research article design of robust output feedback ...research article design of robust output...

10
Research Article Design of Robust Output Feedback Guaranteed Cost Control for a Class of Nonlinear Discrete-Time Systems Yan Zhang, Yali Dong, and Tianrui Li School of Science, Tianjin Polytechnic University, Tianjin 300387, China Correspondence should be addressed to Yali Dong; [email protected] Received 17 May 2014; Revised 31 August 2014; Accepted 31 August 2014; Published 10 September 2014 Academic Editor: Yurong Liu Copyright Β© 2014 Yan Zhang et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. is paper investigates static output feedback guaranteed cost control for a class of nonlinear discrete-time systems where the delay in state vector is inconsistent with the delay in nonlinear perturbations. Based on the output measurement, the controller is designed to ensure the robust exponentially stability of the closed-loop system and guarantee the performance of system to achieve an adequate level. By using the Lyapunov-Krasovskii functional method, some sufficient conditions for the existence of robust output feedback guaranteed cost controller are established in terms of linear matrix inequality. A numerical example is provided to show the effectiveness of the results obtained. 1. Introduction In control theory and practice, one of the most important open problems is the static output feedback (SOF) problem. e main principle of the SOF control is to utilize the measured output to excite the plant. Since the controller can be easily implemented in practice, the SOF control has attracted a lot of attention over the past few decades and has been applied to many areas such as economic, communication, and biological systems [1, 2]. e goal of design SOF controller is to ensure asymptotically stable or exponential stable of the original system [3]. However, in many practical systems, controller designed is to not only ensure asymptotically or exponentially stable of the system but also guarantee the performance of system to achieve an adequate level. One method of dealing with this problem is the guaranteed cost control first introduced by Chang and Peng [4]. is method has the advantage of providing an upper bound on a given performance index and thus the system performance degradation is guaranteed to be no more than this bound. Based on this idea, a lot of significant results have been addressed for continuous-time systems in [5–7] and for discrete-time systems in [8]. It is well known that time-delays as well as parameter uncertainties frequently lead to instability of systems. More- over, the existing of time-delays and uncertainties make the system more complex [9, 10]. In the past studies for guaranteed cost control, almost most of the articles considered linear systems [11, 12]. How- ever, in majority dynamic systems, the nonlinear perturba- tions appear more and more frequently. erefore, we not only deal with the time-varying delays and uncertainties, but also deal with the nonlinearities. Difficulties then arise when one attempts to derive exponential stabilization conditions. Hence in this case, the methods in linear systems [11, 12] can not be directly applied to nonlinear systems. is calls for a fresh look at the problem with an improved Lyapunov- Krasovskii functionals and a new set of LMI conditions. In this paper, we aim to design robust static output feedback guaranteed cost controller for a class of nonlinear discrete- time systems with time-varying delays. By constructing a set of improved Lyapunov-Krasovskii functionals, a new criterion for the existence of robust static output feedback Hindawi Publishing Corporation International Journal of Engineering Mathematics Volume 2014, Article ID 628041, 9 pages http://dx.doi.org/10.1155/2014/628041

Upload: others

Post on 26-Jan-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

  • Research ArticleDesign of Robust Output Feedback Guaranteed Cost Control fora Class of Nonlinear Discrete-Time Systems

    Yan Zhang, Yali Dong, and Tianrui Li

    School of Science, Tianjin Polytechnic University, Tianjin 300387, China

    Correspondence should be addressed to Yali Dong; [email protected]

    Received 17 May 2014; Revised 31 August 2014; Accepted 31 August 2014; Published 10 September 2014

    Academic Editor: Yurong Liu

    Copyright Β© 2014 Yan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    This paper investigates static output feedback guaranteed cost control for a class of nonlinear discrete-time systems where thedelay in state vector is inconsistent with the delay in nonlinear perturbations. Based on the output measurement, the controller isdesigned to ensure the robust exponentially stability of the closed-loop system and guarantee the performance of system to achievean adequate level. By using the Lyapunov-Krasovskii functional method, some sufficient conditions for the existence of robustoutput feedback guaranteed cost controller are established in terms of linear matrix inequality. A numerical example is provided toshow the effectiveness of the results obtained.

    1. Introduction

    In control theory and practice, one of the most importantopen problems is the static output feedback (SOF) problem.The main principle of the SOF control is to utilize themeasured output to excite the plant. Since the controllercan be easily implemented in practice, the SOF controlhas attracted a lot of attention over the past few decadesand has been applied to many areas such as economic,communication, and biological systems [1, 2]. The goal ofdesign SOF controller is to ensure asymptotically stable orexponential stable of the original system [3]. However, inmany practical systems, controller designed is to not onlyensure asymptotically or exponentially stable of the systembut also guarantee the performance of system to achieve anadequate level. One method of dealing with this problem isthe guaranteed cost control first introduced by Chang andPeng [4]. This method has the advantage of providing anupper bound on a given performance index and thus thesystem performance degradation is guaranteed to be nomorethan this bound. Based on this idea, a lot of significant results

    have been addressed for continuous-time systems in [5–7]and for discrete-time systems in [8].

    It is well known that time-delays as well as parameteruncertainties frequently lead to instability of systems. More-over, the existing of time-delays and uncertainties make thesystem more complex [9, 10].

    In the past studies for guaranteed cost control, almostmost of the articles considered linear systems [11, 12]. How-ever, in majority dynamic systems, the nonlinear perturba-tions appear more and more frequently. Therefore, we notonly deal with the time-varying delays and uncertainties, butalso deal with the nonlinearities. Difficulties then arise whenone attempts to derive exponential stabilization conditions.Hence in this case, the methods in linear systems [11, 12]can not be directly applied to nonlinear systems. This callsfor a fresh look at the problem with an improved Lyapunov-Krasovskii functionals and a new set of LMI conditions. Inthis paper, we aim to design robust static output feedbackguaranteed cost controller for a class of nonlinear discrete-time systems with time-varying delays. By constructing aset of improved Lyapunov-Krasovskii functionals, a newcriterion for the existence of robust static output feedback

    Hindawi Publishing CorporationInternational Journal of Engineering MathematicsVolume 2014, Article ID 628041, 9 pageshttp://dx.doi.org/10.1155/2014/628041

  • 2 International Journal of Engineering Mathematics

    guaranteed cost controller is established and described interms of linear matrix inequality. A numerical example isprovided to show the effectiveness of the results obtained.

    Notations. In this paper, a matrix 𝐴 is symmetric if 𝐴 = 𝐴𝑇.πœ†max(𝐴)(πœ†min(𝐴)) denotes the maximum (minimum) valueof the real parts of eigenvalues of 𝐴. The symmetric terms ina matrix are denoted by βˆ—. 𝑋 > 0 (resp., 𝑋 β‰₯ 0), for 𝑋 βˆˆπ‘…π‘›Γ—π‘›, means that thematrix is real symmetric positive definite

    (resp., positive semidefinite). 𝑁+ denotes the set of all realnonnegative integers.

    2. Preliminaries

    Consider the following control system:

    π‘₯ (π‘˜ + 1) = [𝐴 + Δ𝐴 (π‘˜)] π‘₯ (π‘˜)

    + [𝐴1+ Δ𝐴1 (π‘˜)] π‘₯ (π‘˜ βˆ’ 𝑑 (π‘˜)) + 𝐡𝑒 (π‘˜)

    +𝐹𝑓 (π‘₯ (π‘˜)) + 𝐺𝑔 (π‘₯ (π‘˜ βˆ’ β„Ž (π‘˜))) ,

    𝑦 (π‘˜) = 𝐢π‘₯ (π‘˜) + 𝐢1π‘₯ (π‘˜ βˆ’ 𝑑 (π‘˜)) , π‘˜ ∈ 𝑁+,

    π‘₯ (π‘˜) = πœ™π‘˜, π‘˜ = βˆ’πœ, βˆ’πœ + 1, . . . , 0,

    (1)

    where π‘₯(π‘˜) ∈ 𝑅𝑛 is the state vector, 𝑦(π‘˜) ∈ π‘…π‘Ÿ is theobservation output, and 𝑒(π‘˜) ∈ π‘…π‘š is the control intput.𝐴, 𝐴1, 𝐡, 𝐹, 𝐺, 𝐢, and 𝐢

    1are given constant matrices

    with appropriate dimensions. Δ𝐴(π‘˜), Δ𝐴1(π‘˜) are the time-

    varying parameter uncertainties that are assumed to satisfythe following admissible condition:

    [Δ𝐴 (π‘˜) Δ𝐴1 (π‘˜)] = 𝑀Δ (π‘˜) [𝑁1𝑁2] , Δ𝑇(π‘˜) Ξ” (π‘˜) β©½ 𝐼,

    βˆ€π‘˜ ∈ 𝑁+,

    (2)

    where𝑀,𝑁1, and𝑁

    2are some given constant matrices with

    appropriate dimensions. The positive integers 𝑑(π‘˜) and β„Ž(π‘˜)are time-varying delays satisfying

    0 ≀ 𝑑 (π‘˜) ≀ 𝑑, 0 ≀ β„Ž (π‘˜) ≀ β„Ž, (3)

    where 𝑑, β„Ž are known positive integers. 𝑓(π‘₯(π‘˜)) ∈ 𝑅𝑛 and𝑔(π‘₯(π‘˜ βˆ’ β„Ž(π‘˜)) ∈ 𝑅

    𝑛 are unknown nonlinear functions,assumed as

    𝑓𝑇(π‘₯ (π‘˜)) 𝑓 (π‘₯ (π‘˜)) β©½ 𝛽1π‘₯

    𝑇(π‘˜) 𝐿𝑇

    1𝐿1π‘₯ (π‘˜) ,

    𝑔𝑇(π‘₯ (π‘˜ βˆ’ β„Ž (π‘˜))) 𝑔 (π‘₯ (π‘˜ βˆ’ β„Ž (π‘˜)))

    β©½ 𝛽2π‘₯𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝐿

    𝑇

    2𝐿2π‘₯ (π‘˜ βˆ’ β„Ž (π‘˜)) ,

    (4)

    where 𝛽1, 𝛽2

    are known positive integers and 𝐿1, 𝐿2

    are known real matrices. The initial condition πœ™ =(πœ™βˆ’πœ, πœ™βˆ’πœ+1

    , . . . , πœ™0) ∈ 𝑅(𝜏+1)𝑛 with the norm

    πœ™ = max {β€–π‘₯ (βˆ’πœ)β€– , . . . , β€–π‘₯ (0)β€–} , (5)

    where 𝜏 = max{β„Ž, 𝑑}.The corresponding cost function is as follows:

    𝐽 =

    ∞

    βˆ‘

    π‘˜=0

    {π‘₯𝑇(π‘˜) 𝑆π‘₯ (π‘˜) + π‘₯

    𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝑆1π‘₯ (π‘˜ βˆ’ 𝑑 (π‘˜))

    + π‘₯𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝑆2π‘₯ (π‘˜ βˆ’ β„Ž (π‘˜)) + 𝑒

    𝑇(π‘˜) 𝑅𝑒 (π‘˜)} ,

    (6)

    where 𝑆, 𝑆1, 𝑆2, and 𝑅 are given symmetric positive definite

    matrices with appropriate dimensions.Substituting the output feedback controller 𝑒(π‘˜) = 𝐾𝑦(π‘˜)

    into system (1), we have

    π‘₯ (π‘˜ + 1) = [𝐴 (π‘˜) + 𝐡𝐾𝐢] π‘₯ (π‘˜)

    + [𝐴1 (π‘˜) + 𝐡𝐾𝐢1] π‘₯ (π‘˜ βˆ’ 𝑑 (π‘˜)) + 𝐹𝑓 (π‘₯ (π‘˜))

    + 𝐺𝑔 (π‘₯ (π‘˜ βˆ’ β„Ž (π‘˜))) ,

    (7)

    where 𝐴(π‘˜) = 𝐴 + Δ𝐴(π‘˜) and 𝐴1(π‘˜) = 𝐴

    1+ Δ𝐴1(π‘˜).

    The objective of this paper is to design an output feedbackcontroller 𝑒(π‘˜) = 𝐾𝑦(π‘˜) for system (1) and cost function(6) such that the resulting closed-loop system is robustexponentially stable with an upper bound for cost function(6).

    We first give the following definitions, which will be usedin the next theorems and proofs.

    Definition 1. Given 𝛼 > 0, the closed-loop system (7) is saidto be robust exponentially stable with a decay rate 𝛼, if thereexists scalars 𝜎 > 0 such that for every solution π‘₯(π‘˜, πœ™) of thesystem satisfies the condition:

    π‘₯ (π‘˜, πœ™) ≀ πœŽπ‘’

    βˆ’π›Όπ‘˜ πœ™ , βˆ€π‘˜ ∈ 𝑁

    +. (8)

    Definition 2. For system (1) and cost function (6), if thereexist a static output feedback control law π‘’βˆ—(π‘˜) and a positiveconstant π½βˆ— such that the closed-loop system (7) is robustexponentially stable with a decay rate 𝛼 and the value (6)satisfies 𝐽 ≀ π½βˆ—, then π½βˆ— is said to be a guaranteed cost indexand π‘’βˆ—(π‘˜) is said to be a robust output feedback guaranteedcost control law of the system.

    The following lemmas are essential in establishing ourmain results.

  • International Journal of Engineering Mathematics 3

    Lemma3 (see [11]). For any π‘₯,𝑦 ∈ 𝑅𝑛, and positive symmetricdefinite matrix𝑁 ∈ 𝑅𝑛×𝑛, we have

    Β±2𝑦𝑇π‘₯ ≀ π‘₯

    π‘‡π‘βˆ’1π‘₯ + 𝑦𝑇𝑁𝑦. (9)

    Lemma 4 (Schur complement lemma [13]). Given constantmatrix𝑋,π‘Œ, and𝑍with appropriate dimensions satisfying𝑋 =𝑋𝑇, π‘Œ = π‘Œπ‘‡ > 0. Then 𝑋 + π‘π‘‡π‘Œβˆ’1𝑍 < 0 if and only if 𝑆 =

    (𝑋 𝑍𝑇

    𝑍 βˆ’π‘Œ) < 0.

    3. Main Results

    In this section, by constructing a new set of Lyapunov-Krasovskii functionals, we give a sufficient condition for theexistence of robustly output feedback guaranteed cost controlfor system (1).

    Theorem 5. For a given scalar 𝛼 > 0, the control 𝑒(π‘˜) =𝐾𝑦(π‘˜) is a robustly static output feedback guaranteed costcontroller for nonlinear system (1), if there exist symmetricpositive definite matrices 𝑃, 𝑄

    1, 𝑄2, 𝑅1, 𝑅2, and 𝐾, arbitrary

    matrix 𝑁, and scalars πœ€1β‰₯ 0, πœ€

    2β‰₯ 0, such that the following

    LMI holds:

    (

    Θ1

    0 Θ13

    Θ14

    Θ15

    βˆ— Θ2

    0 0 0

    βˆ— βˆ— Θ3

    0 0

    βˆ— βˆ— βˆ— Θ4

    0

    βˆ— βˆ— βˆ— βˆ— Θ5

    )< 0, (10)

    where

    Θ1= (

    Ξ”11

    Ξ”12

    0

    βˆ— Ξ”22

    Ξ”23

    βˆ— βˆ— Ξ”33

    ) , Θ14= (

    0 0 0 0

    NB NM NF NG0 0 0 0

    ) ,

    Θ13= (

    𝐢𝑇𝐾𝑇𝐢𝑇𝐾𝑇

    0 0

    0 0

    ) ,

    Θ15= (

    0 0

    0 0

    𝐢𝑇

    1𝐾𝑇𝐢𝑇

    1𝐾𝑇

    ) , Θ2= diag {Ξ”

    44, Ξ”55, Ξ”66} ,

    Θ3= diag {βˆ’0.5π‘…βˆ’1, βˆ’πΌ} ,

    Θ4= diag {Ξ›

    1, Ξ›2, βˆ’πΌ, βˆ’πΌ} ,

    Θ5= diag {βˆ’0.5π‘’βˆ’2π›Όπ‘‘π‘…βˆ’1, βˆ’π‘’βˆ’2𝛼𝐼} ,

    Ξ”11= βˆ’ 𝑃 + 𝑑 (𝑄

    1+ 𝑅1) + 𝑒𝛼𝑁𝑇

    1𝑁1+ β„Ž (𝑄

    2+ 𝑅2)

    + 𝛽1(𝑒2𝛼+ πœ€1) 𝐿𝑇

    1𝐿1+ 𝑆,

    Ξ”12= 𝑒𝛼𝑁𝐴, Ξ”

    23= 𝑒𝛼𝑑𝑁𝐴1,

    Ξ”33= βˆ’π‘„1βˆ’ 𝑅1+ 𝑒𝛼𝑑𝑁𝑇

    2𝑁2+ 𝑒2𝛼𝑑

    𝑆1,

    Ξ”22= 𝑃 βˆ’ (𝑁 + 𝑁

    𝑇) ,

    Ξ”44= βˆ’π‘„2βˆ’ 𝑅2+ (πœ€2+ 1) 𝛽

    2𝑒2π›Όβ„Ž

    𝐿𝑇

    2𝐿2+ 𝑒2π›Όβ„Ž

    𝑆2,

    Ξ”55= βˆ’πœ€1𝐼, Ξ”

    66= βˆ’πœ€2𝐼, Ξ›

    1= βˆ’π‘’βˆ’2𝛼𝑑

    𝐼,

    Ξ›2= βˆ’

    1

    𝑒𝛼𝑑 + 𝑒𝛼𝐼, 𝑑 = 𝑑 + 1, β„Ž = β„Ž + 1,

    (11)

    and the guaranteed cost value is given by π½βˆ— = πœ‡2β€–πœ™β€–2, where

    πœ‡2= πœ†max (𝑃) + 𝑑 (𝑑 + 1) [πœ†max (𝑄1) + πœ†max (𝑅1)]

    + β„Ž (β„Ž + 1) [πœ†max (𝑄2) + πœ†max (𝑅2)] .(12)

    Proof. We first introduce the new variable 𝑧(π‘˜) = π‘’π›Όπ‘˜π‘₯(π‘˜).The closed-loop system (7) is reduced to

    𝑧 (π‘˜ + 1) = [𝐴 (π‘˜) + 𝐡𝐾𝐢] 𝑒𝛼𝑧 (π‘˜)

    + [𝐴1 (π‘˜) + 𝐡𝐾𝐢1] 𝑒

    𝛼(𝑑(π‘˜)+1)𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 𝐹𝑒𝛼(π‘˜+1)

    𝑓 (𝑧 (π‘˜)) + 𝐺𝑒𝛼(π‘˜+1)

    𝑔 (𝑧 (π‘˜ βˆ’ β„Ž (π‘˜))) ,

    (13)

    where 𝑓(𝑧(π‘˜)) = 𝑓(𝑧(π‘˜)/π‘’π›Όπ‘˜) and 𝑔(𝑧(π‘˜ βˆ’ β„Ž(π‘˜))) = 𝑔(𝑧(π‘˜ βˆ’β„Ž(π‘˜))/𝑒

    𝛼(π‘˜βˆ’β„Ž(π‘˜))).

    Associated with (2), the above equality is reduced to

    𝑧 (π‘˜ + 1) = [𝐴 (π‘˜) + 𝐡 (π‘˜)𝐾𝐢 (π‘˜)] 𝑧 (π‘˜)

    + [𝐴1 (π‘˜) + 𝐡 (π‘˜)𝐾𝐢1 (π‘˜)] 𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 𝐹 (π‘˜) 𝑓 (𝑧 (π‘˜)) + 𝐺 (π‘˜) 𝑔 (𝑧 (π‘˜ βˆ’ β„Ž (π‘˜))) ,

    (14)

    where

    𝐴 (π‘˜) = 𝑒𝛼[𝐴 +𝑀Δ (π‘˜)𝑁1] , 𝐢 (π‘˜) = 𝑒

    βˆ’π›Όπ‘˜πΆ,

    𝐴1 (π‘˜) = 𝑒

    𝛼(𝑑(π‘˜)+1)[𝐴1+𝑀Δ (π‘˜)𝑁2] ,

    𝐡 (π‘˜) = 𝑒𝛼(π‘˜+1)

    𝐡, 𝐢1 (π‘˜) = 𝑒

    βˆ’π›Ό(π‘˜βˆ’π‘‘(π‘˜))𝐢1,

    𝐹 (π‘˜) = 𝑒𝛼(π‘˜+1)

    𝐹, 𝐺 (π‘˜) = 𝑒𝛼(π‘˜+1)

    𝐺,

    (15)

    𝑓𝑇

    (𝑧 (π‘˜)) 𝑓 (𝑧 (π‘˜)) ≀ 𝛽1π‘’βˆ’2π›Όπ‘˜

    𝑧𝑇(π‘˜) 𝐿𝑇

    1𝐿1𝑧 (π‘˜) , (16)

    𝑔𝑇(𝑧 (π‘˜ βˆ’ β„Ž (π‘˜))) 𝑔 (𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)))

    ≀ 𝛽2π‘’βˆ’2𝛼(π‘˜βˆ’β„Ž(π‘˜))

    𝑧𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝐿

    𝑇

    2𝐿2𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)) .

    (17)

    Consider a Lyapunov-Krasovskii functional candidate for theclosed-loop system (14) as

    𝑉 (π‘˜) = 𝑉1 (π‘˜) + 𝑉2 (π‘˜) + 𝑉3 (π‘˜) + 𝑉4 (π‘˜) + 𝑉5 (π‘˜) , (18)

  • 4 International Journal of Engineering Mathematics

    where

    𝑉1 (π‘˜) = 𝑧

    𝑇(π‘˜) 𝑃𝑧 (π‘˜) ,

    𝑉2 (π‘˜) =

    π‘˜βˆ’1

    βˆ‘

    𝑖=π‘˜βˆ’π‘‘(π‘˜)

    𝑧𝑇(𝑖) 𝑄1𝑧 (𝑖) +

    π‘˜βˆ’1

    βˆ‘

    𝑖=π‘˜βˆ’β„Ž(π‘˜)

    𝑧𝑇(𝑖) 𝑄2𝑧 (𝑖) ,

    𝑉3 (π‘˜) =

    0

    βˆ‘

    𝑗=βˆ’π‘‘+1

    π‘˜βˆ’1

    βˆ‘

    𝑖=π‘˜+𝑗

    𝑧𝑇(𝑖) 𝑄1𝑧 (𝑖) +

    0

    βˆ‘

    𝑗=βˆ’β„Ž+1

    π‘˜βˆ’1

    βˆ‘

    𝑖=π‘˜+𝑗

    𝑧𝑇(𝑖) 𝑄2𝑧 (𝑖) ,

    𝑉4 (π‘˜) =

    π‘˜βˆ’1

    βˆ‘

    𝑖=π‘˜βˆ’π‘‘(π‘˜)

    𝑧𝑇(𝑖) 𝑅1𝑧 (𝑖) +

    π‘˜βˆ’1

    βˆ‘

    𝑖=π‘˜βˆ’β„Ž(π‘˜)

    𝑧𝑇(𝑖) 𝑅2𝑧 (𝑖) ,

    𝑉5 (π‘˜) =

    0

    βˆ‘

    𝑗=βˆ’π‘‘+1

    π‘˜βˆ’1

    βˆ‘

    𝑖=π‘˜+𝑗

    𝑧𝑇(𝑖) 𝑅1𝑧 (𝑖) +

    0

    βˆ‘

    𝑗=βˆ’β„Ž+1

    π‘˜βˆ’1

    βˆ‘

    𝑖=π‘˜+𝑗

    𝑧𝑇(𝑖) 𝑅2𝑧 (𝑖) .

    (19)

    Calculating the difference of 𝑉(π‘˜) we have

    Δ𝑉1 (π‘˜) = 𝑧

    𝑇(π‘˜ + 1) 𝑃𝑧 (π‘˜ + 1) βˆ’ 𝑧

    𝑇(π‘˜) 𝑃𝑧 (π‘˜) , (20)

    Δ𝑉2 (π‘˜)

    ≀ 𝑧𝑇(π‘˜) (𝑄1 + 𝑄2) 𝑧 (π‘˜) βˆ’ 𝑧

    𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝑄1𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    βˆ’ 𝑧𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝑄2𝑧 (π‘˜ βˆ’ β„Ž (π‘˜))

    +

    π‘˜

    βˆ‘

    𝑖=π‘˜βˆ’π‘‘+1

    𝑧𝑇(𝑖) 𝑄1𝑧 (𝑖) +

    π‘˜

    βˆ‘

    𝑖=π‘˜βˆ’β„Ž+1

    𝑧𝑇(𝑖) 𝑄2𝑧 (𝑖) ,

    (21)

    Δ𝑉3 (π‘˜)

    =

    0

    βˆ‘

    𝑗=βˆ’π‘‘+1

    {

    {

    {

    π‘˜

    βˆ‘

    𝑖=π‘˜+𝑗+1

    𝑧𝑇(𝑖) 𝑄1𝑧 (𝑖) βˆ’

    π‘˜βˆ’1

    βˆ‘

    𝑖=π‘˜+𝑗

    𝑧𝑇(𝑖) 𝑄1𝑧 (𝑖)

    }

    }

    }

    +

    0

    βˆ‘

    𝑗=βˆ’β„Ž+1

    {

    {

    {

    π‘˜

    βˆ‘

    𝑖=π‘˜+𝑗+1

    𝑧𝑇(𝑖) 𝑄2𝑧 (𝑖) βˆ’

    π‘˜βˆ’1

    βˆ‘

    𝑖=π‘˜+𝑗

    𝑧𝑇(𝑖) 𝑄2𝑧 (𝑖)

    }

    }

    }

    = 𝑧𝑇(π‘˜) (𝑑𝑄1 + β„Žπ‘„2) 𝑧 (π‘˜)

    βˆ’

    π‘˜

    βˆ‘

    𝑗=π‘˜βˆ’π‘‘+1

    𝑧𝑇(𝑗)𝑄1𝑧 (𝑗) βˆ’

    π‘˜

    βˆ‘

    𝑗=π‘˜βˆ’β„Ž+1

    𝑧𝑇(𝑗)𝑄2𝑧 (𝑗) .

    (22)

    Combine (21) and (22), we have

    Δ𝑉2 (π‘˜) + Δ𝑉3 (π‘˜) ≀ 𝑧

    𝑇(π‘˜) (𝑑𝑄1 + β„Žπ‘„2) 𝑧 (π‘˜)

    βˆ’ 𝑧𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝑄1𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    βˆ’ 𝑧𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝑄2𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)) .

    (23)

    Similarly, we can get

    Δ𝑉4 (π‘˜) + Δ𝑉5 (π‘˜) ≀ 𝑧

    𝑇(π‘˜) (𝑑𝑅1 + β„Žπ‘…2) 𝑧 (π‘˜)

    βˆ’ 𝑧𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝑅1𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    βˆ’ 𝑧𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝑅2𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)) .

    (24)

    Therefore, from (17)–(24), we have

    Δ𝑉 (π‘˜) ≀ 𝑧𝑇(π‘˜ + 1) 𝑃𝑧 (π‘˜ + 1)

    + 𝑧𝑇(π‘˜) [𝑑 (𝑄1 + 𝑅1) + β„Ž (𝑄2 + 𝑅2) βˆ’ 𝑃] 𝑧 (π‘˜)

    βˆ’ 𝑧𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) (𝑄1 + 𝑅1) 𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    βˆ’ 𝑧𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) (𝑄2 + 𝑅2) 𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)) .

    (25)

    Multiplying 2𝑧𝑇(π‘˜ + 1)𝑁 both sides of the identity (14),

    βˆ’ 2𝑧𝑇(π‘˜ + 1)𝑁𝑧 (π‘˜ + 1) + 2𝑧

    𝑇(π‘˜ + 1)

    Γ— 𝑁(𝐴 (π‘˜) + 𝐡 (π‘˜)𝐾𝐢 (π‘˜)) 𝑧 (π‘˜) + 2𝑧𝑇(π‘˜ + 1)

    Γ— 𝑁(𝐴1 (π‘˜) + 𝐡 (π‘˜)𝐾𝐢1 (π‘˜)) 𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 2𝑧𝑇(π‘˜ + 1)𝑁𝐹 (π‘˜) 𝑓 + 2𝑧

    𝑇(π‘˜ + 1)𝑁𝐺 (π‘˜) 𝑔 = 0.

    (26)

    Note that for any πœ€1β‰₯ 0, πœ€

    2β‰₯ 0, it follows from (16) to (17)

    πœ€1[𝛽1π‘’βˆ’2π›Όπ‘˜

    𝑧𝑇(π‘˜) 𝐿𝑇

    1𝐿1𝑧 (π‘˜) βˆ’ 𝑓

    𝑇

    (𝑧 (π‘˜)) 𝑓 (𝑧 (π‘˜))] β‰₯ 0,

    πœ€2[𝛽2π‘’βˆ’2𝛼(π‘˜βˆ’β„Ž(π‘˜))

    𝑧𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝐿

    𝑇

    2𝐿2𝑧 (π‘˜ βˆ’ β„Ž (π‘˜))

    βˆ’π‘”π‘‡(𝑧 (π‘˜ βˆ’ β„Ž (π‘˜))) 𝑔 (𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)))] β‰₯ 0.

    (27)

    Substituting (26)-(27) into (25), we have

    Δ𝑉 (π‘˜)

    ≀ 𝑧𝑇(π‘˜ + 1) 𝑃𝑧 (π‘˜ + 1)

    + 𝑧𝑇(π‘˜) [𝑑 (𝑄1 + 𝑅1) + β„Ž (𝑄2 + 𝑅2) βˆ’ 𝑃] 𝑧 (π‘˜)

    βˆ’ 𝑧𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) (𝑄1 + 𝑅1) 𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    βˆ’ 𝑧𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) (𝑄2 + 𝑅2) 𝑧 (π‘˜ βˆ’ β„Ž (π‘˜))

    βˆ’ 2𝑧𝑇(π‘˜ + 1)𝑁𝑧 (π‘˜ + 1) + 2𝑧

    𝑇(π‘˜ + 1)

  • International Journal of Engineering Mathematics 5

    Γ— 𝑁(𝐴 (π‘˜) + 𝐡 (π‘˜)𝐾𝐢 (π‘˜)) 𝑧 (π‘˜) + 2𝑧𝑇(π‘˜ + 1)

    Γ— 𝑁 (𝐴1 (π‘˜) + 𝐡 (π‘˜)𝐾𝐢1 (π‘˜)) 𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 2𝑧𝑇(π‘˜ + 1)𝑁𝐹 (π‘˜) 𝑓 (𝑧 (π‘˜))

    + 2𝑧𝑇(π‘˜ + 1)𝑁𝐺 (π‘˜) 𝑔 (𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)))

    + πœ€1[𝛽1π‘’βˆ’2π›Όπ‘˜

    𝑧𝑇(π‘˜) 𝐿𝑇

    1𝐿1𝑧 (π‘˜)βˆ’π‘“

    𝑇

    (𝑧 (π‘˜)) 𝑓 (𝑧 (π‘˜))]

    + πœ€2[𝛽2π‘’βˆ’2𝛼(π‘˜βˆ’β„Ž(π‘˜))

    𝑧𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝐿

    𝑇

    2𝐿2𝑧 (π‘˜ βˆ’ β„Ž (π‘˜))

    βˆ’ 𝑔𝑇(𝑧 (π‘˜ βˆ’ β„Ž (π‘˜))) 𝑔 (𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)))] .

    (28)

    Dealing with partial idem in (28) using Lemma 3, it follows

    2𝑧𝑇(π‘˜ + 1)𝑁 (𝐴 (π‘˜) + 𝐡 (π‘˜)𝐾𝐢 (π‘˜)) 𝑧 (π‘˜)

    = 2𝑧𝑇(π‘˜ + 1) 𝑒

    𝛼[𝑁𝐴 + 𝑁𝑀Δ (π‘˜)𝑁1] 𝑧 (π‘˜)

    + 2𝑧𝑇(π‘˜ + 1) 𝑒

    𝛼𝑁𝐡𝐾𝐢𝑧 (π‘˜)

    ≀ 2𝑧𝑇(π‘˜ + 1) 𝑒

    𝛼𝑁𝐴𝑧 (π‘˜)

    + 𝑒𝛼𝑧𝑇(π‘˜ + 1)𝑁𝑀𝑀

    𝑇𝑁𝑇𝑧 (π‘˜ + 1)

    + 𝑒𝛼𝑧𝑇(π‘˜)𝑁𝑇

    1𝑁1𝑧 (π‘˜)

    + 𝑧𝑇(π‘˜ + 1) 𝑒

    2𝛼𝑁𝐡𝐡𝑇𝑁𝑇𝑧 (π‘˜ + 1)

    + 𝑧𝑇(π‘˜) 𝐢𝑇𝐾𝑇𝐾𝐢𝑧 (π‘˜) ,

    2𝑧𝑇(π‘˜ + 1)𝑁 (𝐴1 (π‘˜) + 𝐡 (π‘˜)𝐾𝐢1 (π‘˜)) 𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    = 𝑧𝑇(π‘˜ + 1) 𝑒

    𝛼(𝑑(π‘˜)+1)(𝑁𝐴1+ 𝐴𝑇

    1𝑁𝑇) 𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 2𝑒𝛼(𝑑(π‘˜)+1)

    𝑧𝑇(π‘˜ + 1)𝑁𝑀Δ (π‘˜)𝑁2𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 2𝑧𝑇(π‘˜ + 1) 𝑒

    𝛼𝑑(π‘˜)𝑁𝐡𝑒𝛼𝐾𝐢1𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    ≀ 𝑧𝑇(π‘˜ + 1) 𝑒

    𝛼𝑑(𝑁𝐴1+ 𝐴𝑇

    1𝑁𝑇) 𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 𝑒𝛼𝑑𝑧𝑇(π‘˜ + 1)𝑁𝑀𝑀

    𝑇𝑁𝑇𝑧 (π‘˜ + 1)

    + 𝑒𝛼𝑑𝑧𝑇(π‘˜ βˆ’ 𝑑 (π‘˜))𝑁

    𝑇

    2𝑁2𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 𝑧𝑇(π‘˜ + 1) 𝑒

    2𝛼𝑑𝑁𝐡𝐡𝑇𝑁𝑇𝑧 (π‘˜ + 1)

    + 𝑒2𝛼𝑧𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝐢

    𝑇

    1𝐾𝑇𝐾𝐢1𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜)) ,

    2𝑧𝑇(π‘˜ + 1)𝑁𝐹 (π‘˜) 𝑓 (𝑧 (π‘˜))

    = 2𝑧𝑇(π‘˜ + 1)𝑁𝐹𝑒

    𝛼(π‘˜+1)𝑓 (𝑧 (π‘˜))

    ≀ 𝑧𝑇(π‘˜ + 1)𝑁𝐹𝐹

    𝑇𝑁𝑇𝑧 (π‘˜ + 1)

    + 𝑒2𝛼(π‘˜+1)

    𝑓𝑇

    (𝑧 (π‘˜)) 𝑓 (𝑧 (π‘˜))

    ≀ 𝑧𝑇(π‘˜ + 1)𝑁𝐹𝐹

    𝑇𝑁𝑇𝑧 (π‘˜ + 1)

    + 𝛽1𝑒2𝛼𝑧𝑇(π‘˜) 𝐿𝑇

    1𝐿1𝑧 (π‘˜) .

    (29)

    Similarly, we have

    2𝑧𝑇(π‘˜ + 1)𝑁𝐺 (π‘˜) 𝑔 (𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)))

    ≀ 𝑧𝑇(π‘˜ + 1)𝑁𝐺𝐺

    𝑇𝑁𝑇𝑧 (π‘˜ + 1)

    + 𝛽2𝑒2π›Όβ„Ž

    𝑧𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝐿

    𝑇

    2𝐿2𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)) .

    (30)

    Adding the following relation to inequality (28)

    [𝑧𝑇(π‘˜) 𝑆𝑧 (π‘˜) + 𝑧

    𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝑆1𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 𝑧𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝑆2𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)) + 𝑒

    𝑇(π‘˜) 𝑅𝑒 (π‘˜)]

    βˆ’ [𝑧𝑇(π‘˜) 𝑆𝑧 (π‘˜) + 𝑧

    𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝑆1𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 𝑧𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝑆2𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)) + 𝑒

    𝑇(π‘˜) 𝑅𝑒 (π‘˜)] = 0,

    (31)

    where 𝑆 = π‘’βˆ’2π›Όπ‘˜π‘†, 𝑆1= π‘’βˆ’2𝛼(π‘˜βˆ’π‘‘(π‘˜))

    𝑆1, and 𝑆

    2= π‘’βˆ’2𝛼(π‘˜βˆ’β„Ž(π‘˜))

    𝑆2,

    and using

    𝑒𝑇(π‘˜) 𝑅𝑒 (π‘˜)

    ≀ 𝑧𝑇(π‘˜) 𝐢𝑇𝐾𝑇𝑅𝐾𝐢𝑧 (π‘˜)

    + 2𝑒𝛼𝑑𝑧𝑇(π‘˜) 𝐢𝑇𝐾𝑇𝑅𝐾𝐢1𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 𝑒2𝛼𝑑

    𝑧𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝐢

    𝑇

    1𝐾𝑇𝑅𝐾𝐢1𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    ≀ 2𝑧𝑇(π‘˜) 𝐢𝑇𝐾𝑇𝑅𝐾𝐢𝑧 (π‘˜)

    + 2𝑒2𝛼𝑑

    𝑧𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝐢

    𝑇

    1𝐾𝑇𝑅𝐾𝐢1𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜)) ,

    (32)

    we can get

    Δ𝑉 (π‘˜)

    ≀ πœ‰π‘‡(π‘˜)Ξ©πœ‰ (π‘˜)

    βˆ’ [𝑧𝑇(π‘˜) 𝑆𝑧 (π‘˜) + 𝑧

    𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝑆1𝑧 (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 𝑧𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝑆2𝑧 (π‘˜ βˆ’ β„Ž (π‘˜)) + 𝑒

    𝑇(π‘˜) 𝑅𝑒 (π‘˜)] ,

    (33)

  • 6 International Journal of Engineering Mathematics

    where πœ‰(π‘˜) = [𝑧𝑇(π‘˜) 𝑧𝑇(π‘˜ + 1) 𝑧𝑇(π‘˜ βˆ’ 𝑑(π‘˜)) 𝑧𝑇(π‘˜ βˆ’β„Ž(π‘˜)) 𝑓

    𝑇

    (𝑧(π‘˜)) 𝑔𝑇(𝑧(π‘˜ βˆ’ β„Ž(π‘˜)))]

    𝑇

    and

    Ξ© =(

    (

    Ξ©11

    Ξ”12

    0 0 0 0

    βˆ— Ξ©22

    Ξ”23

    0 0 0

    βˆ— βˆ— Ξ©33

    0 0 0

    βˆ— βˆ— βˆ— Ξ”44

    0 0

    βˆ— βˆ— βˆ— βˆ— Ξ”55

    0

    βˆ— βˆ— βˆ— βˆ— βˆ— Ξ”66

    )

    )

    ,

    Ξ©11= Ξ”11+ 𝐢𝑇𝐾𝑇(𝐼 + 𝑅 + 𝑅

    𝑇)𝐾𝐢,

    Ξ©22= Ξ”22+ 𝑒2𝛼𝑑

    𝑁𝐡𝐡𝑇𝑁𝑇+ 𝑒𝛼𝑁𝑀𝑀

    𝑇𝑁𝑇

    + 𝑒𝛼𝑑𝑁𝑀𝑀

    𝑇𝑁𝑇+ 𝑁𝐹𝐹

    𝑇𝑁𝑇+ 𝑁𝐺𝐺

    𝑇𝑁𝑇,

    Ξ©33= Ξ”33+ 𝑒2𝛼𝐢𝑇

    1𝐾𝑇𝐾𝐢1+ 2𝑒2𝛼𝑑

    𝐢𝑇

    1𝐾𝑇𝑅𝐾𝐢1.

    (34)

    By Lemma 4, the condition Ξ© < 0 is equivalent to LMI(10). Therefore, from (33) it follows that

    Δ𝑉 (π‘˜) < 0, (35)

    which implies that 𝑉(π‘˜) ≀ 𝑉(0), βˆ€π‘˜ ∈ 𝑁+.We can easily get

    πœ‡1‖𝑧(π‘˜)β€–

    2≀ 𝑉 (π‘˜) ≀ πœ‡2

    π‘§π‘˜

    2, (36)

    where β€–π‘§π‘˜β€– = max{‖𝑧(π‘˜ βˆ’ 𝜏)β€–, . . . , ‖𝑧(π‘˜)β€–}, πœ‡

    1= πœ†min(𝑃),

    πœ‡2= πœ†max (𝑃) + 𝑑 (𝑑 + 1) [πœ†max (𝑄1) + πœ†max (𝑅1)]

    + β„Ž (β„Ž + 1) [πœ†max (𝑄2) + πœ†max (𝑅2)] .(37)

    From (35) and (36), we can get

    πœ‡1‖𝑧(π‘˜)β€–

    2≀ πœ‡2

    πœ™

    2

    , ‖𝑧 (π‘˜)β€– ≀ βˆšπœ‡2

    πœ‡1

    πœ™. (38)

    Using the relation 𝑧(π‘˜) = π‘’π›Όπ‘˜π‘₯(π‘˜), we can get

    β€–π‘₯ (π‘˜)β€– ≀ βˆšπœ‡2

    πœ‡1

    π‘’βˆ’π›Όπ‘˜ πœ™

    , βˆ€π‘˜ ∈ 𝑁+. (39)

    Therefore, the closed-loop system (7) is exponentially stable.Next we will find the guaranteed cost value, from (33), we canget

    Δ𝑉 (π‘˜)

    ≀ βˆ’ [π‘₯𝑇(π‘˜) 𝑆π‘₯ (π‘˜) + π‘₯

    𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝑆1π‘₯ (π‘˜ βˆ’ 𝑑 (π‘˜))

    + π‘₯𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝑆2π‘₯ (π‘˜ βˆ’ β„Ž (π‘˜)) + 𝑒

    𝑇(π‘˜) 𝑅𝑒 (π‘˜)] .

    (40)

    Summing up both sides of (40) from 0 to 𝑛 βˆ’ 1, we can getπ‘›βˆ’1

    βˆ‘

    π‘˜=0

    [π‘₯𝑇(π‘˜) 𝑆π‘₯ (π‘˜) + π‘₯

    𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝑆1π‘₯ (π‘˜ βˆ’ 𝑑 (π‘˜))

    + π‘₯𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝑆2π‘₯ (π‘˜ βˆ’ β„Ž (π‘˜)) + 𝑒

    𝑇(π‘˜) 𝑅𝑒 (π‘˜)]

    ≀ 𝑉 (0) βˆ’ 𝑉 (𝑛) .

    (41)

    Letting 𝑛 β†’ +∞, noting that 𝑉(𝑛) β†’ 0, we can get

    𝐽 =

    ∞

    βˆ‘

    π‘˜=0

    [π‘₯𝑇(π‘˜) 𝑆π‘₯ (π‘˜) + π‘₯

    𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝑆1π‘₯ (π‘˜ βˆ’ 𝑑 (π‘˜))

    + π‘₯𝑇(π‘˜ βˆ’ β„Ž (π‘˜)) 𝑆2π‘₯ (π‘˜ βˆ’ β„Ž (π‘˜))

    + 𝑒𝑇(π‘˜) 𝑅𝑒 (π‘˜) ]

    ≀ 𝑉 (0) ,

    (42)

    associated with (36), and we have 𝐽 ≀ πœ‡2β€–πœ™β€–2= π½βˆ—.

    Remark 6. When time-delay in state vector keeps consistentwith the delay in nonlinear perturbations and uncertain itemsdisappear, the system (1) induced to

    π‘₯ (π‘˜ + 1) = 𝐴π‘₯ (π‘˜) + 𝐴1π‘₯ (π‘˜ βˆ’ 𝑑 (π‘˜)) + 𝐡𝑒 (π‘˜)

    + 𝐹𝑓 (π‘₯ (π‘˜)) + 𝐺𝑔 (π‘₯ (π‘˜ βˆ’ 𝑑 (π‘˜))) ,

    𝑦 (π‘˜) = 𝐢π‘₯ (π‘˜) + 𝐢1π‘₯ (π‘˜ βˆ’ 𝑑 (π‘˜)) , π‘˜ ∈ 𝑁+,

    π‘₯ (π‘˜) = πœ™π‘˜, π‘˜ = βˆ’π‘‘, βˆ’π‘‘ + 1, . . . , 0,

    (43)

    at the same time, the closed-loop system (7), and costfunction (6) are reduced to

    π‘₯ (π‘˜ + 1) = [𝐴 + 𝐡𝐾𝐢] π‘₯ (π‘˜) + [𝐴1 + 𝐡𝐾𝐢1] π‘₯ (π‘˜ βˆ’ 𝑑 (π‘˜))

    + 𝐹𝑓 (π‘₯ (π‘˜)) + 𝐺𝑔 (π‘₯ (π‘˜ βˆ’ 𝑑 (π‘˜))) ,

    𝐽 =

    ∞

    βˆ‘

    π‘˜=0

    {π‘₯𝑇(π‘˜) 𝑆π‘₯ (π‘˜) + π‘₯

    𝑇(π‘˜ βˆ’ 𝑑 (π‘˜)) 𝑆1 + 𝑒

    𝑇(π‘˜) 𝑅𝑒 (π‘˜)} .

    (44)

    Then we give a sufficient condition for the existence of staticoutput feedback control for system (43).

    Theorem7. For a given scalar 𝛼 > 0, the control 𝑒(π‘˜) = 𝐾𝑦(π‘˜)is a static output feedback guaranteed cost controller for system(43), if there exist symmetric positive definite matrices 𝑃, 𝑄

    1,

    𝑅1, and𝐾, arbitrary matrix𝑁, and scalars πœ€

    1β‰₯ 0, πœ€2β‰₯ 0, such

    that the following LMI holds:

    (

    Ξ“10 Θ13

    Ξ“14

    Ξ“15

    βˆ— Ξ“2

    0 0 0

    βˆ— βˆ— Θ3

    0 0

    βˆ— βˆ— βˆ— Ξ“4

    0

    βˆ— βˆ— βˆ— βˆ— Ξ“5

    )< 0, (45)

  • International Journal of Engineering Mathematics 7

    where

    Ξ“1= (

    Ξ”

    11Ξ”12

    0

    βˆ— Ξ”22

    Ξ”23

    βˆ— βˆ— Ξ”

    33

    ) , Ξ“14= (

    0 0 0

    𝑁𝐡 𝑁𝐹 𝑁𝐺

    0 0 0

    ) ,

    Θ15= (

    0 0

    0 0

    𝐢𝑇

    1𝐾𝑇𝐢𝑇

    1𝐾𝑇

    ) ,

    Ξ“2= diag {Ξ”

    44, Ξ”

    55} , Ξ“

    4= diag {Ξ›

    1, Ξ›2, βˆ’πΌ, βˆ’πΌ} ,

    Ξ“5= diag {βˆ’0.5π‘’βˆ’2π›Όπ‘‘π‘…βˆ’1, βˆ’π‘’βˆ’2𝛼𝐼} ,

    Ξ”

    11= βˆ’π‘ƒ + 𝑑 (𝑄

    1+ 𝑅1) + 𝛽1(𝑒2𝛼+ πœ€1) 𝐿𝑇

    1𝐿1+ 𝑆,

    Ξ”

    33= βˆ’π‘„1βˆ’ 𝑅1+ 𝑒2𝛼𝑑

    𝑆1+ 𝛽2(πœ€2+ 𝑒2𝛼𝑑

    ) 𝐿𝑇

    2𝐿2,

    Ξ”

    44= βˆ’πœ€1𝐼, Ξ”

    55= βˆ’πœ€2𝐼,

    (46)

    and the guaranteed cost value is given by π½βˆ— = πœ‡2β€–πœ™β€–2, where

    πœ‡

    2= πœ†max(𝑃) + 𝑑(𝑑 + 1)[πœ†max(𝑄1) + πœ†max(𝑅1)].

    Proof. Theproof ofTheorem 7 is similar to that ofTheorem 5,which are omitted.

    Remark 8. In this paper, we design the controller directlyfrom the LMI without variable transformation [11] whichreduces the amount of calculation. Moreover, based onTheorem 5, one can deduce the criteria for linear discrete-time systems with time-delay and nonlinear discrete-timesystems with constant time-delay.

    4. Numerical Example

    Consider the nonlinear uncertain discrete-time system (1)with the following parameters:

    𝐴 = (

    βˆ’0.02 0.12 βˆ’0.1

    0.1 0.03 0.1

    βˆ’0.1 0.03 0.2

    ) ,

    𝐴1= (

    0.02 0.03 0.02

    0.01 0.02 βˆ’0.01

    βˆ’0.05 0.02 0.08

    ) ,

    𝐡 = (

    βˆ’0.05 0.1 0.2

    0.1 0.32 0.1

    0.05 βˆ’0.06 0.12

    ) ,

    𝐹 = (

    0.16 βˆ’0.3 0.02

    βˆ’0.2 0.14 0.2

    0.13 0.14 0.1

    ) ,

    𝐺 = (

    βˆ’0.03 0.06 0.02

    0.4 0.1 0.1

    0.02 βˆ’0.03 0.02

    ) ,

    𝐢 = (

    0.12 0.28 0

    βˆ’0.06 0.09 0.02

    0.2 0.03 0.2

    ) ,

    𝐢1= (

    0.04 βˆ’0.06 0.07

    0.05 0.08 0.07

    0.04 0.01 0.05

    ) ,

    𝑁1= (

    βˆ’0.5 0.2 0.1

    0.2 0.3 0.1

    βˆ’0.8 0.2 0.1

    ) , 𝑁2= (

    βˆ’0.6 0.3 0.1

    βˆ’0.1 βˆ’0.2 0.2

    βˆ’0.1 βˆ’0.5 0.3

    ) ,

    𝑀 = (

    0.03 0.02 0.04

    βˆ’0.05 0.12 0.1

    0.03 βˆ’0.02 0.02

    ) ,

    𝑆 = (

    0.6 0.2 0.1

    0.2 0.6 0.4

    0.1 0.4 0.2

    ) , 𝑆1= (

    0.4 βˆ’0.1 0.3

    βˆ’0.1 0.3 0.2

    0.3 0.2 0.6

    ) ,

    𝑆2= (

    0.5 0.1 0.2

    0.1 0.3 0.4

    0.2 0.4 0.6

    ) , 𝑅 = (

    1.12 0.3 βˆ’0.1

    0.3 1.5 0

    βˆ’0.1 0 1.6

    ) ,

    𝐿1= (

    βˆ’0.35 0.2 0.1

    0.2 0.3 0.1

    0.8 0.2 0.1

    ) , 𝐿2= (

    1.2 0.23 2

    βˆ’1.3 0.4 0.2

    1.5 βˆ’0.3 1.6

    ) ,

    𝑑 (π‘˜) = 1.5 + 1.5 sin π‘˜πœ‹2, β„Ž (π‘˜) = 1 + cos π‘˜πœ‹

    2,

    π‘˜ = 0, 1, 2, . . . .

    (47)

    Given 𝛼 = 0.032, 𝑑 = 3, β„Ž = 2, 𝛽1= 0.23, 𝛽

    2= 0.25, and the

    initial condition

    π‘₯ (βˆ’3) = (

    βˆ’1.6

    1.3

    1.2

    ) , π‘₯ (βˆ’2) = (

    βˆ’1.3

    0.8

    βˆ’1

    ) ,

    π‘₯ (βˆ’1) = (

    0.4

    βˆ’0.5

    0.2

    ) , π‘₯ (0) = (

    1.2

    0

    βˆ’1.2

    ) ,

    (48)

    using the LMI Toolbox in MATLAB [14], the LMI (10) inTheorem 5 is satisfied with

    𝑃 = (

    4.1184 0.0455 βˆ’0.3818

    0.0455 1.6976 βˆ’0.2973

    βˆ’0.3818 βˆ’0.2973 10.3666

    ) ,

    𝑄1= (

    0.0311 βˆ’0.0020 βˆ’0.0207

    βˆ’0.0020 0.0115 βˆ’0.0158

    βˆ’0.0207 βˆ’0.0158 0.1978

    ) ,

  • 8 International Journal of Engineering Mathematics

    0 5 10 15 20

    0

    0.5

    1

    1.5

    2

    Time (s)

    βˆ’2

    βˆ’1.5

    βˆ’1

    βˆ’0.5

    x

    1

    x

    2

    x

    3

    Figure 1: State trajectories of the closed-loop system.

    𝑄2= (

    0.0478 βˆ’0.0032 βˆ’0.0334

    βˆ’0.0032 0.0163 βˆ’0.0254

    βˆ’0.0334 βˆ’0.0254 0.3176

    ) ,

    𝑅1= (

    0.1001 βˆ’0.0069 βˆ’0.0710

    βˆ’0.0069 0.0329 βˆ’0.0541

    βˆ’0.0710 βˆ’0.0541 0.6715

    ) ,

    𝑅2= (

    0.1046 βˆ’0.0077 βˆ’0.0783

    βˆ’0.0077 0.0299 βˆ’0.0596

    βˆ’0.0783 βˆ’0.0596 0.7340

    ) ,

    𝑁 = (

    5.2270 0.1211 0.0022

    0.1220 2.2186 βˆ’0.4808

    0.0003 βˆ’0.4800 13.0762

    ) ,

    πœ€1= 7.3374, πœ€

    2= 6.7127,

    (49)

    and the controller parameter

    𝐾 = (

    0.6351 βˆ’0.9829 βˆ’0.4757

    βˆ’0.9829 2.7965 0.8749

    βˆ’0.4757 0.8749 0.9870

    ) . (50)

    Moveover, the solution of the closed-loop system satisfies

    β€–π‘₯ (π‘˜)β€– ≀ 4.0345π‘’βˆ’0.032π‘˜ πœ™

    ,(51)

    and the guaranteed cost of the closed-loop system is as follows

    π½βˆ—= 27.4600

    πœ™

    2. (52)

    Simulation result is presented in Figure 1, which shows theconvergence behavior of the proposed methods.

    5. Conclusion

    In this paper, the problem of robust output feedback guar-anteed cost control for nonlinear uncertain disctere systemis researched. For all admissible uncertainties, an outputfeedback guaranteed cost controller has been designed suchthat the resulting closed-loop system is robust exponentiallystable and guarantees an adequate level of system perfor-mance. A numerical example has been presented to illustratethe efficiency of the result.

    Conflict of Interests

    The authors declare that there is no conflict of interestsregarding the publication of this paper.

    References

    [1] I. Yaesh and U. Shaked, β€œπ»βˆž

    optimization with pole con-straints of static output-feedback controllers-a non-smoothoptimization approach,” IEEE Transactions on Control SystemsTechnology, vol. 20, no. 4, pp. 1066–1072, 2012.

    [2] J. X. Dong and G. H. Yang, β€œStatic output feedback controlsynthesis for linear systems with time-invariant parametricuncertainties,” IEEE Transactions on Automatic Control, vol. 52,no. 10, pp. 1930–1936, 2007.

    [3] D. W. C. Ho and G. Lu, β€œRobust stabilization for a classof discrete-time non-linear systems via output feedback: theunified LMI approach,” International Journal of Control, vol. 76,no. 2, pp. 105–115, 2003.

    [4] S. S. L. Chang and T. Peng, β€œAdaptive guaranteed cost controlof systems with uncertain parameters,” IEEE Transactions onAutomatic Control, vol. 17, no. 4, pp. 474–483, 1972.

    [5] J. X. Dong and G. H. Yang, β€œRobust static output feedbackcontrol synthesis for linear continuous systems with polytopicuncertainties,” Automatica, vol. 49, no. 6, pp. 1821–1829, 2013.

    [6] C. H. Lien, β€œNon-fragile guaranteed cost control for uncertainneutral dynamic systems with time-varying delays in state andcontrol input,” Chaos, Solitons and Fractals, vol. 31, no. 4, pp.889–899, 2007.

    [7] J.Wei, Y. Dong, andY. Su, β€œGuaranteed cost control of uncertainT-S fuzzy systems via output feedback approach,” WSEASTransactions on Systems, vol. 10, no. 9, pp. 306–317, 2011.

    [8] W.-H. Chen, Z.-H. Guan, and X. Lu, β€œDelay-dependent guar-anteed cost control for uncertain discrete-time systems withdelay,” IEE Proceedings: Control Theory and Applications, vol.150, no. 4, pp. 412–416, 2003.

    [9] L. Chen, β€œUnfragile guaranteed-cost 𝐻∞

    control of uncertainstate-delay sampling system,” Procedia Engineering, vol. 29, pp.3359–3363, 2012.

    [10] F. Qiu, B. Cui, and Y. Ji, β€œFurther results on robust stability ofneutral system with mixed time-varying delays and nonlinearperturbations,”Nonlinear Analysis. RealWorld Applications, vol.11, no. 2, pp. 895–906, 2010.

    [11] M. V. Thuan, V. N. Phat, and H. M. Trinh, β€œDynamic out-put feedback guaranteed cost control for linear systems withinterval time-varying delays in states and outputs,” AppliedMathematics and Computation, vol. 218, no. 21, pp. 10697–10707,2012.

  • International Journal of Engineering Mathematics 9

    [12] J. H. Park, β€œOn dynamic output feedback guaranteed costcontrol of uncertain discrete-delay systems: LMI optimizationapproach,” Journal of OptimizationTheory and Applications, vol.121, no. 1, pp. 147–162, 2004.

    [13] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishan, LinearMatrix Inequalities in System and Control Theory, vol. 15, SIAM,Philadelphia, Pa, USA, 1994.

    [14] P. Gahinet, A. Nemirovskii, A. J. Laub, and M. Chilali, LMIControl Toolbox: for Use with MATLAB, MathWorks, Inc.,Natick, Mass, USA, 1995.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of