research article multivariate padé approximation...

13
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 746401, 12 pages http://dx.doi.org/10.1155/2013/746401 Research Article Multivariate Padé Approximation for Solving Nonlinear Partial Differential Equations of Fractional Order Veyis Turut 1 and Nuran Güzel 2 1 Department of Mathematics, Faculty of Arts and Sciences, Batman University, Batman, Turkey 2 Department of Mathematics, Faculty of Arts and Sciences, Yıldız Technical University, ˙ Istanbul, Turkey Correspondence should be addressed to Nuran G¨ uzel; [email protected] Received 27 November 2012; Revised 14 January 2013; Accepted 14 January 2013 Academic Editor: Hassan Eltayeb Copyright © 2013 V. Turut and N. G¨ uzel. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Two tecHniques were implemented, the Adomian decomposition method (ADM) and multivariate Pad´ e approximation (MPA), for solving nonlinear partial differential equations of fractional order. e fractional derivatives are described in Caputo sense. First, the fractional differential equation has been solved and converted to power series by Adomian decomposition method (ADM), then power series solution of fractional differential equation was put into multivariate Pad´ e series. Finally, numerical results were compared and presented in tables and figures. 1. Introduction Recently, differential equations of fractional order have gained much interest in engineering, physics, chemistry, and other sciences. It can be said that the fractional derivative has drawn much attention due to its wide application in engi- neering physics [19]. Some approximations and numerical techniques have been used to provide an analytical approx- imation to linear and nonlinear differential equations and fractional differential equations. Among them, the variational iteration method, homotopy perturbation method [10, 11], and the Adomian decomposition method are relatively new approaches [59, 12, 13]. e decomposition method has been used to obtain approximate solutions of a large class of linear or nonlinear differential equations [12, 13]. Recently, the application of the method is extended for fractional differential equations [69, 14]. Many definitions and theorems have been developed for multivariate Pad´ e approximations MPA (see [15] for a sur- vey on multivariate Pad´ e approximation). e multivariate Pad´ e Approximation has been used to obtain approximate solutions of linear or nonlinear differential equations [1619]. Recently, the application of the unvariate Pad´ e approximation is extended for fractional differential equations [20, 21]. e objective of the present paper is to provide approxi- mate solutions for initial value problems of nonlinear partial differential equations of fractional order by using multivariate Pad´ e approximation. 2. Definitions For the concept of fractional derivative, we will adopt Caputo’s definition, which is a modification of the Riemann- Liouville definition and has the advantage of dealing properly with initial value problems in which the initial conditions are given in terms of the field variables and their integer order, which is the case in most physical processes. e definitions can be seen in [3, 4, 22, 23]. 3. Decomposition Method [24] Consider (, ) = (, , ) + (, ), − 1 < ≤ . (1)

Upload: dangliem

Post on 29-Jun-2018

237 views

Category:

Documents


3 download

TRANSCRIPT

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2013 Article ID 746401 12 pageshttpdxdoiorg1011552013746401

Research ArticleMultivariate Padeacute Approximation for Solving Nonlinear PartialDifferential Equations of Fractional Order

Veyis Turut1 and Nuran Guumlzel2

1 Department of Mathematics Faculty of Arts and Sciences Batman University Batman Turkey2Department of Mathematics Faculty of Arts and Sciences Yıldız Technical University Istanbul Turkey

Correspondence should be addressed to Nuran Guzel nguzelyildizedutr

Received 27 November 2012 Revised 14 January 2013 Accepted 14 January 2013

Academic Editor Hassan Eltayeb

Copyright copy 2013 V Turut and N Guzel This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

Two tecHniques were implemented the Adomian decompositionmethod (ADM) andmultivariate Pade approximation (MPA) forsolving nonlinear partial differential equations of fractional order The fractional derivatives are described in Caputo sense Firstthe fractional differential equation has been solved and converted to power series by Adomian decomposition method (ADM)then power series solution of fractional differential equation was put into multivariate Pade series Finally numerical results werecompared and presented in tables and figures

1 Introduction

Recently differential equations of fractional order havegained much interest in engineering physics chemistry andother sciences It can be said that the fractional derivative hasdrawn much attention due to its wide application in engi-neering physics [1ndash9] Some approximations and numericaltechniques have been used to provide an analytical approx-imation to linear and nonlinear differential equations andfractional differential equationsAmong them the variationaliteration method homotopy perturbation method [10 11]and the Adomian decomposition method are relatively newapproaches [5ndash9 12 13]

The decomposition method has been used to obtainapproximate solutions of a large class of linear or nonlineardifferential equations [12 13] Recently the application of themethod is extended for fractional differential equations [6ndash9 14]

Many definitions and theorems have been developed formultivariate Pade approximations MPA (see [15] for a sur-vey on multivariate Pade approximation) The multivariatePade Approximation has been used to obtain approximatesolutions of linear or nonlinear differential equations [16ndash19]

Recently the application of the unvariate Pade approximationis extended for fractional differential equations [20 21]

The objective of the present paper is to provide approxi-mate solutions for initial value problems of nonlinear partialdifferential equations of fractional order by usingmultivariatePade approximation

2 Definitions

For the concept of fractional derivative we will adoptCaputorsquos definition which is a modification of the Riemann-Liouville definition and has the advantage of dealing properlywith initial value problems in which the initial conditions aregiven in terms of the field variables and their integer orderwhich is the case in most physical processes The definitionscan be seen in [3 4 22 23]

3 Decomposition Method [24]

Consider

119863120572

lowast119905119906 (119909 119905) = 119891 (119906 119906

119909 119906119909119909) + 119892 (119909 119905) 119898 minus 1 lt 120572 le 119898

(1)

2 Abstract and Applied Analysis

The decomposition method requires that a nonlinear frac-tional differential equation (1) is expressed in terms of opera-tor form as

119863120572

lowast119905119906 (119909 119905) + 119871119906 (119909 119905) + 119873119906 (119909 119905) = 119892 (119909 119905) 119909 gt 0 (2)

where 119871 is a linear operator which might include other frac-tional derivatives of order less than 120572119873 is a nonlinear oper-ator which also might include other fractional derivatives oforder less than 120572 119863120572

lowast119905= 120597120572

120597119905120572 is the Caputo fractional

derivative of order 120572 and 119892(119909 119905) is the source function [24]Applying the operator 119869120572 [3 4 22 23] the inverse of the

operator 119863120572lowast119905 to both sides of (5) Odibat and Momani [24]

obtained

119906 (119909 119905) =

119898minus1

sum

119896=0

120597119896

119906

120597119905119896(119909 0+

)119905119896

119896+ 119869120572

119892 (119909 119905)

minus 119869120572

[119871119906 (119909 119905) + 119873119906 (119909 119905)]

infin

sum

119899=0

119906119899(119909 119905) =

119898minus1

sum

119896=0

120597119896

119906

120597119905119896(119909 0+

)119905119896

119896+ 119869120572

119892 (119909 119905)

minus 119869120572

[119871(

infin

sum

119899=0

119906119899(119909 119905)) +

infin

sum

119899=0

119860119899]

(3)

From this the iterates are determined in [24] by the followingrecursive way

1199060(119909 119905) =

119898minus1

sum

119896=0

120597119896

119906

120597119905119896(119909 0+

)119905119896

119896+ 119869120572

119892 (119909 119905)

1199061(119909 119905) = minus119869

120572

(1198711199060+ 1198600)

1199062(119909 119905) = minus119869

120572

(1198711199061+ 1198601)

119906119899+1(119909 119905) = minus119869

120572

(119871119906119899+ 119860119899)

(4)

4 Multivariate Padeacute Aproximation [25]

Consider the bivariate function 119891(119909 119910) with Taylor seriesdevelopment

119891 (119909 119910) =

infin

sum

119894119895=0

119888119894119895119909119894

119910119895 (5)

around the origin We know that a solution of unvariate Padeapproximation problem for

119891 (119909) =

infin

sum

119894=0

119888119894119909119894 (6)

is given by

119901 (119909) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119898

sum

119894=0

119888119894119909119894

119909

119898minus1

sum

119894=0

119888119894119909119894

119909119899

119898minus119899

sum

119894=0

119888119894119909119894

119888119898+1

119888119898

119888119898+1minus119899

119888119898+119899

119888119898+119899minus1

119888119898

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

(7)

119902 (119909) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 119909 119909119899

119888119898+1

119888119898

119888119898+1minus119899

119888119898+119899

119888119898+119899minus1

119888119898

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

(8)

Let us now multiply 119895th row in 119901(119909) and 119902(119909) by 119909119895+119898minus1 (119895 =2 119899 + 1) and afterwards divide 119895th column in 119901(119909) and119902(119909) by 119909119895minus1 (119895 = 2 119899+1) This results in a multiplicationof numerator and denominator by 119909119898119899 Having done so weget

119901 (119909)

119902 (119909)=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

sum119898

119894=0119888119894119909119894

sum119898minus1

119894=0119888119894119909119894

sdotsdotsdot sum119898minus119899

119894=0119888119894119909119894

119888119898+1119909119898+1

119888119898119909119898

sdotsdotsdot 119888119898+1minus119899119909119898+1minus119899

119888119898+119899119909119898+119899

119888119898+119899minus1119909119898+119899minus1

sdotsdotsdot 119888119898119909119898

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

10038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 sdotsdotsdot 1

119888119898+1119909119898+1

119888119898119909119898

sdotsdotsdot 119888119898+1minus119899119909119898+1minus119899

119888119898+119899119909119898+119899

119888119898+119899minus1119909119898+119899minus1

sdotsdotsdot 119888119898119909119898

10038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

(9)

if (119863 = det 119863119898119899

= 0)This quotent of determinants can also immediately be

written down for a bivariate function 119891(119909 119910) The sumsum119896

119894=0119888119894119909119894 shall be replaced by 119896th partial sum of the Taylor

series development of 119891(119909 119910) and the expression 119888119896119909119896 by an

expression that contains all the terms of degree 119896 in 119891(119909 119910)Here a bivariate term 119888

119894119895119909119894

119910119895 is said to be of degree 119894 + 119895 If we

define

119901 (119909 119910)

=

10038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119898

sum

119894+119895=0

119888119894119895119909119894

119910119895

119898minus1

sum

119894+119895=0

119888119894119895119909119894

119910119895

sdot sdot sdot

119898minus119899

sum

119894+119895=0

119888119894119895119909119894

119910119895

sum

119894+119895=119898+1

119888119894119895119909119894

119910119895

sum

119894+119895=119898

119888119894119895119909119894

119910119895

sdot sdot sdot sum

119894+119895=119898+1minus119899

119888119894119895119909119894

119910119895

sum

119894+119895=119898+119899

119888119894119895119909119894

119910119895

sum

119894+119895=119898+119899minus1

119888119894119895119909119894

119910119895

sdot sdot sdot sum

119894+119895=119898

119888119894119895119909119894

119910119895

10038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

Abstract and Applied Analysis 3

119902 (119909 119910)

=

1003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 sdot sdot sdot 1

sum

119894+119895=119898+1

119888119894119895119909119894

119910119895

sum

119894+119895=119898

119888119894119895119909119894

119910119895

sdot sdot sdot sum

119894+119895=119898+1minus119899

119888119894119895119909119894

119910119895

sum

119894+119895=119898+119899

119888119894119895119909119894

119910119895

sum

119894+119895=119898+119899minus1

119888119894119895119909119894

119910119895

sdot sdot sdot sum

119894+119895=119898

119888119894119895119909119894

119910119895

1003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

(10)

Then it is easy to see that 119901(119909 119910) and 119902(119909 119910) are of the form

119901 (119909 119910) =

119898119899+119898

sum

119894+119895=119898119899

119886119894119895119909119894

119910119895

119902 (119909 119910) =

119898119899+119899

sum

119894+119895=119898119899

119887119894119895119909119894

119910119895

(11)

We know that 119901(119909 119910) and 119902(119909 119910) are called Pade equations[25] So themultivariate Pade approximant of order (119898 119899) for119891(119909 119910) is defined as

119903119898119899(119909 119910) =

119901 (119909 119910)

119902 (119909 119910) (12)

5 Numerical Experiments

In this section two methods ADM and MPA shall beillustrated by two examples All the results are calculatedby using the software Maple12 The full ADM solutions ofexamples can be seen from Odibat and Momani [24]

Example 1 Consider the nonlinear time-fractional advectionpartial differential equation [24]

119863120572

lowast119905119906 (119909 119905) + 119906 (119909 119905) 119906

119909(119909 119905) = 119909 + 119909119905

2

119905 gt 0 119909 isin 119877 0 lt 120572 le 1

(13)

subject to the initial condition

119906 (119909 0) = 0 (14)

Odibat and Momani [24] solved the problem using thedecomposition method and they obtained the followingrecurrence relation [24]

1199060(119909 119905) = 119906 (119909 0) + 119869

120572

(119909 + 1199091199052

)

= 119909(119905120572

Γ (120572 + 1)+

2119905120572+2

Γ (120572 + 3))

119906119895+1(119909 119905) = minus119869

120572

(119860119895) 119895 ge 0

(15)

where 119860119895are the Adomian polynomials for the nonlinear

function 119873 = 119906119906119909 In view of (15) the first few components

of the decomposition series are derived in [24] as follows

1199060(119909 119905) = 119909(

119905120572

Γ (120572 + 1)+

2119905120572+2

Γ (120572 + 3))

1199061(119909 119905) = minus119909(

Γ (2120572 + 1) 1199053120572

Γ(120572 + 1)2

Γ (3120572 + 1)

+4Γ (2120572 + 3) 119905

3120572+2

Γ (120572 + 1) Γ (120572 + 3) Γ (3120572 + 3)

+4Γ (2120572 + 5) 119905

3120572+4

Γ(120572 + 3)2

Γ (3120572 + 5)

)

1199062(119909 119905) = 2119909(

Γ (2120572 + 1) Γ (4120572 + 1) 1199055120572

Γ(120572 + 1)3

Γ (3120572 + 1) Γ (5120572 + 1)

+8Γ (2120572 + 5) Γ (4120572 + 7) 119905

5120572+6

Γ(120572 + 1)3

Γ (3120572 + 5) Γ (5120572 + 7)

+ sdot sdot sdot)

(16)

and so on in this manner the rest of components of thedecomposition series can be obtained [24]

The first three terms of the decomposition series are givenby [24]

119906 (119909 119905)

= 119909(119905120572

Γ (120572 + 1)+

2119905120572+2

Γ (120572 + 3)minus

Γ (2120572 + 1) 1199053120572

Γ(120572 + 1)2

Γ (3120572 + 1)

minus4Γ (2120572 + 3) 119905

3120572+2

Γ (120572 + 1) Γ (120572 + 3) Γ (3120572 + 3)+ sdot sdot sdot)

(17)

For 120572 = 1 (16) is

119906 (119909 119905) = 119909119905 + 01 times 10minus9

1199053

minus 013333333331199091199055

(18)

Now let us calculate the approximate solution of (18) for119898 =4 and 119899 = 2 by using Multivariate Pade approximation Toobtain multivariate Pade equations of (18) for119898 = 4 and 119899 =2 we use (10) By using (10) we obtain

119901 (119909 119905)

=

1003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119909119905 + 01 times 10minus9

1199053

119909119905 119909119905

0 01 times 10minus9

1199053

0

minus013333333331199091199055

0 01 times 10minus9

1199053

1003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 01333333333 times 10minus10

times (1199052

+ 07500000002 times 10minus9

) 1199093

1199057

4 Abstract and Applied Analysis

119902 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

0 01 times 10minus9

1199053

0

minus013333333331199091199055

0 01 times 10minus9

1199053

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 01333333333 times 10minus10

times (1199052

+ 07500000002 times 10minus9

) 1199092

1199056

(19)

So the multivariate Pade approximation of order (4 2) for(17) that is

[4 2](119909119905)

=

(1199052

+ 07500000002 times 10minus9

) 119909119905

1199052 + 07500000002 times 10minus9 (20)

For 120572 = 05 (17) is

119906 (119909 119905) = 112837916711990911990505

minus 0957797985011990911990515

+ 0601802222611990911990525

minus 0700560811611990911990535

(21)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 1128379167119909119886 minus 095779798501199091198863

+ 060180222261199091198865

minus 070056081161199091198867

(22)

Using (10) to calculate the multivariate Pade equations for(22) we get

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1128379167119909119886 minus 095779798501199091198863

+ 060180222261199091198865

1128379167119909119886 minus 095779798501199091198863

1128379167119909119886 minus 095779798501199091198863

0 060180222261199091198865

0

minus070056081161199091198867

0 060180222261199091198865

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus04907854507 (12014642941198864

minus 12318323471198862

minus 08326662354) 1199093

11988611

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

0 060180222261199091198865

0

minus070056081161199091198867

0 060180222261199091198865

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 04907854507 (07379312378 + 17180584831198862

) 1199093

11988610

(23)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (6 2) for (21) that is

[6 2](119909119905)

= minus (12014642941199052

minus 1231832347119905

minus08326662354) 119909radic119905

times (07379312378 + 1718058483119905)minus1

(24)

For 120572 = 075 (17) is

119906 (119909 119905) = 00000712534544111990911990575

+ 01764791440 times 10minus5

11990911990595

minus 01238343301 times 10minus17

119909119905225

minus 02897967272 times 10minus19

119909119905245

(25)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 00000712534544111990911988615

+ 01764791440 times 10minus5

11990911988619

minus 01238343301 times 10minus17

11990911988645

minus 02897967272 times 10minus19

11990911988649

(26)

Using (10) to calculate the multivariate Pade equations andthen recalling that 11990512 = 119886 we get multivariate Padeapproximation of order (49 2) for (25) that is

[49 2](119909119905)

= minus 08398214310 times 10minus39

1199093

1199051132

times ( minus 000007125345441 minus 01764791440

times10minus5

1199052

+ 01238343301 times 10minus17

11990515

)

times (08398214310 times 10minus39

1199092

11990549

)minus1

(27)

Table 1 Figures 1(a) 1(b) 1(c) 2(a) 2(b) 2(c) and 2(d) showsthe approximate solutions for (13) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 1is for the exact solution 119906(119909 119905) = 119909119905 [24]

Example 2 Consider the nonlinear time-fractional hyper-bolic equation [24]

119863120572

lowast119905119906 (119909 119905) =

120597

120597119909(119906 (119909 119905)

120597119906 (119909 119905)

120597119909)

119905 gt 0 119909 isin 119877 1 lt 120572 le 2

(28)

subject to the initial condition

119906 (119909 0) = 1199092

119906119905(119909 0) = minus2119909

2

(29)

Abstract and Applied Analysis 5

1

05

0

minus05

minus1

minus1

minus05

005

1105

0

minus05

minus1

119905 119909

(a)

08

04

0

minus04

minus08

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(b)

1

05

0

minus05

minus1

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(c)

Figure 1 (a) Exact solution of Example 1 for 120572 = 1 (b) ADM solution of Example 1 for 120572 = 1 (c) Multivariate Pade approximation of ADMsolution for 120572 = 1 in Example 1

Odibat and Momani [24] solved the problem using thedecomposition method and they obtained the followingrecurrence relation in [24]

1199060(119909 119905) = 119906 (119909 0) + 119905119906

119909(119909 0) = 119909

2

(1 minus 2119905)

119906119895+1(119909 119905) = 119869

120572

(119860119895)119909

119895 ge 0

(30)

where 119860119895are the Adomian polynomials for the nonlinear

function119873 = 119906119906119909 In view of (30) the first few components

of the decomposition series are derived in [24] as follows

1199060(119909 119905) = 119909

2

(1 minus 2119905)

1199061(119909 119905) = 6119909

2

(119905120572

Γ (120572 + 1)minus

4119905120572+1

Γ (120572 + 2)+

8119905120572+2

Γ (120572 + 3))

1199062(119909 119905) = 72119909

2

(1199052120572

Γ (2120572 + 1)minus

41199052120572+1

Γ (2120572 + 2)

+81199052120572+2

Γ (2120572 + 3)minus

2Γ (120572 + 2) 1199052120572+1

Γ (120572 + 1) Γ (2120572 + 2))

+ 721199092

(8Γ (120572 + 3) 119905

2120572+2

Γ (120572 + 2) Γ (2120572 + 3)

minus16Γ (120572 + 4) 119905

2120572+3

Γ (120572 + 3) Γ (2120572 + 4))

(31)

6 Abstract and Applied Analysis

030250201501005

0

002004

006008

01 108

0604

020

119905 119909

(a)

030250201501005

002004

006008

01 01008

006004

002

119905119909

(b)

6119890minus05

4119890minus05

2119890minus05

0minus2119890minus05

minus4119890minus05

minus6119890minus05

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(c)

6119890minus05

4119890minus05

2119890minus05

0minus2119890minus05

minus4119890minus05

minus6119890minus05

minus1

minus05

005

1105

0minus05

minus1

119905119909

(d)

Figure 2 (a) ADM solution of Example 1 for 120572 = 05 (b) Multivariate Pade approximation of ADM solution for 120572 = 05 in Example 1 (c)ADM solution of Example 1 for 120572 = 075 (d) Multivariate Pade approximation of ADM solution for 120572 = 075 in Example 1

and so on in this manner the rest of components of thedecomposition series can be obtained

The first three terms of the decomposition series (7) aregiven [24] by

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (119905120572

Γ (120572 + 1)minus

4119905120572+1

Γ (120572 + 2)+

8119905120572+2

Γ (120572 + 3))

+ 721199092

(1199052120572

Γ (2120572 + 1)+ sdot sdot sdot)

(32)

For 120572 = 2 (43) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(050000000001199052

minus 066666666681199053

+033333333341199054

)

+ 30000000001199092

1199054

(33)

Now let us calculate the approximate solution of (33) for119898 =4 and 119899 = 2 by using multivariate Pade approximation To

Abstract and Applied Analysis 7

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(a)

2

25

3

15

1

05

0

02

04

06

08

1 108

0604

02

119905 119909

(b)

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(c)

Figure 3 (a) Exact solution of Example 2 for 120572 = 20 (b) ADM solution of Example 2 for 120572 = 20 (c) Multivariate Pade approximation ofADM solution for 120572 = 20 in Example 2

obtain multivariate Pade equations of (33) for119898 = 4 and 119899 =2 we use (10) By using (10) we obtain

119901 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

(1 minus 2119905) + 30000000001199092

1199052

1199092

(1 minus 2119905) 1199092

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus20000000001199054

(028 times 10minus9

1199052

minus 034 times 10minus9

119905 (minus004999999986) 1199096

119902 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 20000000001199054

(00499999999 + 01000000001119905 + 005000000041199052

) 1199094

(34)

So the multivariate Pade approximation of order (4 2) for(33) that is

[4 2](119909119905)

= minus 1000000000 (028 times 10minus9

1199052

minus 034 times 10minus9

119905

minus004999999986) 1199092

times (00499999999 + 01000000001119905

+005000000041199052

)minus1

(35)

8 Abstract and Applied Analysis

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(a)

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(b)

0008

001

0006

0004

0002

0

119905119909

minus01

minus005

0

0050101

0050

minus005

minus01

(c)

0008

001

0006

0004

0002

0

119905 119909

minus01

minus005

0005

0101005

0

minus005

minus01

(d)

Figure 4 (a) ADM solution of Example 2 for 120572 = 15 (b) Multivariate Pade approximation of ADM solution for 120572 = 15 in Example 2 (c)ADM solution of Example 2 for 120572 = 175 (d) Multivariate Pade approximation of ADM solution for 120572 = 175 in Example 2

For 120572 = 15 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (0752252778211990515

minus 120360444511990525

+0687773968311990535

) + 12000000001199092

11990530

(36)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198862

) + 61199092

times (075225277821198863

minus12036044451198865

+ 068777396831199057

)

+ 12000000001199092

1198866

= 1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

+ 41266438101199092

1198867

+ 12000000001199092

1198866

(37)

Using (10) to calculate multivariate Pade equations of (37) for119898 = 7 and 119899 = 2 we use (10) By using (10) we obtain

Abstract and Applied Analysis 9

Table1Num

ericalvalues

when120572=05120572=075and120572=10for(13)

119909119905

120572=05

120572=075

120572=10

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000111

8860

666

000111

8859998

07125363089times10minus21

07125363089times10minus21

000

009999999987

000

0100

0000

000

000

01002

002

0003138022015

0003138007574

02579676158times10minus18

02579676148times10minus18

000

03999999915

000

0400

0000

000

000

04003

003

000571664

0278

0005716554826

08097412617times10minus17

08097412644times10minus17

000

08999999028

000

0900

0000

000

000

09004

004

0008727882362

0008727584792

09339702880times10minus16

09339702881times10minus16

0001599999454

0001600

0000

0000016

005

005

001209607907

001209530419

06224118481times10minus15

06224118464times10minus15

0002499997917

0002500

0000

0000025

006

006

00157687340

8001576705530

02931772549times10minus14

02931772552times10minus14

0003599993779

0003600

0000

0000036

007

007

001970633078

001970312778

01086905954times10minus13

01086905954times10minus13

000

4899984313

000

4900

0000

00000

49008

008

002387754051

002387197301

03381735603times10minus13

03381735608times10minus13

000

6399965047

000

6400

0000

00000

64009

009

002825661342

002824760190

09203528751times10minus13

09203528751times10minus13

0008099929141

0008100

0000

0000081

01

01

003282181204

003280802591

02253790147times10minus12

02253790145times10minus12

000

99998666

6700100

0000

0000

001

10 Abstract and Applied Analysis

Table2Num

ericalvalues

when120572=15120572=175and120572=20for(28)

119909119905

120572=15

120572=175

120572=20

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000

009844537131

000

009844533110

000

0098116

32420

000

0098116

25316

000

00980296

0500

000

00980296

0486

000

00980296

0494

002

002

000

03889833219

000

03889809228

000

03855443171

000

03855410232

000

038446

75200

000

038446

75123

000

038446

75125

003

003

000

0866

4034309

000

08663775704

000

08529749012

000

08529437792

000

08483364

450

000

08483363176

000

08483363182

004

004

0001527388854

0001527250241

0001492265504

0001492112

228

0001479290880

0001479289940

0001479289941

005

005

0002370102454

0002369595331

0002296248891

0002295720729

0002267578126

0002267573695

0002267573696

006

006

0003393997434

0003392539471

0003258613123

0003257161294

0003204

002880

0003203987182

0003203987184

007

007

000

4599726730

000

4596176215

000

4373819216

000

437040

4791

000

4279895445

000

4279849765

000

4279849769

008

008

0005989109024

000598144

9991

0005637043845

00056298804

000005487083520

0005486968446

0005486968450

009

009

0007565131844

000755006

8937

0007044

140677

0007030367394

000

6817867605

000

6817607941

000

6817607945

01

01

000

9331981000

000

9304

436794

0008591616573

0008566

895894

000826500

0000

0008264

462804

0008264

462810

Abstract and Applied Analysis 11

119901 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

12000000001199092

1199056

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (82357601511198865

+ 08791855311198864

+ 12534276361198863

+ 14034265421198862

+ 1750000001119886 + 1053153890) 1199096

11988610

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

12000000001199092

1198866

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (1053153890 + 1750000001119886 + 35097343221198862

) 1199094

11988610

(38)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (7 2) for (36) that is

[7 2](119909119905)

= (823576015111990552

+ 08791855311199052

+ 125342763611990532

+ 1403426542119905

+1750000001radic119905 + 1053153890) 1199092

times (1053153890 + 1750000001radic119905

+3509734322119905)minus1

(39)

For 120572 = 175 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(06217515726119905175

minus 09043659240119905275

+04823284927119905375

)

+ 61899657151199092

11990535

(40)

For simplicity let 11990514 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198864

)

+ 61199092

(062175157261198867

minus 0904365924011988611

+0482328492711988615

) + 61899657151199092

11988614

= 1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

+ 28939709561199092

11988615

+ 61899657151199092

11988614

(41)

Using (10) to calculate multivariate Pade equations of (41) for119898 = 15 and 119899 = 2 we use (10) By using (10) we obtain

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus38315675561199096

11988628

(minus1 + 21198864

minus 37305094361198867

+ 542619554411988611

)

119902 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 38315675561199094

11988628

(42)

recalling that 11990514 = 119886 we get multivariate Pade approxima-tion of order (15 2) for (40) that is

[15 2](119909119905)

= minus 38315675561199096

1199057

times (minus1 + 2119905 minus 373050943611990574

+5426195544119905114

)

times (38315675561199094

1199057

)minus1

(43)

Table 2 Figures 3(a) 3(b) 3(c) 4(a) 4(b) 4(c) and 4(d)show the approximate solutions for (28) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 2is for the exact solution 119906(119909 119905) = (119909119905 + 1)2 [24]

6 Concluding Remarks

The fundamental goal of this paper has been to constructan approximate solution of nonlinear partial differential

12 Abstract and Applied Analysis

equations of fractional order by using multivariate PadeapproximationThe goal has been achieved by using the mul-tivariate Pade approximation and comparing with the Ado-mian decomposition method The present work shows thevalidity and great potential of the multivariate Pade approxi-mation for solving nonlinear partial differential equations offractional order from the numerical resultsNumerical resultsobtained using the multivariate Pade approximation and theAdomian decompositionmethod are in agreement with exactsolutions

References

[1] J H He ldquoNonlinear oscillation with fractional derivative andits applicationsrdquo in Proceedings of International Conference onVibrating Engineering pp 288ndash291 Dalian China 1998

[2] J H He ldquoSome applications of nonlinear fractional differentialequations and their approximationsrdquo Bulletin of Science andTechnology vol 15 no 2 pp 86ndash90 1999

[3] Y Luchko and R Gorenflo The Initial Value Problem for SomeFractional Differential Equations with the Caputo DerivativeSeries A08-98 Fachbreich Mathematik und Informatik FreicUniversitat Berlin Berlin Germany 1998

[4] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press San DiegoCalif USA 1999

[5] SMomani ldquoNon-perturbative analytical solutions of the space-and time-fractional Burgers equationsrdquo Chaos Solitons amp Frac-tals vol 28 no 4 pp 930ndash937 2006

[6] Z M Odibat and S Momani ldquoApplication of variationaliteration method to nonlinear differential equations of frac-tional orderrdquo International Journal of Nonlinear Sciences andNumerical Simulation vol 7 no 1 pp 27ndash34 2006

[7] S Momani and Z Odibat ldquoAnalytical solution of a time-fractional Navier-Stokes equation by Adomian decompositionmethodrdquo Applied Mathematics and Computation vol 177 no 2pp 488ndash494 2006

[8] S Momani and Z Odibat ldquoNumerical comparison of methodsfor solving linear differential equations of fractional orderrdquoChaos Solitons amp Fractals vol 31 no 5 pp 1248ndash1255 2007

[9] Z M Odibat and S Momani ldquoApproximate solutions forboundary value problems of time-fractional wave equationrdquoApplied Mathematics and Computation vol 181 no 1 pp 767ndash774 2006

[10] G Domairry and N Nadim ldquoAssessment of homotopy analysismethod and homotopy perturbationmethod in non-linear heattransfer equationrdquo International Communications in Heat andMass Transfer vol 35 no 1 pp 93ndash102 2008

[11] G Domairry M Ahangari and M Jamshidi ldquoExact andanalytical solution for nonlinear dispersive 119870(119898 119901) equationsusing homotopy perturbation methodrdquo Physics Letters A vol368 no 3-4 pp 266ndash270 2007

[12] G Adomian ldquoA review of the decomposition method inapplied mathematicsrdquo Journal of Mathematical Analysis andApplications vol 135 no 2 pp 501ndash544 1988

[13] G Adomian Solving Frontier Problems of Physics The Decom-position Method vol 60 of Fundamental Theories of PhysicsKluwer Academic Publishers Dordrecht The Netherlands1994

[14] S Momani ldquoAn explicit and numerical solutions of the frac-tional KdV equationrdquo Mathematics and Computers in Simula-tion vol 70 no 2 pp 110ndash118 2005

[15] Ph Guillaume and A Huard ldquoMultivariate Pade approxima-tionrdquo Journal of Computational and Applied Mathematics vol121 no 1-2 pp 197ndash219 2000

[16] V Turut E Celik and M Yigider ldquoMultivariate Pade approx-imation for solving partial differential equations (PDE)rdquo Inter-national Journal for Numerical Methods in Fluids vol 66 no 9pp 1159ndash1173 2011

[17] V Turut and N Guzel ldquoComparing numerical methods forsolving time-fractional reaction-diffusion equationsrdquo ISRNMathematical Analysis vol 2012 Article ID 737206 28 pages2012

[18] V Turut ldquoApplication of Multivariate pade approximation forpartial differential equationsrdquo Batman University Journal of LifeSciences vol 2 no 1 pp 17ndash28 2012

[19] V Turut and N Guzel ldquoOn solving partial differential eqau-ations of fractional order by using the variational iterationmethod and multivariate pade approximationrdquo European Jour-nal of Pure and Applied Mathematics Accepted

[20] S Momani and R Qaralleh ldquoNumerical approximations andPade approximants for a fractional population growth modelrdquoApplied Mathematical Modelling vol 31 no 9 pp 1907ndash19142007

[21] S Momani and N Shawagfeh ldquoDecomposition method forsolving fractional Riccati differential equationsrdquo Applied Math-ematics and Computation vol 182 no 2 pp 1083ndash1092 2006

[22] K B Oldham and J SpanierThe Fractional Calculus AcademicPress New York NY USA 1974

[23] M Caputo ldquoLinearmodels of dissipationwhoseQ is almost fre-quency independent Part IIrdquo Journal of the Royal AstronomicalSociety vol 13 no 5 pp 529ndash539 1967

[24] Z Odibat and S Momani ldquoNumerical methods for nonlinearpartial differential equations of fractional orderrdquo Applied Math-ematical Modelling vol 32 no 1 pp 28ndash39 2008

[25] A Cuyt and L Wuytack Nonlinear Methods in NumericalAnalysis vol 136 ofNorth-HollandMathematics Studies North-Holland Publishing Amsterdam The Netherlands 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

2 Abstract and Applied Analysis

The decomposition method requires that a nonlinear frac-tional differential equation (1) is expressed in terms of opera-tor form as

119863120572

lowast119905119906 (119909 119905) + 119871119906 (119909 119905) + 119873119906 (119909 119905) = 119892 (119909 119905) 119909 gt 0 (2)

where 119871 is a linear operator which might include other frac-tional derivatives of order less than 120572119873 is a nonlinear oper-ator which also might include other fractional derivatives oforder less than 120572 119863120572

lowast119905= 120597120572

120597119905120572 is the Caputo fractional

derivative of order 120572 and 119892(119909 119905) is the source function [24]Applying the operator 119869120572 [3 4 22 23] the inverse of the

operator 119863120572lowast119905 to both sides of (5) Odibat and Momani [24]

obtained

119906 (119909 119905) =

119898minus1

sum

119896=0

120597119896

119906

120597119905119896(119909 0+

)119905119896

119896+ 119869120572

119892 (119909 119905)

minus 119869120572

[119871119906 (119909 119905) + 119873119906 (119909 119905)]

infin

sum

119899=0

119906119899(119909 119905) =

119898minus1

sum

119896=0

120597119896

119906

120597119905119896(119909 0+

)119905119896

119896+ 119869120572

119892 (119909 119905)

minus 119869120572

[119871(

infin

sum

119899=0

119906119899(119909 119905)) +

infin

sum

119899=0

119860119899]

(3)

From this the iterates are determined in [24] by the followingrecursive way

1199060(119909 119905) =

119898minus1

sum

119896=0

120597119896

119906

120597119905119896(119909 0+

)119905119896

119896+ 119869120572

119892 (119909 119905)

1199061(119909 119905) = minus119869

120572

(1198711199060+ 1198600)

1199062(119909 119905) = minus119869

120572

(1198711199061+ 1198601)

119906119899+1(119909 119905) = minus119869

120572

(119871119906119899+ 119860119899)

(4)

4 Multivariate Padeacute Aproximation [25]

Consider the bivariate function 119891(119909 119910) with Taylor seriesdevelopment

119891 (119909 119910) =

infin

sum

119894119895=0

119888119894119895119909119894

119910119895 (5)

around the origin We know that a solution of unvariate Padeapproximation problem for

119891 (119909) =

infin

sum

119894=0

119888119894119909119894 (6)

is given by

119901 (119909) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119898

sum

119894=0

119888119894119909119894

119909

119898minus1

sum

119894=0

119888119894119909119894

119909119899

119898minus119899

sum

119894=0

119888119894119909119894

119888119898+1

119888119898

119888119898+1minus119899

119888119898+119899

119888119898+119899minus1

119888119898

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

(7)

119902 (119909) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 119909 119909119899

119888119898+1

119888119898

119888119898+1minus119899

119888119898+119899

119888119898+119899minus1

119888119898

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

(8)

Let us now multiply 119895th row in 119901(119909) and 119902(119909) by 119909119895+119898minus1 (119895 =2 119899 + 1) and afterwards divide 119895th column in 119901(119909) and119902(119909) by 119909119895minus1 (119895 = 2 119899+1) This results in a multiplicationof numerator and denominator by 119909119898119899 Having done so weget

119901 (119909)

119902 (119909)=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

sum119898

119894=0119888119894119909119894

sum119898minus1

119894=0119888119894119909119894

sdotsdotsdot sum119898minus119899

119894=0119888119894119909119894

119888119898+1119909119898+1

119888119898119909119898

sdotsdotsdot 119888119898+1minus119899119909119898+1minus119899

119888119898+119899119909119898+119899

119888119898+119899minus1119909119898+119899minus1

sdotsdotsdot 119888119898119909119898

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

10038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 sdotsdotsdot 1

119888119898+1119909119898+1

119888119898119909119898

sdotsdotsdot 119888119898+1minus119899119909119898+1minus119899

119888119898+119899119909119898+119899

119888119898+119899minus1119909119898+119899minus1

sdotsdotsdot 119888119898119909119898

10038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

(9)

if (119863 = det 119863119898119899

= 0)This quotent of determinants can also immediately be

written down for a bivariate function 119891(119909 119910) The sumsum119896

119894=0119888119894119909119894 shall be replaced by 119896th partial sum of the Taylor

series development of 119891(119909 119910) and the expression 119888119896119909119896 by an

expression that contains all the terms of degree 119896 in 119891(119909 119910)Here a bivariate term 119888

119894119895119909119894

119910119895 is said to be of degree 119894 + 119895 If we

define

119901 (119909 119910)

=

10038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119898

sum

119894+119895=0

119888119894119895119909119894

119910119895

119898minus1

sum

119894+119895=0

119888119894119895119909119894

119910119895

sdot sdot sdot

119898minus119899

sum

119894+119895=0

119888119894119895119909119894

119910119895

sum

119894+119895=119898+1

119888119894119895119909119894

119910119895

sum

119894+119895=119898

119888119894119895119909119894

119910119895

sdot sdot sdot sum

119894+119895=119898+1minus119899

119888119894119895119909119894

119910119895

sum

119894+119895=119898+119899

119888119894119895119909119894

119910119895

sum

119894+119895=119898+119899minus1

119888119894119895119909119894

119910119895

sdot sdot sdot sum

119894+119895=119898

119888119894119895119909119894

119910119895

10038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

Abstract and Applied Analysis 3

119902 (119909 119910)

=

1003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 sdot sdot sdot 1

sum

119894+119895=119898+1

119888119894119895119909119894

119910119895

sum

119894+119895=119898

119888119894119895119909119894

119910119895

sdot sdot sdot sum

119894+119895=119898+1minus119899

119888119894119895119909119894

119910119895

sum

119894+119895=119898+119899

119888119894119895119909119894

119910119895

sum

119894+119895=119898+119899minus1

119888119894119895119909119894

119910119895

sdot sdot sdot sum

119894+119895=119898

119888119894119895119909119894

119910119895

1003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

(10)

Then it is easy to see that 119901(119909 119910) and 119902(119909 119910) are of the form

119901 (119909 119910) =

119898119899+119898

sum

119894+119895=119898119899

119886119894119895119909119894

119910119895

119902 (119909 119910) =

119898119899+119899

sum

119894+119895=119898119899

119887119894119895119909119894

119910119895

(11)

We know that 119901(119909 119910) and 119902(119909 119910) are called Pade equations[25] So themultivariate Pade approximant of order (119898 119899) for119891(119909 119910) is defined as

119903119898119899(119909 119910) =

119901 (119909 119910)

119902 (119909 119910) (12)

5 Numerical Experiments

In this section two methods ADM and MPA shall beillustrated by two examples All the results are calculatedby using the software Maple12 The full ADM solutions ofexamples can be seen from Odibat and Momani [24]

Example 1 Consider the nonlinear time-fractional advectionpartial differential equation [24]

119863120572

lowast119905119906 (119909 119905) + 119906 (119909 119905) 119906

119909(119909 119905) = 119909 + 119909119905

2

119905 gt 0 119909 isin 119877 0 lt 120572 le 1

(13)

subject to the initial condition

119906 (119909 0) = 0 (14)

Odibat and Momani [24] solved the problem using thedecomposition method and they obtained the followingrecurrence relation [24]

1199060(119909 119905) = 119906 (119909 0) + 119869

120572

(119909 + 1199091199052

)

= 119909(119905120572

Γ (120572 + 1)+

2119905120572+2

Γ (120572 + 3))

119906119895+1(119909 119905) = minus119869

120572

(119860119895) 119895 ge 0

(15)

where 119860119895are the Adomian polynomials for the nonlinear

function 119873 = 119906119906119909 In view of (15) the first few components

of the decomposition series are derived in [24] as follows

1199060(119909 119905) = 119909(

119905120572

Γ (120572 + 1)+

2119905120572+2

Γ (120572 + 3))

1199061(119909 119905) = minus119909(

Γ (2120572 + 1) 1199053120572

Γ(120572 + 1)2

Γ (3120572 + 1)

+4Γ (2120572 + 3) 119905

3120572+2

Γ (120572 + 1) Γ (120572 + 3) Γ (3120572 + 3)

+4Γ (2120572 + 5) 119905

3120572+4

Γ(120572 + 3)2

Γ (3120572 + 5)

)

1199062(119909 119905) = 2119909(

Γ (2120572 + 1) Γ (4120572 + 1) 1199055120572

Γ(120572 + 1)3

Γ (3120572 + 1) Γ (5120572 + 1)

+8Γ (2120572 + 5) Γ (4120572 + 7) 119905

5120572+6

Γ(120572 + 1)3

Γ (3120572 + 5) Γ (5120572 + 7)

+ sdot sdot sdot)

(16)

and so on in this manner the rest of components of thedecomposition series can be obtained [24]

The first three terms of the decomposition series are givenby [24]

119906 (119909 119905)

= 119909(119905120572

Γ (120572 + 1)+

2119905120572+2

Γ (120572 + 3)minus

Γ (2120572 + 1) 1199053120572

Γ(120572 + 1)2

Γ (3120572 + 1)

minus4Γ (2120572 + 3) 119905

3120572+2

Γ (120572 + 1) Γ (120572 + 3) Γ (3120572 + 3)+ sdot sdot sdot)

(17)

For 120572 = 1 (16) is

119906 (119909 119905) = 119909119905 + 01 times 10minus9

1199053

minus 013333333331199091199055

(18)

Now let us calculate the approximate solution of (18) for119898 =4 and 119899 = 2 by using Multivariate Pade approximation Toobtain multivariate Pade equations of (18) for119898 = 4 and 119899 =2 we use (10) By using (10) we obtain

119901 (119909 119905)

=

1003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119909119905 + 01 times 10minus9

1199053

119909119905 119909119905

0 01 times 10minus9

1199053

0

minus013333333331199091199055

0 01 times 10minus9

1199053

1003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 01333333333 times 10minus10

times (1199052

+ 07500000002 times 10minus9

) 1199093

1199057

4 Abstract and Applied Analysis

119902 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

0 01 times 10minus9

1199053

0

minus013333333331199091199055

0 01 times 10minus9

1199053

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 01333333333 times 10minus10

times (1199052

+ 07500000002 times 10minus9

) 1199092

1199056

(19)

So the multivariate Pade approximation of order (4 2) for(17) that is

[4 2](119909119905)

=

(1199052

+ 07500000002 times 10minus9

) 119909119905

1199052 + 07500000002 times 10minus9 (20)

For 120572 = 05 (17) is

119906 (119909 119905) = 112837916711990911990505

minus 0957797985011990911990515

+ 0601802222611990911990525

minus 0700560811611990911990535

(21)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 1128379167119909119886 minus 095779798501199091198863

+ 060180222261199091198865

minus 070056081161199091198867

(22)

Using (10) to calculate the multivariate Pade equations for(22) we get

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1128379167119909119886 minus 095779798501199091198863

+ 060180222261199091198865

1128379167119909119886 minus 095779798501199091198863

1128379167119909119886 minus 095779798501199091198863

0 060180222261199091198865

0

minus070056081161199091198867

0 060180222261199091198865

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus04907854507 (12014642941198864

minus 12318323471198862

minus 08326662354) 1199093

11988611

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

0 060180222261199091198865

0

minus070056081161199091198867

0 060180222261199091198865

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 04907854507 (07379312378 + 17180584831198862

) 1199093

11988610

(23)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (6 2) for (21) that is

[6 2](119909119905)

= minus (12014642941199052

minus 1231832347119905

minus08326662354) 119909radic119905

times (07379312378 + 1718058483119905)minus1

(24)

For 120572 = 075 (17) is

119906 (119909 119905) = 00000712534544111990911990575

+ 01764791440 times 10minus5

11990911990595

minus 01238343301 times 10minus17

119909119905225

minus 02897967272 times 10minus19

119909119905245

(25)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 00000712534544111990911988615

+ 01764791440 times 10minus5

11990911988619

minus 01238343301 times 10minus17

11990911988645

minus 02897967272 times 10minus19

11990911988649

(26)

Using (10) to calculate the multivariate Pade equations andthen recalling that 11990512 = 119886 we get multivariate Padeapproximation of order (49 2) for (25) that is

[49 2](119909119905)

= minus 08398214310 times 10minus39

1199093

1199051132

times ( minus 000007125345441 minus 01764791440

times10minus5

1199052

+ 01238343301 times 10minus17

11990515

)

times (08398214310 times 10minus39

1199092

11990549

)minus1

(27)

Table 1 Figures 1(a) 1(b) 1(c) 2(a) 2(b) 2(c) and 2(d) showsthe approximate solutions for (13) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 1is for the exact solution 119906(119909 119905) = 119909119905 [24]

Example 2 Consider the nonlinear time-fractional hyper-bolic equation [24]

119863120572

lowast119905119906 (119909 119905) =

120597

120597119909(119906 (119909 119905)

120597119906 (119909 119905)

120597119909)

119905 gt 0 119909 isin 119877 1 lt 120572 le 2

(28)

subject to the initial condition

119906 (119909 0) = 1199092

119906119905(119909 0) = minus2119909

2

(29)

Abstract and Applied Analysis 5

1

05

0

minus05

minus1

minus1

minus05

005

1105

0

minus05

minus1

119905 119909

(a)

08

04

0

minus04

minus08

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(b)

1

05

0

minus05

minus1

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(c)

Figure 1 (a) Exact solution of Example 1 for 120572 = 1 (b) ADM solution of Example 1 for 120572 = 1 (c) Multivariate Pade approximation of ADMsolution for 120572 = 1 in Example 1

Odibat and Momani [24] solved the problem using thedecomposition method and they obtained the followingrecurrence relation in [24]

1199060(119909 119905) = 119906 (119909 0) + 119905119906

119909(119909 0) = 119909

2

(1 minus 2119905)

119906119895+1(119909 119905) = 119869

120572

(119860119895)119909

119895 ge 0

(30)

where 119860119895are the Adomian polynomials for the nonlinear

function119873 = 119906119906119909 In view of (30) the first few components

of the decomposition series are derived in [24] as follows

1199060(119909 119905) = 119909

2

(1 minus 2119905)

1199061(119909 119905) = 6119909

2

(119905120572

Γ (120572 + 1)minus

4119905120572+1

Γ (120572 + 2)+

8119905120572+2

Γ (120572 + 3))

1199062(119909 119905) = 72119909

2

(1199052120572

Γ (2120572 + 1)minus

41199052120572+1

Γ (2120572 + 2)

+81199052120572+2

Γ (2120572 + 3)minus

2Γ (120572 + 2) 1199052120572+1

Γ (120572 + 1) Γ (2120572 + 2))

+ 721199092

(8Γ (120572 + 3) 119905

2120572+2

Γ (120572 + 2) Γ (2120572 + 3)

minus16Γ (120572 + 4) 119905

2120572+3

Γ (120572 + 3) Γ (2120572 + 4))

(31)

6 Abstract and Applied Analysis

030250201501005

0

002004

006008

01 108

0604

020

119905 119909

(a)

030250201501005

002004

006008

01 01008

006004

002

119905119909

(b)

6119890minus05

4119890minus05

2119890minus05

0minus2119890minus05

minus4119890minus05

minus6119890minus05

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(c)

6119890minus05

4119890minus05

2119890minus05

0minus2119890minus05

minus4119890minus05

minus6119890minus05

minus1

minus05

005

1105

0minus05

minus1

119905119909

(d)

Figure 2 (a) ADM solution of Example 1 for 120572 = 05 (b) Multivariate Pade approximation of ADM solution for 120572 = 05 in Example 1 (c)ADM solution of Example 1 for 120572 = 075 (d) Multivariate Pade approximation of ADM solution for 120572 = 075 in Example 1

and so on in this manner the rest of components of thedecomposition series can be obtained

The first three terms of the decomposition series (7) aregiven [24] by

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (119905120572

Γ (120572 + 1)minus

4119905120572+1

Γ (120572 + 2)+

8119905120572+2

Γ (120572 + 3))

+ 721199092

(1199052120572

Γ (2120572 + 1)+ sdot sdot sdot)

(32)

For 120572 = 2 (43) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(050000000001199052

minus 066666666681199053

+033333333341199054

)

+ 30000000001199092

1199054

(33)

Now let us calculate the approximate solution of (33) for119898 =4 and 119899 = 2 by using multivariate Pade approximation To

Abstract and Applied Analysis 7

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(a)

2

25

3

15

1

05

0

02

04

06

08

1 108

0604

02

119905 119909

(b)

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(c)

Figure 3 (a) Exact solution of Example 2 for 120572 = 20 (b) ADM solution of Example 2 for 120572 = 20 (c) Multivariate Pade approximation ofADM solution for 120572 = 20 in Example 2

obtain multivariate Pade equations of (33) for119898 = 4 and 119899 =2 we use (10) By using (10) we obtain

119901 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

(1 minus 2119905) + 30000000001199092

1199052

1199092

(1 minus 2119905) 1199092

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus20000000001199054

(028 times 10minus9

1199052

minus 034 times 10minus9

119905 (minus004999999986) 1199096

119902 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 20000000001199054

(00499999999 + 01000000001119905 + 005000000041199052

) 1199094

(34)

So the multivariate Pade approximation of order (4 2) for(33) that is

[4 2](119909119905)

= minus 1000000000 (028 times 10minus9

1199052

minus 034 times 10minus9

119905

minus004999999986) 1199092

times (00499999999 + 01000000001119905

+005000000041199052

)minus1

(35)

8 Abstract and Applied Analysis

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(a)

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(b)

0008

001

0006

0004

0002

0

119905119909

minus01

minus005

0

0050101

0050

minus005

minus01

(c)

0008

001

0006

0004

0002

0

119905 119909

minus01

minus005

0005

0101005

0

minus005

minus01

(d)

Figure 4 (a) ADM solution of Example 2 for 120572 = 15 (b) Multivariate Pade approximation of ADM solution for 120572 = 15 in Example 2 (c)ADM solution of Example 2 for 120572 = 175 (d) Multivariate Pade approximation of ADM solution for 120572 = 175 in Example 2

For 120572 = 15 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (0752252778211990515

minus 120360444511990525

+0687773968311990535

) + 12000000001199092

11990530

(36)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198862

) + 61199092

times (075225277821198863

minus12036044451198865

+ 068777396831199057

)

+ 12000000001199092

1198866

= 1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

+ 41266438101199092

1198867

+ 12000000001199092

1198866

(37)

Using (10) to calculate multivariate Pade equations of (37) for119898 = 7 and 119899 = 2 we use (10) By using (10) we obtain

Abstract and Applied Analysis 9

Table1Num

ericalvalues

when120572=05120572=075and120572=10for(13)

119909119905

120572=05

120572=075

120572=10

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000111

8860

666

000111

8859998

07125363089times10minus21

07125363089times10minus21

000

009999999987

000

0100

0000

000

000

01002

002

0003138022015

0003138007574

02579676158times10minus18

02579676148times10minus18

000

03999999915

000

0400

0000

000

000

04003

003

000571664

0278

0005716554826

08097412617times10minus17

08097412644times10minus17

000

08999999028

000

0900

0000

000

000

09004

004

0008727882362

0008727584792

09339702880times10minus16

09339702881times10minus16

0001599999454

0001600

0000

0000016

005

005

001209607907

001209530419

06224118481times10minus15

06224118464times10minus15

0002499997917

0002500

0000

0000025

006

006

00157687340

8001576705530

02931772549times10minus14

02931772552times10minus14

0003599993779

0003600

0000

0000036

007

007

001970633078

001970312778

01086905954times10minus13

01086905954times10minus13

000

4899984313

000

4900

0000

00000

49008

008

002387754051

002387197301

03381735603times10minus13

03381735608times10minus13

000

6399965047

000

6400

0000

00000

64009

009

002825661342

002824760190

09203528751times10minus13

09203528751times10minus13

0008099929141

0008100

0000

0000081

01

01

003282181204

003280802591

02253790147times10minus12

02253790145times10minus12

000

99998666

6700100

0000

0000

001

10 Abstract and Applied Analysis

Table2Num

ericalvalues

when120572=15120572=175and120572=20for(28)

119909119905

120572=15

120572=175

120572=20

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000

009844537131

000

009844533110

000

0098116

32420

000

0098116

25316

000

00980296

0500

000

00980296

0486

000

00980296

0494

002

002

000

03889833219

000

03889809228

000

03855443171

000

03855410232

000

038446

75200

000

038446

75123

000

038446

75125

003

003

000

0866

4034309

000

08663775704

000

08529749012

000

08529437792

000

08483364

450

000

08483363176

000

08483363182

004

004

0001527388854

0001527250241

0001492265504

0001492112

228

0001479290880

0001479289940

0001479289941

005

005

0002370102454

0002369595331

0002296248891

0002295720729

0002267578126

0002267573695

0002267573696

006

006

0003393997434

0003392539471

0003258613123

0003257161294

0003204

002880

0003203987182

0003203987184

007

007

000

4599726730

000

4596176215

000

4373819216

000

437040

4791

000

4279895445

000

4279849765

000

4279849769

008

008

0005989109024

000598144

9991

0005637043845

00056298804

000005487083520

0005486968446

0005486968450

009

009

0007565131844

000755006

8937

0007044

140677

0007030367394

000

6817867605

000

6817607941

000

6817607945

01

01

000

9331981000

000

9304

436794

0008591616573

0008566

895894

000826500

0000

0008264

462804

0008264

462810

Abstract and Applied Analysis 11

119901 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

12000000001199092

1199056

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (82357601511198865

+ 08791855311198864

+ 12534276361198863

+ 14034265421198862

+ 1750000001119886 + 1053153890) 1199096

11988610

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

12000000001199092

1198866

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (1053153890 + 1750000001119886 + 35097343221198862

) 1199094

11988610

(38)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (7 2) for (36) that is

[7 2](119909119905)

= (823576015111990552

+ 08791855311199052

+ 125342763611990532

+ 1403426542119905

+1750000001radic119905 + 1053153890) 1199092

times (1053153890 + 1750000001radic119905

+3509734322119905)minus1

(39)

For 120572 = 175 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(06217515726119905175

minus 09043659240119905275

+04823284927119905375

)

+ 61899657151199092

11990535

(40)

For simplicity let 11990514 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198864

)

+ 61199092

(062175157261198867

minus 0904365924011988611

+0482328492711988615

) + 61899657151199092

11988614

= 1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

+ 28939709561199092

11988615

+ 61899657151199092

11988614

(41)

Using (10) to calculate multivariate Pade equations of (41) for119898 = 15 and 119899 = 2 we use (10) By using (10) we obtain

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus38315675561199096

11988628

(minus1 + 21198864

minus 37305094361198867

+ 542619554411988611

)

119902 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 38315675561199094

11988628

(42)

recalling that 11990514 = 119886 we get multivariate Pade approxima-tion of order (15 2) for (40) that is

[15 2](119909119905)

= minus 38315675561199096

1199057

times (minus1 + 2119905 minus 373050943611990574

+5426195544119905114

)

times (38315675561199094

1199057

)minus1

(43)

Table 2 Figures 3(a) 3(b) 3(c) 4(a) 4(b) 4(c) and 4(d)show the approximate solutions for (28) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 2is for the exact solution 119906(119909 119905) = (119909119905 + 1)2 [24]

6 Concluding Remarks

The fundamental goal of this paper has been to constructan approximate solution of nonlinear partial differential

12 Abstract and Applied Analysis

equations of fractional order by using multivariate PadeapproximationThe goal has been achieved by using the mul-tivariate Pade approximation and comparing with the Ado-mian decomposition method The present work shows thevalidity and great potential of the multivariate Pade approxi-mation for solving nonlinear partial differential equations offractional order from the numerical resultsNumerical resultsobtained using the multivariate Pade approximation and theAdomian decompositionmethod are in agreement with exactsolutions

References

[1] J H He ldquoNonlinear oscillation with fractional derivative andits applicationsrdquo in Proceedings of International Conference onVibrating Engineering pp 288ndash291 Dalian China 1998

[2] J H He ldquoSome applications of nonlinear fractional differentialequations and their approximationsrdquo Bulletin of Science andTechnology vol 15 no 2 pp 86ndash90 1999

[3] Y Luchko and R Gorenflo The Initial Value Problem for SomeFractional Differential Equations with the Caputo DerivativeSeries A08-98 Fachbreich Mathematik und Informatik FreicUniversitat Berlin Berlin Germany 1998

[4] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press San DiegoCalif USA 1999

[5] SMomani ldquoNon-perturbative analytical solutions of the space-and time-fractional Burgers equationsrdquo Chaos Solitons amp Frac-tals vol 28 no 4 pp 930ndash937 2006

[6] Z M Odibat and S Momani ldquoApplication of variationaliteration method to nonlinear differential equations of frac-tional orderrdquo International Journal of Nonlinear Sciences andNumerical Simulation vol 7 no 1 pp 27ndash34 2006

[7] S Momani and Z Odibat ldquoAnalytical solution of a time-fractional Navier-Stokes equation by Adomian decompositionmethodrdquo Applied Mathematics and Computation vol 177 no 2pp 488ndash494 2006

[8] S Momani and Z Odibat ldquoNumerical comparison of methodsfor solving linear differential equations of fractional orderrdquoChaos Solitons amp Fractals vol 31 no 5 pp 1248ndash1255 2007

[9] Z M Odibat and S Momani ldquoApproximate solutions forboundary value problems of time-fractional wave equationrdquoApplied Mathematics and Computation vol 181 no 1 pp 767ndash774 2006

[10] G Domairry and N Nadim ldquoAssessment of homotopy analysismethod and homotopy perturbationmethod in non-linear heattransfer equationrdquo International Communications in Heat andMass Transfer vol 35 no 1 pp 93ndash102 2008

[11] G Domairry M Ahangari and M Jamshidi ldquoExact andanalytical solution for nonlinear dispersive 119870(119898 119901) equationsusing homotopy perturbation methodrdquo Physics Letters A vol368 no 3-4 pp 266ndash270 2007

[12] G Adomian ldquoA review of the decomposition method inapplied mathematicsrdquo Journal of Mathematical Analysis andApplications vol 135 no 2 pp 501ndash544 1988

[13] G Adomian Solving Frontier Problems of Physics The Decom-position Method vol 60 of Fundamental Theories of PhysicsKluwer Academic Publishers Dordrecht The Netherlands1994

[14] S Momani ldquoAn explicit and numerical solutions of the frac-tional KdV equationrdquo Mathematics and Computers in Simula-tion vol 70 no 2 pp 110ndash118 2005

[15] Ph Guillaume and A Huard ldquoMultivariate Pade approxima-tionrdquo Journal of Computational and Applied Mathematics vol121 no 1-2 pp 197ndash219 2000

[16] V Turut E Celik and M Yigider ldquoMultivariate Pade approx-imation for solving partial differential equations (PDE)rdquo Inter-national Journal for Numerical Methods in Fluids vol 66 no 9pp 1159ndash1173 2011

[17] V Turut and N Guzel ldquoComparing numerical methods forsolving time-fractional reaction-diffusion equationsrdquo ISRNMathematical Analysis vol 2012 Article ID 737206 28 pages2012

[18] V Turut ldquoApplication of Multivariate pade approximation forpartial differential equationsrdquo Batman University Journal of LifeSciences vol 2 no 1 pp 17ndash28 2012

[19] V Turut and N Guzel ldquoOn solving partial differential eqau-ations of fractional order by using the variational iterationmethod and multivariate pade approximationrdquo European Jour-nal of Pure and Applied Mathematics Accepted

[20] S Momani and R Qaralleh ldquoNumerical approximations andPade approximants for a fractional population growth modelrdquoApplied Mathematical Modelling vol 31 no 9 pp 1907ndash19142007

[21] S Momani and N Shawagfeh ldquoDecomposition method forsolving fractional Riccati differential equationsrdquo Applied Math-ematics and Computation vol 182 no 2 pp 1083ndash1092 2006

[22] K B Oldham and J SpanierThe Fractional Calculus AcademicPress New York NY USA 1974

[23] M Caputo ldquoLinearmodels of dissipationwhoseQ is almost fre-quency independent Part IIrdquo Journal of the Royal AstronomicalSociety vol 13 no 5 pp 529ndash539 1967

[24] Z Odibat and S Momani ldquoNumerical methods for nonlinearpartial differential equations of fractional orderrdquo Applied Math-ematical Modelling vol 32 no 1 pp 28ndash39 2008

[25] A Cuyt and L Wuytack Nonlinear Methods in NumericalAnalysis vol 136 ofNorth-HollandMathematics Studies North-Holland Publishing Amsterdam The Netherlands 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 3

119902 (119909 119910)

=

1003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 sdot sdot sdot 1

sum

119894+119895=119898+1

119888119894119895119909119894

119910119895

sum

119894+119895=119898

119888119894119895119909119894

119910119895

sdot sdot sdot sum

119894+119895=119898+1minus119899

119888119894119895119909119894

119910119895

sum

119894+119895=119898+119899

119888119894119895119909119894

119910119895

sum

119894+119895=119898+119899minus1

119888119894119895119909119894

119910119895

sdot sdot sdot sum

119894+119895=119898

119888119894119895119909119894

119910119895

1003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

(10)

Then it is easy to see that 119901(119909 119910) and 119902(119909 119910) are of the form

119901 (119909 119910) =

119898119899+119898

sum

119894+119895=119898119899

119886119894119895119909119894

119910119895

119902 (119909 119910) =

119898119899+119899

sum

119894+119895=119898119899

119887119894119895119909119894

119910119895

(11)

We know that 119901(119909 119910) and 119902(119909 119910) are called Pade equations[25] So themultivariate Pade approximant of order (119898 119899) for119891(119909 119910) is defined as

119903119898119899(119909 119910) =

119901 (119909 119910)

119902 (119909 119910) (12)

5 Numerical Experiments

In this section two methods ADM and MPA shall beillustrated by two examples All the results are calculatedby using the software Maple12 The full ADM solutions ofexamples can be seen from Odibat and Momani [24]

Example 1 Consider the nonlinear time-fractional advectionpartial differential equation [24]

119863120572

lowast119905119906 (119909 119905) + 119906 (119909 119905) 119906

119909(119909 119905) = 119909 + 119909119905

2

119905 gt 0 119909 isin 119877 0 lt 120572 le 1

(13)

subject to the initial condition

119906 (119909 0) = 0 (14)

Odibat and Momani [24] solved the problem using thedecomposition method and they obtained the followingrecurrence relation [24]

1199060(119909 119905) = 119906 (119909 0) + 119869

120572

(119909 + 1199091199052

)

= 119909(119905120572

Γ (120572 + 1)+

2119905120572+2

Γ (120572 + 3))

119906119895+1(119909 119905) = minus119869

120572

(119860119895) 119895 ge 0

(15)

where 119860119895are the Adomian polynomials for the nonlinear

function 119873 = 119906119906119909 In view of (15) the first few components

of the decomposition series are derived in [24] as follows

1199060(119909 119905) = 119909(

119905120572

Γ (120572 + 1)+

2119905120572+2

Γ (120572 + 3))

1199061(119909 119905) = minus119909(

Γ (2120572 + 1) 1199053120572

Γ(120572 + 1)2

Γ (3120572 + 1)

+4Γ (2120572 + 3) 119905

3120572+2

Γ (120572 + 1) Γ (120572 + 3) Γ (3120572 + 3)

+4Γ (2120572 + 5) 119905

3120572+4

Γ(120572 + 3)2

Γ (3120572 + 5)

)

1199062(119909 119905) = 2119909(

Γ (2120572 + 1) Γ (4120572 + 1) 1199055120572

Γ(120572 + 1)3

Γ (3120572 + 1) Γ (5120572 + 1)

+8Γ (2120572 + 5) Γ (4120572 + 7) 119905

5120572+6

Γ(120572 + 1)3

Γ (3120572 + 5) Γ (5120572 + 7)

+ sdot sdot sdot)

(16)

and so on in this manner the rest of components of thedecomposition series can be obtained [24]

The first three terms of the decomposition series are givenby [24]

119906 (119909 119905)

= 119909(119905120572

Γ (120572 + 1)+

2119905120572+2

Γ (120572 + 3)minus

Γ (2120572 + 1) 1199053120572

Γ(120572 + 1)2

Γ (3120572 + 1)

minus4Γ (2120572 + 3) 119905

3120572+2

Γ (120572 + 1) Γ (120572 + 3) Γ (3120572 + 3)+ sdot sdot sdot)

(17)

For 120572 = 1 (16) is

119906 (119909 119905) = 119909119905 + 01 times 10minus9

1199053

minus 013333333331199091199055

(18)

Now let us calculate the approximate solution of (18) for119898 =4 and 119899 = 2 by using Multivariate Pade approximation Toobtain multivariate Pade equations of (18) for119898 = 4 and 119899 =2 we use (10) By using (10) we obtain

119901 (119909 119905)

=

1003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119909119905 + 01 times 10minus9

1199053

119909119905 119909119905

0 01 times 10minus9

1199053

0

minus013333333331199091199055

0 01 times 10minus9

1199053

1003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 01333333333 times 10minus10

times (1199052

+ 07500000002 times 10minus9

) 1199093

1199057

4 Abstract and Applied Analysis

119902 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

0 01 times 10minus9

1199053

0

minus013333333331199091199055

0 01 times 10minus9

1199053

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 01333333333 times 10minus10

times (1199052

+ 07500000002 times 10minus9

) 1199092

1199056

(19)

So the multivariate Pade approximation of order (4 2) for(17) that is

[4 2](119909119905)

=

(1199052

+ 07500000002 times 10minus9

) 119909119905

1199052 + 07500000002 times 10minus9 (20)

For 120572 = 05 (17) is

119906 (119909 119905) = 112837916711990911990505

minus 0957797985011990911990515

+ 0601802222611990911990525

minus 0700560811611990911990535

(21)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 1128379167119909119886 minus 095779798501199091198863

+ 060180222261199091198865

minus 070056081161199091198867

(22)

Using (10) to calculate the multivariate Pade equations for(22) we get

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1128379167119909119886 minus 095779798501199091198863

+ 060180222261199091198865

1128379167119909119886 minus 095779798501199091198863

1128379167119909119886 minus 095779798501199091198863

0 060180222261199091198865

0

minus070056081161199091198867

0 060180222261199091198865

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus04907854507 (12014642941198864

minus 12318323471198862

minus 08326662354) 1199093

11988611

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

0 060180222261199091198865

0

minus070056081161199091198867

0 060180222261199091198865

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 04907854507 (07379312378 + 17180584831198862

) 1199093

11988610

(23)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (6 2) for (21) that is

[6 2](119909119905)

= minus (12014642941199052

minus 1231832347119905

minus08326662354) 119909radic119905

times (07379312378 + 1718058483119905)minus1

(24)

For 120572 = 075 (17) is

119906 (119909 119905) = 00000712534544111990911990575

+ 01764791440 times 10minus5

11990911990595

minus 01238343301 times 10minus17

119909119905225

minus 02897967272 times 10minus19

119909119905245

(25)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 00000712534544111990911988615

+ 01764791440 times 10minus5

11990911988619

minus 01238343301 times 10minus17

11990911988645

minus 02897967272 times 10minus19

11990911988649

(26)

Using (10) to calculate the multivariate Pade equations andthen recalling that 11990512 = 119886 we get multivariate Padeapproximation of order (49 2) for (25) that is

[49 2](119909119905)

= minus 08398214310 times 10minus39

1199093

1199051132

times ( minus 000007125345441 minus 01764791440

times10minus5

1199052

+ 01238343301 times 10minus17

11990515

)

times (08398214310 times 10minus39

1199092

11990549

)minus1

(27)

Table 1 Figures 1(a) 1(b) 1(c) 2(a) 2(b) 2(c) and 2(d) showsthe approximate solutions for (13) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 1is for the exact solution 119906(119909 119905) = 119909119905 [24]

Example 2 Consider the nonlinear time-fractional hyper-bolic equation [24]

119863120572

lowast119905119906 (119909 119905) =

120597

120597119909(119906 (119909 119905)

120597119906 (119909 119905)

120597119909)

119905 gt 0 119909 isin 119877 1 lt 120572 le 2

(28)

subject to the initial condition

119906 (119909 0) = 1199092

119906119905(119909 0) = minus2119909

2

(29)

Abstract and Applied Analysis 5

1

05

0

minus05

minus1

minus1

minus05

005

1105

0

minus05

minus1

119905 119909

(a)

08

04

0

minus04

minus08

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(b)

1

05

0

minus05

minus1

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(c)

Figure 1 (a) Exact solution of Example 1 for 120572 = 1 (b) ADM solution of Example 1 for 120572 = 1 (c) Multivariate Pade approximation of ADMsolution for 120572 = 1 in Example 1

Odibat and Momani [24] solved the problem using thedecomposition method and they obtained the followingrecurrence relation in [24]

1199060(119909 119905) = 119906 (119909 0) + 119905119906

119909(119909 0) = 119909

2

(1 minus 2119905)

119906119895+1(119909 119905) = 119869

120572

(119860119895)119909

119895 ge 0

(30)

where 119860119895are the Adomian polynomials for the nonlinear

function119873 = 119906119906119909 In view of (30) the first few components

of the decomposition series are derived in [24] as follows

1199060(119909 119905) = 119909

2

(1 minus 2119905)

1199061(119909 119905) = 6119909

2

(119905120572

Γ (120572 + 1)minus

4119905120572+1

Γ (120572 + 2)+

8119905120572+2

Γ (120572 + 3))

1199062(119909 119905) = 72119909

2

(1199052120572

Γ (2120572 + 1)minus

41199052120572+1

Γ (2120572 + 2)

+81199052120572+2

Γ (2120572 + 3)minus

2Γ (120572 + 2) 1199052120572+1

Γ (120572 + 1) Γ (2120572 + 2))

+ 721199092

(8Γ (120572 + 3) 119905

2120572+2

Γ (120572 + 2) Γ (2120572 + 3)

minus16Γ (120572 + 4) 119905

2120572+3

Γ (120572 + 3) Γ (2120572 + 4))

(31)

6 Abstract and Applied Analysis

030250201501005

0

002004

006008

01 108

0604

020

119905 119909

(a)

030250201501005

002004

006008

01 01008

006004

002

119905119909

(b)

6119890minus05

4119890minus05

2119890minus05

0minus2119890minus05

minus4119890minus05

minus6119890minus05

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(c)

6119890minus05

4119890minus05

2119890minus05

0minus2119890minus05

minus4119890minus05

minus6119890minus05

minus1

minus05

005

1105

0minus05

minus1

119905119909

(d)

Figure 2 (a) ADM solution of Example 1 for 120572 = 05 (b) Multivariate Pade approximation of ADM solution for 120572 = 05 in Example 1 (c)ADM solution of Example 1 for 120572 = 075 (d) Multivariate Pade approximation of ADM solution for 120572 = 075 in Example 1

and so on in this manner the rest of components of thedecomposition series can be obtained

The first three terms of the decomposition series (7) aregiven [24] by

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (119905120572

Γ (120572 + 1)minus

4119905120572+1

Γ (120572 + 2)+

8119905120572+2

Γ (120572 + 3))

+ 721199092

(1199052120572

Γ (2120572 + 1)+ sdot sdot sdot)

(32)

For 120572 = 2 (43) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(050000000001199052

minus 066666666681199053

+033333333341199054

)

+ 30000000001199092

1199054

(33)

Now let us calculate the approximate solution of (33) for119898 =4 and 119899 = 2 by using multivariate Pade approximation To

Abstract and Applied Analysis 7

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(a)

2

25

3

15

1

05

0

02

04

06

08

1 108

0604

02

119905 119909

(b)

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(c)

Figure 3 (a) Exact solution of Example 2 for 120572 = 20 (b) ADM solution of Example 2 for 120572 = 20 (c) Multivariate Pade approximation ofADM solution for 120572 = 20 in Example 2

obtain multivariate Pade equations of (33) for119898 = 4 and 119899 =2 we use (10) By using (10) we obtain

119901 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

(1 minus 2119905) + 30000000001199092

1199052

1199092

(1 minus 2119905) 1199092

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus20000000001199054

(028 times 10minus9

1199052

minus 034 times 10minus9

119905 (minus004999999986) 1199096

119902 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 20000000001199054

(00499999999 + 01000000001119905 + 005000000041199052

) 1199094

(34)

So the multivariate Pade approximation of order (4 2) for(33) that is

[4 2](119909119905)

= minus 1000000000 (028 times 10minus9

1199052

minus 034 times 10minus9

119905

minus004999999986) 1199092

times (00499999999 + 01000000001119905

+005000000041199052

)minus1

(35)

8 Abstract and Applied Analysis

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(a)

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(b)

0008

001

0006

0004

0002

0

119905119909

minus01

minus005

0

0050101

0050

minus005

minus01

(c)

0008

001

0006

0004

0002

0

119905 119909

minus01

minus005

0005

0101005

0

minus005

minus01

(d)

Figure 4 (a) ADM solution of Example 2 for 120572 = 15 (b) Multivariate Pade approximation of ADM solution for 120572 = 15 in Example 2 (c)ADM solution of Example 2 for 120572 = 175 (d) Multivariate Pade approximation of ADM solution for 120572 = 175 in Example 2

For 120572 = 15 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (0752252778211990515

minus 120360444511990525

+0687773968311990535

) + 12000000001199092

11990530

(36)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198862

) + 61199092

times (075225277821198863

minus12036044451198865

+ 068777396831199057

)

+ 12000000001199092

1198866

= 1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

+ 41266438101199092

1198867

+ 12000000001199092

1198866

(37)

Using (10) to calculate multivariate Pade equations of (37) for119898 = 7 and 119899 = 2 we use (10) By using (10) we obtain

Abstract and Applied Analysis 9

Table1Num

ericalvalues

when120572=05120572=075and120572=10for(13)

119909119905

120572=05

120572=075

120572=10

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000111

8860

666

000111

8859998

07125363089times10minus21

07125363089times10minus21

000

009999999987

000

0100

0000

000

000

01002

002

0003138022015

0003138007574

02579676158times10minus18

02579676148times10minus18

000

03999999915

000

0400

0000

000

000

04003

003

000571664

0278

0005716554826

08097412617times10minus17

08097412644times10minus17

000

08999999028

000

0900

0000

000

000

09004

004

0008727882362

0008727584792

09339702880times10minus16

09339702881times10minus16

0001599999454

0001600

0000

0000016

005

005

001209607907

001209530419

06224118481times10minus15

06224118464times10minus15

0002499997917

0002500

0000

0000025

006

006

00157687340

8001576705530

02931772549times10minus14

02931772552times10minus14

0003599993779

0003600

0000

0000036

007

007

001970633078

001970312778

01086905954times10minus13

01086905954times10minus13

000

4899984313

000

4900

0000

00000

49008

008

002387754051

002387197301

03381735603times10minus13

03381735608times10minus13

000

6399965047

000

6400

0000

00000

64009

009

002825661342

002824760190

09203528751times10minus13

09203528751times10minus13

0008099929141

0008100

0000

0000081

01

01

003282181204

003280802591

02253790147times10minus12

02253790145times10minus12

000

99998666

6700100

0000

0000

001

10 Abstract and Applied Analysis

Table2Num

ericalvalues

when120572=15120572=175and120572=20for(28)

119909119905

120572=15

120572=175

120572=20

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000

009844537131

000

009844533110

000

0098116

32420

000

0098116

25316

000

00980296

0500

000

00980296

0486

000

00980296

0494

002

002

000

03889833219

000

03889809228

000

03855443171

000

03855410232

000

038446

75200

000

038446

75123

000

038446

75125

003

003

000

0866

4034309

000

08663775704

000

08529749012

000

08529437792

000

08483364

450

000

08483363176

000

08483363182

004

004

0001527388854

0001527250241

0001492265504

0001492112

228

0001479290880

0001479289940

0001479289941

005

005

0002370102454

0002369595331

0002296248891

0002295720729

0002267578126

0002267573695

0002267573696

006

006

0003393997434

0003392539471

0003258613123

0003257161294

0003204

002880

0003203987182

0003203987184

007

007

000

4599726730

000

4596176215

000

4373819216

000

437040

4791

000

4279895445

000

4279849765

000

4279849769

008

008

0005989109024

000598144

9991

0005637043845

00056298804

000005487083520

0005486968446

0005486968450

009

009

0007565131844

000755006

8937

0007044

140677

0007030367394

000

6817867605

000

6817607941

000

6817607945

01

01

000

9331981000

000

9304

436794

0008591616573

0008566

895894

000826500

0000

0008264

462804

0008264

462810

Abstract and Applied Analysis 11

119901 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

12000000001199092

1199056

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (82357601511198865

+ 08791855311198864

+ 12534276361198863

+ 14034265421198862

+ 1750000001119886 + 1053153890) 1199096

11988610

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

12000000001199092

1198866

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (1053153890 + 1750000001119886 + 35097343221198862

) 1199094

11988610

(38)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (7 2) for (36) that is

[7 2](119909119905)

= (823576015111990552

+ 08791855311199052

+ 125342763611990532

+ 1403426542119905

+1750000001radic119905 + 1053153890) 1199092

times (1053153890 + 1750000001radic119905

+3509734322119905)minus1

(39)

For 120572 = 175 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(06217515726119905175

minus 09043659240119905275

+04823284927119905375

)

+ 61899657151199092

11990535

(40)

For simplicity let 11990514 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198864

)

+ 61199092

(062175157261198867

minus 0904365924011988611

+0482328492711988615

) + 61899657151199092

11988614

= 1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

+ 28939709561199092

11988615

+ 61899657151199092

11988614

(41)

Using (10) to calculate multivariate Pade equations of (41) for119898 = 15 and 119899 = 2 we use (10) By using (10) we obtain

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus38315675561199096

11988628

(minus1 + 21198864

minus 37305094361198867

+ 542619554411988611

)

119902 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 38315675561199094

11988628

(42)

recalling that 11990514 = 119886 we get multivariate Pade approxima-tion of order (15 2) for (40) that is

[15 2](119909119905)

= minus 38315675561199096

1199057

times (minus1 + 2119905 minus 373050943611990574

+5426195544119905114

)

times (38315675561199094

1199057

)minus1

(43)

Table 2 Figures 3(a) 3(b) 3(c) 4(a) 4(b) 4(c) and 4(d)show the approximate solutions for (28) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 2is for the exact solution 119906(119909 119905) = (119909119905 + 1)2 [24]

6 Concluding Remarks

The fundamental goal of this paper has been to constructan approximate solution of nonlinear partial differential

12 Abstract and Applied Analysis

equations of fractional order by using multivariate PadeapproximationThe goal has been achieved by using the mul-tivariate Pade approximation and comparing with the Ado-mian decomposition method The present work shows thevalidity and great potential of the multivariate Pade approxi-mation for solving nonlinear partial differential equations offractional order from the numerical resultsNumerical resultsobtained using the multivariate Pade approximation and theAdomian decompositionmethod are in agreement with exactsolutions

References

[1] J H He ldquoNonlinear oscillation with fractional derivative andits applicationsrdquo in Proceedings of International Conference onVibrating Engineering pp 288ndash291 Dalian China 1998

[2] J H He ldquoSome applications of nonlinear fractional differentialequations and their approximationsrdquo Bulletin of Science andTechnology vol 15 no 2 pp 86ndash90 1999

[3] Y Luchko and R Gorenflo The Initial Value Problem for SomeFractional Differential Equations with the Caputo DerivativeSeries A08-98 Fachbreich Mathematik und Informatik FreicUniversitat Berlin Berlin Germany 1998

[4] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press San DiegoCalif USA 1999

[5] SMomani ldquoNon-perturbative analytical solutions of the space-and time-fractional Burgers equationsrdquo Chaos Solitons amp Frac-tals vol 28 no 4 pp 930ndash937 2006

[6] Z M Odibat and S Momani ldquoApplication of variationaliteration method to nonlinear differential equations of frac-tional orderrdquo International Journal of Nonlinear Sciences andNumerical Simulation vol 7 no 1 pp 27ndash34 2006

[7] S Momani and Z Odibat ldquoAnalytical solution of a time-fractional Navier-Stokes equation by Adomian decompositionmethodrdquo Applied Mathematics and Computation vol 177 no 2pp 488ndash494 2006

[8] S Momani and Z Odibat ldquoNumerical comparison of methodsfor solving linear differential equations of fractional orderrdquoChaos Solitons amp Fractals vol 31 no 5 pp 1248ndash1255 2007

[9] Z M Odibat and S Momani ldquoApproximate solutions forboundary value problems of time-fractional wave equationrdquoApplied Mathematics and Computation vol 181 no 1 pp 767ndash774 2006

[10] G Domairry and N Nadim ldquoAssessment of homotopy analysismethod and homotopy perturbationmethod in non-linear heattransfer equationrdquo International Communications in Heat andMass Transfer vol 35 no 1 pp 93ndash102 2008

[11] G Domairry M Ahangari and M Jamshidi ldquoExact andanalytical solution for nonlinear dispersive 119870(119898 119901) equationsusing homotopy perturbation methodrdquo Physics Letters A vol368 no 3-4 pp 266ndash270 2007

[12] G Adomian ldquoA review of the decomposition method inapplied mathematicsrdquo Journal of Mathematical Analysis andApplications vol 135 no 2 pp 501ndash544 1988

[13] G Adomian Solving Frontier Problems of Physics The Decom-position Method vol 60 of Fundamental Theories of PhysicsKluwer Academic Publishers Dordrecht The Netherlands1994

[14] S Momani ldquoAn explicit and numerical solutions of the frac-tional KdV equationrdquo Mathematics and Computers in Simula-tion vol 70 no 2 pp 110ndash118 2005

[15] Ph Guillaume and A Huard ldquoMultivariate Pade approxima-tionrdquo Journal of Computational and Applied Mathematics vol121 no 1-2 pp 197ndash219 2000

[16] V Turut E Celik and M Yigider ldquoMultivariate Pade approx-imation for solving partial differential equations (PDE)rdquo Inter-national Journal for Numerical Methods in Fluids vol 66 no 9pp 1159ndash1173 2011

[17] V Turut and N Guzel ldquoComparing numerical methods forsolving time-fractional reaction-diffusion equationsrdquo ISRNMathematical Analysis vol 2012 Article ID 737206 28 pages2012

[18] V Turut ldquoApplication of Multivariate pade approximation forpartial differential equationsrdquo Batman University Journal of LifeSciences vol 2 no 1 pp 17ndash28 2012

[19] V Turut and N Guzel ldquoOn solving partial differential eqau-ations of fractional order by using the variational iterationmethod and multivariate pade approximationrdquo European Jour-nal of Pure and Applied Mathematics Accepted

[20] S Momani and R Qaralleh ldquoNumerical approximations andPade approximants for a fractional population growth modelrdquoApplied Mathematical Modelling vol 31 no 9 pp 1907ndash19142007

[21] S Momani and N Shawagfeh ldquoDecomposition method forsolving fractional Riccati differential equationsrdquo Applied Math-ematics and Computation vol 182 no 2 pp 1083ndash1092 2006

[22] K B Oldham and J SpanierThe Fractional Calculus AcademicPress New York NY USA 1974

[23] M Caputo ldquoLinearmodels of dissipationwhoseQ is almost fre-quency independent Part IIrdquo Journal of the Royal AstronomicalSociety vol 13 no 5 pp 529ndash539 1967

[24] Z Odibat and S Momani ldquoNumerical methods for nonlinearpartial differential equations of fractional orderrdquo Applied Math-ematical Modelling vol 32 no 1 pp 28ndash39 2008

[25] A Cuyt and L Wuytack Nonlinear Methods in NumericalAnalysis vol 136 ofNorth-HollandMathematics Studies North-Holland Publishing Amsterdam The Netherlands 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

4 Abstract and Applied Analysis

119902 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

0 01 times 10minus9

1199053

0

minus013333333331199091199055

0 01 times 10minus9

1199053

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 01333333333 times 10minus10

times (1199052

+ 07500000002 times 10minus9

) 1199092

1199056

(19)

So the multivariate Pade approximation of order (4 2) for(17) that is

[4 2](119909119905)

=

(1199052

+ 07500000002 times 10minus9

) 119909119905

1199052 + 07500000002 times 10minus9 (20)

For 120572 = 05 (17) is

119906 (119909 119905) = 112837916711990911990505

minus 0957797985011990911990515

+ 0601802222611990911990525

minus 0700560811611990911990535

(21)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 1128379167119909119886 minus 095779798501199091198863

+ 060180222261199091198865

minus 070056081161199091198867

(22)

Using (10) to calculate the multivariate Pade equations for(22) we get

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1128379167119909119886 minus 095779798501199091198863

+ 060180222261199091198865

1128379167119909119886 minus 095779798501199091198863

1128379167119909119886 minus 095779798501199091198863

0 060180222261199091198865

0

minus070056081161199091198867

0 060180222261199091198865

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus04907854507 (12014642941198864

minus 12318323471198862

minus 08326662354) 1199093

11988611

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

0 060180222261199091198865

0

minus070056081161199091198867

0 060180222261199091198865

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 04907854507 (07379312378 + 17180584831198862

) 1199093

11988610

(23)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (6 2) for (21) that is

[6 2](119909119905)

= minus (12014642941199052

minus 1231832347119905

minus08326662354) 119909radic119905

times (07379312378 + 1718058483119905)minus1

(24)

For 120572 = 075 (17) is

119906 (119909 119905) = 00000712534544111990911990575

+ 01764791440 times 10minus5

11990911990595

minus 01238343301 times 10minus17

119909119905225

minus 02897967272 times 10minus19

119909119905245

(25)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 00000712534544111990911988615

+ 01764791440 times 10minus5

11990911988619

minus 01238343301 times 10minus17

11990911988645

minus 02897967272 times 10minus19

11990911988649

(26)

Using (10) to calculate the multivariate Pade equations andthen recalling that 11990512 = 119886 we get multivariate Padeapproximation of order (49 2) for (25) that is

[49 2](119909119905)

= minus 08398214310 times 10minus39

1199093

1199051132

times ( minus 000007125345441 minus 01764791440

times10minus5

1199052

+ 01238343301 times 10minus17

11990515

)

times (08398214310 times 10minus39

1199092

11990549

)minus1

(27)

Table 1 Figures 1(a) 1(b) 1(c) 2(a) 2(b) 2(c) and 2(d) showsthe approximate solutions for (13) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 1is for the exact solution 119906(119909 119905) = 119909119905 [24]

Example 2 Consider the nonlinear time-fractional hyper-bolic equation [24]

119863120572

lowast119905119906 (119909 119905) =

120597

120597119909(119906 (119909 119905)

120597119906 (119909 119905)

120597119909)

119905 gt 0 119909 isin 119877 1 lt 120572 le 2

(28)

subject to the initial condition

119906 (119909 0) = 1199092

119906119905(119909 0) = minus2119909

2

(29)

Abstract and Applied Analysis 5

1

05

0

minus05

minus1

minus1

minus05

005

1105

0

minus05

minus1

119905 119909

(a)

08

04

0

minus04

minus08

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(b)

1

05

0

minus05

minus1

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(c)

Figure 1 (a) Exact solution of Example 1 for 120572 = 1 (b) ADM solution of Example 1 for 120572 = 1 (c) Multivariate Pade approximation of ADMsolution for 120572 = 1 in Example 1

Odibat and Momani [24] solved the problem using thedecomposition method and they obtained the followingrecurrence relation in [24]

1199060(119909 119905) = 119906 (119909 0) + 119905119906

119909(119909 0) = 119909

2

(1 minus 2119905)

119906119895+1(119909 119905) = 119869

120572

(119860119895)119909

119895 ge 0

(30)

where 119860119895are the Adomian polynomials for the nonlinear

function119873 = 119906119906119909 In view of (30) the first few components

of the decomposition series are derived in [24] as follows

1199060(119909 119905) = 119909

2

(1 minus 2119905)

1199061(119909 119905) = 6119909

2

(119905120572

Γ (120572 + 1)minus

4119905120572+1

Γ (120572 + 2)+

8119905120572+2

Γ (120572 + 3))

1199062(119909 119905) = 72119909

2

(1199052120572

Γ (2120572 + 1)minus

41199052120572+1

Γ (2120572 + 2)

+81199052120572+2

Γ (2120572 + 3)minus

2Γ (120572 + 2) 1199052120572+1

Γ (120572 + 1) Γ (2120572 + 2))

+ 721199092

(8Γ (120572 + 3) 119905

2120572+2

Γ (120572 + 2) Γ (2120572 + 3)

minus16Γ (120572 + 4) 119905

2120572+3

Γ (120572 + 3) Γ (2120572 + 4))

(31)

6 Abstract and Applied Analysis

030250201501005

0

002004

006008

01 108

0604

020

119905 119909

(a)

030250201501005

002004

006008

01 01008

006004

002

119905119909

(b)

6119890minus05

4119890minus05

2119890minus05

0minus2119890minus05

minus4119890minus05

minus6119890minus05

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(c)

6119890minus05

4119890minus05

2119890minus05

0minus2119890minus05

minus4119890minus05

minus6119890minus05

minus1

minus05

005

1105

0minus05

minus1

119905119909

(d)

Figure 2 (a) ADM solution of Example 1 for 120572 = 05 (b) Multivariate Pade approximation of ADM solution for 120572 = 05 in Example 1 (c)ADM solution of Example 1 for 120572 = 075 (d) Multivariate Pade approximation of ADM solution for 120572 = 075 in Example 1

and so on in this manner the rest of components of thedecomposition series can be obtained

The first three terms of the decomposition series (7) aregiven [24] by

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (119905120572

Γ (120572 + 1)minus

4119905120572+1

Γ (120572 + 2)+

8119905120572+2

Γ (120572 + 3))

+ 721199092

(1199052120572

Γ (2120572 + 1)+ sdot sdot sdot)

(32)

For 120572 = 2 (43) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(050000000001199052

minus 066666666681199053

+033333333341199054

)

+ 30000000001199092

1199054

(33)

Now let us calculate the approximate solution of (33) for119898 =4 and 119899 = 2 by using multivariate Pade approximation To

Abstract and Applied Analysis 7

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(a)

2

25

3

15

1

05

0

02

04

06

08

1 108

0604

02

119905 119909

(b)

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(c)

Figure 3 (a) Exact solution of Example 2 for 120572 = 20 (b) ADM solution of Example 2 for 120572 = 20 (c) Multivariate Pade approximation ofADM solution for 120572 = 20 in Example 2

obtain multivariate Pade equations of (33) for119898 = 4 and 119899 =2 we use (10) By using (10) we obtain

119901 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

(1 minus 2119905) + 30000000001199092

1199052

1199092

(1 minus 2119905) 1199092

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus20000000001199054

(028 times 10minus9

1199052

minus 034 times 10minus9

119905 (minus004999999986) 1199096

119902 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 20000000001199054

(00499999999 + 01000000001119905 + 005000000041199052

) 1199094

(34)

So the multivariate Pade approximation of order (4 2) for(33) that is

[4 2](119909119905)

= minus 1000000000 (028 times 10minus9

1199052

minus 034 times 10minus9

119905

minus004999999986) 1199092

times (00499999999 + 01000000001119905

+005000000041199052

)minus1

(35)

8 Abstract and Applied Analysis

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(a)

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(b)

0008

001

0006

0004

0002

0

119905119909

minus01

minus005

0

0050101

0050

minus005

minus01

(c)

0008

001

0006

0004

0002

0

119905 119909

minus01

minus005

0005

0101005

0

minus005

minus01

(d)

Figure 4 (a) ADM solution of Example 2 for 120572 = 15 (b) Multivariate Pade approximation of ADM solution for 120572 = 15 in Example 2 (c)ADM solution of Example 2 for 120572 = 175 (d) Multivariate Pade approximation of ADM solution for 120572 = 175 in Example 2

For 120572 = 15 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (0752252778211990515

minus 120360444511990525

+0687773968311990535

) + 12000000001199092

11990530

(36)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198862

) + 61199092

times (075225277821198863

minus12036044451198865

+ 068777396831199057

)

+ 12000000001199092

1198866

= 1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

+ 41266438101199092

1198867

+ 12000000001199092

1198866

(37)

Using (10) to calculate multivariate Pade equations of (37) for119898 = 7 and 119899 = 2 we use (10) By using (10) we obtain

Abstract and Applied Analysis 9

Table1Num

ericalvalues

when120572=05120572=075and120572=10for(13)

119909119905

120572=05

120572=075

120572=10

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000111

8860

666

000111

8859998

07125363089times10minus21

07125363089times10minus21

000

009999999987

000

0100

0000

000

000

01002

002

0003138022015

0003138007574

02579676158times10minus18

02579676148times10minus18

000

03999999915

000

0400

0000

000

000

04003

003

000571664

0278

0005716554826

08097412617times10minus17

08097412644times10minus17

000

08999999028

000

0900

0000

000

000

09004

004

0008727882362

0008727584792

09339702880times10minus16

09339702881times10minus16

0001599999454

0001600

0000

0000016

005

005

001209607907

001209530419

06224118481times10minus15

06224118464times10minus15

0002499997917

0002500

0000

0000025

006

006

00157687340

8001576705530

02931772549times10minus14

02931772552times10minus14

0003599993779

0003600

0000

0000036

007

007

001970633078

001970312778

01086905954times10minus13

01086905954times10minus13

000

4899984313

000

4900

0000

00000

49008

008

002387754051

002387197301

03381735603times10minus13

03381735608times10minus13

000

6399965047

000

6400

0000

00000

64009

009

002825661342

002824760190

09203528751times10minus13

09203528751times10minus13

0008099929141

0008100

0000

0000081

01

01

003282181204

003280802591

02253790147times10minus12

02253790145times10minus12

000

99998666

6700100

0000

0000

001

10 Abstract and Applied Analysis

Table2Num

ericalvalues

when120572=15120572=175and120572=20for(28)

119909119905

120572=15

120572=175

120572=20

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000

009844537131

000

009844533110

000

0098116

32420

000

0098116

25316

000

00980296

0500

000

00980296

0486

000

00980296

0494

002

002

000

03889833219

000

03889809228

000

03855443171

000

03855410232

000

038446

75200

000

038446

75123

000

038446

75125

003

003

000

0866

4034309

000

08663775704

000

08529749012

000

08529437792

000

08483364

450

000

08483363176

000

08483363182

004

004

0001527388854

0001527250241

0001492265504

0001492112

228

0001479290880

0001479289940

0001479289941

005

005

0002370102454

0002369595331

0002296248891

0002295720729

0002267578126

0002267573695

0002267573696

006

006

0003393997434

0003392539471

0003258613123

0003257161294

0003204

002880

0003203987182

0003203987184

007

007

000

4599726730

000

4596176215

000

4373819216

000

437040

4791

000

4279895445

000

4279849765

000

4279849769

008

008

0005989109024

000598144

9991

0005637043845

00056298804

000005487083520

0005486968446

0005486968450

009

009

0007565131844

000755006

8937

0007044

140677

0007030367394

000

6817867605

000

6817607941

000

6817607945

01

01

000

9331981000

000

9304

436794

0008591616573

0008566

895894

000826500

0000

0008264

462804

0008264

462810

Abstract and Applied Analysis 11

119901 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

12000000001199092

1199056

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (82357601511198865

+ 08791855311198864

+ 12534276361198863

+ 14034265421198862

+ 1750000001119886 + 1053153890) 1199096

11988610

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

12000000001199092

1198866

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (1053153890 + 1750000001119886 + 35097343221198862

) 1199094

11988610

(38)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (7 2) for (36) that is

[7 2](119909119905)

= (823576015111990552

+ 08791855311199052

+ 125342763611990532

+ 1403426542119905

+1750000001radic119905 + 1053153890) 1199092

times (1053153890 + 1750000001radic119905

+3509734322119905)minus1

(39)

For 120572 = 175 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(06217515726119905175

minus 09043659240119905275

+04823284927119905375

)

+ 61899657151199092

11990535

(40)

For simplicity let 11990514 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198864

)

+ 61199092

(062175157261198867

minus 0904365924011988611

+0482328492711988615

) + 61899657151199092

11988614

= 1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

+ 28939709561199092

11988615

+ 61899657151199092

11988614

(41)

Using (10) to calculate multivariate Pade equations of (41) for119898 = 15 and 119899 = 2 we use (10) By using (10) we obtain

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus38315675561199096

11988628

(minus1 + 21198864

minus 37305094361198867

+ 542619554411988611

)

119902 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 38315675561199094

11988628

(42)

recalling that 11990514 = 119886 we get multivariate Pade approxima-tion of order (15 2) for (40) that is

[15 2](119909119905)

= minus 38315675561199096

1199057

times (minus1 + 2119905 minus 373050943611990574

+5426195544119905114

)

times (38315675561199094

1199057

)minus1

(43)

Table 2 Figures 3(a) 3(b) 3(c) 4(a) 4(b) 4(c) and 4(d)show the approximate solutions for (28) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 2is for the exact solution 119906(119909 119905) = (119909119905 + 1)2 [24]

6 Concluding Remarks

The fundamental goal of this paper has been to constructan approximate solution of nonlinear partial differential

12 Abstract and Applied Analysis

equations of fractional order by using multivariate PadeapproximationThe goal has been achieved by using the mul-tivariate Pade approximation and comparing with the Ado-mian decomposition method The present work shows thevalidity and great potential of the multivariate Pade approxi-mation for solving nonlinear partial differential equations offractional order from the numerical resultsNumerical resultsobtained using the multivariate Pade approximation and theAdomian decompositionmethod are in agreement with exactsolutions

References

[1] J H He ldquoNonlinear oscillation with fractional derivative andits applicationsrdquo in Proceedings of International Conference onVibrating Engineering pp 288ndash291 Dalian China 1998

[2] J H He ldquoSome applications of nonlinear fractional differentialequations and their approximationsrdquo Bulletin of Science andTechnology vol 15 no 2 pp 86ndash90 1999

[3] Y Luchko and R Gorenflo The Initial Value Problem for SomeFractional Differential Equations with the Caputo DerivativeSeries A08-98 Fachbreich Mathematik und Informatik FreicUniversitat Berlin Berlin Germany 1998

[4] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press San DiegoCalif USA 1999

[5] SMomani ldquoNon-perturbative analytical solutions of the space-and time-fractional Burgers equationsrdquo Chaos Solitons amp Frac-tals vol 28 no 4 pp 930ndash937 2006

[6] Z M Odibat and S Momani ldquoApplication of variationaliteration method to nonlinear differential equations of frac-tional orderrdquo International Journal of Nonlinear Sciences andNumerical Simulation vol 7 no 1 pp 27ndash34 2006

[7] S Momani and Z Odibat ldquoAnalytical solution of a time-fractional Navier-Stokes equation by Adomian decompositionmethodrdquo Applied Mathematics and Computation vol 177 no 2pp 488ndash494 2006

[8] S Momani and Z Odibat ldquoNumerical comparison of methodsfor solving linear differential equations of fractional orderrdquoChaos Solitons amp Fractals vol 31 no 5 pp 1248ndash1255 2007

[9] Z M Odibat and S Momani ldquoApproximate solutions forboundary value problems of time-fractional wave equationrdquoApplied Mathematics and Computation vol 181 no 1 pp 767ndash774 2006

[10] G Domairry and N Nadim ldquoAssessment of homotopy analysismethod and homotopy perturbationmethod in non-linear heattransfer equationrdquo International Communications in Heat andMass Transfer vol 35 no 1 pp 93ndash102 2008

[11] G Domairry M Ahangari and M Jamshidi ldquoExact andanalytical solution for nonlinear dispersive 119870(119898 119901) equationsusing homotopy perturbation methodrdquo Physics Letters A vol368 no 3-4 pp 266ndash270 2007

[12] G Adomian ldquoA review of the decomposition method inapplied mathematicsrdquo Journal of Mathematical Analysis andApplications vol 135 no 2 pp 501ndash544 1988

[13] G Adomian Solving Frontier Problems of Physics The Decom-position Method vol 60 of Fundamental Theories of PhysicsKluwer Academic Publishers Dordrecht The Netherlands1994

[14] S Momani ldquoAn explicit and numerical solutions of the frac-tional KdV equationrdquo Mathematics and Computers in Simula-tion vol 70 no 2 pp 110ndash118 2005

[15] Ph Guillaume and A Huard ldquoMultivariate Pade approxima-tionrdquo Journal of Computational and Applied Mathematics vol121 no 1-2 pp 197ndash219 2000

[16] V Turut E Celik and M Yigider ldquoMultivariate Pade approx-imation for solving partial differential equations (PDE)rdquo Inter-national Journal for Numerical Methods in Fluids vol 66 no 9pp 1159ndash1173 2011

[17] V Turut and N Guzel ldquoComparing numerical methods forsolving time-fractional reaction-diffusion equationsrdquo ISRNMathematical Analysis vol 2012 Article ID 737206 28 pages2012

[18] V Turut ldquoApplication of Multivariate pade approximation forpartial differential equationsrdquo Batman University Journal of LifeSciences vol 2 no 1 pp 17ndash28 2012

[19] V Turut and N Guzel ldquoOn solving partial differential eqau-ations of fractional order by using the variational iterationmethod and multivariate pade approximationrdquo European Jour-nal of Pure and Applied Mathematics Accepted

[20] S Momani and R Qaralleh ldquoNumerical approximations andPade approximants for a fractional population growth modelrdquoApplied Mathematical Modelling vol 31 no 9 pp 1907ndash19142007

[21] S Momani and N Shawagfeh ldquoDecomposition method forsolving fractional Riccati differential equationsrdquo Applied Math-ematics and Computation vol 182 no 2 pp 1083ndash1092 2006

[22] K B Oldham and J SpanierThe Fractional Calculus AcademicPress New York NY USA 1974

[23] M Caputo ldquoLinearmodels of dissipationwhoseQ is almost fre-quency independent Part IIrdquo Journal of the Royal AstronomicalSociety vol 13 no 5 pp 529ndash539 1967

[24] Z Odibat and S Momani ldquoNumerical methods for nonlinearpartial differential equations of fractional orderrdquo Applied Math-ematical Modelling vol 32 no 1 pp 28ndash39 2008

[25] A Cuyt and L Wuytack Nonlinear Methods in NumericalAnalysis vol 136 ofNorth-HollandMathematics Studies North-Holland Publishing Amsterdam The Netherlands 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 5

1

05

0

minus05

minus1

minus1

minus05

005

1105

0

minus05

minus1

119905 119909

(a)

08

04

0

minus04

minus08

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(b)

1

05

0

minus05

minus1

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(c)

Figure 1 (a) Exact solution of Example 1 for 120572 = 1 (b) ADM solution of Example 1 for 120572 = 1 (c) Multivariate Pade approximation of ADMsolution for 120572 = 1 in Example 1

Odibat and Momani [24] solved the problem using thedecomposition method and they obtained the followingrecurrence relation in [24]

1199060(119909 119905) = 119906 (119909 0) + 119905119906

119909(119909 0) = 119909

2

(1 minus 2119905)

119906119895+1(119909 119905) = 119869

120572

(119860119895)119909

119895 ge 0

(30)

where 119860119895are the Adomian polynomials for the nonlinear

function119873 = 119906119906119909 In view of (30) the first few components

of the decomposition series are derived in [24] as follows

1199060(119909 119905) = 119909

2

(1 minus 2119905)

1199061(119909 119905) = 6119909

2

(119905120572

Γ (120572 + 1)minus

4119905120572+1

Γ (120572 + 2)+

8119905120572+2

Γ (120572 + 3))

1199062(119909 119905) = 72119909

2

(1199052120572

Γ (2120572 + 1)minus

41199052120572+1

Γ (2120572 + 2)

+81199052120572+2

Γ (2120572 + 3)minus

2Γ (120572 + 2) 1199052120572+1

Γ (120572 + 1) Γ (2120572 + 2))

+ 721199092

(8Γ (120572 + 3) 119905

2120572+2

Γ (120572 + 2) Γ (2120572 + 3)

minus16Γ (120572 + 4) 119905

2120572+3

Γ (120572 + 3) Γ (2120572 + 4))

(31)

6 Abstract and Applied Analysis

030250201501005

0

002004

006008

01 108

0604

020

119905 119909

(a)

030250201501005

002004

006008

01 01008

006004

002

119905119909

(b)

6119890minus05

4119890minus05

2119890minus05

0minus2119890minus05

minus4119890minus05

minus6119890minus05

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(c)

6119890minus05

4119890minus05

2119890minus05

0minus2119890minus05

minus4119890minus05

minus6119890minus05

minus1

minus05

005

1105

0minus05

minus1

119905119909

(d)

Figure 2 (a) ADM solution of Example 1 for 120572 = 05 (b) Multivariate Pade approximation of ADM solution for 120572 = 05 in Example 1 (c)ADM solution of Example 1 for 120572 = 075 (d) Multivariate Pade approximation of ADM solution for 120572 = 075 in Example 1

and so on in this manner the rest of components of thedecomposition series can be obtained

The first three terms of the decomposition series (7) aregiven [24] by

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (119905120572

Γ (120572 + 1)minus

4119905120572+1

Γ (120572 + 2)+

8119905120572+2

Γ (120572 + 3))

+ 721199092

(1199052120572

Γ (2120572 + 1)+ sdot sdot sdot)

(32)

For 120572 = 2 (43) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(050000000001199052

minus 066666666681199053

+033333333341199054

)

+ 30000000001199092

1199054

(33)

Now let us calculate the approximate solution of (33) for119898 =4 and 119899 = 2 by using multivariate Pade approximation To

Abstract and Applied Analysis 7

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(a)

2

25

3

15

1

05

0

02

04

06

08

1 108

0604

02

119905 119909

(b)

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(c)

Figure 3 (a) Exact solution of Example 2 for 120572 = 20 (b) ADM solution of Example 2 for 120572 = 20 (c) Multivariate Pade approximation ofADM solution for 120572 = 20 in Example 2

obtain multivariate Pade equations of (33) for119898 = 4 and 119899 =2 we use (10) By using (10) we obtain

119901 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

(1 minus 2119905) + 30000000001199092

1199052

1199092

(1 minus 2119905) 1199092

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus20000000001199054

(028 times 10minus9

1199052

minus 034 times 10minus9

119905 (minus004999999986) 1199096

119902 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 20000000001199054

(00499999999 + 01000000001119905 + 005000000041199052

) 1199094

(34)

So the multivariate Pade approximation of order (4 2) for(33) that is

[4 2](119909119905)

= minus 1000000000 (028 times 10minus9

1199052

minus 034 times 10minus9

119905

minus004999999986) 1199092

times (00499999999 + 01000000001119905

+005000000041199052

)minus1

(35)

8 Abstract and Applied Analysis

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(a)

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(b)

0008

001

0006

0004

0002

0

119905119909

minus01

minus005

0

0050101

0050

minus005

minus01

(c)

0008

001

0006

0004

0002

0

119905 119909

minus01

minus005

0005

0101005

0

minus005

minus01

(d)

Figure 4 (a) ADM solution of Example 2 for 120572 = 15 (b) Multivariate Pade approximation of ADM solution for 120572 = 15 in Example 2 (c)ADM solution of Example 2 for 120572 = 175 (d) Multivariate Pade approximation of ADM solution for 120572 = 175 in Example 2

For 120572 = 15 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (0752252778211990515

minus 120360444511990525

+0687773968311990535

) + 12000000001199092

11990530

(36)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198862

) + 61199092

times (075225277821198863

minus12036044451198865

+ 068777396831199057

)

+ 12000000001199092

1198866

= 1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

+ 41266438101199092

1198867

+ 12000000001199092

1198866

(37)

Using (10) to calculate multivariate Pade equations of (37) for119898 = 7 and 119899 = 2 we use (10) By using (10) we obtain

Abstract and Applied Analysis 9

Table1Num

ericalvalues

when120572=05120572=075and120572=10for(13)

119909119905

120572=05

120572=075

120572=10

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000111

8860

666

000111

8859998

07125363089times10minus21

07125363089times10minus21

000

009999999987

000

0100

0000

000

000

01002

002

0003138022015

0003138007574

02579676158times10minus18

02579676148times10minus18

000

03999999915

000

0400

0000

000

000

04003

003

000571664

0278

0005716554826

08097412617times10minus17

08097412644times10minus17

000

08999999028

000

0900

0000

000

000

09004

004

0008727882362

0008727584792

09339702880times10minus16

09339702881times10minus16

0001599999454

0001600

0000

0000016

005

005

001209607907

001209530419

06224118481times10minus15

06224118464times10minus15

0002499997917

0002500

0000

0000025

006

006

00157687340

8001576705530

02931772549times10minus14

02931772552times10minus14

0003599993779

0003600

0000

0000036

007

007

001970633078

001970312778

01086905954times10minus13

01086905954times10minus13

000

4899984313

000

4900

0000

00000

49008

008

002387754051

002387197301

03381735603times10minus13

03381735608times10minus13

000

6399965047

000

6400

0000

00000

64009

009

002825661342

002824760190

09203528751times10minus13

09203528751times10minus13

0008099929141

0008100

0000

0000081

01

01

003282181204

003280802591

02253790147times10minus12

02253790145times10minus12

000

99998666

6700100

0000

0000

001

10 Abstract and Applied Analysis

Table2Num

ericalvalues

when120572=15120572=175and120572=20for(28)

119909119905

120572=15

120572=175

120572=20

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000

009844537131

000

009844533110

000

0098116

32420

000

0098116

25316

000

00980296

0500

000

00980296

0486

000

00980296

0494

002

002

000

03889833219

000

03889809228

000

03855443171

000

03855410232

000

038446

75200

000

038446

75123

000

038446

75125

003

003

000

0866

4034309

000

08663775704

000

08529749012

000

08529437792

000

08483364

450

000

08483363176

000

08483363182

004

004

0001527388854

0001527250241

0001492265504

0001492112

228

0001479290880

0001479289940

0001479289941

005

005

0002370102454

0002369595331

0002296248891

0002295720729

0002267578126

0002267573695

0002267573696

006

006

0003393997434

0003392539471

0003258613123

0003257161294

0003204

002880

0003203987182

0003203987184

007

007

000

4599726730

000

4596176215

000

4373819216

000

437040

4791

000

4279895445

000

4279849765

000

4279849769

008

008

0005989109024

000598144

9991

0005637043845

00056298804

000005487083520

0005486968446

0005486968450

009

009

0007565131844

000755006

8937

0007044

140677

0007030367394

000

6817867605

000

6817607941

000

6817607945

01

01

000

9331981000

000

9304

436794

0008591616573

0008566

895894

000826500

0000

0008264

462804

0008264

462810

Abstract and Applied Analysis 11

119901 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

12000000001199092

1199056

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (82357601511198865

+ 08791855311198864

+ 12534276361198863

+ 14034265421198862

+ 1750000001119886 + 1053153890) 1199096

11988610

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

12000000001199092

1198866

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (1053153890 + 1750000001119886 + 35097343221198862

) 1199094

11988610

(38)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (7 2) for (36) that is

[7 2](119909119905)

= (823576015111990552

+ 08791855311199052

+ 125342763611990532

+ 1403426542119905

+1750000001radic119905 + 1053153890) 1199092

times (1053153890 + 1750000001radic119905

+3509734322119905)minus1

(39)

For 120572 = 175 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(06217515726119905175

minus 09043659240119905275

+04823284927119905375

)

+ 61899657151199092

11990535

(40)

For simplicity let 11990514 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198864

)

+ 61199092

(062175157261198867

minus 0904365924011988611

+0482328492711988615

) + 61899657151199092

11988614

= 1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

+ 28939709561199092

11988615

+ 61899657151199092

11988614

(41)

Using (10) to calculate multivariate Pade equations of (41) for119898 = 15 and 119899 = 2 we use (10) By using (10) we obtain

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus38315675561199096

11988628

(minus1 + 21198864

minus 37305094361198867

+ 542619554411988611

)

119902 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 38315675561199094

11988628

(42)

recalling that 11990514 = 119886 we get multivariate Pade approxima-tion of order (15 2) for (40) that is

[15 2](119909119905)

= minus 38315675561199096

1199057

times (minus1 + 2119905 minus 373050943611990574

+5426195544119905114

)

times (38315675561199094

1199057

)minus1

(43)

Table 2 Figures 3(a) 3(b) 3(c) 4(a) 4(b) 4(c) and 4(d)show the approximate solutions for (28) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 2is for the exact solution 119906(119909 119905) = (119909119905 + 1)2 [24]

6 Concluding Remarks

The fundamental goal of this paper has been to constructan approximate solution of nonlinear partial differential

12 Abstract and Applied Analysis

equations of fractional order by using multivariate PadeapproximationThe goal has been achieved by using the mul-tivariate Pade approximation and comparing with the Ado-mian decomposition method The present work shows thevalidity and great potential of the multivariate Pade approxi-mation for solving nonlinear partial differential equations offractional order from the numerical resultsNumerical resultsobtained using the multivariate Pade approximation and theAdomian decompositionmethod are in agreement with exactsolutions

References

[1] J H He ldquoNonlinear oscillation with fractional derivative andits applicationsrdquo in Proceedings of International Conference onVibrating Engineering pp 288ndash291 Dalian China 1998

[2] J H He ldquoSome applications of nonlinear fractional differentialequations and their approximationsrdquo Bulletin of Science andTechnology vol 15 no 2 pp 86ndash90 1999

[3] Y Luchko and R Gorenflo The Initial Value Problem for SomeFractional Differential Equations with the Caputo DerivativeSeries A08-98 Fachbreich Mathematik und Informatik FreicUniversitat Berlin Berlin Germany 1998

[4] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press San DiegoCalif USA 1999

[5] SMomani ldquoNon-perturbative analytical solutions of the space-and time-fractional Burgers equationsrdquo Chaos Solitons amp Frac-tals vol 28 no 4 pp 930ndash937 2006

[6] Z M Odibat and S Momani ldquoApplication of variationaliteration method to nonlinear differential equations of frac-tional orderrdquo International Journal of Nonlinear Sciences andNumerical Simulation vol 7 no 1 pp 27ndash34 2006

[7] S Momani and Z Odibat ldquoAnalytical solution of a time-fractional Navier-Stokes equation by Adomian decompositionmethodrdquo Applied Mathematics and Computation vol 177 no 2pp 488ndash494 2006

[8] S Momani and Z Odibat ldquoNumerical comparison of methodsfor solving linear differential equations of fractional orderrdquoChaos Solitons amp Fractals vol 31 no 5 pp 1248ndash1255 2007

[9] Z M Odibat and S Momani ldquoApproximate solutions forboundary value problems of time-fractional wave equationrdquoApplied Mathematics and Computation vol 181 no 1 pp 767ndash774 2006

[10] G Domairry and N Nadim ldquoAssessment of homotopy analysismethod and homotopy perturbationmethod in non-linear heattransfer equationrdquo International Communications in Heat andMass Transfer vol 35 no 1 pp 93ndash102 2008

[11] G Domairry M Ahangari and M Jamshidi ldquoExact andanalytical solution for nonlinear dispersive 119870(119898 119901) equationsusing homotopy perturbation methodrdquo Physics Letters A vol368 no 3-4 pp 266ndash270 2007

[12] G Adomian ldquoA review of the decomposition method inapplied mathematicsrdquo Journal of Mathematical Analysis andApplications vol 135 no 2 pp 501ndash544 1988

[13] G Adomian Solving Frontier Problems of Physics The Decom-position Method vol 60 of Fundamental Theories of PhysicsKluwer Academic Publishers Dordrecht The Netherlands1994

[14] S Momani ldquoAn explicit and numerical solutions of the frac-tional KdV equationrdquo Mathematics and Computers in Simula-tion vol 70 no 2 pp 110ndash118 2005

[15] Ph Guillaume and A Huard ldquoMultivariate Pade approxima-tionrdquo Journal of Computational and Applied Mathematics vol121 no 1-2 pp 197ndash219 2000

[16] V Turut E Celik and M Yigider ldquoMultivariate Pade approx-imation for solving partial differential equations (PDE)rdquo Inter-national Journal for Numerical Methods in Fluids vol 66 no 9pp 1159ndash1173 2011

[17] V Turut and N Guzel ldquoComparing numerical methods forsolving time-fractional reaction-diffusion equationsrdquo ISRNMathematical Analysis vol 2012 Article ID 737206 28 pages2012

[18] V Turut ldquoApplication of Multivariate pade approximation forpartial differential equationsrdquo Batman University Journal of LifeSciences vol 2 no 1 pp 17ndash28 2012

[19] V Turut and N Guzel ldquoOn solving partial differential eqau-ations of fractional order by using the variational iterationmethod and multivariate pade approximationrdquo European Jour-nal of Pure and Applied Mathematics Accepted

[20] S Momani and R Qaralleh ldquoNumerical approximations andPade approximants for a fractional population growth modelrdquoApplied Mathematical Modelling vol 31 no 9 pp 1907ndash19142007

[21] S Momani and N Shawagfeh ldquoDecomposition method forsolving fractional Riccati differential equationsrdquo Applied Math-ematics and Computation vol 182 no 2 pp 1083ndash1092 2006

[22] K B Oldham and J SpanierThe Fractional Calculus AcademicPress New York NY USA 1974

[23] M Caputo ldquoLinearmodels of dissipationwhoseQ is almost fre-quency independent Part IIrdquo Journal of the Royal AstronomicalSociety vol 13 no 5 pp 529ndash539 1967

[24] Z Odibat and S Momani ldquoNumerical methods for nonlinearpartial differential equations of fractional orderrdquo Applied Math-ematical Modelling vol 32 no 1 pp 28ndash39 2008

[25] A Cuyt and L Wuytack Nonlinear Methods in NumericalAnalysis vol 136 ofNorth-HollandMathematics Studies North-Holland Publishing Amsterdam The Netherlands 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

6 Abstract and Applied Analysis

030250201501005

0

002004

006008

01 108

0604

020

119905 119909

(a)

030250201501005

002004

006008

01 01008

006004

002

119905119909

(b)

6119890minus05

4119890minus05

2119890minus05

0minus2119890minus05

minus4119890minus05

minus6119890minus05

minus1

minus05

005

11

050

minus05

minus1

119905 119909

(c)

6119890minus05

4119890minus05

2119890minus05

0minus2119890minus05

minus4119890minus05

minus6119890minus05

minus1

minus05

005

1105

0minus05

minus1

119905119909

(d)

Figure 2 (a) ADM solution of Example 1 for 120572 = 05 (b) Multivariate Pade approximation of ADM solution for 120572 = 05 in Example 1 (c)ADM solution of Example 1 for 120572 = 075 (d) Multivariate Pade approximation of ADM solution for 120572 = 075 in Example 1

and so on in this manner the rest of components of thedecomposition series can be obtained

The first three terms of the decomposition series (7) aregiven [24] by

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (119905120572

Γ (120572 + 1)minus

4119905120572+1

Γ (120572 + 2)+

8119905120572+2

Γ (120572 + 3))

+ 721199092

(1199052120572

Γ (2120572 + 1)+ sdot sdot sdot)

(32)

For 120572 = 2 (43) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(050000000001199052

minus 066666666681199053

+033333333341199054

)

+ 30000000001199092

1199054

(33)

Now let us calculate the approximate solution of (33) for119898 =4 and 119899 = 2 by using multivariate Pade approximation To

Abstract and Applied Analysis 7

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(a)

2

25

3

15

1

05

0

02

04

06

08

1 108

0604

02

119905 119909

(b)

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(c)

Figure 3 (a) Exact solution of Example 2 for 120572 = 20 (b) ADM solution of Example 2 for 120572 = 20 (c) Multivariate Pade approximation ofADM solution for 120572 = 20 in Example 2

obtain multivariate Pade equations of (33) for119898 = 4 and 119899 =2 we use (10) By using (10) we obtain

119901 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

(1 minus 2119905) + 30000000001199092

1199052

1199092

(1 minus 2119905) 1199092

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus20000000001199054

(028 times 10minus9

1199052

minus 034 times 10minus9

119905 (minus004999999986) 1199096

119902 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 20000000001199054

(00499999999 + 01000000001119905 + 005000000041199052

) 1199094

(34)

So the multivariate Pade approximation of order (4 2) for(33) that is

[4 2](119909119905)

= minus 1000000000 (028 times 10minus9

1199052

minus 034 times 10minus9

119905

minus004999999986) 1199092

times (00499999999 + 01000000001119905

+005000000041199052

)minus1

(35)

8 Abstract and Applied Analysis

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(a)

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(b)

0008

001

0006

0004

0002

0

119905119909

minus01

minus005

0

0050101

0050

minus005

minus01

(c)

0008

001

0006

0004

0002

0

119905 119909

minus01

minus005

0005

0101005

0

minus005

minus01

(d)

Figure 4 (a) ADM solution of Example 2 for 120572 = 15 (b) Multivariate Pade approximation of ADM solution for 120572 = 15 in Example 2 (c)ADM solution of Example 2 for 120572 = 175 (d) Multivariate Pade approximation of ADM solution for 120572 = 175 in Example 2

For 120572 = 15 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (0752252778211990515

minus 120360444511990525

+0687773968311990535

) + 12000000001199092

11990530

(36)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198862

) + 61199092

times (075225277821198863

minus12036044451198865

+ 068777396831199057

)

+ 12000000001199092

1198866

= 1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

+ 41266438101199092

1198867

+ 12000000001199092

1198866

(37)

Using (10) to calculate multivariate Pade equations of (37) for119898 = 7 and 119899 = 2 we use (10) By using (10) we obtain

Abstract and Applied Analysis 9

Table1Num

ericalvalues

when120572=05120572=075and120572=10for(13)

119909119905

120572=05

120572=075

120572=10

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000111

8860

666

000111

8859998

07125363089times10minus21

07125363089times10minus21

000

009999999987

000

0100

0000

000

000

01002

002

0003138022015

0003138007574

02579676158times10minus18

02579676148times10minus18

000

03999999915

000

0400

0000

000

000

04003

003

000571664

0278

0005716554826

08097412617times10minus17

08097412644times10minus17

000

08999999028

000

0900

0000

000

000

09004

004

0008727882362

0008727584792

09339702880times10minus16

09339702881times10minus16

0001599999454

0001600

0000

0000016

005

005

001209607907

001209530419

06224118481times10minus15

06224118464times10minus15

0002499997917

0002500

0000

0000025

006

006

00157687340

8001576705530

02931772549times10minus14

02931772552times10minus14

0003599993779

0003600

0000

0000036

007

007

001970633078

001970312778

01086905954times10minus13

01086905954times10minus13

000

4899984313

000

4900

0000

00000

49008

008

002387754051

002387197301

03381735603times10minus13

03381735608times10minus13

000

6399965047

000

6400

0000

00000

64009

009

002825661342

002824760190

09203528751times10minus13

09203528751times10minus13

0008099929141

0008100

0000

0000081

01

01

003282181204

003280802591

02253790147times10minus12

02253790145times10minus12

000

99998666

6700100

0000

0000

001

10 Abstract and Applied Analysis

Table2Num

ericalvalues

when120572=15120572=175and120572=20for(28)

119909119905

120572=15

120572=175

120572=20

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000

009844537131

000

009844533110

000

0098116

32420

000

0098116

25316

000

00980296

0500

000

00980296

0486

000

00980296

0494

002

002

000

03889833219

000

03889809228

000

03855443171

000

03855410232

000

038446

75200

000

038446

75123

000

038446

75125

003

003

000

0866

4034309

000

08663775704

000

08529749012

000

08529437792

000

08483364

450

000

08483363176

000

08483363182

004

004

0001527388854

0001527250241

0001492265504

0001492112

228

0001479290880

0001479289940

0001479289941

005

005

0002370102454

0002369595331

0002296248891

0002295720729

0002267578126

0002267573695

0002267573696

006

006

0003393997434

0003392539471

0003258613123

0003257161294

0003204

002880

0003203987182

0003203987184

007

007

000

4599726730

000

4596176215

000

4373819216

000

437040

4791

000

4279895445

000

4279849765

000

4279849769

008

008

0005989109024

000598144

9991

0005637043845

00056298804

000005487083520

0005486968446

0005486968450

009

009

0007565131844

000755006

8937

0007044

140677

0007030367394

000

6817867605

000

6817607941

000

6817607945

01

01

000

9331981000

000

9304

436794

0008591616573

0008566

895894

000826500

0000

0008264

462804

0008264

462810

Abstract and Applied Analysis 11

119901 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

12000000001199092

1199056

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (82357601511198865

+ 08791855311198864

+ 12534276361198863

+ 14034265421198862

+ 1750000001119886 + 1053153890) 1199096

11988610

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

12000000001199092

1198866

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (1053153890 + 1750000001119886 + 35097343221198862

) 1199094

11988610

(38)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (7 2) for (36) that is

[7 2](119909119905)

= (823576015111990552

+ 08791855311199052

+ 125342763611990532

+ 1403426542119905

+1750000001radic119905 + 1053153890) 1199092

times (1053153890 + 1750000001radic119905

+3509734322119905)minus1

(39)

For 120572 = 175 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(06217515726119905175

minus 09043659240119905275

+04823284927119905375

)

+ 61899657151199092

11990535

(40)

For simplicity let 11990514 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198864

)

+ 61199092

(062175157261198867

minus 0904365924011988611

+0482328492711988615

) + 61899657151199092

11988614

= 1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

+ 28939709561199092

11988615

+ 61899657151199092

11988614

(41)

Using (10) to calculate multivariate Pade equations of (41) for119898 = 15 and 119899 = 2 we use (10) By using (10) we obtain

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus38315675561199096

11988628

(minus1 + 21198864

minus 37305094361198867

+ 542619554411988611

)

119902 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 38315675561199094

11988628

(42)

recalling that 11990514 = 119886 we get multivariate Pade approxima-tion of order (15 2) for (40) that is

[15 2](119909119905)

= minus 38315675561199096

1199057

times (minus1 + 2119905 minus 373050943611990574

+5426195544119905114

)

times (38315675561199094

1199057

)minus1

(43)

Table 2 Figures 3(a) 3(b) 3(c) 4(a) 4(b) 4(c) and 4(d)show the approximate solutions for (28) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 2is for the exact solution 119906(119909 119905) = (119909119905 + 1)2 [24]

6 Concluding Remarks

The fundamental goal of this paper has been to constructan approximate solution of nonlinear partial differential

12 Abstract and Applied Analysis

equations of fractional order by using multivariate PadeapproximationThe goal has been achieved by using the mul-tivariate Pade approximation and comparing with the Ado-mian decomposition method The present work shows thevalidity and great potential of the multivariate Pade approxi-mation for solving nonlinear partial differential equations offractional order from the numerical resultsNumerical resultsobtained using the multivariate Pade approximation and theAdomian decompositionmethod are in agreement with exactsolutions

References

[1] J H He ldquoNonlinear oscillation with fractional derivative andits applicationsrdquo in Proceedings of International Conference onVibrating Engineering pp 288ndash291 Dalian China 1998

[2] J H He ldquoSome applications of nonlinear fractional differentialequations and their approximationsrdquo Bulletin of Science andTechnology vol 15 no 2 pp 86ndash90 1999

[3] Y Luchko and R Gorenflo The Initial Value Problem for SomeFractional Differential Equations with the Caputo DerivativeSeries A08-98 Fachbreich Mathematik und Informatik FreicUniversitat Berlin Berlin Germany 1998

[4] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press San DiegoCalif USA 1999

[5] SMomani ldquoNon-perturbative analytical solutions of the space-and time-fractional Burgers equationsrdquo Chaos Solitons amp Frac-tals vol 28 no 4 pp 930ndash937 2006

[6] Z M Odibat and S Momani ldquoApplication of variationaliteration method to nonlinear differential equations of frac-tional orderrdquo International Journal of Nonlinear Sciences andNumerical Simulation vol 7 no 1 pp 27ndash34 2006

[7] S Momani and Z Odibat ldquoAnalytical solution of a time-fractional Navier-Stokes equation by Adomian decompositionmethodrdquo Applied Mathematics and Computation vol 177 no 2pp 488ndash494 2006

[8] S Momani and Z Odibat ldquoNumerical comparison of methodsfor solving linear differential equations of fractional orderrdquoChaos Solitons amp Fractals vol 31 no 5 pp 1248ndash1255 2007

[9] Z M Odibat and S Momani ldquoApproximate solutions forboundary value problems of time-fractional wave equationrdquoApplied Mathematics and Computation vol 181 no 1 pp 767ndash774 2006

[10] G Domairry and N Nadim ldquoAssessment of homotopy analysismethod and homotopy perturbationmethod in non-linear heattransfer equationrdquo International Communications in Heat andMass Transfer vol 35 no 1 pp 93ndash102 2008

[11] G Domairry M Ahangari and M Jamshidi ldquoExact andanalytical solution for nonlinear dispersive 119870(119898 119901) equationsusing homotopy perturbation methodrdquo Physics Letters A vol368 no 3-4 pp 266ndash270 2007

[12] G Adomian ldquoA review of the decomposition method inapplied mathematicsrdquo Journal of Mathematical Analysis andApplications vol 135 no 2 pp 501ndash544 1988

[13] G Adomian Solving Frontier Problems of Physics The Decom-position Method vol 60 of Fundamental Theories of PhysicsKluwer Academic Publishers Dordrecht The Netherlands1994

[14] S Momani ldquoAn explicit and numerical solutions of the frac-tional KdV equationrdquo Mathematics and Computers in Simula-tion vol 70 no 2 pp 110ndash118 2005

[15] Ph Guillaume and A Huard ldquoMultivariate Pade approxima-tionrdquo Journal of Computational and Applied Mathematics vol121 no 1-2 pp 197ndash219 2000

[16] V Turut E Celik and M Yigider ldquoMultivariate Pade approx-imation for solving partial differential equations (PDE)rdquo Inter-national Journal for Numerical Methods in Fluids vol 66 no 9pp 1159ndash1173 2011

[17] V Turut and N Guzel ldquoComparing numerical methods forsolving time-fractional reaction-diffusion equationsrdquo ISRNMathematical Analysis vol 2012 Article ID 737206 28 pages2012

[18] V Turut ldquoApplication of Multivariate pade approximation forpartial differential equationsrdquo Batman University Journal of LifeSciences vol 2 no 1 pp 17ndash28 2012

[19] V Turut and N Guzel ldquoOn solving partial differential eqau-ations of fractional order by using the variational iterationmethod and multivariate pade approximationrdquo European Jour-nal of Pure and Applied Mathematics Accepted

[20] S Momani and R Qaralleh ldquoNumerical approximations andPade approximants for a fractional population growth modelrdquoApplied Mathematical Modelling vol 31 no 9 pp 1907ndash19142007

[21] S Momani and N Shawagfeh ldquoDecomposition method forsolving fractional Riccati differential equationsrdquo Applied Math-ematics and Computation vol 182 no 2 pp 1083ndash1092 2006

[22] K B Oldham and J SpanierThe Fractional Calculus AcademicPress New York NY USA 1974

[23] M Caputo ldquoLinearmodels of dissipationwhoseQ is almost fre-quency independent Part IIrdquo Journal of the Royal AstronomicalSociety vol 13 no 5 pp 529ndash539 1967

[24] Z Odibat and S Momani ldquoNumerical methods for nonlinearpartial differential equations of fractional orderrdquo Applied Math-ematical Modelling vol 32 no 1 pp 28ndash39 2008

[25] A Cuyt and L Wuytack Nonlinear Methods in NumericalAnalysis vol 136 ofNorth-HollandMathematics Studies North-Holland Publishing Amsterdam The Netherlands 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 7

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(a)

2

25

3

15

1

05

0

02

04

06

08

1 108

0604

02

119905 119909

(b)

08

06

04

02

0

02

04

06

08

1 108

0604

02

119905 119909

(c)

Figure 3 (a) Exact solution of Example 2 for 120572 = 20 (b) ADM solution of Example 2 for 120572 = 20 (c) Multivariate Pade approximation ofADM solution for 120572 = 20 in Example 2

obtain multivariate Pade equations of (33) for119898 = 4 and 119899 =2 we use (10) By using (10) we obtain

119901 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

(1 minus 2119905) + 30000000001199092

1199052

1199092

(1 minus 2119905) 1199092

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus20000000001199054

(028 times 10minus9

1199052

minus 034 times 10minus9

119905 (minus004999999986) 1199096

119902 (119909 119905)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

minus40000000011199092

1199053

30000000001199092

1199052

minus21199092

119905

50000000001199092

1199054

minus40000000011199092

1199053

30000000001199092

1199052

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 20000000001199054

(00499999999 + 01000000001119905 + 005000000041199052

) 1199094

(34)

So the multivariate Pade approximation of order (4 2) for(33) that is

[4 2](119909119905)

= minus 1000000000 (028 times 10minus9

1199052

minus 034 times 10minus9

119905

minus004999999986) 1199092

times (00499999999 + 01000000001119905

+005000000041199052

)minus1

(35)

8 Abstract and Applied Analysis

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(a)

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(b)

0008

001

0006

0004

0002

0

119905119909

minus01

minus005

0

0050101

0050

minus005

minus01

(c)

0008

001

0006

0004

0002

0

119905 119909

minus01

minus005

0005

0101005

0

minus005

minus01

(d)

Figure 4 (a) ADM solution of Example 2 for 120572 = 15 (b) Multivariate Pade approximation of ADM solution for 120572 = 15 in Example 2 (c)ADM solution of Example 2 for 120572 = 175 (d) Multivariate Pade approximation of ADM solution for 120572 = 175 in Example 2

For 120572 = 15 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (0752252778211990515

minus 120360444511990525

+0687773968311990535

) + 12000000001199092

11990530

(36)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198862

) + 61199092

times (075225277821198863

minus12036044451198865

+ 068777396831199057

)

+ 12000000001199092

1198866

= 1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

+ 41266438101199092

1198867

+ 12000000001199092

1198866

(37)

Using (10) to calculate multivariate Pade equations of (37) for119898 = 7 and 119899 = 2 we use (10) By using (10) we obtain

Abstract and Applied Analysis 9

Table1Num

ericalvalues

when120572=05120572=075and120572=10for(13)

119909119905

120572=05

120572=075

120572=10

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000111

8860

666

000111

8859998

07125363089times10minus21

07125363089times10minus21

000

009999999987

000

0100

0000

000

000

01002

002

0003138022015

0003138007574

02579676158times10minus18

02579676148times10minus18

000

03999999915

000

0400

0000

000

000

04003

003

000571664

0278

0005716554826

08097412617times10minus17

08097412644times10minus17

000

08999999028

000

0900

0000

000

000

09004

004

0008727882362

0008727584792

09339702880times10minus16

09339702881times10minus16

0001599999454

0001600

0000

0000016

005

005

001209607907

001209530419

06224118481times10minus15

06224118464times10minus15

0002499997917

0002500

0000

0000025

006

006

00157687340

8001576705530

02931772549times10minus14

02931772552times10minus14

0003599993779

0003600

0000

0000036

007

007

001970633078

001970312778

01086905954times10minus13

01086905954times10minus13

000

4899984313

000

4900

0000

00000

49008

008

002387754051

002387197301

03381735603times10minus13

03381735608times10minus13

000

6399965047

000

6400

0000

00000

64009

009

002825661342

002824760190

09203528751times10minus13

09203528751times10minus13

0008099929141

0008100

0000

0000081

01

01

003282181204

003280802591

02253790147times10minus12

02253790145times10minus12

000

99998666

6700100

0000

0000

001

10 Abstract and Applied Analysis

Table2Num

ericalvalues

when120572=15120572=175and120572=20for(28)

119909119905

120572=15

120572=175

120572=20

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000

009844537131

000

009844533110

000

0098116

32420

000

0098116

25316

000

00980296

0500

000

00980296

0486

000

00980296

0494

002

002

000

03889833219

000

03889809228

000

03855443171

000

03855410232

000

038446

75200

000

038446

75123

000

038446

75125

003

003

000

0866

4034309

000

08663775704

000

08529749012

000

08529437792

000

08483364

450

000

08483363176

000

08483363182

004

004

0001527388854

0001527250241

0001492265504

0001492112

228

0001479290880

0001479289940

0001479289941

005

005

0002370102454

0002369595331

0002296248891

0002295720729

0002267578126

0002267573695

0002267573696

006

006

0003393997434

0003392539471

0003258613123

0003257161294

0003204

002880

0003203987182

0003203987184

007

007

000

4599726730

000

4596176215

000

4373819216

000

437040

4791

000

4279895445

000

4279849765

000

4279849769

008

008

0005989109024

000598144

9991

0005637043845

00056298804

000005487083520

0005486968446

0005486968450

009

009

0007565131844

000755006

8937

0007044

140677

0007030367394

000

6817867605

000

6817607941

000

6817607945

01

01

000

9331981000

000

9304

436794

0008591616573

0008566

895894

000826500

0000

0008264

462804

0008264

462810

Abstract and Applied Analysis 11

119901 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

12000000001199092

1199056

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (82357601511198865

+ 08791855311198864

+ 12534276361198863

+ 14034265421198862

+ 1750000001119886 + 1053153890) 1199096

11988610

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

12000000001199092

1198866

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (1053153890 + 1750000001119886 + 35097343221198862

) 1199094

11988610

(38)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (7 2) for (36) that is

[7 2](119909119905)

= (823576015111990552

+ 08791855311199052

+ 125342763611990532

+ 1403426542119905

+1750000001radic119905 + 1053153890) 1199092

times (1053153890 + 1750000001radic119905

+3509734322119905)minus1

(39)

For 120572 = 175 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(06217515726119905175

minus 09043659240119905275

+04823284927119905375

)

+ 61899657151199092

11990535

(40)

For simplicity let 11990514 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198864

)

+ 61199092

(062175157261198867

minus 0904365924011988611

+0482328492711988615

) + 61899657151199092

11988614

= 1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

+ 28939709561199092

11988615

+ 61899657151199092

11988614

(41)

Using (10) to calculate multivariate Pade equations of (41) for119898 = 15 and 119899 = 2 we use (10) By using (10) we obtain

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus38315675561199096

11988628

(minus1 + 21198864

minus 37305094361198867

+ 542619554411988611

)

119902 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 38315675561199094

11988628

(42)

recalling that 11990514 = 119886 we get multivariate Pade approxima-tion of order (15 2) for (40) that is

[15 2](119909119905)

= minus 38315675561199096

1199057

times (minus1 + 2119905 minus 373050943611990574

+5426195544119905114

)

times (38315675561199094

1199057

)minus1

(43)

Table 2 Figures 3(a) 3(b) 3(c) 4(a) 4(b) 4(c) and 4(d)show the approximate solutions for (28) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 2is for the exact solution 119906(119909 119905) = (119909119905 + 1)2 [24]

6 Concluding Remarks

The fundamental goal of this paper has been to constructan approximate solution of nonlinear partial differential

12 Abstract and Applied Analysis

equations of fractional order by using multivariate PadeapproximationThe goal has been achieved by using the mul-tivariate Pade approximation and comparing with the Ado-mian decomposition method The present work shows thevalidity and great potential of the multivariate Pade approxi-mation for solving nonlinear partial differential equations offractional order from the numerical resultsNumerical resultsobtained using the multivariate Pade approximation and theAdomian decompositionmethod are in agreement with exactsolutions

References

[1] J H He ldquoNonlinear oscillation with fractional derivative andits applicationsrdquo in Proceedings of International Conference onVibrating Engineering pp 288ndash291 Dalian China 1998

[2] J H He ldquoSome applications of nonlinear fractional differentialequations and their approximationsrdquo Bulletin of Science andTechnology vol 15 no 2 pp 86ndash90 1999

[3] Y Luchko and R Gorenflo The Initial Value Problem for SomeFractional Differential Equations with the Caputo DerivativeSeries A08-98 Fachbreich Mathematik und Informatik FreicUniversitat Berlin Berlin Germany 1998

[4] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press San DiegoCalif USA 1999

[5] SMomani ldquoNon-perturbative analytical solutions of the space-and time-fractional Burgers equationsrdquo Chaos Solitons amp Frac-tals vol 28 no 4 pp 930ndash937 2006

[6] Z M Odibat and S Momani ldquoApplication of variationaliteration method to nonlinear differential equations of frac-tional orderrdquo International Journal of Nonlinear Sciences andNumerical Simulation vol 7 no 1 pp 27ndash34 2006

[7] S Momani and Z Odibat ldquoAnalytical solution of a time-fractional Navier-Stokes equation by Adomian decompositionmethodrdquo Applied Mathematics and Computation vol 177 no 2pp 488ndash494 2006

[8] S Momani and Z Odibat ldquoNumerical comparison of methodsfor solving linear differential equations of fractional orderrdquoChaos Solitons amp Fractals vol 31 no 5 pp 1248ndash1255 2007

[9] Z M Odibat and S Momani ldquoApproximate solutions forboundary value problems of time-fractional wave equationrdquoApplied Mathematics and Computation vol 181 no 1 pp 767ndash774 2006

[10] G Domairry and N Nadim ldquoAssessment of homotopy analysismethod and homotopy perturbationmethod in non-linear heattransfer equationrdquo International Communications in Heat andMass Transfer vol 35 no 1 pp 93ndash102 2008

[11] G Domairry M Ahangari and M Jamshidi ldquoExact andanalytical solution for nonlinear dispersive 119870(119898 119901) equationsusing homotopy perturbation methodrdquo Physics Letters A vol368 no 3-4 pp 266ndash270 2007

[12] G Adomian ldquoA review of the decomposition method inapplied mathematicsrdquo Journal of Mathematical Analysis andApplications vol 135 no 2 pp 501ndash544 1988

[13] G Adomian Solving Frontier Problems of Physics The Decom-position Method vol 60 of Fundamental Theories of PhysicsKluwer Academic Publishers Dordrecht The Netherlands1994

[14] S Momani ldquoAn explicit and numerical solutions of the frac-tional KdV equationrdquo Mathematics and Computers in Simula-tion vol 70 no 2 pp 110ndash118 2005

[15] Ph Guillaume and A Huard ldquoMultivariate Pade approxima-tionrdquo Journal of Computational and Applied Mathematics vol121 no 1-2 pp 197ndash219 2000

[16] V Turut E Celik and M Yigider ldquoMultivariate Pade approx-imation for solving partial differential equations (PDE)rdquo Inter-national Journal for Numerical Methods in Fluids vol 66 no 9pp 1159ndash1173 2011

[17] V Turut and N Guzel ldquoComparing numerical methods forsolving time-fractional reaction-diffusion equationsrdquo ISRNMathematical Analysis vol 2012 Article ID 737206 28 pages2012

[18] V Turut ldquoApplication of Multivariate pade approximation forpartial differential equationsrdquo Batman University Journal of LifeSciences vol 2 no 1 pp 17ndash28 2012

[19] V Turut and N Guzel ldquoOn solving partial differential eqau-ations of fractional order by using the variational iterationmethod and multivariate pade approximationrdquo European Jour-nal of Pure and Applied Mathematics Accepted

[20] S Momani and R Qaralleh ldquoNumerical approximations andPade approximants for a fractional population growth modelrdquoApplied Mathematical Modelling vol 31 no 9 pp 1907ndash19142007

[21] S Momani and N Shawagfeh ldquoDecomposition method forsolving fractional Riccati differential equationsrdquo Applied Math-ematics and Computation vol 182 no 2 pp 1083ndash1092 2006

[22] K B Oldham and J SpanierThe Fractional Calculus AcademicPress New York NY USA 1974

[23] M Caputo ldquoLinearmodels of dissipationwhoseQ is almost fre-quency independent Part IIrdquo Journal of the Royal AstronomicalSociety vol 13 no 5 pp 529ndash539 1967

[24] Z Odibat and S Momani ldquoNumerical methods for nonlinearpartial differential equations of fractional orderrdquo Applied Math-ematical Modelling vol 32 no 1 pp 28ndash39 2008

[25] A Cuyt and L Wuytack Nonlinear Methods in NumericalAnalysis vol 136 ofNorth-HollandMathematics Studies North-Holland Publishing Amsterdam The Netherlands 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

8 Abstract and Applied Analysis

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(a)

0008

001

0006

0004

0002

0

002

004

006

008

01 01008

006004

002

119905 119909

(b)

0008

001

0006

0004

0002

0

119905119909

minus01

minus005

0

0050101

0050

minus005

minus01

(c)

0008

001

0006

0004

0002

0

119905 119909

minus01

minus005

0005

0101005

0

minus005

minus01

(d)

Figure 4 (a) ADM solution of Example 2 for 120572 = 15 (b) Multivariate Pade approximation of ADM solution for 120572 = 15 in Example 2 (c)ADM solution of Example 2 for 120572 = 175 (d) Multivariate Pade approximation of ADM solution for 120572 = 175 in Example 2

For 120572 = 15 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905) + 61199092

times (0752252778211990515

minus 120360444511990525

+0687773968311990535

) + 12000000001199092

11990530

(36)

For simplicity let 11990512 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198862

) + 61199092

times (075225277821198863

minus12036044451198865

+ 068777396831199057

)

+ 12000000001199092

1198866

= 1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

+ 41266438101199092

1198867

+ 12000000001199092

1198866

(37)

Using (10) to calculate multivariate Pade equations of (37) for119898 = 7 and 119899 = 2 we use (10) By using (10) we obtain

Abstract and Applied Analysis 9

Table1Num

ericalvalues

when120572=05120572=075and120572=10for(13)

119909119905

120572=05

120572=075

120572=10

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000111

8860

666

000111

8859998

07125363089times10minus21

07125363089times10minus21

000

009999999987

000

0100

0000

000

000

01002

002

0003138022015

0003138007574

02579676158times10minus18

02579676148times10minus18

000

03999999915

000

0400

0000

000

000

04003

003

000571664

0278

0005716554826

08097412617times10minus17

08097412644times10minus17

000

08999999028

000

0900

0000

000

000

09004

004

0008727882362

0008727584792

09339702880times10minus16

09339702881times10minus16

0001599999454

0001600

0000

0000016

005

005

001209607907

001209530419

06224118481times10minus15

06224118464times10minus15

0002499997917

0002500

0000

0000025

006

006

00157687340

8001576705530

02931772549times10minus14

02931772552times10minus14

0003599993779

0003600

0000

0000036

007

007

001970633078

001970312778

01086905954times10minus13

01086905954times10minus13

000

4899984313

000

4900

0000

00000

49008

008

002387754051

002387197301

03381735603times10minus13

03381735608times10minus13

000

6399965047

000

6400

0000

00000

64009

009

002825661342

002824760190

09203528751times10minus13

09203528751times10minus13

0008099929141

0008100

0000

0000081

01

01

003282181204

003280802591

02253790147times10minus12

02253790145times10minus12

000

99998666

6700100

0000

0000

001

10 Abstract and Applied Analysis

Table2Num

ericalvalues

when120572=15120572=175and120572=20for(28)

119909119905

120572=15

120572=175

120572=20

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000

009844537131

000

009844533110

000

0098116

32420

000

0098116

25316

000

00980296

0500

000

00980296

0486

000

00980296

0494

002

002

000

03889833219

000

03889809228

000

03855443171

000

03855410232

000

038446

75200

000

038446

75123

000

038446

75125

003

003

000

0866

4034309

000

08663775704

000

08529749012

000

08529437792

000

08483364

450

000

08483363176

000

08483363182

004

004

0001527388854

0001527250241

0001492265504

0001492112

228

0001479290880

0001479289940

0001479289941

005

005

0002370102454

0002369595331

0002296248891

0002295720729

0002267578126

0002267573695

0002267573696

006

006

0003393997434

0003392539471

0003258613123

0003257161294

0003204

002880

0003203987182

0003203987184

007

007

000

4599726730

000

4596176215

000

4373819216

000

437040

4791

000

4279895445

000

4279849765

000

4279849769

008

008

0005989109024

000598144

9991

0005637043845

00056298804

000005487083520

0005486968446

0005486968450

009

009

0007565131844

000755006

8937

0007044

140677

0007030367394

000

6817867605

000

6817607941

000

6817607945

01

01

000

9331981000

000

9304

436794

0008591616573

0008566

895894

000826500

0000

0008264

462804

0008264

462810

Abstract and Applied Analysis 11

119901 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

12000000001199092

1199056

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (82357601511198865

+ 08791855311198864

+ 12534276361198863

+ 14034265421198862

+ 1750000001119886 + 1053153890) 1199096

11988610

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

12000000001199092

1198866

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (1053153890 + 1750000001119886 + 35097343221198862

) 1199094

11988610

(38)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (7 2) for (36) that is

[7 2](119909119905)

= (823576015111990552

+ 08791855311199052

+ 125342763611990532

+ 1403426542119905

+1750000001radic119905 + 1053153890) 1199092

times (1053153890 + 1750000001radic119905

+3509734322119905)minus1

(39)

For 120572 = 175 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(06217515726119905175

minus 09043659240119905275

+04823284927119905375

)

+ 61899657151199092

11990535

(40)

For simplicity let 11990514 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198864

)

+ 61199092

(062175157261198867

minus 0904365924011988611

+0482328492711988615

) + 61899657151199092

11988614

= 1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

+ 28939709561199092

11988615

+ 61899657151199092

11988614

(41)

Using (10) to calculate multivariate Pade equations of (41) for119898 = 15 and 119899 = 2 we use (10) By using (10) we obtain

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus38315675561199096

11988628

(minus1 + 21198864

minus 37305094361198867

+ 542619554411988611

)

119902 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 38315675561199094

11988628

(42)

recalling that 11990514 = 119886 we get multivariate Pade approxima-tion of order (15 2) for (40) that is

[15 2](119909119905)

= minus 38315675561199096

1199057

times (minus1 + 2119905 minus 373050943611990574

+5426195544119905114

)

times (38315675561199094

1199057

)minus1

(43)

Table 2 Figures 3(a) 3(b) 3(c) 4(a) 4(b) 4(c) and 4(d)show the approximate solutions for (28) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 2is for the exact solution 119906(119909 119905) = (119909119905 + 1)2 [24]

6 Concluding Remarks

The fundamental goal of this paper has been to constructan approximate solution of nonlinear partial differential

12 Abstract and Applied Analysis

equations of fractional order by using multivariate PadeapproximationThe goal has been achieved by using the mul-tivariate Pade approximation and comparing with the Ado-mian decomposition method The present work shows thevalidity and great potential of the multivariate Pade approxi-mation for solving nonlinear partial differential equations offractional order from the numerical resultsNumerical resultsobtained using the multivariate Pade approximation and theAdomian decompositionmethod are in agreement with exactsolutions

References

[1] J H He ldquoNonlinear oscillation with fractional derivative andits applicationsrdquo in Proceedings of International Conference onVibrating Engineering pp 288ndash291 Dalian China 1998

[2] J H He ldquoSome applications of nonlinear fractional differentialequations and their approximationsrdquo Bulletin of Science andTechnology vol 15 no 2 pp 86ndash90 1999

[3] Y Luchko and R Gorenflo The Initial Value Problem for SomeFractional Differential Equations with the Caputo DerivativeSeries A08-98 Fachbreich Mathematik und Informatik FreicUniversitat Berlin Berlin Germany 1998

[4] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press San DiegoCalif USA 1999

[5] SMomani ldquoNon-perturbative analytical solutions of the space-and time-fractional Burgers equationsrdquo Chaos Solitons amp Frac-tals vol 28 no 4 pp 930ndash937 2006

[6] Z M Odibat and S Momani ldquoApplication of variationaliteration method to nonlinear differential equations of frac-tional orderrdquo International Journal of Nonlinear Sciences andNumerical Simulation vol 7 no 1 pp 27ndash34 2006

[7] S Momani and Z Odibat ldquoAnalytical solution of a time-fractional Navier-Stokes equation by Adomian decompositionmethodrdquo Applied Mathematics and Computation vol 177 no 2pp 488ndash494 2006

[8] S Momani and Z Odibat ldquoNumerical comparison of methodsfor solving linear differential equations of fractional orderrdquoChaos Solitons amp Fractals vol 31 no 5 pp 1248ndash1255 2007

[9] Z M Odibat and S Momani ldquoApproximate solutions forboundary value problems of time-fractional wave equationrdquoApplied Mathematics and Computation vol 181 no 1 pp 767ndash774 2006

[10] G Domairry and N Nadim ldquoAssessment of homotopy analysismethod and homotopy perturbationmethod in non-linear heattransfer equationrdquo International Communications in Heat andMass Transfer vol 35 no 1 pp 93ndash102 2008

[11] G Domairry M Ahangari and M Jamshidi ldquoExact andanalytical solution for nonlinear dispersive 119870(119898 119901) equationsusing homotopy perturbation methodrdquo Physics Letters A vol368 no 3-4 pp 266ndash270 2007

[12] G Adomian ldquoA review of the decomposition method inapplied mathematicsrdquo Journal of Mathematical Analysis andApplications vol 135 no 2 pp 501ndash544 1988

[13] G Adomian Solving Frontier Problems of Physics The Decom-position Method vol 60 of Fundamental Theories of PhysicsKluwer Academic Publishers Dordrecht The Netherlands1994

[14] S Momani ldquoAn explicit and numerical solutions of the frac-tional KdV equationrdquo Mathematics and Computers in Simula-tion vol 70 no 2 pp 110ndash118 2005

[15] Ph Guillaume and A Huard ldquoMultivariate Pade approxima-tionrdquo Journal of Computational and Applied Mathematics vol121 no 1-2 pp 197ndash219 2000

[16] V Turut E Celik and M Yigider ldquoMultivariate Pade approx-imation for solving partial differential equations (PDE)rdquo Inter-national Journal for Numerical Methods in Fluids vol 66 no 9pp 1159ndash1173 2011

[17] V Turut and N Guzel ldquoComparing numerical methods forsolving time-fractional reaction-diffusion equationsrdquo ISRNMathematical Analysis vol 2012 Article ID 737206 28 pages2012

[18] V Turut ldquoApplication of Multivariate pade approximation forpartial differential equationsrdquo Batman University Journal of LifeSciences vol 2 no 1 pp 17ndash28 2012

[19] V Turut and N Guzel ldquoOn solving partial differential eqau-ations of fractional order by using the variational iterationmethod and multivariate pade approximationrdquo European Jour-nal of Pure and Applied Mathematics Accepted

[20] S Momani and R Qaralleh ldquoNumerical approximations andPade approximants for a fractional population growth modelrdquoApplied Mathematical Modelling vol 31 no 9 pp 1907ndash19142007

[21] S Momani and N Shawagfeh ldquoDecomposition method forsolving fractional Riccati differential equationsrdquo Applied Math-ematics and Computation vol 182 no 2 pp 1083ndash1092 2006

[22] K B Oldham and J SpanierThe Fractional Calculus AcademicPress New York NY USA 1974

[23] M Caputo ldquoLinearmodels of dissipationwhoseQ is almost fre-quency independent Part IIrdquo Journal of the Royal AstronomicalSociety vol 13 no 5 pp 529ndash539 1967

[24] Z Odibat and S Momani ldquoNumerical methods for nonlinearpartial differential equations of fractional orderrdquo Applied Math-ematical Modelling vol 32 no 1 pp 28ndash39 2008

[25] A Cuyt and L Wuytack Nonlinear Methods in NumericalAnalysis vol 136 ofNorth-HollandMathematics Studies North-Holland Publishing Amsterdam The Netherlands 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 9

Table1Num

ericalvalues

when120572=05120572=075and120572=10for(13)

119909119905

120572=05

120572=075

120572=10

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000111

8860

666

000111

8859998

07125363089times10minus21

07125363089times10minus21

000

009999999987

000

0100

0000

000

000

01002

002

0003138022015

0003138007574

02579676158times10minus18

02579676148times10minus18

000

03999999915

000

0400

0000

000

000

04003

003

000571664

0278

0005716554826

08097412617times10minus17

08097412644times10minus17

000

08999999028

000

0900

0000

000

000

09004

004

0008727882362

0008727584792

09339702880times10minus16

09339702881times10minus16

0001599999454

0001600

0000

0000016

005

005

001209607907

001209530419

06224118481times10minus15

06224118464times10minus15

0002499997917

0002500

0000

0000025

006

006

00157687340

8001576705530

02931772549times10minus14

02931772552times10minus14

0003599993779

0003600

0000

0000036

007

007

001970633078

001970312778

01086905954times10minus13

01086905954times10minus13

000

4899984313

000

4900

0000

00000

49008

008

002387754051

002387197301

03381735603times10minus13

03381735608times10minus13

000

6399965047

000

6400

0000

00000

64009

009

002825661342

002824760190

09203528751times10minus13

09203528751times10minus13

0008099929141

0008100

0000

0000081

01

01

003282181204

003280802591

02253790147times10minus12

02253790145times10minus12

000

99998666

6700100

0000

0000

001

10 Abstract and Applied Analysis

Table2Num

ericalvalues

when120572=15120572=175and120572=20for(28)

119909119905

120572=15

120572=175

120572=20

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000

009844537131

000

009844533110

000

0098116

32420

000

0098116

25316

000

00980296

0500

000

00980296

0486

000

00980296

0494

002

002

000

03889833219

000

03889809228

000

03855443171

000

03855410232

000

038446

75200

000

038446

75123

000

038446

75125

003

003

000

0866

4034309

000

08663775704

000

08529749012

000

08529437792

000

08483364

450

000

08483363176

000

08483363182

004

004

0001527388854

0001527250241

0001492265504

0001492112

228

0001479290880

0001479289940

0001479289941

005

005

0002370102454

0002369595331

0002296248891

0002295720729

0002267578126

0002267573695

0002267573696

006

006

0003393997434

0003392539471

0003258613123

0003257161294

0003204

002880

0003203987182

0003203987184

007

007

000

4599726730

000

4596176215

000

4373819216

000

437040

4791

000

4279895445

000

4279849765

000

4279849769

008

008

0005989109024

000598144

9991

0005637043845

00056298804

000005487083520

0005486968446

0005486968450

009

009

0007565131844

000755006

8937

0007044

140677

0007030367394

000

6817867605

000

6817607941

000

6817607945

01

01

000

9331981000

000

9304

436794

0008591616573

0008566

895894

000826500

0000

0008264

462804

0008264

462810

Abstract and Applied Analysis 11

119901 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

12000000001199092

1199056

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (82357601511198865

+ 08791855311198864

+ 12534276361198863

+ 14034265421198862

+ 1750000001119886 + 1053153890) 1199096

11988610

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

12000000001199092

1198866

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (1053153890 + 1750000001119886 + 35097343221198862

) 1199094

11988610

(38)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (7 2) for (36) that is

[7 2](119909119905)

= (823576015111990552

+ 08791855311199052

+ 125342763611990532

+ 1403426542119905

+1750000001radic119905 + 1053153890) 1199092

times (1053153890 + 1750000001radic119905

+3509734322119905)minus1

(39)

For 120572 = 175 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(06217515726119905175

minus 09043659240119905275

+04823284927119905375

)

+ 61899657151199092

11990535

(40)

For simplicity let 11990514 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198864

)

+ 61199092

(062175157261198867

minus 0904365924011988611

+0482328492711988615

) + 61899657151199092

11988614

= 1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

+ 28939709561199092

11988615

+ 61899657151199092

11988614

(41)

Using (10) to calculate multivariate Pade equations of (41) for119898 = 15 and 119899 = 2 we use (10) By using (10) we obtain

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus38315675561199096

11988628

(minus1 + 21198864

minus 37305094361198867

+ 542619554411988611

)

119902 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 38315675561199094

11988628

(42)

recalling that 11990514 = 119886 we get multivariate Pade approxima-tion of order (15 2) for (40) that is

[15 2](119909119905)

= minus 38315675561199096

1199057

times (minus1 + 2119905 minus 373050943611990574

+5426195544119905114

)

times (38315675561199094

1199057

)minus1

(43)

Table 2 Figures 3(a) 3(b) 3(c) 4(a) 4(b) 4(c) and 4(d)show the approximate solutions for (28) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 2is for the exact solution 119906(119909 119905) = (119909119905 + 1)2 [24]

6 Concluding Remarks

The fundamental goal of this paper has been to constructan approximate solution of nonlinear partial differential

12 Abstract and Applied Analysis

equations of fractional order by using multivariate PadeapproximationThe goal has been achieved by using the mul-tivariate Pade approximation and comparing with the Ado-mian decomposition method The present work shows thevalidity and great potential of the multivariate Pade approxi-mation for solving nonlinear partial differential equations offractional order from the numerical resultsNumerical resultsobtained using the multivariate Pade approximation and theAdomian decompositionmethod are in agreement with exactsolutions

References

[1] J H He ldquoNonlinear oscillation with fractional derivative andits applicationsrdquo in Proceedings of International Conference onVibrating Engineering pp 288ndash291 Dalian China 1998

[2] J H He ldquoSome applications of nonlinear fractional differentialequations and their approximationsrdquo Bulletin of Science andTechnology vol 15 no 2 pp 86ndash90 1999

[3] Y Luchko and R Gorenflo The Initial Value Problem for SomeFractional Differential Equations with the Caputo DerivativeSeries A08-98 Fachbreich Mathematik und Informatik FreicUniversitat Berlin Berlin Germany 1998

[4] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press San DiegoCalif USA 1999

[5] SMomani ldquoNon-perturbative analytical solutions of the space-and time-fractional Burgers equationsrdquo Chaos Solitons amp Frac-tals vol 28 no 4 pp 930ndash937 2006

[6] Z M Odibat and S Momani ldquoApplication of variationaliteration method to nonlinear differential equations of frac-tional orderrdquo International Journal of Nonlinear Sciences andNumerical Simulation vol 7 no 1 pp 27ndash34 2006

[7] S Momani and Z Odibat ldquoAnalytical solution of a time-fractional Navier-Stokes equation by Adomian decompositionmethodrdquo Applied Mathematics and Computation vol 177 no 2pp 488ndash494 2006

[8] S Momani and Z Odibat ldquoNumerical comparison of methodsfor solving linear differential equations of fractional orderrdquoChaos Solitons amp Fractals vol 31 no 5 pp 1248ndash1255 2007

[9] Z M Odibat and S Momani ldquoApproximate solutions forboundary value problems of time-fractional wave equationrdquoApplied Mathematics and Computation vol 181 no 1 pp 767ndash774 2006

[10] G Domairry and N Nadim ldquoAssessment of homotopy analysismethod and homotopy perturbationmethod in non-linear heattransfer equationrdquo International Communications in Heat andMass Transfer vol 35 no 1 pp 93ndash102 2008

[11] G Domairry M Ahangari and M Jamshidi ldquoExact andanalytical solution for nonlinear dispersive 119870(119898 119901) equationsusing homotopy perturbation methodrdquo Physics Letters A vol368 no 3-4 pp 266ndash270 2007

[12] G Adomian ldquoA review of the decomposition method inapplied mathematicsrdquo Journal of Mathematical Analysis andApplications vol 135 no 2 pp 501ndash544 1988

[13] G Adomian Solving Frontier Problems of Physics The Decom-position Method vol 60 of Fundamental Theories of PhysicsKluwer Academic Publishers Dordrecht The Netherlands1994

[14] S Momani ldquoAn explicit and numerical solutions of the frac-tional KdV equationrdquo Mathematics and Computers in Simula-tion vol 70 no 2 pp 110ndash118 2005

[15] Ph Guillaume and A Huard ldquoMultivariate Pade approxima-tionrdquo Journal of Computational and Applied Mathematics vol121 no 1-2 pp 197ndash219 2000

[16] V Turut E Celik and M Yigider ldquoMultivariate Pade approx-imation for solving partial differential equations (PDE)rdquo Inter-national Journal for Numerical Methods in Fluids vol 66 no 9pp 1159ndash1173 2011

[17] V Turut and N Guzel ldquoComparing numerical methods forsolving time-fractional reaction-diffusion equationsrdquo ISRNMathematical Analysis vol 2012 Article ID 737206 28 pages2012

[18] V Turut ldquoApplication of Multivariate pade approximation forpartial differential equationsrdquo Batman University Journal of LifeSciences vol 2 no 1 pp 17ndash28 2012

[19] V Turut and N Guzel ldquoOn solving partial differential eqau-ations of fractional order by using the variational iterationmethod and multivariate pade approximationrdquo European Jour-nal of Pure and Applied Mathematics Accepted

[20] S Momani and R Qaralleh ldquoNumerical approximations andPade approximants for a fractional population growth modelrdquoApplied Mathematical Modelling vol 31 no 9 pp 1907ndash19142007

[21] S Momani and N Shawagfeh ldquoDecomposition method forsolving fractional Riccati differential equationsrdquo Applied Math-ematics and Computation vol 182 no 2 pp 1083ndash1092 2006

[22] K B Oldham and J SpanierThe Fractional Calculus AcademicPress New York NY USA 1974

[23] M Caputo ldquoLinearmodels of dissipationwhoseQ is almost fre-quency independent Part IIrdquo Journal of the Royal AstronomicalSociety vol 13 no 5 pp 529ndash539 1967

[24] Z Odibat and S Momani ldquoNumerical methods for nonlinearpartial differential equations of fractional orderrdquo Applied Math-ematical Modelling vol 32 no 1 pp 28ndash39 2008

[25] A Cuyt and L Wuytack Nonlinear Methods in NumericalAnalysis vol 136 ofNorth-HollandMathematics Studies North-Holland Publishing Amsterdam The Netherlands 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

10 Abstract and Applied Analysis

Table2Num

ericalvalues

when120572=15120572=175and120572=20for(28)

119909119905

120572=15

120572=175

120572=20

119906ADM

119906MPA

119906ADM

119906MPA

119906ADM

119906MPA

119906Ex

act

001

001

000

009844537131

000

009844533110

000

0098116

32420

000

0098116

25316

000

00980296

0500

000

00980296

0486

000

00980296

0494

002

002

000

03889833219

000

03889809228

000

03855443171

000

03855410232

000

038446

75200

000

038446

75123

000

038446

75125

003

003

000

0866

4034309

000

08663775704

000

08529749012

000

08529437792

000

08483364

450

000

08483363176

000

08483363182

004

004

0001527388854

0001527250241

0001492265504

0001492112

228

0001479290880

0001479289940

0001479289941

005

005

0002370102454

0002369595331

0002296248891

0002295720729

0002267578126

0002267573695

0002267573696

006

006

0003393997434

0003392539471

0003258613123

0003257161294

0003204

002880

0003203987182

0003203987184

007

007

000

4599726730

000

4596176215

000

4373819216

000

437040

4791

000

4279895445

000

4279849765

000

4279849769

008

008

0005989109024

000598144

9991

0005637043845

00056298804

000005487083520

0005486968446

0005486968450

009

009

0007565131844

000755006

8937

0007044

140677

0007030367394

000

6817867605

000

6817607941

000

6817607945

01

01

000

9331981000

000

9304

436794

0008591616573

0008566

895894

000826500

0000

0008264

462804

0008264

462810

Abstract and Applied Analysis 11

119901 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

12000000001199092

1199056

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (82357601511198865

+ 08791855311198864

+ 12534276361198863

+ 14034265421198862

+ 1750000001119886 + 1053153890) 1199096

11988610

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

12000000001199092

1198866

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (1053153890 + 1750000001119886 + 35097343221198862

) 1199094

11988610

(38)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (7 2) for (36) that is

[7 2](119909119905)

= (823576015111990552

+ 08791855311199052

+ 125342763611990532

+ 1403426542119905

+1750000001radic119905 + 1053153890) 1199092

times (1053153890 + 1750000001radic119905

+3509734322119905)minus1

(39)

For 120572 = 175 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(06217515726119905175

minus 09043659240119905275

+04823284927119905375

)

+ 61899657151199092

11990535

(40)

For simplicity let 11990514 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198864

)

+ 61199092

(062175157261198867

minus 0904365924011988611

+0482328492711988615

) + 61899657151199092

11988614

= 1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

+ 28939709561199092

11988615

+ 61899657151199092

11988614

(41)

Using (10) to calculate multivariate Pade equations of (41) for119898 = 15 and 119899 = 2 we use (10) By using (10) we obtain

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus38315675561199096

11988628

(minus1 + 21198864

minus 37305094361198867

+ 542619554411988611

)

119902 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 38315675561199094

11988628

(42)

recalling that 11990514 = 119886 we get multivariate Pade approxima-tion of order (15 2) for (40) that is

[15 2](119909119905)

= minus 38315675561199096

1199057

times (minus1 + 2119905 minus 373050943611990574

+5426195544119905114

)

times (38315675561199094

1199057

)minus1

(43)

Table 2 Figures 3(a) 3(b) 3(c) 4(a) 4(b) 4(c) and 4(d)show the approximate solutions for (28) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 2is for the exact solution 119906(119909 119905) = (119909119905 + 1)2 [24]

6 Concluding Remarks

The fundamental goal of this paper has been to constructan approximate solution of nonlinear partial differential

12 Abstract and Applied Analysis

equations of fractional order by using multivariate PadeapproximationThe goal has been achieved by using the mul-tivariate Pade approximation and comparing with the Ado-mian decomposition method The present work shows thevalidity and great potential of the multivariate Pade approxi-mation for solving nonlinear partial differential equations offractional order from the numerical resultsNumerical resultsobtained using the multivariate Pade approximation and theAdomian decompositionmethod are in agreement with exactsolutions

References

[1] J H He ldquoNonlinear oscillation with fractional derivative andits applicationsrdquo in Proceedings of International Conference onVibrating Engineering pp 288ndash291 Dalian China 1998

[2] J H He ldquoSome applications of nonlinear fractional differentialequations and their approximationsrdquo Bulletin of Science andTechnology vol 15 no 2 pp 86ndash90 1999

[3] Y Luchko and R Gorenflo The Initial Value Problem for SomeFractional Differential Equations with the Caputo DerivativeSeries A08-98 Fachbreich Mathematik und Informatik FreicUniversitat Berlin Berlin Germany 1998

[4] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press San DiegoCalif USA 1999

[5] SMomani ldquoNon-perturbative analytical solutions of the space-and time-fractional Burgers equationsrdquo Chaos Solitons amp Frac-tals vol 28 no 4 pp 930ndash937 2006

[6] Z M Odibat and S Momani ldquoApplication of variationaliteration method to nonlinear differential equations of frac-tional orderrdquo International Journal of Nonlinear Sciences andNumerical Simulation vol 7 no 1 pp 27ndash34 2006

[7] S Momani and Z Odibat ldquoAnalytical solution of a time-fractional Navier-Stokes equation by Adomian decompositionmethodrdquo Applied Mathematics and Computation vol 177 no 2pp 488ndash494 2006

[8] S Momani and Z Odibat ldquoNumerical comparison of methodsfor solving linear differential equations of fractional orderrdquoChaos Solitons amp Fractals vol 31 no 5 pp 1248ndash1255 2007

[9] Z M Odibat and S Momani ldquoApproximate solutions forboundary value problems of time-fractional wave equationrdquoApplied Mathematics and Computation vol 181 no 1 pp 767ndash774 2006

[10] G Domairry and N Nadim ldquoAssessment of homotopy analysismethod and homotopy perturbationmethod in non-linear heattransfer equationrdquo International Communications in Heat andMass Transfer vol 35 no 1 pp 93ndash102 2008

[11] G Domairry M Ahangari and M Jamshidi ldquoExact andanalytical solution for nonlinear dispersive 119870(119898 119901) equationsusing homotopy perturbation methodrdquo Physics Letters A vol368 no 3-4 pp 266ndash270 2007

[12] G Adomian ldquoA review of the decomposition method inapplied mathematicsrdquo Journal of Mathematical Analysis andApplications vol 135 no 2 pp 501ndash544 1988

[13] G Adomian Solving Frontier Problems of Physics The Decom-position Method vol 60 of Fundamental Theories of PhysicsKluwer Academic Publishers Dordrecht The Netherlands1994

[14] S Momani ldquoAn explicit and numerical solutions of the frac-tional KdV equationrdquo Mathematics and Computers in Simula-tion vol 70 no 2 pp 110ndash118 2005

[15] Ph Guillaume and A Huard ldquoMultivariate Pade approxima-tionrdquo Journal of Computational and Applied Mathematics vol121 no 1-2 pp 197ndash219 2000

[16] V Turut E Celik and M Yigider ldquoMultivariate Pade approx-imation for solving partial differential equations (PDE)rdquo Inter-national Journal for Numerical Methods in Fluids vol 66 no 9pp 1159ndash1173 2011

[17] V Turut and N Guzel ldquoComparing numerical methods forsolving time-fractional reaction-diffusion equationsrdquo ISRNMathematical Analysis vol 2012 Article ID 737206 28 pages2012

[18] V Turut ldquoApplication of Multivariate pade approximation forpartial differential equationsrdquo Batman University Journal of LifeSciences vol 2 no 1 pp 17ndash28 2012

[19] V Turut and N Guzel ldquoOn solving partial differential eqau-ations of fractional order by using the variational iterationmethod and multivariate pade approximationrdquo European Jour-nal of Pure and Applied Mathematics Accepted

[20] S Momani and R Qaralleh ldquoNumerical approximations andPade approximants for a fractional population growth modelrdquoApplied Mathematical Modelling vol 31 no 9 pp 1907ndash19142007

[21] S Momani and N Shawagfeh ldquoDecomposition method forsolving fractional Riccati differential equationsrdquo Applied Math-ematics and Computation vol 182 no 2 pp 1083ndash1092 2006

[22] K B Oldham and J SpanierThe Fractional Calculus AcademicPress New York NY USA 1974

[23] M Caputo ldquoLinearmodels of dissipationwhoseQ is almost fre-quency independent Part IIrdquo Journal of the Royal AstronomicalSociety vol 13 no 5 pp 529ndash539 1967

[24] Z Odibat and S Momani ldquoNumerical methods for nonlinearpartial differential equations of fractional orderrdquo Applied Math-ematical Modelling vol 32 no 1 pp 28ndash39 2008

[25] A Cuyt and L Wuytack Nonlinear Methods in NumericalAnalysis vol 136 ofNorth-HollandMathematics Studies North-Holland Publishing Amsterdam The Netherlands 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 11

119901 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

minus 72216266701199092

1198865

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

1199092

minus 1199092

21198862

+ 45135166691199092

1198863

12000000001199092

1199056

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (82357601511198865

+ 08791855311198864

+ 12534276361198863

+ 14034265421198862

+ 1750000001119886 + 1053153890) 1199096

11988610

119902 (119909 119886) =

10038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

12000000001199092

1198866

minus72216266701199092

1198865

0

41266438101199092

1198867

12000000001199092

1198866

minus72216266701199092

119886

10038161003816100381610038161003816100381610038161003816100381610038161003816

= 4951972572 (1053153890 + 1750000001119886 + 35097343221198862

) 1199094

11988610

(38)

recalling that 11990512 = 119886 we get multivariate Pade approxima-tion of order (7 2) for (36) that is

[7 2](119909119905)

= (823576015111990552

+ 08791855311199052

+ 125342763611990532

+ 1403426542119905

+1750000001radic119905 + 1053153890) 1199092

times (1053153890 + 1750000001radic119905

+3509734322119905)minus1

(39)

For 120572 = 175 (32) is

119906 (119909 119905) = 1199092

(1 minus 2119905)

+ 61199092

(06217515726119905175

minus 09043659240119905275

+04823284927119905375

)

+ 61899657151199092

11990535

(40)

For simplicity let 11990514 = 119886 then

119906 (119909 119886) = 1199092

(1 minus 21198864

)

+ 61199092

(062175157261198867

minus 0904365924011988611

+0482328492711988615

) + 61899657151199092

11988614

= 1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

+ 28939709561199092

11988615

+ 61899657151199092

11988614

(41)

Using (10) to calculate multivariate Pade equations of (41) for119898 = 15 and 119899 = 2 we use (10) By using (10) we obtain

119901 (119909 119886)

=

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

1199092

minus 21199092

1198864

+ 37305094361199092

1198867

minus 54261955441199092

11988611

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= minus38315675561199096

11988628

(minus1 + 21198864

minus 37305094361198867

+ 542619554411988611

)

119902 (119909 119886) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

1 1 1

61899657151199092

11988614

0 0

28939709561199092

11988615

61899657151199092

11988614

0

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

= 38315675561199094

11988628

(42)

recalling that 11990514 = 119886 we get multivariate Pade approxima-tion of order (15 2) for (40) that is

[15 2](119909119905)

= minus 38315675561199096

1199057

times (minus1 + 2119905 minus 373050943611990574

+5426195544119905114

)

times (38315675561199094

1199057

)minus1

(43)

Table 2 Figures 3(a) 3(b) 3(c) 4(a) 4(b) 4(c) and 4(d)show the approximate solutions for (28) obtained for differentvalues of 120572 using the decomposition method (ADM) and themultivariate Pade approximation (MPA) The value of 120572 = 2is for the exact solution 119906(119909 119905) = (119909119905 + 1)2 [24]

6 Concluding Remarks

The fundamental goal of this paper has been to constructan approximate solution of nonlinear partial differential

12 Abstract and Applied Analysis

equations of fractional order by using multivariate PadeapproximationThe goal has been achieved by using the mul-tivariate Pade approximation and comparing with the Ado-mian decomposition method The present work shows thevalidity and great potential of the multivariate Pade approxi-mation for solving nonlinear partial differential equations offractional order from the numerical resultsNumerical resultsobtained using the multivariate Pade approximation and theAdomian decompositionmethod are in agreement with exactsolutions

References

[1] J H He ldquoNonlinear oscillation with fractional derivative andits applicationsrdquo in Proceedings of International Conference onVibrating Engineering pp 288ndash291 Dalian China 1998

[2] J H He ldquoSome applications of nonlinear fractional differentialequations and their approximationsrdquo Bulletin of Science andTechnology vol 15 no 2 pp 86ndash90 1999

[3] Y Luchko and R Gorenflo The Initial Value Problem for SomeFractional Differential Equations with the Caputo DerivativeSeries A08-98 Fachbreich Mathematik und Informatik FreicUniversitat Berlin Berlin Germany 1998

[4] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press San DiegoCalif USA 1999

[5] SMomani ldquoNon-perturbative analytical solutions of the space-and time-fractional Burgers equationsrdquo Chaos Solitons amp Frac-tals vol 28 no 4 pp 930ndash937 2006

[6] Z M Odibat and S Momani ldquoApplication of variationaliteration method to nonlinear differential equations of frac-tional orderrdquo International Journal of Nonlinear Sciences andNumerical Simulation vol 7 no 1 pp 27ndash34 2006

[7] S Momani and Z Odibat ldquoAnalytical solution of a time-fractional Navier-Stokes equation by Adomian decompositionmethodrdquo Applied Mathematics and Computation vol 177 no 2pp 488ndash494 2006

[8] S Momani and Z Odibat ldquoNumerical comparison of methodsfor solving linear differential equations of fractional orderrdquoChaos Solitons amp Fractals vol 31 no 5 pp 1248ndash1255 2007

[9] Z M Odibat and S Momani ldquoApproximate solutions forboundary value problems of time-fractional wave equationrdquoApplied Mathematics and Computation vol 181 no 1 pp 767ndash774 2006

[10] G Domairry and N Nadim ldquoAssessment of homotopy analysismethod and homotopy perturbationmethod in non-linear heattransfer equationrdquo International Communications in Heat andMass Transfer vol 35 no 1 pp 93ndash102 2008

[11] G Domairry M Ahangari and M Jamshidi ldquoExact andanalytical solution for nonlinear dispersive 119870(119898 119901) equationsusing homotopy perturbation methodrdquo Physics Letters A vol368 no 3-4 pp 266ndash270 2007

[12] G Adomian ldquoA review of the decomposition method inapplied mathematicsrdquo Journal of Mathematical Analysis andApplications vol 135 no 2 pp 501ndash544 1988

[13] G Adomian Solving Frontier Problems of Physics The Decom-position Method vol 60 of Fundamental Theories of PhysicsKluwer Academic Publishers Dordrecht The Netherlands1994

[14] S Momani ldquoAn explicit and numerical solutions of the frac-tional KdV equationrdquo Mathematics and Computers in Simula-tion vol 70 no 2 pp 110ndash118 2005

[15] Ph Guillaume and A Huard ldquoMultivariate Pade approxima-tionrdquo Journal of Computational and Applied Mathematics vol121 no 1-2 pp 197ndash219 2000

[16] V Turut E Celik and M Yigider ldquoMultivariate Pade approx-imation for solving partial differential equations (PDE)rdquo Inter-national Journal for Numerical Methods in Fluids vol 66 no 9pp 1159ndash1173 2011

[17] V Turut and N Guzel ldquoComparing numerical methods forsolving time-fractional reaction-diffusion equationsrdquo ISRNMathematical Analysis vol 2012 Article ID 737206 28 pages2012

[18] V Turut ldquoApplication of Multivariate pade approximation forpartial differential equationsrdquo Batman University Journal of LifeSciences vol 2 no 1 pp 17ndash28 2012

[19] V Turut and N Guzel ldquoOn solving partial differential eqau-ations of fractional order by using the variational iterationmethod and multivariate pade approximationrdquo European Jour-nal of Pure and Applied Mathematics Accepted

[20] S Momani and R Qaralleh ldquoNumerical approximations andPade approximants for a fractional population growth modelrdquoApplied Mathematical Modelling vol 31 no 9 pp 1907ndash19142007

[21] S Momani and N Shawagfeh ldquoDecomposition method forsolving fractional Riccati differential equationsrdquo Applied Math-ematics and Computation vol 182 no 2 pp 1083ndash1092 2006

[22] K B Oldham and J SpanierThe Fractional Calculus AcademicPress New York NY USA 1974

[23] M Caputo ldquoLinearmodels of dissipationwhoseQ is almost fre-quency independent Part IIrdquo Journal of the Royal AstronomicalSociety vol 13 no 5 pp 529ndash539 1967

[24] Z Odibat and S Momani ldquoNumerical methods for nonlinearpartial differential equations of fractional orderrdquo Applied Math-ematical Modelling vol 32 no 1 pp 28ndash39 2008

[25] A Cuyt and L Wuytack Nonlinear Methods in NumericalAnalysis vol 136 ofNorth-HollandMathematics Studies North-Holland Publishing Amsterdam The Netherlands 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

12 Abstract and Applied Analysis

equations of fractional order by using multivariate PadeapproximationThe goal has been achieved by using the mul-tivariate Pade approximation and comparing with the Ado-mian decomposition method The present work shows thevalidity and great potential of the multivariate Pade approxi-mation for solving nonlinear partial differential equations offractional order from the numerical resultsNumerical resultsobtained using the multivariate Pade approximation and theAdomian decompositionmethod are in agreement with exactsolutions

References

[1] J H He ldquoNonlinear oscillation with fractional derivative andits applicationsrdquo in Proceedings of International Conference onVibrating Engineering pp 288ndash291 Dalian China 1998

[2] J H He ldquoSome applications of nonlinear fractional differentialequations and their approximationsrdquo Bulletin of Science andTechnology vol 15 no 2 pp 86ndash90 1999

[3] Y Luchko and R Gorenflo The Initial Value Problem for SomeFractional Differential Equations with the Caputo DerivativeSeries A08-98 Fachbreich Mathematik und Informatik FreicUniversitat Berlin Berlin Germany 1998

[4] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press San DiegoCalif USA 1999

[5] SMomani ldquoNon-perturbative analytical solutions of the space-and time-fractional Burgers equationsrdquo Chaos Solitons amp Frac-tals vol 28 no 4 pp 930ndash937 2006

[6] Z M Odibat and S Momani ldquoApplication of variationaliteration method to nonlinear differential equations of frac-tional orderrdquo International Journal of Nonlinear Sciences andNumerical Simulation vol 7 no 1 pp 27ndash34 2006

[7] S Momani and Z Odibat ldquoAnalytical solution of a time-fractional Navier-Stokes equation by Adomian decompositionmethodrdquo Applied Mathematics and Computation vol 177 no 2pp 488ndash494 2006

[8] S Momani and Z Odibat ldquoNumerical comparison of methodsfor solving linear differential equations of fractional orderrdquoChaos Solitons amp Fractals vol 31 no 5 pp 1248ndash1255 2007

[9] Z M Odibat and S Momani ldquoApproximate solutions forboundary value problems of time-fractional wave equationrdquoApplied Mathematics and Computation vol 181 no 1 pp 767ndash774 2006

[10] G Domairry and N Nadim ldquoAssessment of homotopy analysismethod and homotopy perturbationmethod in non-linear heattransfer equationrdquo International Communications in Heat andMass Transfer vol 35 no 1 pp 93ndash102 2008

[11] G Domairry M Ahangari and M Jamshidi ldquoExact andanalytical solution for nonlinear dispersive 119870(119898 119901) equationsusing homotopy perturbation methodrdquo Physics Letters A vol368 no 3-4 pp 266ndash270 2007

[12] G Adomian ldquoA review of the decomposition method inapplied mathematicsrdquo Journal of Mathematical Analysis andApplications vol 135 no 2 pp 501ndash544 1988

[13] G Adomian Solving Frontier Problems of Physics The Decom-position Method vol 60 of Fundamental Theories of PhysicsKluwer Academic Publishers Dordrecht The Netherlands1994

[14] S Momani ldquoAn explicit and numerical solutions of the frac-tional KdV equationrdquo Mathematics and Computers in Simula-tion vol 70 no 2 pp 110ndash118 2005

[15] Ph Guillaume and A Huard ldquoMultivariate Pade approxima-tionrdquo Journal of Computational and Applied Mathematics vol121 no 1-2 pp 197ndash219 2000

[16] V Turut E Celik and M Yigider ldquoMultivariate Pade approx-imation for solving partial differential equations (PDE)rdquo Inter-national Journal for Numerical Methods in Fluids vol 66 no 9pp 1159ndash1173 2011

[17] V Turut and N Guzel ldquoComparing numerical methods forsolving time-fractional reaction-diffusion equationsrdquo ISRNMathematical Analysis vol 2012 Article ID 737206 28 pages2012

[18] V Turut ldquoApplication of Multivariate pade approximation forpartial differential equationsrdquo Batman University Journal of LifeSciences vol 2 no 1 pp 17ndash28 2012

[19] V Turut and N Guzel ldquoOn solving partial differential eqau-ations of fractional order by using the variational iterationmethod and multivariate pade approximationrdquo European Jour-nal of Pure and Applied Mathematics Accepted

[20] S Momani and R Qaralleh ldquoNumerical approximations andPade approximants for a fractional population growth modelrdquoApplied Mathematical Modelling vol 31 no 9 pp 1907ndash19142007

[21] S Momani and N Shawagfeh ldquoDecomposition method forsolving fractional Riccati differential equationsrdquo Applied Math-ematics and Computation vol 182 no 2 pp 1083ndash1092 2006

[22] K B Oldham and J SpanierThe Fractional Calculus AcademicPress New York NY USA 1974

[23] M Caputo ldquoLinearmodels of dissipationwhoseQ is almost fre-quency independent Part IIrdquo Journal of the Royal AstronomicalSociety vol 13 no 5 pp 529ndash539 1967

[24] Z Odibat and S Momani ldquoNumerical methods for nonlinearpartial differential equations of fractional orderrdquo Applied Math-ematical Modelling vol 32 no 1 pp 28ndash39 2008

[25] A Cuyt and L Wuytack Nonlinear Methods in NumericalAnalysis vol 136 ofNorth-HollandMathematics Studies North-Holland Publishing Amsterdam The Netherlands 1987

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of