representation numbers by sums of quadratic forms x cx2 cx ... · representation numbers of sums of...

7
Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 18 (2017), No. 1, pp. 277–283 DOI: 10.18514/MMN.2017.1955 REPRESENTATION NUMBERS BY SUMS OF QUADRATIC FORMS X 2 1 C X 1 X 2 C X 2 2 IN SIXTEEN VARIABLES B ¨ ULENT K ¨ OKL ¨ UCE AND M ¨ UBERRA G ¨ UREL Received 11 April, 2016 Abstract. Let R.a 1 ;:::;a 8 I n/ denote the number of representations of an integer n by the form a 1 .x 2 1 C x 1 x 2 C x 2 2 / C a 2 .x 2 3 C x 3 x 4 C x 2 4 / C a 3 .x 2 5 C x 5 x 6 C x 2 6 / C a 4 .x 2 7 C x 7 x 8 C x 2 8 / C a 5 .x 2 9 C x 9 x 10 C x 2 10 / C a 6 .x 2 11 C x 11 x 12 C x 2 12 / C a 7 .x 2 13 C x 13 x 14 C x 2 14 / Ca 8 .x 2 15 C x 15 x 16 C x 2 16 /. In this article, we derive formulae for R.1;2;2;2;2;2;2;2I n/, R.1;1;1;2;2;2;2;2I n/, R.1;1;1;1;1;2;2;2I n/ and R.1;1;1;1;1;1;1;2I n/. These formulae are given in terms of the function 7 .n/ and the numbers 8;2 .n/ and 8;6 .n/. 2010 Mathematics Subject Classification: 11A25; 11E25 Keywords: quadratic forms, sum of divisors functions, convolution sums, representation num- bers 1. I NTRODUCTION Let N; Z and Q denote the set of positive integers, integers and rational numbers respectively and let N 0 D N [f0g: For a 1 ;:::;a 8 2 N and n 2 N 0 we let R.a 1 ;:::;a 8 I n/ denote the representation number of n by the form a 1 .x 2 1 C x 1 x 2 C x 2 2 / C a 2 .x 2 3 C x 3 x 4 C x 2 4 / C a 3 .x 2 5 C x 5 x 6 C x 2 6 / C a 4 .x 2 7 C x 7 x 8 C x 2 8 / C a 5 .x 2 9 C x 9 x 10 C x 2 10 / C a 6 .x 2 11 C x 11 x 12 C x 2 12 / C a 7 .x 2 13 C x 13 x 14 C x 2 14 / Ca 8 .x 2 15 C x 15 x 16 C x 2 16 /, that is R.a 1 ;:::;a 8 I n/ (1.1) WD card ( .x 1 ;:::;x 16 / 2 Z 16 W n D 8 X kD1 a k .x 2 2k1 C x 2k1 x 2k C x 2 2k / ) . If l of a 1 ;:::;a 8 are equal, say a i D a i C1 D ::: D a i Cl 1 D a (1.2) for convenience we indicate this in R.a 1 ;:::;a 8 I n/ by writing a l for a i ;a i C1 ;:::;a i Cl 1 . For k 2 N and n 2 Q the sum of divisor function is defined by c 2017 Miskolc University Press

Upload: lekhuong

Post on 21-Nov-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Miskolc Mathematical Notes HU e-ISSN 1787-2413Vol. 18 (2017), No. 1, pp. 277–283 DOI: 10.18514/MMN.2017.1955

REPRESENTATION NUMBERS BY SUMS OF QUADRATICFORMS X2

1 CX1X2CX22 IN SIXTEEN VARIABLES

BULENT KOKLUCE AND MUBERRA GUREL

Received 11 April, 2016

Abstract. Let R.a1; :::;a8In/ denote the number of representations of an integer n by the forma1.x

21 C x1x2C x

22/C a2.x

23 C x3x4C x

24/C a3.x

25 C x5x6C x

26/C a4.x

27 C x7x8C x

28/C

a5.x29Cx9x10Cx

210/Ca6.x

211Cx11x12Cx

212/Ca7.x

213Cx13x14Cx

214/

Ca8.x215 C x15x16 C x

216/. In this article, we derive formulae for R.1;2;2;2;2;2;2;2In/,

R.1;1;1;2;2;2;2;2In/, R.1;1;1;1;1;2;2;2In/ andR.1;1;1;1;1;1;1;2In/. These formulae aregiven in terms of the function �7.n/ and the numbers �8;2.n/ and �8;6.n/.

2010 Mathematics Subject Classification: 11A25; 11E25

Keywords: quadratic forms, sum of divisors functions, convolution sums, representation num-bers

1. INTRODUCTION

Let N; Z and Q denote the set of positive integers, integers and rational numbersrespectively and let N0 DN[f0g: For a1; :::;a8 2N and n 2N0 we letR.a1; :::;a8In/ denote the representation number of n by the form a1.x

21Cx1x2C

x22/Ca2.x

23Cx3x4Cx

24/Ca3.x

25Cx5x6Cx

26/Ca4.x

27Cx7x8Cx

28/Ca5.x

29C

x9x10Cx210/Ca6.x

211Cx11x12Cx

212/Ca7.x

213Cx13x14Cx

214/

Ca8.x215Cx15x16Cx

216/, that is

R.a1; :::;a8In/ (1.1)

WD card

(.x1; :::;x16/ 2Z16 W nD

8XkD1

ak.x22k�1

Cx2k�1x2kCx22k/

).

If l of a1; :::;a8 are equal, say

ai D aiC1 D :::D aiCl�1 D a (1.2)

for convenience we indicate this in R.a1; :::;a8In/ by writing al forai ;aiC1; :::;aiCl�1. For k 2N and n 2Q the sum of divisor function is defined by

c 2017 Miskolc University Press

278 BULENT KOKLUCE AND MUBERRA GUREL

�k.n/D

8<:

Xd2Nd jn

dk; if n 2N;

0; if n 2Q;n …N:

(1.3)

Ramakrishnan and Sahu [8] have recently proved formulae for R.18In/ andR.14;24In/ for all n 2 N. In the present paper, motivated from the work of Ra-makrishnan and Sahu we derive formulae for R.11;27In/, R.13;25In/, R.15;23In/

and R.17;21In/ by using the method of Alaca, Alaca and Williams (see for example[1]). These formulae are given in terms of the function �7.n/ and the numbers �8;2.n/

and �8;6.n/ which are introduced in [8]. Kokluce [4] has derived formulae for thequadratic forms in twelve and sixteen variables which are sums of quadratic formswith discriminant �23 by using the method developed by Lomadze [7].

2. PRELIMINARIES AND STATEMENT OF THE THEOREM

For a;b;r; s;n 2N with a � b we define the convolution sum Wr;s

a;b.n/ by

Wr;s

a;b.n/ WD

X.l;m/2N2

alCbmDn

�r.l/�s.m/: (2.1)

In recent years, some of the convolution sums have been evaluated explicitly. Inthis study, we require the evaluations for W 3;3

1;1 .n/, W3;3

1;2 .n/, W3;3

1;3 .n/, W3;3

2;3 .n/,W

3;31;6 .n/: The convolution sum

W3;3

1;1 .n/D1

120�7.n/�

1

120�3.n/; (2.2)

was evaluated explicitly by Ramanujan [9]. Formulae for the sum W3;3

1;2 .n/ wasfirstly given by Cheng and Williams [2]. Formulae for many other convolution sumsof this type have also been given by the authors in that study. Ramakrishnan andSahu [8] have recently evaluated the following four formulae containing formulaefor W 3;3

1;2 .n/ as well.

W3;3

1;2 .n/D�1

240�3.n/�

1

240�3.

n

2/C

1

2040�7.n/C

2

255�7.

n

2/C

1

272�8;2.n/;

(2.3)

W3;3

1;3 .n/D�1

240�3.n/�

1

240�3.

n

3/C

1

9840�7.n/C

81

9840�7.

n

3/C

1

246�8;3.n/;

(2.4)

REPRESENTATION NUMBERS OF SUMS OF QUADRATIC FORMS 279

W3;3

2;3 .n/

D�1

240�3.

n

2/�

1

240�3.

n

3/C

1

167280�7.n/C

1

10455�7.

n

2/C

27

55760�7.

n

3/

C27

3485�7.

n

6/C

7

8160�8;2.n/C

189

2720�8;2.

n

3/C

1

820�8;3.n/C

4

205�8;3.

n

2/

�1

480�8;6.n/; (2.5)

and

W3;3

1;6 .n/

D�1

240�3.n/�

1

240�3.

n

6/C

1

167280�7.n/C

1

10455�7.

n

2/C

27

55760�7.

n

3/

C27

3485�7.

n

6/C

7

8160�8;2.n/C

189

2720�8;2.

n

3/C

1

820�8;3.n/C

4

205�8;3.

n

2/

C1

480�8;6.n/; (2.6)

where �8;2.n/, �8;3.n/, �8;6.n/ are n-th Fourier coefficients of the newforms�8;2.n/, �8;3.n/, �8;6.n/ given in [8]. In a recent publication Kokluce and Eser[5] have completed the evaluations of the convolution sums W 1;3

1;12.n/, W1;3

3;4 .n/,W

1;34;3 .n/, and W 1;3

12;1.n/:

We now state our main result.

Theorem 1. Let n 2N then,

(i)

R.11;27In/D

6

85�7.n/�

516

85�7.

n

2/�

486

85�7.

n

3/C

41796

85�7.

n

6/C

9

17�8;2.n/

�729

17�8;2.

n

3/C

27

5�8;6.n/; (2.7)

(ii)

R.13;25In/D

18

85�7.n/�

528

85�7.

n

2/�

1458

85�7.

n

3/C

42768

85�7.

n

6/C

27

17�8;2.n/

�2187

17�8;2.

n

3/C

81

5�8;6.n/; (2.8)

(iii)

R.15;23In/D

66

85�7.n/�

576

85�7.

n

2/�

5346

85�7.

n

3/C

46656

85�7.

n

6/�

54

17�8;2.n/

280 BULENT KOKLUCE AND MUBERRA GUREL

C4374

17�8;2.

n

3/C

162

5�8;6.n/; (2.9)

(iv)

R.17;21In/D

258

85�7.n/�

768

85�7.

n

2/�

20898

85�7.

n

3/C

62208

85�7.

n

6/�

72

17�8;2.n/

C5832

17�8;2.

n

3/C

216

5�8;6.n/: (2.10)

3. PROOF OF THEOREM 1

To prove the theorem we need the representation number formulae for the follow-ing octonary quadratic forms,

f1 WD x21Cx1x2Cx

22Cx

23Cx3x4Cx

24Cx

25Cx5x6Cx

26Cx

27Cx7x8Cx

28 ; (3.1)

f2 WD x21Cx1x2Cx

22Cx

23Cx3x4Cx

24Cx

25Cx5x6Cx

26C2.x

27Cx7x8Cx

28/

(3.2)and

f3 WD (3.3)

x21Cx1x2Cx

22C2.x

23Cx3x4Cx

24/C2.x

25Cx5x6Cx

26/C2.x

27Cx7x8Cx

28/.

For l 2 N0 we set ri .l/ Dcard˚.x1; :::;x8/ 2Z8 W l D fi .x1; :::;x8/

. Obviously

ri .0/D 1 for i 2 f1;2;3g. The representation number formula

r1.l/D 24�3.l/C216�3.l

3/; l 2N; (3.4)

is given by Lomadze [6]. Kokluce [3] has obtained formulae for the number ofrepresentation of a positive integer l by the forms f2 and f3: He has proved that,

r2.l/D 18�3.l/�48�3.l

2/�162�3.

l

3/C432�3.

l

6/; l 2N; (3.5)

r3.l/D 6�3.l/�36�3.l

2/�54�3.

l

3/C324�3.

l

6/; l 2N: (3.6)

Proof. (i) We just prove part (i) in detail as the rest can be proved similarly.It is clear that

R.11;27In/D

Xl;m2N0

2lCmDn

r1.l/r3.m/

REPRESENTATION NUMBERS OF SUMS OF QUADRATIC FORMS 281

D r1.0/r3.n/C r1.n

2/r3.0/C

Xl;m2N

2lCmDn

r1.l/r3.m/.

Thus using (3.4) and (3.6) we have

R.11;27In/� .6�3.n/�36�3.

n

2/�54�3.

n

3/C324�3.

n

6/C24�3.

n

2/C216�3.

n

6//

D

Xl;m2N

2lCmDn

.24�3.l/C216�3.l

3//.6�3.m/�36�3.

m

2/�54�3.

m

3/C324�3.

m

6//

D 144X

l;m2N2lCmDn

�3.l/�3.m/�864X

l;m2N2lCmDn

�3.l/�3.m

2/

�1296X

l;m2N2lCmDn

�3.l/�3.m

3/C7776

Xl;m2N

2lCmDn

�3.l/�3.m

6/

C1296X

l;m2N2lCmDn

�3.l

3/�3.m/�7776

Xl;m2N

2lCmDn

�3.l

3/�3.

m

2/

�11664X

l;m2N2lCmDn

�3.l

3/�3.

m

3/C69984

Xl;m2N

2lCmDn

�3.l

3/�3.

m

6/

D 144W3;3

1;2 .n/�864W3;3

1;1 .n

2/�1296W

3;32;3 .n/C7776W

3;31;3 .

n

2/C1296W

3;31;6 .n/

�7776W3;3

1;3 .n

2/�11664W

3;31;2 .

n

3/C69984W

3;31;1 .

n

6/:

Appealing to (2.2)-(2.6) and adding 6�3.n/� 36�3.n2/� 54�3.

n3/C 324�3.

n6/C

24�3.n2/C216�3.

n6/ to both sides of the equation we obtain the asserted formula.

(ii) It is clear that

R.13;25In/D

Xl;m2N0

2lCmDn

r1.l/r2.m/:

Using equations (3.4), (3.5) and (2.1) we have

R.13;25In/� .18�3.n/�48�3.

n

2/�162�3.

n

3/C432�3.

n

6/C24�3.

n

2/

C216�3.n

6//

D 432W3;3

1;2 .n/�1152W3;3

1;1 .n

2/�3888W

3;32;3 .n/C10368W

3;31;3 .

n

2/C3888W

3;31;6 .n/

282 BULENT KOKLUCE AND MUBERRA GUREL

�10368W3;3

1;3 .n

2/�34992W

3;31;2 .

n

3/C93312W

3;31;1 .

n

6/:

Appealing to (2.2)-(2.6) we obtain the desired result .(iii) It is clear that

R.15;23In/D

Xl;m2N0lCmDn

r1.l/r3.m/.

Using equations (3.4), (3.6) and (2.1) we have

R.15;23In/� .6�3.n/�36�3.

n

2/�54�3.

n

3/C324�3.

n

6/C24�3.n/

C216�3.n

3//

D 144W3;3

1;1 .n/�864W3;3

1;2 .n/�1296W3;3

1;3 .n/C7776W3;3

1;6 .n/C1296W3;3

1;3 .n/

�7776W3;3

2;3 .n/�11664W3;3

1;1 .n

3/C69984W

3;31;2 .

n

3/:

Appealing to (2.2)-(2.6) we obtain the desired result.(iv) Clearly

R.17;21In/D

Xl;m2N0lCmDn

r1.l/r2.m/.

Using equations (3.4), (3.5) and (2.1) we have

R.17;21In/� .18�3.n/�48�3.

n

2/�162�3.

n

3/C432�3.

n

6/C24�3.n/

C216�3.n

3//

D 432W3;3

1;1 .n/�1152W3;3

1;2 .n/�3888W3;3

1;3 .n/C10368W3;3

1;6 .n/C3888W3;3

1;3 .n/

�10368W3;3

2;3 .n/�34992W3;3

1;1 .n

3/C93312W

3;31;2 .

n

3/:

Appealing to (2.2)-(2.6) we obtain the desired result. �

REFERENCES

[1] A. Alaca, S. Alaca, and K. S. Williams, “Evaluation of the convolution sumsX

lC12mDn

�.l/�.m/

andX

3lC4mDn

�.l/�.m/,” Adv. Theoretical Appl. Math., vol. 1, no. 1, pp. 27–48, 2006.

[2] N. Cheng and K. S. Williams, “Evaluation of some convolutions sums involving the sum of divisorfunctions,” Yokohama Math. J., vol. 52, pp. 39–57, 2005.

[3] B. Kokluce, “Representation numbers of two octonary quadratic forms,” Int. J. Number Theory,vol. 9, no. 7, pp. 1641–1648, 2013, doi: 10.1142/S1793042113500486.

REPRESENTATION NUMBERS OF SUMS OF QUADRATIC FORMS 283

[4] B. Kokluce, “Cusp forms in S6.�0.23//, S8.�0.23// and the number of representations of numbersby some quadratic forms in 12 and 16 variables,” Ramanujan J., vol. 34, pp. 187–208, 2014, doi:10.1007/s11139-013-9480-4.

[5] B. Kokluce and H. Eser, “Evaluation of some convolutions sums and representation of integersby certain quadratic forms in twelve variables,” Int. J. Number Theory, Accepted, 2016, doi:10.1142/S1793042117500415.

[6] G. Lomadze, “Representation of numbers by sums of the quadratic forms x21 Cx1x2Cx

22 ,” Acta

Arith., vol. 54, pp. 9–36, 1989.[7] G. Lomadze, “On the number of representations of integers by a direct sum of binary quad-

ratic forms with discriminant �23,” Georgian Math. J., vol. 4, no. 6, pp. 523–532, 1997, doi:10.1023/A:1022103424996.

[8] B. Ramakrishnan and B. Sahu, “On the number of representations of an integer by certain quad-ratic forms in sixteen variables,” Int. J. Number Theory, vol. 10, no. 8, pp. 1929–1937, 2014, doi:10.1142/S1793042114500638.

[9] S. Ramanujan, “On certain arithmetical functions,” Trans. Cambridge Philos. Soc., vol. 22, pp.159–184, 1916.

Authors’ addresses

Bulent KokluceFatih University, Elementary Mathematics Education, Buyukcekmece, 34500E-mail address: [email protected]

Muberra GurelIstanbul, TurkeyE-mail address: [email protected]