

    𝑀4

    𝑖+ π‘’βˆ’2π‘˜β„Ž

    𝑃9

    𝑖

    + β„Žπ‘…2

    π‘–βˆ’ 𝑁1

    𝑖

    𝑇

    + 𝑁2

    𝑖+ 𝑂2

    𝑖+π‘Š1

    𝑖

    𝑇

    𝐡2

    𝑗

    + 𝐴𝑇

    π‘–π‘Š2

    𝑗+ 𝐡1

    𝑖

    𝑇

    π‘Š2

    𝑗,

    Ξ£1,3

    𝑖,𝑗= βˆ’π‘1

    π‘–βˆ’ π›½β„Žπ‘€

    6

    𝑖

    𝑇

    + π›½β„Žπ‘€7

    𝑖+ π›½β„Ž2

    𝑀9

    𝑖+ π›½β„Žπ‘…

    5

    𝑖

    + π‘’βˆ’2π‘˜π›½β„Ž

    𝑃10

    𝑖+ 𝑁3

    π‘–βˆ’ 𝑂1

    𝑖

    𝑇

    + 𝑂3

    𝑖

    + 𝐴𝑇

    π‘–π‘Š3

    𝑗+ 𝐡1

    𝑖

    𝑇

    π‘Š3

    𝑗,

    Ξ£1,4

    𝑖,𝑗= βˆ’π‘ƒ1

    𝑖𝐡1

    π‘—βˆ’ 𝑁1

    𝑖

    𝑇

    + 𝑁4

    𝑖+ 𝑂4

    𝑖

    βˆ’π‘Š1

    𝑖

    𝑇

    𝐡1

    𝑗+ 𝐴𝑇

    π‘–π‘Š4

    𝑗+ 𝐡1

    𝑖

    𝑇

    π‘Š4

    𝑗,

    Ξ£1,5

    𝑖,𝑗= βˆ’π‘1

    𝑖+ 𝑁5

    π‘–βˆ’ 𝑂1

    𝑖

    𝑇

    + 𝑂5

    𝑖+ 𝐴𝑇

    π‘–π‘Š5

    𝑗+ 𝐡1

    𝑖

    𝑇

    π‘Š5

    𝑗,

    Ξ£1,6

    𝑖,𝑗= 𝑁6

    𝑖+ 𝑂6

    π‘–βˆ’π‘Š1

    𝑖

    𝑇

    + 𝐴𝑇

    π‘–π‘Š6

    𝑗+ 𝐡1

    𝑖

    𝑇

    π‘Š6

    𝑗,

    Ξ£1,7

    𝑖,𝑗= 𝑃1

    𝑖𝐢𝑗+ 𝑁7

    𝑖+ 𝑂7

    𝑖+π‘Š1

    𝑖

    𝑇

    𝐢𝑗+ 𝐴𝑇

    π‘–π‘Š7

    𝑗+ 𝐡1

    𝑖

    𝑇

    π‘Š7

    𝑗,

    Ξ£1,8

    𝑖,𝑗= 𝑃1

    𝑖+ 𝑁8

    𝑖+ 𝑂8

    𝑖+π‘Š1

    𝑖

    𝑇

    + 𝐴𝑇

    π‘–π‘Š8

    𝑗+ 𝐡1

    𝑖

    𝑇

    π‘Š8

    𝑗,

    Ξ£1,9

    𝑖,𝑗= 𝑃1

    𝑖+ 𝑁9

    𝑖+ 𝑂9

    𝑖+π‘Š1

    𝑖

    𝑇

    + 𝐴𝑇

    π‘–π‘Š9

    𝑗+ 𝐡1

    𝑖

    𝑇

    π‘Š9

    𝑗,

    Ξ£1,10

    𝑖,𝑗= 𝑃1

    𝑖+ 𝑁10

    𝑖+ 𝑂10

    𝑖+π‘Š1

    𝑖

    𝑇

    + 𝐴𝑇

    π‘–π‘Š10

    𝑗+ 𝐡1

    𝑖

    𝑇

    π‘Š10

    𝑗,

    Ξ£2,2

    𝑖,𝑗= βˆ’ (1 βˆ’ β„Ž

    𝑑) π‘’βˆ’2π‘˜β„Ž

    𝑃3

    π‘–βˆ’ β„Žπ‘€

    2

    𝑖

    𝑇

    βˆ’ β„Žπ‘€2

    𝑖+ β„Ž2

    𝑀5

    𝑖

    + β„Ž2

    𝑅1

    π‘–βˆ’ 2β„Žπ‘…

    2

    π‘–βˆ’ π‘’βˆ’2π‘˜β„Ž

    𝑃9

    𝑖+ πœ–2𝜌2

    𝐼 βˆ’ 𝑁2

    𝑖

    𝑇

    βˆ’ 𝑁2

    𝑖+π‘Š2

    𝑖

    𝑇

    𝐡2

    𝑗+ 𝐡2

    𝑖

    𝑇

    π‘Š2

    𝑗,

    Ξ£2,3

    𝑖,𝑗= βˆ’π‘

    3

    π‘–βˆ’ 𝑂2

    𝑖

    𝑇

    + 𝐡2

    𝑖

    𝑇

    π‘Š3

    𝑗,

    Ξ£2,4

    𝑖,𝑗= βˆ’π‘

    2

    𝑖

    𝑇

    βˆ’ 𝑁4

    π‘–βˆ’π‘Š2

    𝑖

    𝑇

    𝐡1

    𝑗+ 𝐡2

    𝑖

    𝑇

    π‘Š4

    𝑗,

    Ξ£2,5

    𝑖,𝑗= βˆ’π‘

    5

    π‘–βˆ’ 𝑂2

    𝑖

    𝑇

    + 𝐡2

    𝑖

    𝑇

    π‘Š5

    𝑗,

    Ξ£2,6

    𝑖,𝑗= βˆ’π‘

    6

    π‘–βˆ’π‘Š2

    𝑖

    𝑇

    + 𝐡2

    𝑖

    𝑇

    π‘Š6

    𝑗,

    Ξ£2,7

    𝑖,𝑗= βˆ’π‘

    7

    𝑖+π‘Š2

    𝑖

    𝑇

    𝐢𝑗+ 𝐡2

    𝑖

    𝑇

    π‘Š7

    𝑗,

    Ξ£2,8

    𝑖,𝑗= βˆ’π‘

    8

    𝑖+π‘Š2

    𝑖

    𝑇

    + 𝐡2

    𝑖

    𝑇

    π‘Š8

    𝑗,

    Ξ£2,9

    𝑖,𝑗= βˆ’π‘

    9

    𝑖

    𝑇

    βˆ’π‘Š2

    𝑖

    𝑇

    + 𝐡2

    𝑖

    𝑇

    π‘Š9

    𝑗,

    Ξ£2,10

    𝑖,𝑗= βˆ’π‘

    10

    𝑖+π‘Š2

    𝑖

    𝑇

    + 𝐡2

    𝑖

    𝑇

    π‘Š10

    𝑗,

    Ξ£3,3

    𝑖= βˆ’ (1 βˆ’ π›½β„Ž

    𝑑) π‘’βˆ’2π›½π‘˜β„Ž

    𝑃4

    π‘–βˆ’ π‘’βˆ’2π›½π‘˜β„Ž

    𝑃10

    𝑖+ 𝛽2

    β„Ž2

    𝑅4

    𝑖

    βˆ’ 2π›½β„Žπ‘…5

    π‘–βˆ’ π›½β„Žπ‘€

    7

    𝑖

    𝑇

    βˆ’ π›½β„Žπ‘€7

    𝑖+ 𝛽2

    β„Ž2

    𝑀10

    𝑖

    βˆ’ 𝑂3

    𝑖

    𝑇

    βˆ’ 𝑂3

    𝑖,

  • 6 Journal of Applied Mathematics

    Ξ£3,4

    𝑖,𝑗= βˆ’π‘

    3

    𝑖

    𝑇

    βˆ’ 𝑂4

    π‘–βˆ’π‘Š3

    𝑖

    𝑇

    𝐡1

    𝑗,

    Ξ£3,5

    𝑖= βˆ’π‘‚3

    𝑖

    𝑇

    βˆ’ 𝑂5

    𝑖, Ξ£

    3,6

    𝑖= βˆ’π‘‚9

    𝑖+π‘Š3

    𝑖

    𝑇

    ,

    Ξ£3,7

    𝑖= βˆ’π‘‚7

    𝑖+π‘Š3

    𝑖

    𝑇

    𝐢𝑗, Ξ£

    3,8

    𝑖= βˆ’π‘‚8

    𝑖+π‘Š3

    𝑖

    𝑇

    ,

    Ξ£3,9

    𝑖= βˆ’π‘‚9

    𝑖+π‘Š3

    𝑖

    𝑇

    , Ξ£3,10

    𝑖= βˆ’π‘‚10

    𝑖+π‘Š3

    𝑖

    𝑇

    ,

    Ξ£4,4

    𝑖,𝑗= βˆ’π‘’2π‘˜β„Ž

    𝑃7

    π‘–βˆ’ 𝑁4

    𝑖

    𝑇

    βˆ’ 𝑁4

    𝑖+π‘Š4

    𝑖

    𝑇

    𝐡1

    π‘—βˆ’ 𝐡1

    𝑖

    𝑇

    π‘Š4

    𝑗,

    Ξ£4,5

    𝑖,𝑗= βˆ’π‘

    5

    π‘–βˆ’ 𝑂4

    𝑖

    𝑇

    βˆ’ 𝐡1

    𝑖

    𝑇

    π‘Š5

    𝑗,

    Ξ£4,6

    𝑖,𝑗= βˆ’π‘

    6

    π‘–βˆ’π‘Š4

    𝑖

    𝑇

    βˆ’ 𝐡1

    𝑖

    𝑇

    π‘Š6

    𝑗,

    Ξ£4,7

    𝑖,𝑗= βˆ’π‘

    7

    𝑖+π‘Š4

    𝑖

    𝑇

    πΆπ‘—βˆ’ 𝐡1

    𝑖

    𝑇

    π‘Š7

    𝑗, Ξ£

    4,8

    𝑖= βˆ’π‘‚8

    𝑖+π‘Š3

    𝑖

    𝑇

    ,

    Ξ£4,9

    𝑖= βˆ’π‘‚9

    𝑖+π‘Š3

    𝑖

    𝑇

    , Ξ£4,10

    𝑖= βˆ’π‘‚10

    𝑖+π‘Š3

    𝑖

    𝑇

    ,

    Ξ£5,5

    𝑖= βˆ’π‘’2π›½π‘˜β„Ž

    𝑃8

    π‘–βˆ’ 𝑂5

    𝑖

    𝑇

    βˆ’ 𝑂5

    𝑖, Ξ£

    5,6

    𝑖= βˆ’π‘‚6

    π‘–βˆ’π‘Š5

    𝑖

    𝑇

    ,

    Ξ£5,7

    𝑖,𝑗= βˆ’π‘‚7

    𝑖+π‘Š5

    𝑖

    𝑇

    𝐢𝑗, Ξ£

    5,8

    𝑖= βˆ’π‘‚8

    𝑖+π‘Š5

    𝑖

    𝑇

    ,

    Ξ£5,9

    𝑖= βˆ’π‘‚9

    𝑖+π‘Š5

    𝑖

    𝑇

    , Ξ£5,10

    𝑖= βˆ’π‘‚10

    𝑖+π‘Š5

    𝑖

    𝑇

    ,

    Ξ£6,6

    𝑖= 𝑃2

    𝑖+ β„Ž2

    𝑃5

    𝑖+ 𝛽2

    β„Ž2

    𝑃6

    𝑖+ β„Ž2

    𝑃7

    𝑖+ 𝛽2

    β„Ž2

    𝑃8

    𝑖

    + β„Ž2

    𝑃9

    𝑖+ 𝛽2

    β„Ž2

    𝑃10

    π‘–βˆ’π‘Š6

    𝑖

    𝑇

    βˆ’π‘Š6

    𝑖,

    Ξ£6,7

    𝑖,𝑗= π‘Š6

    𝑖

    𝑇

    πΆπ‘—βˆ’π‘Š7

    𝑖, Ξ£

    6,8

    𝑖= π‘Š6

    𝑖

    𝑇

    βˆ’π‘Š8

    𝑖,

    Ξ£6,9

    𝑖= π‘Š6

    𝑖

    𝑇

    βˆ’π‘Š9

    𝑖, Ξ£

    6,10

    𝑖= π‘Š6

    𝑖

    𝑇

    βˆ’π‘Š10

    𝑖,

    Ξ£7,7

    𝑖,𝑗= βˆ’ (1 βˆ’ π‘Ÿ

    𝑑) π‘’βˆ’2π‘˜π‘Ÿ

    𝑃2

    𝑖+ πœ–3𝛾2

    𝐼 + π‘Š7

    𝑖

    𝑇

    𝐢𝑗+ 𝐢𝑇

    π‘–π‘Š7

    𝑗,

    Ξ£7,8

    𝑖,𝑗= π‘Š7

    𝑖

    𝑇

    βˆ’ 𝐢𝑇

    π‘–π‘Š8

    𝑗, Ξ£

    7,9

    𝑖,𝑗= π‘Š7

    𝑖

    𝑇

    βˆ’ 𝐢𝑇

    π‘–π‘Š9

    𝑗,

    Ξ£7,10

    𝑖,𝑗= π‘Š7

    𝑖

    𝑇

    βˆ’ 𝐢𝑇

    π‘–π‘Š10

    𝑗, Ξ£

    8,8

    𝑖= π‘Š8

    𝑖

    𝑇

    +π‘Š8

    π‘–βˆ’ πœ–1𝐼,

    Ξ£8,9

    𝑖= π‘Š8

    𝑖

    𝑇

    +π‘Š9

    𝑖, Ξ£

    8,10

    𝑖= π‘Š8

    𝑖

    𝑇

    +π‘Š10

    𝑖,

    Ξ£9,9

    𝑖= π‘Š9

    𝑖

    𝑇

    +π‘Š9

    π‘–βˆ’ πœ–2𝐼, Ξ£

    9,10

    𝑖= π‘Š9

    𝑖

    𝑇

    +π‘Š10

    𝑖,

    Ξ£10,10

    𝑖= π‘Š10

    𝑖

    𝑇

    +π‘Š10

    π‘–βˆ’ πœ–3𝐼,

    Μ‚Ξ£7,7

    𝑖= βˆ’ (1 βˆ’ π‘Ÿπ‘‘) 𝑒

    2π‘˜π‘Ÿ

    𝑃2

    𝑖+π‘Š7

    𝑖

    𝑇

    𝐢𝑗+ 𝐢𝑇

    π‘–π‘Š7

    𝑗,

    𝑍1

    𝑖= 𝑃1

    𝑖𝐺.

    (24)

    Theorem 7. For ‖𝐢𝑖‖ + 𝛾 < 1, 𝑖 = 1, 2, . . . , 𝑁 and given

    positive real constants β„Ž, β„Žπ‘‘, π‘Ÿ, π‘Ÿπ‘‘, πœ‚, 𝜌, 𝛾, and 𝛽, system (1)

    is robustly exponentially stable with a decay rate π‘˜, if thereexist symmetric positive definite matrices 𝑃𝑗

    𝑖, any appropriate

    dimensional matrices 𝑅𝑝𝑖, 𝑁𝑗𝑖, 𝑂𝑗𝑖, π‘Šπ‘—π‘–, 𝑀𝑗𝑖, 𝐺, 𝑝 = 1, 2, . . . 6,

    𝑗 = 1, 2, . . . , 10, 𝑖 = 1, 2, . . . , 𝑁, and positive real constants

    πœ–1, πœ–2, and πœ–

    3such that the following symmetric linear matrix

    inequalities hold:

    [

    [

    𝑅1

    𝑖𝑅2

    𝑖

    βˆ— 𝑅3

    𝑖

    ]

    ]

    > 0, 𝑖 = 1, 2, . . . , 𝑁,

    [

    [

    𝑅4

    𝑖𝑅5

    𝑖

    βˆ— 𝑅6

    𝑖

    ]

    ]

    > 0, 𝑖 = 1, 2, . . . , 𝑁,

    [

    [

    π‘’βˆ’2π‘˜β„Ž

    𝑃3

    π‘–βˆ’ 𝑅3

    𝑖𝑀1

    𝑖𝑀2

    𝑖

    βˆ— 𝑀3

    𝑖𝑀4

    𝑖

    βˆ— βˆ— 𝑀5

    𝑖

    ]

    ]

    β‰₯ 0, 𝑖 = 1, 2, . . . , 𝑁,

    [

    [

    π‘’βˆ’2π›½π‘˜β„Ž

    𝑃6

    π‘–βˆ’ 𝑅6

    𝑖𝑀6

    𝑖𝑀7

    𝑖

    βˆ— 𝑀8

    𝑖𝑀9

    𝑖

    βˆ— βˆ— 𝑀10

    𝑖

    ]

    ]

    β‰₯ 0, 𝑖 = 1, 2, . . . , 𝑁,

    βˆ‘

    𝑖,𝑖

    < βˆ’πΌ, 𝑖 = 1, 2, . . . , 𝑁,

    βˆ‘

    𝑖,𝑗

    +βˆ‘

    𝑗,𝑖

    <2

    (𝑁 βˆ’ 1)𝐼, 𝑖 = 1, 2, . . . , 𝑁 βˆ’ 1,

    𝑗 = 𝑖 + 1, 𝑖 + 2, . . . , 𝑁.

    (25)

    Moreover, the solution π‘₯(𝑑, πœ™, πœ“) satisfies the inequality

    π‘₯ (𝑑, πœ™, πœ“) ≀ √

    𝐿

    πœ†min (𝑃1 (𝛼))max [πœ™

    ,πœ“

    ] π‘’βˆ’π‘˜π‘‘

    ,

    βˆ€π‘‘ ∈ 𝑅+

    ,

    (26)

    where 𝐿 = πœ†max(𝑃1(𝛼)) + π‘Ÿπœ†max(𝑃2(𝛼)) + β„Žπœ†max(𝑃3(𝛼))+π›½β„Žπœ†max(𝑃4(𝛼)) + β„Ž

    3πœ†max(𝑃5(𝛼)+𝑃7(𝛼) + 𝑃9(𝛼)) +

    (π›½β„Ž)3

    πœ†max(𝑃6(𝛼)+𝑃8(𝛼) + 𝑃10(𝛼)) + β„Ž3πœ†max ([𝑅1(𝛼) 𝑅2(𝛼)

    βˆ— 𝑅3(𝛼)])+

    (π›½β„Ž)3

    πœ†max ([𝑅4(𝛼) 𝑅5(𝛼)

    βˆ— 𝑅6(𝛼)]).

    Proof. Choose a parameter-dependent Lyapunov-Krasovskiifunctional candidate for system (9) as

    𝑉 (𝑑) =

    7

    βˆ‘

    𝑖=1

    𝑉𝑖(𝑑) , (27)

    where

    𝑉1(𝑑) = π‘₯

    𝑇

    (𝑑) 𝑃1(𝛼) π‘₯ (𝑑) ,

    𝑉2(𝑑) = ∫

    𝑑

    π‘‘βˆ’π‘Ÿ(𝑑)

    𝑒2π‘˜(π‘ βˆ’π‘‘)

    �̇�𝑇

    (𝑠) 𝑃2(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠,

    𝑉3(𝑑) = ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    𝑒2π‘˜(π‘ βˆ’π‘‘)

    π‘₯𝑇

    (𝑠) 𝑃3(𝛼) π‘₯ (𝑠) 𝑑𝑠

    + ∫

    𝑑

    π‘‘βˆ’π›½β„Ž(𝑑)

    𝑒2π‘˜(π‘ βˆ’π‘‘)

    π‘₯𝑇

    (𝑠) 𝑃4(𝛼) π‘₯ (𝑠) 𝑑𝑠,

  • Journal of Applied Mathematics 7

    𝑉4(𝑑) = β„Žβˆ«

    0

    βˆ’β„Ž

    ∫

    𝑑

    𝑑+πœƒ

    𝑒2π‘˜(π‘ βˆ’π‘‘)

    �̇�𝑇

    (𝑠) 𝑃5(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 π‘‘πœƒ

    + π›½β„Žβˆ«

    0

    βˆ’π›½β„Ž

    ∫

    𝑑

    𝑑+πœƒ

    𝑒2π‘˜(π‘ βˆ’π‘‘)

    �̇�𝑇

    (𝑠) 𝑃6(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 π‘‘πœƒ,

    𝑉5(𝑑) = β„Žβˆ«

    0

    βˆ’β„Ž

    ∫

    𝑑

    𝑑+πœƒ

    𝑒2π‘˜(π‘ βˆ’π‘‘)

    �̇�𝑇

    (𝑠) 𝑃7(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 π‘‘πœƒ

    + π›½β„Žβˆ«

    0

    βˆ’π›½β„Ž

    ∫

    𝑑

    𝑑+πœƒ

    𝑒2π‘˜(π‘ βˆ’π‘‘)

    �̇�𝑇

    (𝑠) 𝑃8(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 π‘‘πœƒ,

    𝑉6(𝑑) = β„Žβˆ«

    0

    βˆ’β„Ž

    ∫

    𝑑

    𝑑+πœƒ

    𝑒2π‘˜(π‘ βˆ’π‘‘)

    �̇�𝑇

    (𝑠) 𝑃9(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 π‘‘πœƒ

    + π›½β„Žβˆ«

    0

    βˆ’π›½β„Ž

    ∫

    𝑑

    𝑑+πœƒ

    𝑒2π‘˜(π‘ βˆ’π‘‘)

    �̇�𝑇

    (𝑠) 𝑃10(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 π‘‘πœƒ,

    𝑉7(𝑑) = β„Žβˆ«

    𝑑

    βˆ’β„Ž

    ∫

    πœƒ

    πœƒβˆ’β„Ž(πœƒ)

    𝑒2π‘˜(πœƒβˆ’π‘‘)

    [π‘₯ (πœƒ βˆ’ β„Ž (πœƒ))

    οΏ½Μ‡οΏ½ (𝑠)]

    𝑇

    Γ— [𝑅1(𝛼) 𝑅

    2(𝛼)

    βˆ— 𝑅3(𝛼)

    ]

    Γ— [π‘₯ (πœƒ βˆ’ β„Ž (πœƒ))

    οΏ½Μ‡οΏ½ (𝑠)] 𝑑𝑠 π‘‘πœƒ

    + π›½β„Žβˆ«

    𝑑

    βˆ’π›½β„Ž

    ∫

    πœƒ

    πœƒβˆ’π›½β„Ž(πœƒ)

    𝑒2π‘˜(πœƒβˆ’π‘‘)

    [π‘₯ (πœƒ βˆ’ π›½β„Ž (πœƒ))

    οΏ½Μ‡οΏ½ (𝑠)]

    𝑇

    Γ— [𝑅4(𝛼) 𝑅

    5(𝛼)

    βˆ— 𝑅6(𝛼)

    ]

    Γ— [π‘₯ (πœƒ βˆ’ π›½β„Ž (πœƒ))

    οΏ½Μ‡οΏ½ (𝑠)] 𝑑𝑠 π‘‘πœƒ.

    (28)

    Calculating the time derivatives of 𝑉𝑖(𝑑), 𝑖 = 1, 2, 3, . . . , 7,

    along the trajectory of (9), yields

    οΏ½Μ‡οΏ½1(𝑑) = 2π‘₯

    𝑇

    (𝑑) 𝑃1(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    = 2π‘₯𝑇

    𝑃1(𝛼) [ (𝐴 (𝛼) + 𝐡

    1(𝛼) + 𝐺) π‘₯ (𝑑)

    + 𝐡2(𝛼) π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) βˆ’ 𝐺π‘₯ (𝑑 βˆ’ π›½β„Ž (𝑑))

    + 𝑓 (𝑑, π‘₯ (𝑑)) + 𝑔 (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑)))

    + 𝑀 (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))) + 𝐢 (𝛼) οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))

    βˆ’ 𝐡1(𝛼) ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    βˆ’πΊβˆ«

    𝑑

    π‘‘βˆ’π›½β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠]

    + 2π‘˜π‘₯𝑇

    (𝑑) 𝑃1(𝛼) π‘₯ (𝑑) βˆ’ 2π‘˜π‘‰

    1(𝑑) ,

    οΏ½Μ‡οΏ½2(𝑑) = οΏ½Μ‡οΏ½

    𝑇

    (𝑑) 𝑃2(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ (1 βˆ’ Μ‡π‘Ÿ (𝑑)) π‘’βˆ’2π‘˜π‘Ÿ(𝑑)

    �̇�𝑇

    (𝑑 βˆ’ π‘Ÿ (𝑑))

    Γ— 𝑃2(𝛼) οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑)) βˆ’ 2π‘˜π‘‰

    2(𝑑)

    ≀ �̇�𝑇

    (𝑑) 𝑃2(𝛼) οΏ½Μ‡οΏ½ (𝑑) βˆ’ 𝑒

    βˆ’2π‘˜π‘Ÿ

    �̇�𝑇

    (𝑑 βˆ’ π‘Ÿ (𝑑))

    Γ— 𝑃2(𝛼) οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))

    + π‘Ÿπ‘‘οΏ½Μ‡οΏ½π‘‡

    (𝑑 βˆ’ π‘Ÿ (𝑑)) 𝑃2(𝛼) οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))

    βˆ’ 2π‘˜π‘‰2(𝑑) .

    (29)

    The time derivative of 𝑉3(𝑑) is

    οΏ½Μ‡οΏ½3(𝑑) = π‘₯

    𝑇

    (𝑑) 𝑃3(𝛼) π‘₯ (𝑑) βˆ’ (1 βˆ’ β„ŽΜ‡ (𝑑)) 𝑒

    βˆ’2π‘˜β„Ž(𝑑)

    π‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑))

    Γ— 𝑃3(𝛼) π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) + π‘₯

    𝑇

    (𝑑) 𝑃4(𝛼) π‘₯ (𝑑)

    βˆ’ (1 βˆ’ π›½β„ŽΜ‡ (𝑑)) π‘’βˆ’2π‘˜π›½β„Ž(𝑑)

    π‘₯𝑇

    (𝑑 βˆ’ π›½β„Ž (𝑑))

    Γ— 𝑃4(𝛼) π‘₯ (𝑑 βˆ’ π›½β„Ž (𝑑)) βˆ’ 2π‘˜π‘‰

    3(𝑑)

    ≀ π‘₯𝑇

    (𝑑) 𝑃3(𝛼) π‘₯ (𝑑) βˆ’ 𝑒

    βˆ’2π‘˜β„Ž

    π‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑))

    Γ— 𝑃3(𝛼) π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) + β„Ž

    π‘‘π‘’βˆ’2π‘˜β„Ž

    π‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑))

    Γ— 𝑃3(𝛼) π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) + π‘₯

    𝑇

    (𝑑) 𝑃4(𝛼) π‘₯ (𝑑)

    βˆ’ π‘’βˆ’2π›Όπ›½β„Ž

    π‘₯𝑇

    (𝑑 βˆ’ π›½β„Ž (𝑑)) 𝑃4(𝛼) π‘₯ (𝑑 βˆ’ π›½β„Ž (𝑑))

    + π›½β„Žπ‘‘π‘’βˆ’2π‘˜π›½β„Ž

    π‘₯𝑇

    (𝑑 βˆ’ π›½β„Ž (𝑑)) 𝑃4(𝛼) π‘₯ (𝑑 βˆ’ π›½β„Ž (𝑑))

    βˆ’ 2π‘˜π‘‰3(𝑑) .

    (30)

    Obviously, for any scalar 𝑠 ∈ [𝑑 βˆ’ β„Ž, 𝑑], we get π‘’βˆ’2π‘˜β„Ž β‰€π‘’βˆ’2π‘˜(π‘ βˆ’π‘‘)

    ≀ 1 and for any scalar 𝑠 ∈ [𝑑 βˆ’ π›½β„Ž, 𝑑], we obtainπ‘’βˆ’2π›½π‘˜β„Ž

    ≀ π‘’βˆ’2π›½π‘˜(π‘ βˆ’π‘‘)

    ≀ 1. Together with Lemma 4, we obtain

    οΏ½Μ‡οΏ½4(𝑑) = β„Ž

    2

    �̇�𝑇

    (𝑑) 𝑃5(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ β„Žβˆ«

    0

    βˆ’β„Ž

    𝑒2π‘˜π‘ 

    �̇�𝑇

    (𝑑 + 𝑠) 𝑃5(𝛼) οΏ½Μ‡οΏ½ (𝑑 + 𝑠) 𝑑𝑠

    + 𝛽2

    β„Ž2

    �̇�𝑇

    (𝑑) 𝑃6(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ π›½β„Žβˆ«

    0

    βˆ’π›½β„Ž

    𝑒2π›½π‘˜π‘ 

    �̇�𝑇

    (𝑑 + 𝑠) 𝑃6(𝛼) οΏ½Μ‡οΏ½ (𝑑 + 𝑠) 𝑑𝑠

    βˆ’ 2π‘˜π‘‰4(𝑑)

  • 8 Journal of Applied Mathematics

    ≀ β„Ž2

    �̇�𝑇

    (𝑑) 𝑃5(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ β„Žβˆ«

    𝑑

    π‘‘βˆ’β„Ž

    𝑒2π‘˜(π‘ βˆ’π‘‘)

    �̇�𝑇

    (𝑠) 𝑃5(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    + 𝛽2

    β„Ž2

    �̇�𝑇

    (𝑑) 𝑃6(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ π›½β„Žβˆ«

    𝑑

    π‘‘βˆ’π›½β„Ž

    𝑒2π›½π‘˜(π‘ βˆ’π‘‘)

    �̇�𝑇

    (𝑠) 𝑃6(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    βˆ’ 2π‘˜π‘‰4(𝑑)

    ≀ β„Ž2

    �̇�𝑇

    (𝑑) 𝑃5(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ β„Žπ‘’βˆ’2π‘˜β„Ž

    ∫

    𝑑

    π‘‘βˆ’β„Ž

    �̇�𝑇

    (𝑠) 𝑃5(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    + 𝛽2

    β„Ž2

    �̇�𝑇

    (𝑑) 𝑃6(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ π›½β„Žπ‘’βˆ’2π›½π‘˜β„Ž

    ∫

    𝑑

    π‘‘βˆ’π›½β„Ž

    �̇�𝑇

    (𝑠) 𝑃6(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    βˆ’ 2π‘˜π‘‰4(𝑑) ,

    οΏ½Μ‡οΏ½5(𝑑) ≀ β„Ž

    2

    �̇�𝑇

    (𝑑) 𝑃7(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ β„Žπ‘’βˆ’2π‘˜β„Ž

    ∫

    𝑑

    π‘‘βˆ’β„Ž

    �̇�𝑇

    (𝑠) 𝑃7(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    + 𝛽2

    β„Ž2

    �̇�𝑇

    (𝑑) 𝑃8(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ π›½β„Žπ‘’βˆ’2π›½π‘˜β„Ž

    ∫

    𝑑

    π‘‘βˆ’π›½β„Ž

    �̇�𝑇

    (𝑠) 𝑃8(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    βˆ’ 2π‘˜π‘‰5(𝑑)

    ≀ β„Ž2

    �̇�𝑇

    (𝑑) 𝑃7(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ π‘’βˆ’2π‘˜β„Ž

    ∫

    𝑑

    π‘‘βˆ’β„Ž

    �̇�𝑇

    (𝑠) 𝑑𝑠𝑃7(𝛼)∫

    𝑑

    π‘‘βˆ’β„Ž

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    + 𝛽2

    β„Ž2

    �̇�𝑇

    (𝑑) 𝑃8(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ π‘’βˆ’2π›½π‘˜β„Ž

    ∫

    𝑑

    π‘‘βˆ’π›½β„Ž

    �̇�𝑇

    (𝑠) 𝑑𝑠𝑃8(𝛼) ∫

    𝑑

    π‘‘βˆ’π›½β„Ž

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    βˆ’ 2π‘˜π‘‰5(𝑑)

    ≀ β„Ž2

    �̇�𝑇

    (𝑑) 𝑃7(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ π‘’βˆ’2π‘˜β„Ž

    ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠) 𝑑𝑠𝑃7(𝛼) ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    + 𝛽2

    β„Ž2

    �̇�𝑇

    (𝑑) 𝑃8(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ π‘’βˆ’2π›½π‘˜β„Ž

    ∫

    𝑑

    π‘‘βˆ’π›½β„Ž(𝑑)

    �̇�𝑇

    (𝑠) 𝑑𝑠𝑃8(𝛼) ∫

    𝑑

    π‘‘βˆ’π›½β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    βˆ’ 2𝛼𝑉5(𝑑) ,

    οΏ½Μ‡οΏ½6(𝑑) ≀ β„Ž

    2

    �̇�𝑇

    (𝑑) 𝑃9(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ π‘’βˆ’2π‘˜β„Ž

    ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠) 𝑑𝑠𝑃9(𝛼) ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    + 𝛽2

    β„Ž2

    �̇�𝑇

    (𝑑) 𝑃10(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ π‘’βˆ’2π›½π‘˜β„Ž

    ∫

    𝑑

    π‘‘βˆ’π›½β„Ž(𝑑)

    �̇�𝑇

    (𝑠) 𝑑𝑠𝑃10(𝛼)∫

    𝑑

    π‘‘βˆ’π›½β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    βˆ’ 2π‘˜π‘‰6(𝑑)

    = β„Ž2

    �̇�𝑇

    (𝑑) 𝑃9(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ π‘’βˆ’2π‘˜β„Ž

    [π‘₯𝑇

    (𝑑) βˆ’ π‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑))]

    Γ— 𝑃9(𝛼) [π‘₯ (𝑑) βˆ’ π‘₯ (𝑑 βˆ’ β„Ž (𝑑))]

    + π›½β„Ž2

    �̇�𝑇

    (𝑑) 𝑃10(𝛼) οΏ½Μ‡οΏ½ (𝑑)

    βˆ’ π‘’βˆ’2π›½π‘˜β„Ž

    [π‘₯𝑇

    (𝑑) βˆ’ π‘₯𝑇

    (𝑑 βˆ’ π›½β„Ž (𝑑))]

    Γ— 𝑃10(𝛼) [π‘₯ (𝑑) βˆ’ π‘₯ (𝑑 βˆ’ π›½β„Ž (𝑑))] βˆ’ 2π‘˜π‘‰

    6(𝑑) .

    (31)

    Taking the time derivative of 𝑉7(𝑑), we obtain

    οΏ½Μ‡οΏ½7(𝑑) = β„Žβ„Ž (𝑑) π‘₯

    𝑇

    (𝑑 βˆ’ β„Ž (𝑑)) 𝑅1(𝛼) π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    + 2β„Žπ‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑)) 𝑅2(𝛼) π‘₯ (𝑑)

    βˆ’ 2β„Žπ‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑)) 𝑅2(𝛼) π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    + β„Žβˆ«

    𝑑

    π‘‘βˆ’β„Ž

    �̇�𝑇

    (𝑠) 𝑅3(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    + 𝛽2

    β„Žβ„Ž (𝑑) π‘₯𝑇

    (𝑑 βˆ’ π›½β„Ž (𝑑)) 𝑅4(𝛼) π‘₯ (𝑑 βˆ’ π›½β„Ž (𝑑))

    + 2π›½β„Žπ‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑)) 𝑅5(𝛼) π‘₯ (𝑑)

    βˆ’ 2π›½β„Žπ‘₯𝑇

    (𝑑 βˆ’ π›½β„Ž (𝑑)) 𝑅5(𝛼) π‘₯ (𝑑 βˆ’ π›½β„Ž (𝑑))

    + π›½β„Žβˆ«

    𝑑

    π‘‘βˆ’π›½β„Ž

    �̇�𝑇

    (𝑠) 𝑅6(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 βˆ’ 2π‘˜π‘‰

    7(𝑑)

    ≀ β„Ž2

    π‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑)) 𝑅1(𝛼) π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    + 2β„Žπ‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑)) 𝑅2(𝛼) π‘₯ (𝑑)

    βˆ’ 2β„Žπ‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑)) 𝑅2(𝛼) π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    + β„Žβˆ«

    𝑑

    π‘‘βˆ’β„Ž

    �̇�𝑇

    (𝑠) 𝑅3(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    + 𝛽2

    β„Ž2

    π‘₯𝑇

    (𝑑 βˆ’ π›½β„Ž (𝑑)) 𝑅4(𝛼) π‘₯ (𝑑 βˆ’ π›½β„Ž (𝑑))

    + 2π›½β„Žπ‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑)) 𝑅5(𝛼) π‘₯ (𝑑)

    βˆ’ 2π›½β„Žπ‘₯𝑇

    (𝑑 βˆ’ π›½β„Ž (𝑑)) 𝑅5(𝛼) π‘₯ (𝑑 βˆ’ π›½β„Ž (𝑑))

    + π›½β„Žβˆ«

    𝑑

    π‘‘βˆ’π›½β„Ž

    �̇�𝑇

    (𝑠) 𝑅6(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 βˆ’ 2π‘˜π‘‰

    7(𝑑) .

    (32)

  • Journal of Applied Mathematics 9

    By Lemma 5 and the integral term of the right hand sideof οΏ½Μ‡οΏ½4(𝑑) and οΏ½Μ‡οΏ½

    7(𝑑), we obtain

    βˆ’ β„Žβˆ«

    𝑑

    π‘‘βˆ’β„Ž

    �̇�𝑇

    (𝑠) [π‘’βˆ’2π‘˜β„Ž

    𝑃5(𝛼) βˆ’ 𝑅

    3(𝛼)] οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    βˆ’ π›½β„Žβˆ«

    𝑑

    π‘‘βˆ’π›½β„Ž

    �̇�𝑇

    (𝑠) [π‘’βˆ’2π›½π‘˜β„Ž

    𝑃6(𝛼) βˆ’ 𝑅

    6(𝛼)] οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠

    ≀ β„Ž[π‘₯ (𝑑)

    π‘₯𝑑 βˆ’ β„Ž (𝑑)]

    𝑇

    Γ— [𝑀𝑇

    1(𝛼) + 𝑀

    1(𝛼) βˆ’π‘€

    𝑇

    1(𝛼) + 𝑀

    2(𝛼)

    βˆ— βˆ’π‘€π‘‡

    2(𝛼) βˆ’ 𝑀

    2(𝛼)

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯𝑑 βˆ’ β„Ž (𝑑)]

    + β„Ž2

    [π‘₯ (𝑑)

    π‘₯𝑑 βˆ’ β„Ž (𝑑)]

    𝑇

    [𝑀3(𝛼) 𝑀

    4(𝛼)

    βˆ— 𝑀5(𝛼)

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯𝑑 βˆ’ β„Ž (𝑑)] + π›½β„Ž[

    π‘₯ (𝑑)

    π‘₯𝑑 βˆ’ π›½β„Ž (𝑑)]

    𝑇

    Γ— [𝑀𝑇

    6(𝛼) + 𝑀

    6(𝛼) βˆ’π‘€

    𝑇

    6(𝛼) + 𝑀

    7(𝛼)

    βˆ— βˆ’π‘€π‘‡

    7(𝛼) βˆ’ 𝑀

    7(𝛼)

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯𝑑 βˆ’ π›½β„Ž (𝑑)]

    + 𝛽2

    β„Ž2

    [π‘₯ (𝑑)

    π‘₯𝑑 βˆ’ π›½β„Ž (𝑑)]

    𝑇

    [𝑀8(𝛼) 𝑀

    9(𝛼)

    βˆ— 𝑀10(𝛼)

    ]

    Γ— [π‘₯ (𝑑)

    π‘₯𝑑 βˆ’ π›½β„Ž (𝑑)] .

    (33)

    From the Leibniz-Newton formula, the following equa-tions are true for any parameter-dependent real matrices𝑁𝑖(𝛼), 𝑂

    𝑖(𝛼), 𝑖 = 1, 2, . . . , 10 with appropriate dimensions:

    2 [π‘₯𝑇

    (𝑑)𝑁𝑇

    1(𝛼) + π‘₯

    𝑇

    (𝑑 βˆ’ β„Ž (𝑑))𝑁𝑇

    2(𝛼)

    + π‘₯𝑇

    (𝑑 βˆ’ π›½β„Ž (𝑑))𝑁𝑇

    3(𝛼) + ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠) 𝑑𝑠𝑁𝑇

    4(𝛼)

    + ∫

    𝑑

    π‘‘βˆ’π›½β„Ž(𝑑)

    �̇�𝑇

    (𝑠) 𝑑𝑠𝑁𝑇

    5(𝛼) + οΏ½Μ‡οΏ½

    𝑇

    (𝑑)𝑁𝑇

    6(𝛼)

    + �̇�𝑇

    (𝑑 βˆ’ π‘Ÿ (𝑑))𝑁𝑇

    7(𝛼) + 𝑓

    𝑇

    (𝑑, π‘₯ (𝑑))𝑁𝑇

    8(𝛼)

    +𝑔𝑇

    (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑)))𝑁𝑇

    9(𝛼) + 𝑀

    𝑇

    (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑)))𝑁𝑇

    10(𝛼) ]

    Γ— [π‘₯ (𝑑) βˆ’ π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) βˆ’ ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠] = 0,

    2 [π‘₯𝑇

    (𝑑) 𝑂𝑇

    1(𝛼) + π‘₯

    𝑇

    (𝑑 βˆ’ β„Ž (𝑑)) 𝑂𝑇

    2(𝛼)

    + π‘₯𝑇

    (𝑑 βˆ’ π›½β„Ž (𝑑)) 𝑂𝑇

    3(𝛼) + ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠) 𝑑𝑠𝑂𝑇

    4(𝛼)

    + ∫

    𝑑

    π‘‘βˆ’π›½β„Ž(𝑑)

    �̇�𝑇

    (𝑠) 𝑑𝑠𝑂𝑇

    5(𝛼) + οΏ½Μ‡οΏ½

    𝑇

    (𝑑) 𝑂𝑇

    6(𝛼)

    + �̇�𝑇

    (𝑑 βˆ’ π‘Ÿ (𝑑)) 𝑂𝑇

    7(𝛼) + 𝑓

    𝑇

    (𝑑, π‘₯ (𝑑)) 𝑂𝑇

    8(𝛼)

    + 𝑔𝑇

    (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑))) 𝑂𝑇

    9(𝛼) +𝑀

    𝑇

    (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))) 𝑂𝑇

    10(𝛼) ]

    Γ— [π‘₯ (𝑑) βˆ’ π‘₯ (𝑑 βˆ’ π›½β„Ž (𝑑)) βˆ’ ∫

    𝑑

    π‘‘βˆ’π›½β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠] = 0.

    (34)

    From the utilization of zero equation, the followingequation is true for any parameter-dependent real matricesπ‘Šπ‘–, 𝑖 = 1, 2, . . . , 10 with appropriate dimensions:

    2 [π‘₯𝑇

    (𝑑)π‘Šπ‘‡

    1(𝛼) + π‘₯

    𝑇

    (𝑑 βˆ’ β„Ž (𝑑))π‘Šπ‘‡

    2(𝛼)

    + π‘₯𝑇

    (𝑑 βˆ’ π›½β„Ž (𝑑))π‘Šπ‘‡

    3(𝛼) + ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇

    (𝑠) π‘‘π‘ π‘Šπ‘‡

    4(𝛼)

    + ∫

    𝑑

    π‘‘βˆ’π›½β„Ž(𝑑)

    �̇�𝑇

    (𝑠) π‘‘π‘ π‘Šπ‘‡

    5(𝛼) + οΏ½Μ‡οΏ½

    𝑇

    (𝑑)π‘Šπ‘‡

    6(𝛼)

    + �̇�𝑇

    (𝑑 βˆ’ π‘Ÿ (𝑑))π‘Šπ‘‡

    7(𝛼) + 𝑓

    𝑇

    (𝑑, π‘₯ (𝑑))π‘Š8(𝛼)

    + 𝑔𝑇

    (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑)))π‘Šπ‘‡

    9(𝛼)

    +𝑀𝑇

    (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑)))π‘Šπ‘‡

    10(𝛼) ]

    Γ— [ (𝐴 (𝛼) + 𝐡1(𝛼)) π‘₯ (𝑑) + 𝐡

    2(𝛼) π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    + 𝐢 (𝛼) οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑)) + 𝑓 (𝑑, π‘₯ (𝑑)) + 𝑔 (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑)))

    + 𝑀 (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))) βˆ’ 𝐡1(𝛼) ∫

    𝑑

    π‘‘βˆ’β„Ž(𝑑)

    οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 βˆ’ οΏ½Μ‡οΏ½ (𝑑)]

    = 0.

    (35)

    From (5), we obtain, for any positive real constants πœ–1, πœ–2,

    and πœ–3,

    0 ≀ πœ–1πœ‚2

    π‘₯𝑇

    (𝑑) π‘₯ (𝑑) βˆ’ πœ–1𝑓𝑇

    (𝑑, π‘₯ (𝑑)) 𝑓 (𝑑, π‘₯ (𝑑)) ,

    0 ≀ πœ–2𝜌2

    π‘₯𝑇

    (𝑑 βˆ’ β„Ž (𝑑)) π‘₯ (𝑑 βˆ’ β„Ž (𝑑))

    βˆ’ πœ–2𝑔𝑇

    (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑))) 𝑔 (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑))) ,

    0 ≀ πœ–3𝛾2

    �̇�𝑇

    (𝑑 βˆ’ π‘Ÿ (𝑑)) οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))

    βˆ’ πœ–3𝑀𝑇

    (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))) 𝑀 (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))) .

    (36)

  • 10 Journal of Applied Mathematics

    According to (29)–(36), it is straightforward to see that

    οΏ½Μ‡οΏ½ (𝑑) ≀ πœπ‘‡

    (𝑑)

    𝑁

    βˆ‘

    𝑖=1

    𝑁

    βˆ‘

    𝑗=1

    π›Όπ‘–π›Όπ‘—βˆ‘

    𝑖,𝑗

    𝜁 (𝑑) βˆ’ 2π‘˜π‘‰ (𝑑) , (37)

    where πœπ‘‡(𝑑) = [π‘₯𝑇(𝑑),π‘₯𝑇(π‘‘βˆ’β„Ž(𝑑)),π‘₯𝑇(π‘‘βˆ’π›½β„Ž(𝑑)),βˆ«π‘‘π‘‘βˆ’β„Ž(𝑑)

    �̇�𝑇(𝑠)𝑑𝑠,

    βˆ«π‘‘

    π‘‘βˆ’π›½β„Ž(𝑑)�̇�𝑇(𝑠)𝑑𝑠, οΏ½Μ‡οΏ½

    𝑇(𝑑), �̇�𝑇(𝑑 βˆ’ π‘Ÿ(𝑑)), 𝑓𝑇(𝑑, π‘₯(𝑑)), 𝑔𝑇(𝑑, π‘₯(𝑑 βˆ’

    β„Ž(𝑑))), 𝑀𝑇(𝑑, οΏ½Μ‡οΏ½(𝑑 βˆ’ π‘Ÿ(𝑑))] and βˆ‘π‘–,𝑗is defined in (23). From the

    fact that βˆ‘π‘π‘–=1

    𝛼𝑖= 1,

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖𝐴𝑖

    𝑁

    βˆ‘

    𝑖=1

    𝛼𝑖𝐡𝑖=

    𝑁

    βˆ‘

    𝑖=1

    𝛼2

    𝑖𝐴𝑖𝐡𝑖+

    π‘βˆ’1

    βˆ‘

    𝑖=1

    𝑁

    βˆ‘

    𝑗=𝑖+1

    𝛼𝑖𝛼𝑗[𝐴𝑖𝐡𝑗+ 𝐴𝑗𝐡𝑖] ,

    (𝑁 βˆ’ 1)

    𝑁

    βˆ‘

    𝑖=1

    𝛼2

    π‘–βˆ’ 2

    π‘βˆ’1

    βˆ‘

    𝑖=1

    𝑁

    βˆ‘

    𝑗=𝑖+1

    𝛼𝑖𝛼𝑗=

    π‘βˆ’1

    βˆ‘

    𝑖=1

    𝑁

    βˆ‘

    𝑗=𝑖+1

    [π›Όπ‘–βˆ’ 𝛼𝑗]2

    β‰₯ 0.

    (38)It is true that if conditions (25) hold, then

    οΏ½Μ‡οΏ½ (𝑑) + 2π‘˜π‘‰ (𝑑) ≀ 0, βˆ€π‘‘ ∈ 𝑅+

    , (39)which gives

    𝑉 (𝑑) ≀ 𝑉 (0) π‘’βˆ’2π‘˜π‘‘

    , βˆ€π‘‘ ∈ 𝑅+

    . (40)From (40), it is easy to see that

    πœ†min (𝑃1 (𝛼)) β€–π‘₯ (𝑑)β€–2

    ≀ 𝑉 (𝑑) ≀ 𝑉 (0) π‘’βˆ’2π‘˜π‘‘

    , (41)

    𝑉 (0) =

    7

    βˆ‘

    𝑖=1

    𝑉𝑖(0) , (42)

    where𝑉1(0) = π‘₯

    𝑇

    (0) 𝑃1(𝛼) π‘₯ (0) ,

    𝑉2(0) = ∫

    0

    βˆ’π‘Ÿ(0)

    𝑒2π‘˜π‘ 

    �̇�𝑇

    (𝑠) 𝑃2(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠,

    𝑉3(0) = ∫

    0

    βˆ’β„Ž(0)

    𝑒2π‘˜π‘ 

    π‘₯𝑇

    (𝑠) 𝑃3(𝛼) π‘₯ (𝑠) 𝑑𝑠

    + ∫

    0

    βˆ’π›½β„Ž(0)

    𝑒2π‘˜π‘ 

    π‘₯𝑇

    (𝑠) 𝑃4(𝛼) π‘₯ (𝑠) 𝑑𝑠,

    𝑉4(0) = β„Žβˆ«

    0

    βˆ’β„Ž

    ∫

    0

    πœƒ

    𝑒2π‘˜π‘ 

    �̇�𝑇

    (𝑠) 𝑃5(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 π‘‘πœƒ

    + π›½β„Žβˆ«

    0

    βˆ’π›½β„Ž

    ∫

    0

    πœƒ

    𝑒2π‘˜π‘ 

    �̇�𝑇

    (𝑠) 𝑃6(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 π‘‘πœƒ,

    𝑉5(0) = β„Žβˆ«

    0

    βˆ’β„Ž

    ∫

    0

    πœƒ

    𝑒2π‘˜π‘ 

    �̇�𝑇

    (𝑠) 𝑃7(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 π‘‘πœƒ

    + π›½β„Žβˆ«

    0

    βˆ’π›½β„Ž

    ∫

    0

    πœƒ

    𝑒2π‘˜π‘ 

    �̇�𝑇

    (𝑠) 𝑃8(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 π‘‘πœƒ,

    𝑉6(0) = β„Žβˆ«

    0

    βˆ’β„Ž

    ∫

    𝑑

    πœƒ

    𝑒2π‘˜π‘ 

    �̇�𝑇

    (𝑠) 𝑃9(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 π‘‘πœƒ

    + π›½β„Žβˆ«

    0

    βˆ’π›½β„Ž

    ∫

    0

    πœƒ

    𝑒2π‘˜π‘ 

    �̇�𝑇

    (𝑠) 𝑃10(𝛼) οΏ½Μ‡οΏ½ (𝑠) 𝑑𝑠 π‘‘πœƒ,

    𝑉7(0) = β„Žβˆ«

    0

    βˆ’β„Ž

    ∫

    πœƒ

    πœƒβˆ’β„Ž(πœƒ)

    𝑒2π‘˜πœƒ

    [π‘₯ (πœƒ βˆ’ β„Ž (πœƒ))

    οΏ½Μ‡οΏ½ (𝑠)]

    𝑇

    Γ— [𝑅1(𝛼) 𝑅

    2(𝛼)

    βˆ— 𝑅3(𝛼)

    ]

    Γ— [π‘₯ (πœƒ βˆ’ β„Ž (πœƒ))

    οΏ½Μ‡οΏ½ (𝑠)] 𝑑𝑠 π‘‘πœƒ

    + π›½β„Žβˆ«

    0

    βˆ’π›½β„Ž

    ∫

    πœƒ

    πœƒβˆ’π›½β„Ž(πœƒ)

    𝑒2π‘˜πœƒ

    [π‘₯ (πœƒ βˆ’ π›½β„Ž (πœƒ))

    οΏ½Μ‡οΏ½ (𝑠)]

    𝑇

    Γ— [𝑅4(𝛼) 𝑅

    5(𝛼)

    βˆ— 𝑅6(𝛼)

    ]

    Γ— [π‘₯ (πœƒ βˆ’ π›½β„Ž (πœƒ))

    οΏ½Μ‡οΏ½ (𝑠)] 𝑑𝑠 π‘‘πœƒ.

    (43)

    From (41), we conclude that

    πœ†min (𝑃1 (𝛼)) β€–π‘₯ (𝑑)β€–2

    ≀ 𝑉 (0) π‘’βˆ’2π‘˜π‘‘

    ≀ 𝐿max [πœ™ ,πœ‘

    ]2

    π‘’βˆ’2π‘˜π‘‘

    ,

    (44)

    where 𝐿 = πœ†max(𝑃1(𝛼)) + π‘Ÿπœ†max(𝑃2(𝛼))+ β„Žπœ†max(𝑃3(𝛼)) +π›½β„Žπœ†max(𝑃4(𝛼))+ β„Ž

    3πœ†max(𝑃5(𝛼) + 𝑃7(𝛼)+𝑃9(𝛼)) + (π›½β„Ž)

    3

    πœ†max(𝑃6(𝛼) +𝑃8(𝛼) +𝑃10(𝛼)) + β„Ž3πœ†max ([

    𝑅1(𝛼) 𝑅2(𝛼)

    βˆ— 𝑅3(𝛼)]) + (π›½β„Ž)

    3

    πœ†max ([𝑅4(𝛼) 𝑅5(𝛼)

    βˆ— 𝑅6(𝛼)]). From (44), this means that the system

    (1) is robustly exponentially stable. The proof of the theoremis complete.

    Next, we consider the following system:

    οΏ½Μ‡οΏ½ (𝑑) = 𝐴 (𝛼) π‘₯ (𝑑) + 𝐡 (𝛼) π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) + 𝐢 (𝛼) οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))

    + 𝑓 (𝑑, π‘₯ (𝑑)) + 𝑔 (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑))) , 𝑑 > 0;

    π‘₯ (𝑑) = πœ™ (𝑑) , οΏ½Μ‡οΏ½ (𝑑) = πœ“ (𝑑) , 𝑑 ∈ [βˆ’π‘, 0] .

    (45)

    We introduce the following notations for later use:

    ∏

    𝑖,𝑗

    =

    [[[[[[[[[[[[[[[[

    [

    Ξ£1,1

    𝑖,𝑗Σ1,2

    𝑖,𝑗Σ1,3

    𝑖,𝑗Σ1,4

    𝑖,𝑗Σ1,5

    𝑖,𝑗Σ1,6

    𝑖,𝑗Σ1,7

    𝑖,𝑗Σ1,8

    𝑖,𝑗Σ1,9

    𝑖,𝑗

    βˆ— Ξ£2,2

    𝑖,𝑗Σ2,3

    𝑖,𝑗Σ2,4

    𝑖,𝑗Σ2,5

    𝑖,𝑗Σ2,6

    𝑖,𝑗Σ2,7

    𝑖,𝑗Σ2,8

    𝑖,𝑗Σ2,9

    𝑖,𝑗

    βˆ— βˆ— Ξ£3,3

    𝑖Σ3,4

    𝑖,𝑗Σ3,5

    𝑖Σ3,6

    𝑖Σ3,7

    𝑖,𝑗Σ3,8

    𝑖Σ3,9

    𝑖

    βˆ— βˆ— βˆ— Ξ£4,4

    𝑖,𝑗Σ4,5

    𝑖,𝑗Σ4,6

    𝑖,𝑗Σ4,7

    𝑖,𝑗Σ4,8

    𝑖Σ4,9

    𝑖

    βˆ— βˆ— βˆ— βˆ— Ξ£5,5

    𝑖Σ5,6

    𝑖Σ5,7

    𝑖,𝑗Σ5,8

    𝑖Σ5,9

    𝑖

    βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£6,6

    𝑖Σ6,7

    𝑖,𝑗Σ6,8

    𝑖Σ6,9

    𝑖

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£Μ‚7,7

    𝑖,𝑗Σ7,8

    𝑖,𝑗Σ7,9

    𝑖,𝑗

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£8,8

    𝑖Σ8,9

    𝑖

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£9,9

    𝑖

    ]]]]]]]]]]]]]]]]

    ]

    .

    (46)

    Corollary 8. For ‖𝐢𝑖‖ < 1, 𝑖 = 1, 2, . . . , 𝑁 and given

    positive real constants β„Ž, β„Žπ‘‘, π‘Ÿ, π‘Ÿπ‘‘, πœ‚, 𝜌, and 𝛽, system (45)

    is robustly exponentially stable with a decay rate π‘˜, if thereexist symmetric positive definite matrices 𝑃𝑗

    𝑖, any appropriate

    dimensional matrices 𝑅𝑝𝑖, 𝑀𝑙𝑖, 𝑁𝑗𝑖, 𝑂𝑗𝑖, π‘Šπ‘—π‘–, 𝑝 = 1, 2, . . . 6,

    𝑙 = 1, 2, . . . , 10, 𝑗 = 1, 2, . . . , 9, 𝑖 = 1, 2, . . . , 𝑁, and positive

  • Journal of Applied Mathematics 11

    real constants πœ–1, πœ–2such that the following symmetric linear

    matrix inequalities hold:

    [𝑅1

    𝑖𝑅2

    𝑖

    βˆ— 𝑅3

    𝑖

    ] > 0, 𝑖 = 1, 2, . . . , 𝑁,

    [𝑅4

    𝑖𝑅5

    𝑖

    βˆ— 𝑅6

    𝑖

    ] > 0, 𝑖 = 1, 2, . . . , 𝑁,

    [

    [

    π‘’βˆ’2π‘˜β„Ž

    𝑃3

    π‘–βˆ’ 𝑅3

    𝑖𝑀1

    𝑖𝑀2

    𝑖

    βˆ— 𝑀3

    𝑖𝑀4

    𝑖

    βˆ— βˆ— 𝑀5

    𝑖

    ]

    ]

    β‰₯ 0, 𝑖 = 1, 2, . . . , 𝑁,

    [

    [

    π‘’βˆ’2π›½π‘˜β„Ž

    𝑃6

    π‘–βˆ’ 𝑅6

    𝑖𝑀6

    𝑖𝑀7

    𝑖

    βˆ— 𝑀8

    𝑖𝑀9

    𝑖

    βˆ— βˆ— 𝑀10

    𝑖

    ]

    ]

    β‰₯ 0, 𝑖 = 1, 2, . . . , 𝑁,

    ∏

    𝑖,𝑖

    < βˆ’πΌ, 𝑖 = 1, 2, . . . , 𝑁,

    ∏

    𝑖,𝑗

    +∏

    𝑗,𝑖

    <2

    (𝑁 βˆ’ 1)𝐼, 𝑖 = 1, 2, . . . , 𝑁 βˆ’ 1,

    𝑗 = 𝑖 + 1, 𝑖 + 2, . . . , 𝑁.

    (47)

    Moreover, the solution π‘₯(𝑑, πœ™, πœ“) satisfies the inequality

    π‘₯ (𝑑, πœ™, πœ“) ≀ √

    𝐿

    πœ†min (𝑃1 (𝛼))max [πœ™

    ,πœ“

    ] π‘’βˆ’π‘˜π‘‘

    ,

    βˆ€π‘‘ ∈ 𝑅+

    ,

    (48)

    where 𝐿 = πœ†max(𝑃1(𝛼)) + π‘Ÿπœ†max(𝑃2(𝛼)) + β„Žπœ†max(𝑃3(𝛼)) +π›½β„Žπœ†max(𝑃4(𝛼)) + β„Ž

    3πœ†max(𝑃5(𝛼) + 𝑃7(𝛼) + 𝑃9(𝛼)) +

    (π›½β„Ž)3

    πœ†max(𝑃6(𝛼) + 𝑃8(𝛼) + 𝑃10(𝛼)) + β„Ž3πœ†max ([

    𝑅1(𝛼) 𝑅2(𝛼)

    βˆ— 𝑅3(𝛼)]) +

    (π›½β„Ž)3

    πœ†max ([𝑅4(𝛼) 𝑅5(𝛼)

    βˆ— 𝑅6(𝛼)]).

    3.2. Exponential Stability Criteria. In this section, we studythe exponential stability criteria for neutral systems withtime-varying delays by using the combination of linearmatrixinequality (LMI) technique and Lyapunov theory method.We introduce the following notations for later use:

    βˆ‘ =

    [[[[[[[[[[[[[[

    [

    Ξ£11

    Ξ£12

    Ξ£13

    Ξ£14

    Ξ£15

    Ξ£16

    Ξ£17

    Ξ£18

    Ξ£19

    Ξ£1,10

    βˆ— Ξ£22

    Ξ£23

    Ξ£24

    Ξ£25

    Ξ£26

    Ξ£27

    Ξ£28

    Ξ£29

    Ξ£2,10

    βˆ— βˆ— Ξ£33

    Ξ£34

    Ξ£35

    Ξ£36

    Ξ£37

    Ξ£38

    Ξ£39

    Ξ£3,10

    βˆ— βˆ— βˆ— Ξ£44

    Ξ£45

    Ξ£46

    Ξ£47

    Ξ£48

    Ξ£49

    Ξ£4,10

    βˆ— βˆ— βˆ— βˆ— Ξ£55

    Ξ£56

    Ξ£57

    Ξ£58

    Ξ£59

    Ξ£5,10

    βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£66

    Ξ£67

    Ξ£68

    Ξ£69

    Ξ£6,10

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£77

    Ξ£78

    Ξ£79

    Ξ£7,10

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£88

    Ξ£89

    Ξ£8,10

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£99

    Ξ£9,10

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£10,10

    ]]]]]]]]]]]]]]

    ]

    ,

    (49)

    where

    Ξ£1,1

    = 𝐴𝑇

    𝑃1+ 𝐡𝑇

    1𝑃1+ 𝑍𝑇

    1+ 𝑃1𝐴 + 𝑃

    1𝐡1+ 𝑍1+ 𝑃3

    + 𝑃4+ β„Žπ‘€

    𝑇

    1+ β„Žπ‘€

    1βˆ’ π‘’βˆ’2π‘˜β„Ž

    𝑃9βˆ’ π‘’βˆ’2π‘˜π›½β„Ž

    𝑃10

    + β„Ž2

    𝑀3+ π›½β„Žπ‘€

    6+ π›½β„Žπ‘€

    𝑇

    6+ 𝛽2

    β„Ž2

    𝑀8

    + 𝑁𝑇

    1+ 𝑁1+ 𝑂𝑇

    1+ 𝑂1+ 𝐴𝑇

    π‘Š1+π‘Šπ‘‡

    1𝐴

    + 𝐡𝑇

    1π‘Š1+π‘Šπ‘‡

    1𝐡1+ πœ–1πœ‚2

    𝐼 + 2π‘˜π‘ƒ1,

    Ξ£1,2

    = 𝑃1𝐡2βˆ’ β„Žπ‘€

    𝑇

    1+ β„Žπ‘€

    2+ β„Ž2

    𝑀4+ π‘’βˆ’2π‘˜β„Ž

    𝑃9

    + β„Žπ‘…2βˆ’ 𝑁𝑇

    1+ 𝑁2+ 𝑂2+π‘Šπ‘‡

    1𝐡2

    + 𝐴𝑇

    π‘Š2+ 𝐡𝑇

    1π‘Š2,

    Ξ£1,3

    = βˆ’π‘1βˆ’ π›½β„Žπ‘€

    𝑇

    6+ π›½β„Žπ‘€

    7+ π›½β„Ž2

    𝑀9+ π›½β„Žπ‘…

    5

    + π‘’βˆ’2π‘˜π›½β„Ž

    𝑃10+ 𝑁3βˆ’ 𝑂𝑇

    1+ 𝑂3

    + 𝐴𝑇

    π‘Š3+ 𝐡𝑇

    1π‘Š3,

    Ξ£1,4

    = βˆ’π‘ƒ1𝐡1βˆ’ 𝑁𝑇

    1+ 𝑁4+ 𝑂4

    βˆ’π‘Šπ‘‡

    1𝐡1+ 𝐴𝑇

    π‘Š4+ 𝐡𝑇

    1π‘Š4,

    Ξ£1,5

    = βˆ’π‘1+ 𝑁5βˆ’ 𝑂𝑇

    1+ 𝑂5+ 𝐴𝑇

    π‘Š5+ 𝐡𝑇

    1π‘Š5,

    Ξ£1,6

    = 𝑁6+ 𝑂6βˆ’π‘Šπ‘‡

    1+ 𝐴𝑇

    π‘Š6+ 𝐡𝑇

    1π‘Š6,

    Ξ£1,7

    = 𝑃1𝐢 + 𝑁

    7+ 𝑂7+π‘Šπ‘‡

    1𝐢 + 𝐴

    𝑇

    π‘Š7+ 𝐡𝑇

    1π‘Š7,

    Ξ£1,8

    = 𝑃1+ 𝑁8+ 𝑂8+π‘Šπ‘‡

    1+ 𝐴𝑇

    π‘Š8+ 𝐡𝑇

    1π‘Š8,

    Ξ£1,9

    = 𝑃1+ 𝑁9+ 𝑂9+π‘Šπ‘‡

    1+ 𝐴𝑇

    π‘Š9+ 𝐡𝑇

    1π‘Š9,

    Ξ£1,10

    = 𝑃1+ 𝑁10+ 𝑂10+π‘Šπ‘‡

    1+ 𝐴𝑇

    π‘Š10+ 𝐡𝑇

    1π‘Š10,

    Ξ£2,2

    = βˆ’ (1 βˆ’ β„Žπ‘‘) π‘’βˆ’2π‘˜β„Ž

    𝑃3βˆ’ β„Žπ‘€

    𝑇

    2βˆ’ β„Žπ‘€

    2

    + β„Ž2

    𝑀5+ β„Ž2

    𝑅1βˆ’ 2β„Žπ‘…

    2βˆ’ π‘’βˆ’2π‘˜β„Ž

    𝑃9

    + πœ–2𝜌2

    𝐼 βˆ’ 𝑁𝑇

    2βˆ’ 𝑁2+π‘Šπ‘‡

    2𝐡2+ 𝐡𝑇

    2π‘Š2,

    Ξ£2,3

    = βˆ’π‘3βˆ’ 𝑂𝑇

    2+ 𝐡𝑇

    2π‘Š3,

    Ξ£2,4

    = βˆ’π‘π‘‡

    2βˆ’ 𝑁4βˆ’π‘Šπ‘‡

    2𝐡1+ 𝐡𝑇

    2π‘Š4,

    Ξ£2,5

    = βˆ’π‘5βˆ’ 𝑂𝑇

    2+ 𝐡𝑇

    2π‘Š5,

    Ξ£2,6

    = βˆ’π‘6βˆ’π‘Šπ‘‡

    2+ 𝐡𝑇

    2π‘Š6,

    Ξ£2,7

    = βˆ’π‘7+π‘Šπ‘‡

    2𝐢 + 𝐡

    𝑇

    2π‘Š7,

    Ξ£2,8

    = βˆ’π‘8+π‘Šπ‘‡

    2+ 𝐡𝑇

    2π‘Š8,

    Ξ£2,9

    = βˆ’π‘π‘‡

    9βˆ’π‘Šπ‘‡

    2+ 𝐡𝑇

    2π‘Š9,

    Ξ£2,10

    = βˆ’π‘10+π‘Šπ‘‡

    2+ 𝐡𝑇

    2π‘Š10,

  • 12 Journal of Applied Mathematics

    Ξ£3,3

    = βˆ’ (1 βˆ’ π›½β„Žπ‘‘) π‘’βˆ’2π›½π‘˜β„Ž

    𝑃4βˆ’ π‘’βˆ’2π›½π‘˜β„Ž

    𝑃10+ 𝛽2

    β„Ž2

    𝑅4

    βˆ’ 2π›½β„Žπ‘…5βˆ’ π›½β„Žπ‘€

    𝑇

    7βˆ’ π›½β„Žπ‘€

    7+ 𝛽2

    β„Ž2

    𝑀10

    βˆ’ 𝑂𝑇

    3βˆ’ 𝑂3,

    Ξ£3,4

    = βˆ’π‘π‘‡

    3βˆ’ 𝑂4βˆ’π‘Šπ‘‡

    3𝐡1,

    Ξ£3,5

    = βˆ’π‘‚π‘‡

    3βˆ’ 𝑂5,

    Ξ£3,6

    = βˆ’π‘‚9+π‘Šπ‘‡

    3, Ξ£

    3,7= βˆ’π‘‚7+π‘Šπ‘‡

    3𝐢,

    Ξ£3,8

    = βˆ’π‘‚8+π‘Šπ‘‡

    3, Ξ£

    3,9= βˆ’π‘‚9+π‘Šπ‘‡

    3,

    Ξ£3,10

    = βˆ’π‘‚10+π‘Šπ‘‡

    3,

    Ξ£4,4

    = βˆ’π‘’2π‘˜β„Ž

    𝑃7βˆ’ 𝑁𝑇

    4βˆ’ 𝑁4+π‘Šπ‘‡

    4𝐡1βˆ’ 𝐡𝑇

    1π‘Š4,

    Ξ£4,5

    = βˆ’π‘5βˆ’ 𝑂𝑇

    4βˆ’ 𝐡𝑇

    1π‘Š5,

    Ξ£4,6

    = βˆ’π‘6βˆ’π‘Šπ‘‡

    4βˆ’ 𝐡𝑇

    1π‘Š6,

    Ξ£4,7

    = βˆ’π‘7+π‘Šπ‘‡

    4𝐢 βˆ’ 𝐡

    𝑇

    1π‘Š7,

    Ξ£4,8

    = βˆ’π‘‚8+π‘Šπ‘‡

    3,

    Ξ£4,9

    = βˆ’π‘‚9+π‘Šπ‘‡

    3, Ξ£

    4,10= βˆ’π‘‚10+π‘Šπ‘‡

    3,

    Ξ£5,5

    = βˆ’π‘’2π›½π‘˜β„Ž

    𝑃8βˆ’ 𝑂𝑇

    5βˆ’ 𝑂5,

    Ξ£5,6

    = βˆ’π‘‚6βˆ’π‘Šπ‘‡

    5,

    Ξ£5,7

    = βˆ’π‘‚7+π‘Šπ‘‡

    5𝐢, Σ

    5,8= βˆ’π‘‚8+π‘Šπ‘‡

    5,

    Ξ£5,9

    = βˆ’π‘‚9+π‘Šπ‘‡

    5,

    Ξ£5,10

    = βˆ’π‘‚10+π‘Šπ‘‡

    5,

    Ξ£6,6

    = 𝑃2+ β„Ž2

    𝑃5+ 𝛽2

    β„Ž2

    𝑃6+ β„Ž2

    𝑃7+ 𝛽2

    β„Ž2

    𝑃8

    + β„Ž2

    𝑃9+ 𝛽2

    β„Ž2

    𝑃10βˆ’π‘Šπ‘‡

    6βˆ’π‘Š6,

    Ξ£6,7

    = π‘Šπ‘‡

    6𝐢 βˆ’π‘Š

    7, Ξ£

    6,8= π‘Šπ‘‡

    6βˆ’π‘Š8,

    Ξ£6,9

    = π‘Šπ‘‡

    6βˆ’π‘Š9, Ξ£

    6,10= π‘Šπ‘‡

    6βˆ’π‘Š10,

    Ξ£7,7

    = βˆ’ (1 βˆ’ π‘Ÿπ‘‘) π‘’βˆ’2π‘˜π‘Ÿ

    𝑃2+ πœ–3𝛾2

    𝐼

    + π‘Šπ‘‡

    7𝐢 + 𝐢

    𝑇

    π‘Š7,

    Ξ£7,8

    = π‘Šπ‘‡

    7βˆ’ 𝐢𝑇

    π‘Š8, Ξ£

    7,9= π‘Šπ‘‡

    7βˆ’ 𝐢𝑇

    π‘Š9,

    Ξ£7,10

    = π‘Šπ‘‡

    7βˆ’ 𝐢𝑇

    π‘Š10

    Ξ£8,8

    = π‘Šπ‘‡

    8+π‘Š8βˆ’ πœ–1𝐼,

    Ξ£8,9

    = π‘Šπ‘‡

    8+π‘Š9, Ξ£

    8,10= π‘Šπ‘‡

    8+π‘Š10,

    Ξ£9,9

    = π‘Šπ‘‡

    9+π‘Š9βˆ’ πœ–2𝐼, Ξ£

    9,10= π‘Šπ‘‡

    9+π‘Š10,

    Ξ£10,10

    = π‘Šπ‘‡

    10+π‘Š10βˆ’ πœ–3𝐼,

    Ξ£Μ‚7,7

    = βˆ’ (1 βˆ’ π‘Ÿπ‘‘) π‘’βˆ’2π‘˜π‘Ÿ

    𝑃2+π‘Šπ‘‡

    7𝐢 + 𝐢

    𝑇

    π‘Š7,

    𝑍1= 𝑃1𝐺.

    (50)

    If 𝐴(𝛼) = 𝐴, 𝐡(𝛼) = 𝐡, and 𝐢(𝛼) = 𝐢, where 𝐴, 𝐡, 𝐢 βˆˆπ‘…π‘›Γ—π‘› are real constant matrices, then system (1) reduces to the

    following system:

    οΏ½Μ‡οΏ½ (𝑑) = 𝐴π‘₯ (𝑑) + 𝐡π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) + 𝐢�̇� (𝑑 βˆ’ π‘Ÿ (𝑑))

    + 𝑓 (𝑑, π‘₯ (𝑑)) + 𝑔 (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑)))

    + 𝑀 (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))) , 𝑑 > 0;

    π‘₯ (𝑑) = πœ™ (𝑑) , οΏ½Μ‡οΏ½ (𝑑) = πœ“ (𝑑) , 𝑑 ∈ [βˆ’π‘, 0] .

    (51)

    Corollary 9. For ‖𝐢‖+𝛾 < 1 and given positive real constantsβ„Ž, β„Žπ‘‘, π‘Ÿ, π‘Ÿπ‘‘,πœ‚,𝜌, 𝛾, and𝛽, system (51) is exponentially stablewith

    a decay rate π‘˜, if there exist symmetric positive definitematrices𝑃𝑖, any appropriate dimensional matrices 𝑅

    𝑠, 𝑁𝑖, 𝑂𝑖, π‘Šπ‘–, 𝑀𝑖,

    𝐺, 𝑠 = 1, 2, . . . 6, 𝑖 = 1, 2, . . . , 10, and positive real constantsπœ–1, πœ–2, and πœ–

    3such that the following symmetric linear matrix

    inequalities hold:

    [𝑅1

    𝑅2

    βˆ— 𝑅3

    ] > 0,

    [𝑅4

    𝑅5

    βˆ— 𝑅6

    ] > 0,

    [

    [

    π‘’βˆ’2π‘˜β„Ž

    𝑃3βˆ’ 𝑅3

    𝑀1

    𝑀2

    βˆ— 𝑀3

    𝑀4

    βˆ— βˆ— 𝑀5

    ]

    ]

    β‰₯ 0,

    [

    [

    π‘’βˆ’2π›½π‘˜β„Ž

    𝑃6βˆ’ 𝑅6

    𝑀6

    𝑀7

    βˆ— 𝑀8

    𝑀9

    βˆ— βˆ— 𝑀10

    ]

    ]

    β‰₯ 0,

    βˆ‘ < 0.

    (52)

    Moreover, the solution π‘₯(𝑑, πœ™, πœ“) satisfies the inequality

    π‘₯ (𝑑, πœ™, πœ“) ≀ √

    𝐷

    πœ†min (𝑃1)max [πœ™

    ,πœ“

    ] π‘’βˆ’π‘˜π‘‘

    , βˆ€π‘‘ ∈ 𝑅+

    ,

    (53)

    where𝐷 = πœ†max(𝑃1) + π‘Ÿπœ†max(𝑃2) + β„Žπœ†max(𝑃3) + π›½β„Žπœ†max(𝑃4) +β„Ž3πœ†max(𝑃5 + 𝑃7 + 𝑃9) + (π›½β„Ž)

    3

    πœ†max(𝑃6 + 𝑃8 + 𝑃10) +

    β„Ž3πœ†max ([

    𝑅1 𝑅2

    βˆ— 𝑅3]) + (π›½β„Ž)

    3

    πœ†max ([𝑅4 𝑅5

    βˆ— 𝑅6]).

    If𝐴(𝛼) = 𝐴,𝐡(𝛼) = 𝐡,𝐢(𝛼) = 𝐢, and𝑀(𝑑, οΏ½Μ‡οΏ½(π‘‘βˆ’π‘Ÿ(𝑑))) = 0,where 𝐴, 𝐡, 𝐢 ∈ 𝑅𝑛×𝑛 are real constant matrices, then system(1) reduces to the following system:

    οΏ½Μ‡οΏ½ (𝑑) = 𝐴π‘₯ (𝑑) + 𝐡π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) + 𝐢�̇� (𝑑 βˆ’ π‘Ÿ (𝑑))

    + 𝑓 (𝑑, π‘₯ (𝑑)) + 𝑔 (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑))) , 𝑑 > 0;

    π‘₯ (𝑑) = πœ™ (𝑑) , οΏ½Μ‡οΏ½ (𝑑) = πœ“ (𝑑) , 𝑑 ∈ [βˆ’π‘, 0] .

    (54)

    Corollary 10. For ‖𝐢‖ < 1 and given positive real constantsβ„Ž, β„Žπ‘‘, π‘Ÿ, π‘Ÿπ‘‘, πœ‚, 𝜌, and 𝛽, system (54) is exponentially stable

    with a decay rate π‘˜, if there exist symmetric positive definitematrices 𝑃

    𝑗, any appropriate dimensional matrices 𝑅

    𝑠, 𝑁𝑖, 𝑂𝑖,

  • Journal of Applied Mathematics 13

    π‘Šπ‘–, 𝑀𝑗, and 𝐺, where 𝑠 = 1, 2, . . . 6, 𝑖 = 1, 2, . . . , 9, and

    𝑗 = 1, 2, . . . 10, and positive real constants πœ–1, πœ–2such that the

    following symmetric linear matrix inequalities hold:

    [𝑅1

    𝑅2

    βˆ— 𝑅3

    ] > 0,

    [𝑅4

    𝑅5

    βˆ— 𝑅6

    ] > 0,

    [

    [

    π‘’βˆ’2π‘˜β„Ž

    𝑃3βˆ’ 𝑅3

    𝑀1

    𝑀2

    βˆ— 𝑀3

    𝑀4

    βˆ— βˆ— 𝑀5

    ]

    ]

    β‰₯ 0,

    [

    [

    π‘’βˆ’2π›½π‘˜β„Ž

    𝑃6βˆ’ 𝑅6

    𝑀6

    𝑀7

    βˆ— 𝑀8

    𝑀9

    βˆ— βˆ— 𝑀10

    ]

    ]

    β‰₯ 0,

    ∏ < 0,

    (55)

    where

    ∏ =

    [[[[[[[[[[[[[

    [

    Ξ£11

    Ξ£12

    Ξ£13

    Ξ£14

    Ξ£15

    Ξ£16

    Ξ£17

    Ξ£18

    Ξ£19

    βˆ— Ξ£22

    Ξ£23

    Ξ£24

    Ξ£25

    Ξ£26

    Ξ£27

    Ξ£28

    Ξ£29

    βˆ— βˆ— Ξ£33

    Ξ£34

    Ξ£35

    Ξ£36

    Ξ£37

    Ξ£38

    Ξ£39

    βˆ— βˆ— βˆ— Ξ£44

    Ξ£45

    Ξ£46

    Ξ£47

    Ξ£48

    Ξ£49

    βˆ— βˆ— βˆ— βˆ— Ξ£55

    Ξ£56

    Ξ£57

    Ξ£58

    Ξ£59

    βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£66

    Ξ£67

    Ξ£68

    Ξ£69

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£Μƒ77

    Ξ£78

    Ξ£79

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£88

    Ξ£89

    βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— βˆ— Ξ£99

    ]]]]]]]]]]]]]

    ]

    . (56)

    Moreover, the solution π‘₯(𝑑, πœ™, πœ“) satisfies the inequality

    π‘₯ (𝑑, πœ™, πœ“) ≀ √

    𝐷

    πœ†min (𝑃1)max [πœ™

    ,πœ“

    ] π‘’βˆ’π‘˜π‘‘

    , βˆ€π‘‘ ∈ 𝑅+

    ,

    (57)

    where𝐷 = πœ†max(𝑃1) + π‘Ÿπœ†max(𝑃2) + β„Žπœ†max(𝑃3) + π›½β„Žπœ†max(𝑃4) +β„Ž3πœ†max(𝑃5 + 𝑃7 + 𝑃9) + (π›½β„Ž)

    3

    πœ†max(𝑃6 + 𝑃8 + 𝑃10) +

    β„Ž3πœ†max ([

    𝑅1 𝑅2

    βˆ— 𝑅3]) + (π›½β„Ž)

    3

    πœ†max ([𝑅4 𝑅5

    βˆ— 𝑅6]).

    4. Numerical Examples

    In order to show the effectiveness of the approaches presentedin Section 3, three numerical examples are provided.

    Example 1. Consider the robust exponential stability of sys-tem (1) with

    𝐴 (𝛼) = 𝛼1[βˆ’2 0

    0 βˆ’1] + 𝛼2[βˆ’2 0

    0 βˆ’0.8] ,

    𝐡 (𝛼) = 𝛼1[βˆ’1 0

    βˆ’1 βˆ’0.8] + 𝛼2[βˆ’1 0

    βˆ’1 βˆ’1] ,

    𝐢 (𝛼) = 𝛼1[0.1 0

    0 0.1] + 𝛼2[0.2 0

    0 0.1] ,

    𝑓 (𝑑, π‘₯ (𝑑)) = [0.05 sin (𝑑) π‘₯

    1(𝑑)

    0.05 cos (𝑑) π‘₯2(𝑑)

    ] ,

    𝑔 (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑))) = [0.1 cos (𝑑)2π‘₯

    1(𝑑 βˆ’ β„Ž (𝑑))

    0.1 sin (𝑑)2π‘₯2(𝑑 βˆ’ β„Ž (𝑑))

    ] ,

    β„Ž (𝑑) = 0.9sin2 ( 𝑑2) ,

    𝑀 (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))) = [0.1 cos (𝑑) οΏ½Μ‡οΏ½

    1(𝑑 βˆ’ π‘Ÿ (𝑑))

    0.1 sin (𝑑) οΏ½Μ‡οΏ½2(𝑑 βˆ’ π‘Ÿ (𝑑))

    ] ,

    π‘Ÿ (𝑑) = cos2 ( 𝑑4) ,

    (58)

    where π‘₯(𝑑) ∈ 𝑅2. It is easy to see that β„Ž = 0.9, β„Žπ‘‘= 0.45,

    π‘Ÿ = 1, π‘Ÿπ‘‘= 0.25, πœ‚ = 0.05, 𝜌 = 0.1, 𝛾 = 0.1, and given rate

    of convergence π‘˜ = 0.1. Decompose matrix 𝐡(𝛼) as follows:𝐡(𝛼) = 𝐡

    1(𝛼) + 𝐡

    2(𝛼), where

    𝐡1(𝛼) = 𝛼

    1[βˆ’0.83 0

    βˆ’1 βˆ’0.63] + 𝛼2[βˆ’0.83 0

    βˆ’1 βˆ’0.83] ,

    𝐡2(𝛼) = 𝛼

    1[βˆ’0.17 0

    0 βˆ’0.17] + 𝛼2[βˆ’0.17 0

    0 βˆ’0.17] .

    (59)

    The numerical solutions π‘₯1(𝑑) and π‘₯

    2(𝑑) of system (1) with

    (58)-(59) are plotted in Figure 1 where the states π‘₯1(𝑑) and

    π‘₯2(𝑑) are attracted to the stable origin.

    Solution. By using the LMI Toolbox in MATLAB (withaccuracy 0.01), we use conditions (25) in Theorem 7 forsystem (1) with (58)-(59). The solutions of LMIs verify asfollows:

    𝑃1

    1= 103

    Γ— [3.3091 βˆ’0.0455

    βˆ’0.0455 0.7941] ,

    𝑃1

    2= 103

    Γ— [3.3091 βˆ’0.0455

    βˆ’0.0455 0.7941] ,

    𝑃2

    1= 103

    Γ— [4.3739 βˆ’0.3929

    βˆ’0.3929 2.7610] ,

    𝑃2

    2= 103

    Γ— [4.7896 βˆ’0.4618

    βˆ’0.4618 2.8307] ,

    𝑃3

    1= 104

    Γ— [1.5976 0.1384

    0.1384 0.3189] ,

    𝑃3

    2= 104

    Γ— [1.5976 0.1384

    0.1384 0.3189] ,

    𝑃4

    1= 103

    Γ— [9.8670 βˆ’0.0635

    βˆ’0.0635 4.5726] ,

  • 14 Journal of Applied Mathematics

    𝑃4

    2= 103

    Γ— [8.8868 βˆ’0.2421

    βˆ’0.2421 3.2473] ,

    𝑃5

    1= 103

    Γ— [1.3009 βˆ’0.1372

    βˆ’0.1372 0.6505] ,

    𝑃5

    2= 103

    Γ— [1.0898 βˆ’0.0980

    βˆ’0.0980 0.3986] ,

    𝑃6

    1= 104

    Γ— [2.8885 βˆ’0.0338

    βˆ’0.0338 2.6935] ,

    𝑃6

    2= 104

    Γ— [2.8526 βˆ’0.0449

    βˆ’0.0449 2.4922] ,

    𝑃7

    1= 103

    Γ— [2.6064 βˆ’0.3045

    βˆ’0.3045 2.5259] ,

    𝑃7

    2= 103

    Γ— [2.3663 βˆ’0.1722

    βˆ’0.1722 2.5747] ,

    𝑃8

    1= 104

    Γ— [1.4801 βˆ’0.0277

    βˆ’0.0277 1.4063] ,

    𝑃8

    2= 104

    Γ— [1.4740 βˆ’0.0862

    βˆ’0.0862 1.4207] ,

    𝑃9

    1= 103

    Γ— [2.6064 βˆ’0.3045

    βˆ’0.3045 2.5259] ,

    𝑃9

    2= 103

    Γ— [2.3663 βˆ’0.1722

    βˆ’0.1722 2.5747] ,

    𝑃10

    1= 104

    Γ— [1.4570 βˆ’0.0000

    βˆ’0.0000 1.2074] ,

    𝑃10

    2= 104

    Γ— [1.4354 0.0019

    0.0019 1.0978] ,

    𝑀1

    1= 103

    Γ— [βˆ’9.1839 βˆ’1.2537

    βˆ’1.2537 βˆ’2.0706] ,

    𝑀1

    2= 104

    Γ— [βˆ’1.0642 βˆ’0.1844

    βˆ’0.1844 βˆ’0.2293] ,

    𝑀2

    1= 103

    Γ— [8.8459 1.1503

    1.1503 2.0066] ,

    𝑀2

    2= 104

    Γ— [1.0288 0.1763

    0.1763 0.2238] ,

    𝑀3

    1= 104

    Γ— [1.0499 0.1090

    0.1090 0.2928] ,

    𝑀3

    2= 104

    Γ— [1.1838 0.1766

    0.1766 0.2881] ,

    𝑀4

    1= 103

    Γ— [βˆ’8.8058 βˆ’0.9604

    βˆ’0.9604 βˆ’2.6545] ,

    𝑀4

    2= 104

    Γ— [βˆ’1.0454 βˆ’0.1677

    βˆ’0.1677 βˆ’0.2680] ,

    𝑀5

    1= 104

    Γ— [1.0303 0.1018

    0.1018 0.3190] ,

    𝑀5

    2= 104

    Γ— [1.1590 0.1622

    0.1622 0.3078] ,

    𝑀6

    1= [

    βˆ’34.9655 βˆ’18.7513

    βˆ’18.7513 35.4129] ,

    𝑀6

    2= [

    βˆ’39.8158 βˆ’24.8476

    βˆ’24.8476 13.4547] ,

    𝑀7

    1= [

    2.0904 2.7717

    2.7717 βˆ’7.8109] , 𝑀

    7

    2= [

    3.2803 5.2929

    5.2929 βˆ’4.0693] ,

    𝑀8

    1= 104

    Γ— [1.4679 0.0003

    0.0003 1.2678] ,

    𝑀8

    2= 104

    Γ— [1.4438 βˆ’0.0080

    βˆ’0.0080 1.1830] ,

    𝑀9

    1= 103

    Γ— [βˆ’0.8905 0.0058

    0.0058 βˆ’2.9028] ,

    𝑀9

    2= 103

    Γ— [βˆ’1.1307 βˆ’0.0760

    βˆ’0.0760 βˆ’3.7474] ,

    𝑀10

    1= 104

    Γ— [1.4684 0.0005

    0.0005 1.2673] ,

    𝑀10

    2= 104

    Γ— [1.4444 βˆ’0.0077

    βˆ’0.0077 1.1828] ,

    𝑅1

    1= 103

    Γ— [2.9131 0.1748

    0.1748 0.7782] ,

    𝑅1

    2= 103

    Γ— [2.3463 0.0353

    0.0353 0.5806] ,

    𝑅2

    1= 103

    Γ— [1.1393 0.0531

    0.0531 0.1251] ,

    𝑅2

    2= [

    876.5627 32.5550

    32.5550 98.5599] ,

    𝑅3

    1= 103

    Γ— [2.6387 βˆ’0.0759

    βˆ’0.0759 0.5866] ,

    𝑅3

    2= 103

    Γ— [2.0346 βˆ’0.0762

    βˆ’0.0762 0.3589] ,

    𝑅4

    1= 103

    Γ— [5.6600 βˆ’0.0415

    βˆ’0.0415 5.0541] ,

    𝑅4

    2= 103

    Γ— [5.5782 βˆ’0.0710

    βˆ’0.0710 4.6031] ,

    𝑅5

    1= 104

    Γ— [βˆ’7.9071 0.0551

    0.0551 βˆ’3.8199] ,

    𝑅5

    2= 104

    Γ— [βˆ’7.3912 0.4576

    0.4576 βˆ’3.2145] ,

  • Journal of Applied Mathematics 15

    𝑅6

    1= 104

    Γ— [1.4893 βˆ’0.0162

    βˆ’0.0162 1.3778] ,

    𝑅6

    2= 104

    Γ— [1.4703 βˆ’0.0223

    βˆ’0.0223 1.2713] ,

    𝑁1

    1= 103

    Γ— [8.7493 3.8534

    3.8534 βˆ’3.1296] ,

    𝑁1

    2= 104

    Γ— [0.6691 0.2686

    0.2686 βˆ’1.0299] ,

    𝑁2

    1= 103

    Γ— [βˆ’3.8698 βˆ’0.3606

    βˆ’0.3606 1.4605] ,

    𝑁2

    2= 103

    Γ— [βˆ’4.5981 βˆ’0.9753

    βˆ’0.9753 1.2772] ,

    𝑁3

    1= [

    βˆ’114.8946 βˆ’186.6948

    βˆ’186.6948 βˆ’113.8034] ,

    𝑁3

    2= [

    210.0606 βˆ’115.9077

    βˆ’115.9077 βˆ’174.4056] ,

    𝑁4

    1= 104

    Γ— [βˆ’1.1296 βˆ’0.0266

    βˆ’0.0266 0.1446] ,

    𝑁4

    2= 104

    Γ— [βˆ’1.0062 0.1041

    0.1041 0.8782] ,

    𝑁5

    1= 103

    Γ— [4.5589 βˆ’2.3847

    βˆ’2.3847 0.8561] ,

    𝑁5

    2= 103

    Γ— [5.3887 βˆ’2.4363

    βˆ’2.4363 1.1619] ,

    𝑁6

    1= 103

    Γ— [5.9564 βˆ’1.9530

    βˆ’1.9530 1.5688] ,

    𝑁6

    2= 103

    Γ— [6.7696 βˆ’1.9958

    βˆ’1.9958 2.0384] ,

    𝑁7

    1= 103

    Γ— [5.9602 βˆ’0.2891

    βˆ’0.2891 2.9332] ,

    𝑁7

    2= 103

    Γ— [6.3929 βˆ’0.0855

    βˆ’0.0855 3.1668] ,

    𝑁8

    1= 103

    Γ— [βˆ’9.6508 βˆ’0.4780

    βˆ’0.4780 3.5901] ,

    𝑁8

    2= 104

    Γ— [βˆ’0.8505 0.0574

    0.0574 1.1344] ,

    𝑁9

    1= 103

    Γ— [5.5789 βˆ’2.0704

    βˆ’2.0704 1.3737] ,

    𝑁9

    2= 103

    Γ— [6.3923 βˆ’2.1169

    βˆ’2.1169 1.8008] ,

    𝑁10

    1= 103

    Γ— [βˆ’3.6595 3.2032

    3.2032 βˆ’0.1648] ,

    𝑁10

    2= 103

    Γ— [βˆ’4.3781 3.2120

    3.2120 0.1271] ,

    𝑂1

    1= 104

    Γ— [1.5923 βˆ’0.7669

    βˆ’0.7669 1.6350] ,

    𝑂1

    2= 104

    Γ— [1.8134 βˆ’0.6324

    βˆ’0.6324 2.3112] ,

    𝑂2

    1= 104

    Γ— [1.0371 βˆ’0.0001

    βˆ’0.0001 βˆ’0.3635] ,

    𝑂2

    2= 104

    Γ— [0.9152 βˆ’0.1464

    βˆ’0.1464 βˆ’1.0978] ,

    𝑂3

    1= 103

    Γ— [βˆ’1.0355 0.1515

    0.1515 βˆ’0.3626] ,

    𝑂3

    2= 103

    Γ— [βˆ’1.4990 0.3148

    0.3148 βˆ’0.4988] ,

    𝑂4

    1= [

    βˆ’51.1797 71.7167

    71.7167 βˆ’390.4844] ,

    𝑂4

    2= [

    βˆ’22.7818 βˆ’177.9764

    βˆ’177.9764 237.5644] ,

    𝑂5

    1= 104

    Γ— [βˆ’1.4569 0.2376

    0.2376 βˆ’0.4763] ,

    𝑂5

    2= 104

    Γ— [βˆ’1.5078 0.2277

    0.2277 βˆ’0.4312] ,

    𝑂6

    1= 104

    Γ— [βˆ’1.3667 0.2475

    0.2475 βˆ’0.4459] ,

    𝑂6

    2= 104

    Γ— [βˆ’1.4169 0.2441

    0.2441 βˆ’0.4015] ,

    𝑂7

    1= 103

    Γ— [5.5038 0.7900

    0.7900 βˆ’4.7294] ,

    𝑂7

    2= 104

    Γ— [0.4206 βˆ’0.0170

    βˆ’0.0170 βˆ’1.2249] ,

    𝑂8

    1= [

    244.5684 88.4596

    88.4596 481.2263] ,

    𝑂8

    2= [

    272.5078 401.6259

    401.6259 βˆ’0.2695] ,

    𝑂9

    1= 104

    Γ— [βˆ’1.3911 0.2447

    0.2447 βˆ’0.4543] ,

    𝑂9

    2= 104

    Γ— [βˆ’1.4415 0.2394

    0.2394 βˆ’0.4095] ,

    𝑂10

    1= 104

    Γ— [1.3674 βˆ’0.2535

    βˆ’0.2535 0.3868] ,

    𝑂10

    2= 104

    Γ— [1.4277 βˆ’0.2479

    βˆ’0.2479 0.3580] ,

  • 16 Journal of Applied Mathematics

    π‘Š1

    1= 104

    Γ— [1.5106 βˆ’0.0468

    βˆ’0.0468 0.7929] ,

    π‘Š1

    2= 104

    Γ— [1.4523 βˆ’0.0341

    βˆ’0.0341 0.7069] ,

    π‘Š2

    1= 103

    Γ— [5.9653 βˆ’2.4134

    βˆ’2.4134 1.7851] ,

    π‘Š2

    2= 103

    Γ— [6.9091 βˆ’2.5666

    βˆ’2.5666 1.9597] ,

    π‘Š3

    1= [

    βˆ’289.7085 24.4200

    24.4200 βˆ’461.3886] ,

    π‘Š3

    2= [

    βˆ’223.5193 93.6566

    93.6566 βˆ’234.3346] ,

    π‘Š4

    1= 104

    Γ— [βˆ’1.2746 0.2653

    0.2653 βˆ’0.3694] ,

    π‘Š4

    2= 104

    Γ— [βˆ’1.3242 0.2636

    0.2636 βˆ’0.3371] ,

    π‘Š5

    1= 103

    Γ— [4.8778 βˆ’0.0916

    βˆ’0.0916 3.8521] ,

    π‘Š5

    2= 103

    Γ— [4.8245 βˆ’0.0681

    βˆ’0.0681 3.9058] ,

    π‘Š6

    1= 103

    Γ— [7.9418 βˆ’0.4415

    βˆ’0.4415 6.9527] ,

    π‘Š6

    2= 103

    Γ— [7.9864 βˆ’0.4713

    βˆ’0.4713 7.2384] ,

    π‘Š7

    1= 103

    Γ— [4.5999 βˆ’2.3966

    βˆ’2.3966 0.1608] ,

    π‘Š7

    2= 103

    Γ— [5.2537 βˆ’2.3858

    βˆ’2.3858 0.0285] ,

    π‘Š8

    1= 104

    Γ— [βˆ’1.3844 0.2577

    0.2577 βˆ’0.4094] ,

    π‘Š8

    2= 104

    Γ— [βˆ’1.4426 0.2499

    0.2499 βˆ’0.3763] ,

    π‘Š9

    1= 103

    Γ— [7.1086 βˆ’0.3474

    βˆ’0.3474 6.1090] ,

    π‘Š9

    2= 103

    Γ— [7.1257 βˆ’0.3627

    βˆ’0.3627 6.3346] ,

    π‘Š10

    1= 103

    Γ— [8.0468 βˆ’0.7400

    βˆ’0.7400 6.5133] ,

    π‘Š10

    2= 103

    Γ— [8.1365 βˆ’0.8020

    βˆ’0.8020 6.8109] ,

    𝐺 = [βˆ’2.1527 1.4389

    6.5441 βˆ’11.7139] , πœ–

    1= 4.2164 Γ— 10

    4

    ,

    πœ–2= 5.7269 Γ— 10

    4

    , πœ–3= 5.3163 Γ— 10

    4

    .

    (60)

    0 1 2 3 4 5 6 7 8Time (s)

    βˆ’2

    βˆ’1

    0

    1

    2

    3

    4

    5

    6

    The s

    tate

    var

    iabl

    ex(t)

    x1(t)

    x2(t)

    Figure 1: The simulation solutions π‘₯1(𝑑) and π‘₯

    2(𝑑) are presented for

    system (1) with (58)-(59) in Example 1, 𝛼1= 𝛼2= 1/2, and initial

    conditions π‘₯1(𝑑) = 2 + 3 cos(𝑑), π‘₯

    2(𝑑) = 1 + 2 sin(𝑑), 𝑑 ∈ [βˆ’1, 0], by

    using the Runge-Kutta fourth order method with Matlab.

    Table 1: The maximum allowed time delay β„Ž for π‘˜ = 0.1, πœ‚ = 0.05,𝜌 = 0.1, and 𝛽 = 0.1.

    β„Žπ‘‘= π‘Ÿπ‘‘

    0 0.5 0.9Chen et al. (2008) [3] 1.2999 0.9442 0.5471Qiu and Cui (2010) [26] 1.4008 1.0120 0.6438Pinjai and Mukdasai (2011) [25] 1.6237 1.1052 0.6205Corollary 10 6.4417 5.2362 2.5666

    Example 2. Consider the following neutral system (54),which is considered in [3, 25, 26]:

    οΏ½Μ‡οΏ½ (𝑑) = 𝐴π‘₯ (𝑑) + 𝐡π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) + 𝐢�̇� (𝑑 βˆ’ π‘Ÿ (𝑑))

    + 𝑓 (𝑑, π‘₯ (𝑑)) + 𝑔 (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑))) ,

    (61)

    with

    𝐴 = [βˆ’2 0

    0 βˆ’0.9] , 𝐡 = [

    βˆ’1 0

    βˆ’1 βˆ’1] , 𝐢 = [

    0.1 0

    0 0.1] .

    (62)

    Decompose matrix 𝐡 as follows: 𝐡 = 𝐡1+ 𝐡2, where

    𝐡1= [

    βˆ’0.83 0

    βˆ’1 βˆ’0.83] , 𝐡

    2= [

    βˆ’0.17 0

    0 βˆ’0.17] , (63)

    ‖𝑓(𝑑, π‘₯(𝑑))β€– ≀ πœ‚β€–π‘₯(𝑑)β€–, and ‖𝑔(𝑑, π‘₯(π‘‘βˆ’β„Ž(𝑑)))β€– ≀ πœŒβ€–π‘₯(π‘‘βˆ’β„Ž(𝑑))β€–.The maximum value β„Ž for exponential stability of system(61) with (62)-(63) is listed in the comparison in Table 1, fordifferent values of β„Ž

    𝑑and π‘Ÿ

    𝑑. In Table 1, we let πœ‚ = 0.05,

    𝜌 = 0.1, 𝛽 = 0.1 and β„Ž(𝑑) = π‘Ÿ(𝑑). We can see that our resultsin Corollary 8 are much less conservative than in [3, 25, 26].

    Example 3. Consider the following neutral system (51), whichis considered in [14, 28]:

    οΏ½Μ‡οΏ½ (𝑑) = 𝐴π‘₯ (𝑑) + 𝐡π‘₯ (𝑑 βˆ’ β„Ž (𝑑)) + 𝐢�̇� (𝑑 βˆ’ π‘Ÿ (𝑑)) + 𝑓 (𝑑, π‘₯ (𝑑))

    + 𝑔 (𝑑, π‘₯ (𝑑 βˆ’ β„Ž (𝑑))) + 𝑀 (𝑑, οΏ½Μ‡οΏ½ (𝑑 βˆ’ π‘Ÿ (𝑑))) ,

    (64)

  • Journal of Applied Mathematics 17

    Table 2: The maximum allowed time delay β„Ž.

    β„Žπ‘‘= π‘Ÿπ‘‘= 0 π‘˜ = 0.1 π‘˜ = 0.3 π‘˜ = 0.5 π‘˜ = 0.7 π‘˜ = 0.9

    Syed Ali (2012) [28] 10.2180 2.9481 1.4126 0.7232 0.3045Liu et al. (2013) [14] 12.2475 3.7460 1.9563 1.1015 0.5957Corollary 9 14.1728 4.7242 2.8345 2.0246 1.5747β„Žπ‘‘= π‘Ÿπ‘‘= 0.5 π‘˜ = 0.1 π‘˜ = 0.3 π‘˜ = 0.5 π‘˜ = 0.7 π‘˜ = 0.9

    Syed Ali (2012) [28] 6.7523 1.7922 0.7308 0.3580 0.1027Liu et al. (2013) [14] 10.8211 3.3202 1.7390 0.9662 0.4857Corollary 9 11.5872 3.8624 2.3174 1.6553 1.2874

    with

    𝐴 = [βˆ’2 0

    0 βˆ’2] , 𝐡 = [

    0 0.4

    0.4 0] , 𝐢 = [

    0.1 0

    0 0.1] .

    (65)

    Decompose matrix 𝐡 as follows: 𝐡 = 𝐡1+ 𝐡2, where

    𝐡1= [

    0 0.3

    0.2 0] , 𝐡

    2= [

    0 0.1

    0.2 0] , (66)

    ‖𝑓(𝑑, π‘₯(𝑑))β€– ≀ πœ‚β€–π‘₯(𝑑)β€–, ‖𝑔(𝑑, π‘₯(𝑑 βˆ’ β„Ž(𝑑)))β€– ≀ πœŒβ€–π‘₯(𝑑 βˆ’ β„Ž(𝑑))β€–,and ‖𝑀(𝑑, οΏ½Μ‡οΏ½(𝑑 βˆ’ π‘Ÿ(𝑑)))β€– ≀ 𝛾‖�̇�(𝑑 βˆ’ π‘Ÿ(𝑑))β€–. By Corollary 9 tosystem (64) with (65)-(66), one can obtain the maximumupper bounds of the time delay with different convergencerate π‘˜ as listed in Table 2. In Table 2, we let β„Ž = 0.1, πœ‚ = 0.1,𝜌 = 0.05, 𝛾 = 0.05, and 𝛽 = 0.1. It is clear that the results inCorollary 9 give larger delay bounds than the recent resultsin [14, 28].

    5. Conclusions

    The problem of robust exponential stability for LPD neu-tral systems with mixed time-varying delays and nonlinearuncertainties has been presented. Based on combinationof Leibniz-Newton formula, free-weighting matrices, linearmatrix inequality, Cauchy’s inequality, modified version ofJensen’s inequality, model transformation, and the use of suit-able parameter-dependent Lyapunov-Krasovskii functional,new delay-dependent robust exponential stability criteriaare formulated in terms of LMIs. Numerical examples haveshown significant improvements over some existing results.

    Acknowledgments

    This work was supported by the Higher Education ResearchPromotion and the National Research University Projectof Thailand, Office of the Higher Education Commission,through the Cluster of Research to Enhance the Qualityof Basic Education, Khon Kaen University, Khon Kaen,Thailand.

    References

    [1] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-DelaySystem, Birkhäauser, Berlin, Germany, 2003.

    [2] Y. Y. Cao and J. Lam, β€œComputation of robust stabilitybounds for time-delay systems with nonlinear time-varying

    perturbations,” International Journal of Systems Science, vol. 31,pp. 359–365, 2000.

    [3] Y. Chen, A. Xue, R. Lu, and S. Zhou, β€œOn robustly exponentialstability of uncertain neutral systems with time-varying delaysand nonlinear perturbations,”Nonlinear Analysis:Theory,Meth-ods & Applications, vol. 68, no. 8, pp. 2464–2470, 2008.

    [4] W.-H. Chen and W. X. Zheng, β€œDelay-dependent robust stabi-lization for uncertain neutral systems with distributed delays,”Automatica, vol. 43, no. 1, pp. 95–104, 2007.

    [5] J. Hale, Theory of Functional Differential Equations, Springer,New York, NY, USA, 2nd edition, 1977.

    [6] Y. He, M. Wu, J.-H. She, and G.-P. Liu, β€œParameter-dependentLyapunov functional for stability of time-delay systems withpolytopic-type uncertainties,” IEEE Transactions on AutomaticControl, vol. 49, no. 5, pp. 828–832, 2004.

    [7] Y.He,Q.-G.Wang, C. Lin, andM.Wu, β€œDelay-range-dependentstability for systems with time-varying delay,” Automatica, vol.43, no. 2, pp. 371–376, 2007.

    [8] X. Jiang and Q.-L. Han, β€œOn 𝐻∞

    control for linear systemswith interval time-varying delay,”Automatica, vol. 41, no. 12, pp.2099–2106, 2005.

    [9] V. L. Kharitonov and D. Hinrichsen, β€œExponential estimates fortime delay systems,” Systems & Control Letters, vol. 53, no. 5, pp.395–405, 2004.

    [10] O. M. Kwon and J. H. Park, β€œExponential stability for time-delay systems with interval time-varying delays and nonlinearperturbations,” Journal ofOptimizationTheory andApplications,vol. 139, no. 2, pp. 277–293, 2008.

    [11] O. M. Kwon, J. H. Park, and S. M. Lee, β€œOn robust stabilitycriterion for dynamic systems with time-varying delays andnonlinear perturbations,” Applied Mathematics and Computa-tion, vol. 203, no. 2, pp. 937–942, 2008.

    [12] C. Li, J. Sun, andR. Sun, β€œStability analysis of a class of stochasticdifferential delay equations with nonlinear impulsive effects,”Journal of the Franklin Institute, vol. 347, no. 7, pp. 1186–1198,2010.

    [13] C. Li, J. Shi, and J. Sun, β€œStability of impulsive stochastic differ-ential delay systems and its application to impulsive stochasticneural networks,”Nonlinear Analysis: Theory, Methods & Appli-cations, vol. 74, no. 10, pp. 3099–3111, 2011.

    [14] Y. Liu, S. M. Lee, O. M. Kwon, and J. H. Park, β€œDelay-dependentexponential stability criteria for 9 neutral systems with intervaltime-varying delay and nonlinear perturbations,