report of the tomato genetics cooperativetgc.ifas.ufl.edu/vol52/volume52.pdfreport of the tomato...

69
Report of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast Research and Education Center 5007 60 th Street East Bradenton, FL 34203 USA Foreword The Tomato Genetics Cooperative, initiated in 1951, is a group of researchers who share an interest in tomato genetics, and who have organized informally for the purpose of exchanging information, germplasm, and genetic stocks. The Report of the Tomato Genetics Cooperative is published annually and contains reports of work in progress by members, announcements and updates on linkage maps and materials available. The research reports include work on diverse topics such as new traits or mutants isolated, new cultivars or germplasm developed, interspecific transfer of traits, studies of gene function or control or tissue culture. Relevant work on other Solanaceous species is encouraged as well. Membership currently stands at approximately 200 from 34 countries. Requests for membership (per year) US$15 (plus $5 shipping if international)--should be sent to Dr. J.W. Scott, Gulf Coast Research and Education Center, 5007 60 th Street East, Bradenton, FL 34203, USA, [email protected]. Please send only checks or money orders. Make checks payable to the University of Florida. We are sorry but we are NOT able to accept cash, wire transfers or credit cards. Cover photo provided by Roger Chetelat: With Charley Rick’s passing we have lost one of the great pioneers of tomato genetics who was instrumental in forming the Tomato Genetics Cooperative. Below is an obituary written by his son highlighting some aspects of his life and career. It is followed by an article written by Dick Robinson in 1982 (TGC 32:1-2) that outlines the early history of the Tomato Genetics Cooperative and Dr. Rick’s critical role in its development. I know everyone involved in tomato genetics and/or breeding has admiration and respect for Charley because of his wisdom, accomplishments, and his friendly demeanor. The main reason I have taken on the editorship of the TGC was because I considered it an honor to carry on one of Charley’s legacies. - J.W. Scott

Upload: trinhquynh

Post on 24-Mar-2018

224 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

Report

of the

Tomato Genetics Cooperative Number 52 – September 2002

University of Florida Gulf Coast Research and Education Center

5007 60th Street East Bradenton, FL 34203 USA

Foreword The Tomato Genetics Cooperative, initiated in 1951, is a group of researchers who share an interest in tomato genetics, and who have organized informally for the purpose of exchanging information, germplasm, and genetic stocks. The Report of the Tomato Genetics Cooperative is published annually and contains reports of work in progress by members, announcements and updates on linkage maps and materials available. The research reports include work on diverse topics such as new traits or mutants isolated, new cultivars or germplasm developed, interspecific transfer of traits, studies of gene function or control or tissue culture. Relevant work on other Solanaceous species is encouraged as well. Membership currently stands at approximately 200 from 34 countries. Requests for membership (per year) US$15 (plus $5 shipping if international)--should be sent to Dr. J.W. Scott, Gulf Coast Research and Education Center, 5007 60th Street East, Bradenton, FL 34203, USA, [email protected]. Please send only checks or money orders. Make checks payable to the University of Florida. We are sorry but we are NOT able to accept cash, wire transfers or credit cards. Cover photo provided by Roger Chetelat: With Charley Rick’s passing we have lost one of the great pioneers of tomato genetics who was instrumental in forming the Tomato Genetics Cooperative. Below is an obituary written by his son highlighting some aspects of his life and career. It is followed by an article written by Dick Robinson in 1982 (TGC 32:1-2) that outlines the early history of the Tomato Genetics Cooperative and Dr. Rick’s critical role in its development. I know everyone involved in tomato genetics and/or breeding has admiration and respect for Charley because of his wisdom, accomplishments, and his friendly demeanor. The main reason I have taken on the editorship of the TGC was because I considered it an honor to carry on one of Charley’s legacies.

- J.W. Scott

Page 2: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

Rick taught and mentored generations of U.S. and international scientists in plant genetics. His students went on to lead major research institutes, serve as ministers of agriculture and other governmental roles, and become faculty at universities on every continent. They have worked on studying and improving many major crops, including rice, grapes, potatoes, and peppers. His children continued in academics; his daughter Susan Baldi teaches anatomy and physiology at Santa Rosa Junior College, and his son John is an archaeologist at Stanford. Three grandchildren and a great grandchild were his greatest joys in his last years.

TGC HISTORY Reprinted from TGC Report No. 32, 1982

A HISTORY OF THE TOMATO GENETICS COOPERATIVE

R.W. Robinson

Two graduate students at the University of California at Berkeley, Don Barton and Allan Burdick, met in the early summer of 1949 with Charley Rick, geneticist at the Davis campus, for one of their periodic stimulating discussions on tomato genetics. Their doctoral research on cytogenetics of the tomato had given them an appreciation for the value of an organization to exchange information on tomato genetic research, stimulate linkage studies, and preserve and distribute germplasm, and they urged Rick to consider founding such an organization. The proposal was further discussed by Burdick, Barton, Rick and others with a common interest in tomato genetics during a scientific meeting in 1950, probably at the annual meeting of Genetics Society of America at Columbus, Ohio. The proposal was received with so much support and enthusiasm that Rick consented to be Chairman of the Tomato Genetics Cooperative, which was founded in 1950.

The first Report of the TGC was issued in 1951 by C. M. Rick, who served as editor from then until 1981. The membership of the TGC has grown from 87 in 1951 to 354 thirty years later. It is largely through the efforts of C. M. Rick that the TGC has become such a useful and renowned publication.

The activities of the TGC are directed by the Coordinating Committee. Members of the original Coordinating Committee were C. F. Andrus, D. W. Barton, W. H. Frazier, H. M. Munger, and, as chairman, C. M. Rick. Rick continued to serve as chairman of the Coordinating Committee for 32 years. Others who have served on the Coordinating Committee include A. B. Burdick, L. Butler, W. S. Barham, G. B. Reynard, A. L. Harrison, R. W. Robinson, M. L. Tomes, S. Honma, M. A. Stevens, and E. C. Tigchelaar.

It soon became apparent to the Coordinating Committee that gene nomenclature rules were needed for the tomato. The Coordinating Committee appointed a committee on nomenclature, consisting of D. W. Barton as chairman, L. Butler and J. A. Jenkins. The Nomenclature Committee formulated nomenclature rules for tomato mutants, chromosomes, and chromosomal aberrations. The original nomenclature rules were published in TGC 3, and supplemental rules were given in TGC 4, 9, 17, 20, and 23.

Page 3: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

The Gene List Committee was given the assignment of compiling and publishing lists of known tomato genes and revising gene symbols when necessary to conform with nomenclature rules. The first gene list, prepared for TGC 4 by chairman L. Butler, D. W. Barton, P. A. Young, and C. M. Rick, included 108 tomato genes. The gene list more than doubled in the next five years; 172 additional genes were included in the list in TGC 9. The gene list has continued to expand, with 99 new genes added to the list in TGC 12, 146 for TGC 17, 88 for TGC 21, 51 for TGC 23, and 93 additional genes for the list in TGC 29.

The number of tomato genes has grown so large in recent years that there was a need to categorize them, to classify them into different groups for the convenience of researchers interested in locating a particular kind of mutant. The gene list committee, therefore, published in TGC 21 a classification, according to 21 phenotype groups, all of genes known at that time.

The first gene lists for the tomato included sources of seed for each gene. Carl Clayberg and later Dick Robinson served as coordinators of the stock-keeping program, assigning volunteers to maintain and distribute seed of each mutant. This system worked well for many years, but became cumbersome as the number of known genes greatly increased and some former stock-keepers retired.

The Tomato Genetics Stock Center was established by C. M. Rick in 1976 to solve the problem of preserving and making available germplasm for tomato researchers. The Stock Center published in TGC Reports 27 and 30 lists of accessions of Lycopersicon and related Solanum species being maintained. TGC Reports 28 and 31 included lists of mutants in the collection of the Tomato Genetics Stock Center. Lists in TGC 29 reported other tomato germplasm maintained by the Stock Center, including allozyme variants, multiple gene stocks, linkage testers, translocations, tetraploids, trisomics, and cultivars.

For many years, Len Butler coordinated linkage investigations by TGC members. To prevent duplication in research and to ensure that gene mapping was done with each of the 12 chromosomes of the tomato, different chromosomes were assigned to different investigators for linkage testing. In the linkage map published by Rick and Clayberg in TGC 5, 47 genes were mapped on 11 chromosomes. The linkage map prepared by C. M. Rick for TGC 27 included 288 genes, with each of the 12 chromosomes mapped for marker genes and position of the centromere.

No history of the TGC would be complete without giving recognition to Dora Hunt, who has had so much to do with editing the Report, helping with membership arrangements, and other work for the TGC. Many others have also contributed to the success of the Tomato Genetics Cooperative, but no one else to the extent of C. M. Rick. It is largely due to his prodigious efforts that the TGC has prospered and the tomato has become the pre-eminent plant species for cytogenetic research. It is a pleasure, on the eve of his retirement, to express gratitude to Charley Rick for the research, service, and inspiration he has provided for tomato geneticists.

Page 4: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

Professor Charles M. Rick, 1915-2002 Written by his son, John Rick (Stanford Univ., Dept. of Anthropology) Charles M. Rick, Jr., Professor Emeritus of the University of California, Davis and the world's foremost authority on tomato genetics, passed away peacefully in the early morning hours of Sunday, May 5th. Known worldwide for his major scientific contributions as a plant geneticist and botanist, the majority of Charlie Rick’s career focused on the genetic variability of the tomato, especially the wild tomato species distributed widely in western South America and the Galapagos Islands. In addition to the thorough studies of tomato genes and chromosomes, he organized numerous plant-collecting expeditions to the Andes to sample the wide range of genetic variation found in the wild species, but missing from the modern domestic tomato. Crisscrossing this rugged terrain, he managed to document and preserve an amazing diversity of tomato varieties with qualities such as disease resistance that can be bred back into the tomato we know. In his later years, Rick established and directed the C. M. Rick Tomato Genetics Resource Center at the Davis campus of the University of California, which serves as a permanent bank of genetic material for the tomato and other members of the nightshade family. This center distributes seeds to scientists world-wide, and its holdings include genetic varieties that have become extinct in the wild. Born in Reading, Pennsylvania in 1915, Rick grew up working in orchards and enjoying nature study in the Boy Scouts. He took his B.S. degree at Penn State, where he met and married the late Martha Overholts, daughter of a well-known faculty expert on mushrooms. Together they moved to Cambridge, Massachusetts where he earned his Ph.D. at Harvard in 1940, concentrating on botany and plant genetics. He had previously established California connections by working with the Burpee seed company in Lompoc, and as soon as he finished at Harvard he joined the faculty of the Vegetable Crops Department at Davis, where he remained for his career of more than 60 years. He taught temporarily at other universities throughout the world, and remained active in the field of plant genetics until the age of 85, when health difficulties interfered with greenhouse and lab work. In the course of his career, Rick accumulated many honors, including membership in the National Academy of Sciences, and recognition from dozens of universities and learned societies. He received the Alexander von Humboldt Award, and was also the first recipient of the Filipo Maseri Florio World Prize in Agriculture in 1997. An excellent lecturer, Rick was much sought after by universities who valued both his rigorous science and his humor and flair for storytelling. A perennial favorite involved his frustrations in trying to germinate wild tomato seeds collected from the Galapagos Islands. The emerging mystery of how the plants reproduce in the wild was only resolved after the seeds were ‘processed’ by passing through the digestive track of a Galapagos tortoise, resulting in vigorous seedlings. Much of Rick’s most fascinating work came from a firsthand perception of the plants’ roles in local environments and their evolving reproductive strategies. Over time, Rick’s work on tomato genetics established this plant as an important model organism in the era of genomics.

Page 5: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

TABLE OF CONTENTS TGC REPORT 52, 2002 ___________________________________________________________________________________

Table of Contents

Foreword………………………………………………………………………………………………...1 Announcements………………………………………………………………………………………..7 Research Reports Inheritance of resistance to Oidium lycopersici and molecular characterization of resistance gene in Lycopersicon esculentum var. cerasiforme Ambrico, A., Longo, O., Schiavone, D., and Ciccarese, F. …………………………….11 Evaluation of tomato breeding material for resistance against late blight pathogen Bagirova, S.F., Ignatova, S.I., Tereshonkova, T.A., and Gorshkova, N.S. ……………14 Some biochemical and physiological characteristics of transgenic tomato Lycopersicon esculentum Mill. cv. Ventura

Mapelli, S., Rekoslavskaya, N.I., Salyaev, R. K., Kopytina, T.V., and Ostanina, Y.V. ..18 Introgression of resistance against Mi-1-virulent Meloidogyne spp. from Lycopersicon peruvianum into L. esculentum Moretti, A., Bongiovanni, M., Castagnone-Sereno, P., and Caranta, C. ………………21 Differences in susceptibility of pruning wounds and leaves to infection by Botrytis cinerea among wild tomato accessions Nicot, P.C., Moretti, A., Romiti, C., Bardin, M., Caranta, C., and Ferrière, H. ………..24 A rise of productivity of transgenic tomato (Lycopersicon esculentum Mill.) by transfer of the gene iaglu from corn

Rekoslavskaya, N.I., Salyaev, R.K., Mapelli, S., Truchin, A.A., and Gamanetz, L.V. ..27 A new allele at the potato leaf locus derived from L. chilense accession LA 1932 is discovered in a geminivirus resistance project

Scott, J. W. …………………………………………………………………………………..31 Varietal Pedigrees Amalia, Mariela Alvarez, M., Moya, C., Domini, M.E., and Arzuaga, J. ………………………………….35 Ohio OX150 Hybrid Processing Tomato Francis, D.M., Berry, S.Z., Aldrich, T., Scaife, K., and Bash, W. ….……………………36 Fla. 7771, a medium-large, heat-tolerant, jointless-pedicel tomato

Scott, J.W. …………………………………………………………………………………….38 ‘Micro-Tina’ and ‘Micro-Gemma’ miniature dwarf tomatoes Scott, J.W., Harbaugh, B.K., and Baldwin, E.A. ………………………………………….39 Fla. 7775 and Fla. 7781: Tomato breeding lines resistant to fusarium crown and root rot.

Scott, J.W. and Jones, J.P. ………………………………………………………………40 Stock Lists Revised List of Monogenic Stocks

Chetelat, R. T. ……………………………………………………………………………….41 Membership List...……………………………………………………………………………………63 Author Index ………………………………………………………………………………………….69

Page 6: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

THIS PAGE IS BLANK IN THE ORIGINAL DOCUMENT

Page 7: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

ANNOUNCEMENTS TGC REPORT 52, 2002 ________________________________________________________________________

From the editor Regards to the TGC membership from your new editor! First, I would like to give credit for this report to Ms. Gail Cameron Somodi who has done a large part of the work. Gail (MS in Plant Pathology) has worked with me for more years than she would care to count in our bacterial resistance program, and also has superior editorial and organizational skills. If she was not working for me last year I may well have not taken on the editorship. I want to also thank former managing editor Theresa Fulton. I cannot think of anyone else I would rather take over from. She had things in good order to begin with, and every time we had a question she was quick to respond. Thanks also to all the contributors of reports for volume 52 because without you none of this is possible. Finally, thanks for everyone’s patience with us during the transition. Next year should be more routine. The TGC Website has moved and there have been some changes in it. We will try to update it periodically to keep you abreast of current information and will be adding links to other relevant tomato genetics addresses. If you have any links to suggest, send me an email. Many of the old TGC issues are available at the website thanks to the scanning of Theresa Fulton, Steve Tanksley, and Co. We hope to keep adding more of them until all are available. The policy will be to wait a year to put the latest issue on-line, so volume 52 will be on-line in September, 2003. The new web address is: http://gcrec.ifas.ufl.edu/tgc There are no longer Associate Editors. I have been trying to set up a Gene List Committee and the people who have agreed to serve are listed below. The main function of this committee will be to approve the naming and symbols of new genes for integration into the tomato gene list. If you are publishing a paper where you have evidence for a new gene, please bring the paper to the attention of a committee member and the committee will officially evaluate your evidence and if approved, it will be listed in the next TGC report. You can also name genes directly in a TGC paper, of course, and the committee will consider them for approval. Gene List Committee: Jay Scott, University of Florida, Bradenton, FL USA Roger Chetelat, TGRC, UC Davis, Davis, CA USA Mathilde Causse, INRA, Montfavet Cedex, France

Pim Lindhout, Wageningen Agricultural Univ., Wageningen, The Netherlands

Mikel Stevens, BYU, Provo UT, USA

7

Page 8: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

ANNOUNCEMENTS TGC REPORT 52, 2002 ________________________________________________________________________

Managing Editor: Jay W. Scott Gulf Coast Research & Education Center 5007 60th Street East Bradenton, FL 34203 941-751-7636 ext. 241 e-mail: [email protected] Tomato Breeders Roundtable meeting The next meeting will be held in Park City, Utah, USA from 27-30 April, 2003. For information about the meeting contact: Mikel R. Stevens Department of Agronomy and Horticulture 287 WIDB Brigham Young University Provo, UT, 84602 801-378-4032 fax 801-378-2203 e-mail: [email protected] First International Symposium on Tomato Diseases This meeting will take place from 27-31 October, 2003 at Kusadasi, Turkey. To find out more about the conference and receive meeting announcements see the website below: http://plantdoctor.ifas.ufl.edu/istd.html Announcement: USDA Funding for Tomato Germplasm Evaluation Funding will again be available from the USDA, ARS in FY 2003 for evaluation of tomato germplasm. Evaluation funding will be used on germplasm maintained in or destined for the National Plant Germplasm System (NPGS). Relevant NPGS germplasm includes the tomato collection maintained by USDA’s Plant Genetic Resources Unit in Geneva, New York and the collection at the University of California, C.M. Rick Tomato Genetics Resource Center, Davis, California. Proposal guidelines are noted below. All proposals will be evaluated on the need for evaluation data, national and/or regional interest in the problem, scientific soundness and feasibility of the proposal, the likelihood of success, germplasm to be screened, and the likelihood that data will be entered into NPGS databases and freely shared with the user community. Proposals will be reviewed by the Tomato Crop Germplasm Committee (CGC) and applicable ad hoc reviewers and ranked in priority order for funding. Funding for successful proposals has ranged from $5,000 to

8

Page 9: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

ANNOUNCEMENTS TGC REPORT 52, 2002 ________________________________________________________________________

9

$30,000. All proposals and CGC prioritization are forwarded to USDA for a final decision on funding. Multiple year projects are welcomed, but funding must be applied for each year and is subject to a progress review. STANDARD EVALUATION PROPOSAL FORMAT FOR THE NPGS I. Project title and name, title of evaluators. II. Significance of the proposal to U.S. agriculture. III. Outline of specific research to be conducted including the time frame involved

– include the number of accessions to be evaluated. IV. Funding requested, broken down item by item (no overhead charges are

permitted). V. Personnel:

a. What type of personnel will be used to perform the research (e.g. ARS, State, or industry scientist; postdoc; grad student, or other temporary help).

b. Where will personnel work and under whose supervision. VI. Approximate resources contributed to the project by the cooperating

institution (e.g. facilities, equipment, and funds for salaries).

The crop curator will enter evaluation data obtained into NPGS databases. Funding for data entry should be considered when developing proposals. Evaluation proposals covering several descriptors, such as several diseases, should give the cost and time frame for each descriptor along with the combined cost. Funding may only be available to cover one of the projects. Submission deadline: Electronic submission of proposals is encouraged. Please submit electronic files (MS Word or WordPerfect) or 10 copies of your proposals by October 15, 2002 to: [email protected] John R. Stommel, Chair Tomato Crop Germplasm Committee USDA-ARS, Vegetable Laboratory 10300 Baltimore Ave. Bldg. 010A, BARC-West Beltsville, MD 20705

Page 10: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

THIS PAGE IS BLANK IN THE ORIGINAL DOCUMENT

Page 11: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 __________________________________________________________________________________________

Inheritance of resistance to Oidium lycopersici and molecular characterization of resistance gene in Lycopersicon esculentum var. cerasiforme Ambrico, A., Longo, O., Schiavone, D., and Ciccarese, F. Department of Biology and Plant Pathology - University of Bari, Italy Via G. Amendola 165/A, 70126 Bari, Italy, E-mail: [email protected] Introduction

Powdery mildew caused by Oidium lycopersici is a serious disease of glasshouse-grown tomato. The use of resistant cultivars is an economical and ecologically sustainable method of disease control. A resistance source, incompletely dominant (Ol-1), was found in Lycopersicon hirsutum (Lindhout and Pet, 1990). In screenings for powdery mildew resistance on numerous accessions of Lycopersicon species, supplied by the Tomato Genetics Cooperative, two plants of accession LA-1230 of L. esculentum var. cerasiforme, showed no symptoms of disease. One symptomless plant was selfed and progeny (designated LC-95) were resistant.

In this paper, results of research aimed at characterization of a new source of resistance to powdery mildew are reported. Furthermore random amplified polymorphic DNA (RAPD) markers linked to resistance gene are screened. Materials and Methods

Tests on powdery mildew resistance were carried out in a glasshouse at 23±2°C and at 80±5% relative humidity. For studies on inheritance of resistance identified in L. esculentum var. cerasiforme, a plan of crosses and self-fertilization was set up. The tomato cultivar ‘Super Marmande’ as susceptible parent and LC-95 line as resistant were used. The progenies of F1, F2 and backcrosses with the resistant parent (BC-R) and with susceptible parent (BC-S) were submitted to artificial inoculation with O. lycopersici. About 200 plants were used for all generations. Inoculations were carried out by dispersing pathogen conidia, removed from heavily infected tomato plants, on the leaves of tested plants at the six-leaf stage. Powdery mildew symptoms were evaluated 20 days after artificial inoculations considering the percentage of leaf area covered by colonies of O. lycopersici.

For molecular characterization 240 different primers were tested. RAPD analysis on the F2 generation was performed according to bulked segregant analysis (Michelmore et al., 1991). Resistant (R) and susceptible (S) bulks were tested using DNA extracted from ten healthy (resistant) and ten diseased F2 plants which were seen to be homozygous for the powdery mildew resistant gene after segregation analysis on F3 plants. Results and Discussion

All plants of ‘Super Marmande’ cultivar were highly infected. Plants of LC-95 line were resistant. F1 progeny was susceptible and F2 progeny segregated resistant/susceptible plants in a ratio of 1:3. All plants of BC-S were susceptible while the progeny of BC-R segregated in ratio of 1:1 (Tab. 1). The segregation ratios suggested that resistance to O. lycopersici in LC-95 line of L. esculentum var. cerasiforme is conferred by a single recessive gene designed ol-2. The screening on DNA extracted from parents allowed us to characterize only 45

11

Page 12: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 __________________________________________________________________________________________

polymorphic primers. On bulks, primer OPU3 (5’-CTATGCCGAC-3’ with a molecular weight of 2979 bp) showed polymorphism between bulks. With OPU3 primer, a DNA fragment of 1500 bp (designed OPU3 1500) was amplified and by agarose gel electrophoresis, a well defined band present in the susceptible bulk but not in the resistant bulk was observed (Fig. 1). The OPU3 marker was closely linked with susceptibility to O. lycopersici.

Literature cited Lindhout P. and Pet G., 1990. Resistance to Oidium lycopersici in Lycopersicon

species. Tomato Genetics Cooperative Report 40, 19. Michelmore R. W., Paran I., Kesseli R. V., 1991. Identification of markers linked

to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences USA 88: 9828-9832.

Table 1. - Observed segregation for powdery mildew resistance of LC-95 line of

Lycopersicon esculentum var. cerasiforme and goodness of fit test.

Number of plants Pedigree

Ra S Expectedb

ratio χ2 P

LC-95 72 0 72:0 - - Super Marmande 0 97 0:97 - -

F1 0 96 0:96 - -

F2 30 70 25:75 1.33 0.25-0.30

BC-R 49 51 50:50 0.04 0.80-0.90

BC-S 0 100 0:100 - - aR =resistant and S = susceptible bAssuming a single recessive gene for resistance

12

Page 13: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 __________________________________________________________________________________________

Figure 1. Agarose gel showing the RAPD pattern obtained with the OPU3 1500

primer linked to susceptibility to Oidium lycopersici in tomato.

13

Page 14: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 __________________________________________________________________________________________

Evaluation of tomato breeding material for resistance against late blight pathogen 1Bagirova, S.F., 2Ignatova, S.I., 2Tereshonkova, T.A., and 2Gorshkova, N.S. 1Department of Mycology and Algology, Moscow State University, Moscow 119899, Russia, e-mail: [email protected] 2All-Russian Research Institute for Vegetable Crops, Mitishi-18, Moscow Region 141018, Russia, e-mail: [email protected] Key words: disease resistance, evaluation, late blight, Phytophthora infestans, plant breeding, population structure, tomato Abstract In three late blight epidemic years (1998-2000) selected tomato breeding material were evaluated under natural conditions of a severe epiphytotic in greenhouses in the Moscow Region. More than 1500 tomato lines or hybrids were screened for resistance against a new more aggressive population of the tomato late blight pathogen. Eighteen lines were created using different wild tomato species as resistant sources and these were found to show the greatest resistance to the late blight. Simultaneously, Phytophthora strains were collected from diseased plants and studied. High polymorphism of the new sexual population of the late blight pathogen that was similar to polymorphism of the Mexican populations was revealed. Our data concerning population diversity suggests that the monitoring of P. infestans in the Moscow Region is a good model for study of different aspects of population biology of P. infestans (the spread of new pathotypes, role of oospores in disease development, interrelationships between the tomato and potato populations) and for reevaluation of plant breeding material. Introduction The most severe plant disease in Russia is late blight. Tomato crop losses in epidemic years in the Moscow Region can be greater than 80%. Russian populations of Phytophthora infestans, the causal agent of the late blight, are characterized by high polymorphism and variability. During the last 15 years there has been a change of population structure and increase of population size of strains adopted to parasitize tomatoes (Dyakov Y.T., Rybakova I.N., Dolgova A.V., Bagirova S.F., 1994). Marked differences between the populations attacking tomatoes and potatoes were found (Bagirova S.F., An Dzan Li, Dyakov Y.T., 1998). Until now only one clone has predominated. Tomato late blight has not been considered such a big problem in the Moscow Region. Variability of new populations is expressed in differences between strains in the mating types, virulence, resistance to fungicides, isozymes, mitochondrial and nuclear DNA (Vorobeva Y.V., Gridnev V.V., Bashaeva E.G., 1991, Gorbunova E. V., Bagirova S.F., Dolgova A.V., Dyakov Y.T., 1989; Maleeva Yu.V., Naumoff S.P., Yatsentiuk S.P., Dolgova A.V., Kolesnikov A.A., 1999). With the spread of new strains, the disease epidemics appeared earlier and developed rapidly. Abundant oospores are formed in foliage, stem and fruit tissue and are able to overcome cold Moscow winters (Bagirova S.F., Dyakov Y.T, 1998). The tomato cultivars that were previously characterized by moderate resistance are now very susceptible (Ignatova S.I., Gorshkova N.S., Bagirova S.F., 1999). Registered changes of population composition are similar to replacement of ”old” genotypes by “new”

14

Page 15: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 __________________________________________________________________________________________

ones that are detected in West Europe and North America (Fry W., Goodwin S., Matuszak J. et al, 1991; Drenth A., Turkensteen L., Govers F., 1993; Day J.P., Shattock R.C., 1997). This changed situation requires reevaluation of tomato patterns for resistance to the new populations of the late blight pathogen. Our study was aimed at evaluating tomato breeding material in naturally occurring epidemics in the Moscow Region. Materials and methods During three epidemic years (1998–2000) we screened for resistance to the late blight tomato collection including more then 1500 tomato accessions of interspecies hybrids and selected lines. This plant material was obtained from VNIO (All-Russian Institute for Vegetable Crops, Mitichi, Moscow Region, Russia) and VIR (Vavilov Plant Research Institute, St. Petersburg, Russia). Evaluation was carried out in greenhouses of VNIO in Bukovo, the Moscow Region. The susceptible control genotype was a commercial hybrid widely grown in Russia, provided by VNIO. The resistant control was West Virginia 63. The accessions were supplied by VIR. Tomato stem, fruit, and foliage infections were taken into account. Scale (0-4 marks) for each organ was involved. Simultaneously Phytophthora isolates were collected from different tomato organs, and isolated in pure culture on oatmeal agar. Obtained isolates were assessed for the mating types, resistance to fungicides: dimethomorph and metalaxyl, pathogenic features, and molecular markers. To assess the mating type the strains were crossed on oatmeal medium with both the A1 and A2 testers, obtained from the Dep. Mycology and Algology, Moscow State University. The mating type was determined by inspecting for presence or absence of oospores in a border zone between grown colonies. Resistance to fungicides was determined by growing of the isolates on oatmeal medium supplemented with dimethomorph in concentration 3mg/ml, or with metalaxyl in concentration 10 or 100 mg/ml. Tomato races of the pathogen were defined using a bioassay to inspect for disease symptom control patterns on Talallixin (Ph-0), Ottawa-30 (Ph-1), and West Virginia 63 (Ph-2). PCR-tests to define mitochondrial and nuclear DNA-polymorphism were performed as described elsewhere (Drenth et al, 1993; Maleeva et al, 1999). Results The pathogen attacked all above ground parts of tomato plants: stems, fruits, foliage branches and even flowers. Data on average severity accounted separately for each organ were obtained. Eighteen selective lines (Backcrosses, F3-F8 generations) showed the highest resistance for all organs (0-2 marks). Susceptible control plants were severely diseased (4 marks). The results are presented in Table 1. These lines were created involving different tomato wild species, such as: L. esculentum var. cerasiforme, L. pimpinellifolium, L. hirsutum, L. hirsutum var. glabratum, L. peruvianum, L. humboldtii, and L. cheesmanii.

15

Page 16: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 __________________________________________________________________________________________

Table 1

Disease severity, marks Tomato sample Foliage Stems Fruits

Resistant control 2 1 2 Susceptible control 4 4 4 LLB 98/00-1 1 1 1 LLB98/00-2 2 1 1 LLB 98/00-3 1 0 1 LLB 98/00-4 2 1 1 LLB 98/00-5 1 0 1 LLB 98/00-6 1 0 0 LLB 98/00-7 1 1 2 LLB 98/00-8 2 1 1 LLB 98/00-9 2 1 1 LLB 98/00-10 1 1 1 LLB 98/00-11 2 1 1 LLB 98/00-12 1 0 1 LLB 98/00-13 1 1 2 LLB 98/00-14 2 1 1 LLB 98/00-15 1 0 1 LLB 98/00-16 2 1 1 LLB 98/00-17 1 1 1 LLB 98/00-18 1 1 1 Our data indicate that the most prospective tomato breeding material is based on a combination of different resistant sources. For example, lines combining features of interspecies hybrids L. esculentum x L. humboldtii, L. esculentum x L. pimpinellifolium, L. humboldtii x L.esculentum var. cerasiforme, L. peruvianum x L. hirsutum var. glabratum, L. hirsutum var. glabratum x L. esculentum var. cerasiforme, and L. cheesmanii x L. humboldtii. Collected Phytophthora strains appeared to be susceptible to both metalaxyl in concentration 10 and 100 mg/ml and dimethomorph in concentration 3 mg/ml. Tomato strains were distinct from those isolated from the potato crops in the same region. Highly resistant metalaxyl strains predominated in those populations. Tested tomato strains differed in molecular markers and aggressiveness. Both A1 and A2 strains were found. Data on population structure confirm high polymorphism of Phytophthora in the new sexual population. The most aggressive strains will be used in laboratory bio-assays for further screening selected tomato genotypes for the late blight resistance. References: Bagirova S.F., Dyakov Yu.T. 1998.Ob uchastii oospor v vesenem vozobnovlenii

Infekcii fitoftoroza tomata (The role of oospores in overwintering of Phytophthora infestans on tomato crops).Selskoxozyistvennaya biologiya. 3: 69-72.

16

Page 17: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 __________________________________________________________________________________________

Bagirova S.F., An Zan Li, Dyakov Yu.T. 1998. Mexanizmy geneticheskoy izolycii specificheskix patogennyx form Phytophthora infestans v polovyx i bespolyx populyciyax (Mechanisms of genetic isolation for specific pathogenic forms of Phytophthora infestans in sexual and asexual populations). Mikologia i fitopatologia.32: 47-50.

Day J.P., Shattock R.C. 1997 Aggressiveness and other factors relating to displacement of populations of Phytophthora infestans in England and Wales. Eur. J. Plant. Pathol. 103:379-391. Drenth A., Turkensteen L., Govers F. 1993 The occurrence of the A2 mating

type of Phytophthora infestans in the Netherlands: significance and consequences. Netherlands J. Plant Pathology. 99: 57-67.

Dyakov Yu.T., Rybakova I.N., Dolgova A.V. Bagirova S.F. 1994. Divergencia populyciy fitopatogennogo griba Phytophthora infestans v svyzi so specializaciey k rasteniym-xozyevam. (Divergent evolution of plant pathogenic fungi Phytophthora infestans in connection to specialization to host plants). Zurnal obshey biologii. 55:179-188.

Fry W.E., Goodwin S.B., Matuszak J. et al. 1992. Population genetics and intercontinental migrations of Phytophthora infestans. Annu. Rev. Phytopathol. 30:107-129.

Gorbunova E.V., Bagirova S.F., Dolgova A.V., Dyakov Yu.T. 1989.Vegetativnaya nesovmestimost y fitopatogennogo griba Phytophthora infestans (Vegetative incompatibility in Phytophthora infestans). DAN SSSR. 304: 1245-1248.

Maleeva Yu.V., Naumoff D.G.., Yatsentiuk S.P., Dolgova A.V., Kolesnikov A.A. 1999. Changes in the composition of populations of Phytophthora infestans in Russia in the 1990s based on the results of mitochondrial DNA analysis. Genetika. 35:1170-1181.

Vorobeva Yu.V., Gridnev V.V., Bashaeva E.G. et. al. 1991. O poyvlenii izolytov A2 tipa sovmestimosti Phytophthora infestans na territorii SSSR (About appearance of the A2 mating type of Phytophthora infestans in USSR). Mikologiya i fitopatologiya. 25: 62-67.

Acknowledgements: The work was partly supported by ISTC. We acknowledge the support granted by RFFI “Leading scientific schools”.

17

Page 18: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

Some biochemical and physiological characteristics of transgenic tomato Lycopersicon esculentum Mill. cv. Ventura 2Mapelli S., 1Rekoslavskaya N. I., 1Salyaev R. K., 1Kopytina T. V., 1Ostanina Y. V. 1Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of RAS, PO Box 1243, Irkutsk, Russia, e-mail [email protected] 2Istituto Biologia Biotecnologia Agraria, C.N.R., via Bassini 15, Milan, Italy, e-mail [email protected]

The aim of the project was to create the transgenic plants with high energy of growth and improved productivity via the transfer of the gene iaglu encoding the enzyme UDPG-transferase in maturing corn endosperm (Zea mays L.). UDPG-transferase (indoleacetic acid glucose synthase by trivial name) is converted IAA to IAA-glucose, the stored, but easily transported and hydrolysable, form of this phytohormone.

In a previous report transgenic tomato plants (Lycopersicon esculentum Mill.) were obtained in which there was a good correlation between the enhanced auxin status, higher growth activity and improved productivity of transgenic plants in comparison with controls. Here comparisons between control and transgenic to have indication of fruits quality are presented.

Some biochemical and physiological characteristics were presented in Table 1. The dry matter of control plants were higher in leaves but not in fruits. The water content in leaves of transgenic plants was correlated with higher content of indoleacetic acid (IAA) which usually increased the hydraulic pressure in cells. Contents of sugars and organic acids were quite the same in fruits both from transgenic and control plants but the content of vitamin C was higher in control fruits.

Table 1. Characteristics of fruits of L. esculentum Mill. cv. Ventura

Dry matter (%)___ Leaves Fruits

Sugars (% of d. m.)

Organic acids* (% of d. m.)

Vitamin C (% of d. m.)

Control 11.2±0.9 6.1±0.1 3.5±0.1 0.47±0.01 0.439±0.0033

Transgenic 8.9±0.5 6.3±0.1 3.5±0.1 0.51±0.01 0.369±0.0032 *Calculated as malic acid equivalents. We reported that the yield of red fruits in transgenic Ventura tomato plants was up to

1.3 time of the control Ventura plants and the size of red mature fruits were larger. The dry matter data in Table 1 showed that fruit enlargement was not due to the water accumulation and dilution of cell contents. The quality and taste of transgenic tomato was appreciated to be about the same as in control ones.

The total amino acids contents were measured in fruits and in leaves (Table 2), because leaves were suggested to be a source of amino acids for fruits. In green and red fruits the contents of total free amino acids were higher when excluding slightly lower content of Phe in green fruits. Analyzing the L-amino acids composition it was

18

Page 19: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

found that amounts of Lys, Arg, Asp, Glu, Val, Met, Leu, iLeu, Tyr and Phe were higher in transgenic fruits and the content of Pro, Gly and Ala were lower. If the change in amino acids composition in fruit and the increase in vitamin C can be accompanied with change in other substances (i.e. carotenoids) and influence the fruit nutritional value will be a point to investigate. Larger pool of lower molecular weight compounds, such as amino acids, in plants has the role to balance the osmotic pressure in cells in order to overcome water stress.

Table 2. Total amino acids contents in leaves and fruits of tomato cv. Ventura (nmol/g fresh weight).

Leaves Green fruits Red fruits

Control 4206.2 5208.4 5557.5

Transgenic 4931.3 6349.1 8899.5 Leaves of transgenic plants cv Ventura contained more water then the control

(Table 1), perhaps the abundance of low molecular weight compounds balanced the osmotic pressure in cells in order to maintain water content high and to overcome drought and water stress.

Measurement of leaf gas exchange (Table 3) indicated that the Ventura transgenic plants have higher net carbon dioxide assimilation and lower stomatal conductance and water transpiration indicating a possible higher efficiency of water use.

Table 3. Comparison of leaf gas exchange between control and transgenic tomato.

Net photosynthesis

Water vapor transpiration

Stomatal Conductance

µmol m-2s-1 mmol m-2s-1 mol m-2s-1

30th June

Control 11.20±0.2199 11.07±0.003483 1.791± 0.7129

Transgenic 13.35±0.2610 9.073±0.003649 0.8248±0.1983

31st July

Control 12.56±0.6676 12.40±0.1264 1.647±0.6759

Transgenic 15.55±0.4139 9.888±0.09210 0.8225±0.2395 During Siberian summer the tomato cultivation occurred under a plastic greenhouse

and hot temperatures occurred sometimes. In this condition both control and transgenic plants wilted but the recovery was faster in transgenic tomato plants than in control

19

Page 20: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

ones. This evidence supports the idea about more favorable relationship between water use and growth capacity of the iaglu transgenic tomato plants.

Recently a tryptophan racemase was found in wheat leaves (Rekoslavskaya et al.1999) that was activated during drought and osmotic stresses. As a result the amino acid D-tryptophan appeared as if it was used for IAA biosynthesis as an additional and direct precursor source during period of recovery after drought. Preliminary studies of the tryptophan racemase activity were carried out in excised tomato leaves. In turgid control tomato leaves the activity was lower than in transgenic. Artificially wilting the leaves, placing on 0.5M mannitol solution, the activity of tryptophan racemase increased in leaves of transgenic plants and diminished in control leaves.

As a whole the insertion of iaglu gene in tomato plants seems to have effects useful in tomato cultivation and productivity.

Literature Cited Rekoslavskaya N. I., Yurjeva O. V., Salyaev R. K., Mapelli S., Kopytina T. V., 1999.

Bulgar. J. Plant Physiol. 25: 39-49.

20

Page 21: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

Introgression of resistance against Mi-1-virulent Meloidogyne spp. from Lycopersicon peruvianum into L. esculentum 1 Moretti, A., 2 Bongiovanni, M., 2 Castagnone-Sereno, P., 1 Caranta, C. 1 INRA, Genetics and Breeding of Fruits and Vegetable, Dom. St Maurice, BP94, 84143 Montfavet cedex, France. E-mail : [email protected] 2 INRA, Interactions Plantes Micro-organismes et Santé Végétale, 123 Boulevard F. Meilland, BP 2078, 06606 Antibes cedex, France. E-mail : [email protected]

Root-knot nematodes (Meloidogyne spp.) are one of the main pathogens of tomato crops worldwide. Up to now, all tomato cultivars with resistance to Meloidogyne originated from a single resistant L. peruvianum interspecific F1 plant carrying the dominant gene Mi-1 (Smith, 1944). Mi-1 is effective against M. incognita, M. arenaria and M. javanica but there have been several reports of field or laboratory-selected isolates from the three species able to reproduce on tomato plants with Mi-1 (Castagnone-Sereno et al., 2001). Moreover, the need for introgression of additional resistance genes against root-knot nematodes increased with the prohibition of the nematicide methyl bromide, from 2005 in all the European Union. Among the resistance sources and genes against nematodes available in wild tomato species, the Mi-3 gene from L. peruvianum family VWP2x4 is of particular interest since it is effective against M. incognita strains virulent on Mi-1 and also confers resistance at 32°C (Yaghoobi et al., 1995). Seeds from the L. peruvianum family VWP2x4 homozygous for Mi-3 (based on DNA marker NR14) were kindly provided by V. Williamson (Univ. California, Davis, USA). This material was also homozygous for Mi-1 as indicated by the DNA marker REX-1. Five plants VWP2x4 homozygous for both Mi-3 and Mi-1 were hybridized with L. esculentum Momor sp. (an INRA near isogenic line in the Moneymaker type containing the Ve, Frl and Tm-22 resistance genes and the sp gene, Laterrot, 1996) used as the female parent. Buds were emasculated and immediately pollinated with pollen from L. peruvianum; the same buds were pollinated at least two other times at 2-days intervals. Fruits were harvested 30-32 days after. The 371 fruits obtained presented 0 to 3 seeds per fruit; among them, a single one presented an immature embryo. Classical embryo rescue technique leads to a single F1 hybrid plant (Smith, 1944). Cuttings of the interspecific F1 hybrid were evaluated for resistance against M. incognita, M. arenaria, M. javanica using both Mi-1-avirulent and Mi-1-virulent isolates and also against M. hapla (not controlled by Mi-1) during two independent tests (Table 1). Resistance evaluation was performed as described in Castagnone-Sereno et al. (2001) and the behavior of the interspecific F1 hybrid was compared with those of the L. esculentum Saint Pierre (susceptible to Meloidogyne spp.) and Piersol (homozygous for Mi-1). As expected, L. esculentum Saint Pierre is highly susceptible to all strains of M. incognita, arenaria, javanica and hapla. L. esculentum Piersol is resistant only against M. incognita Antibes, M. arenaria Marmande and M. javanica Avignon ; this resistance spectrum results from the presence of Mi-1. On the contrary, the Mi-1-virulent isolates reproduce well on Piersol. Both the parental line L. peruvianum VWP2x4 and the

21

Page 22: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

interspecific F1 hybrid are completely resistant to M. incognita, including strains able to overcome Mi-1. Interestingly, they are also partially resistant to M. arenaria and M. javanica strains able to overcome Mi-1. This resistance spectrum probably results from the presence of Mi-3 or other unknown resistance genes. As already known for Mi-1, Mi-3 does not control M. hapla. In order to continue introgression into L. esculentum and to better characterize resistance against Mi-1-virulent strains, the F1 hybrid was back-crossed with L. esculentum Momor sp. (used as the female parent). Among the 109 fruits obtained, the embryo rescue technique led to 10 BC1 plants. This material is currently being evaluated for resistance against Mi-1-virulent and -avirulent Meloidogyne spp.

Literature cited: Castagnone-Sereno, P., Bongiovanni, M., Djian-Caporalino, C. 2001. New data on the

specificity of the root-knot nematode resistance genes Mi1 and Mi3 in pepper. Plant Breeding 120 : 429-433.

Laterrot, H. 1996. Twenty near isogenic lines in Moneymaker type with different genes for disease resistances. TGC Report 46.

Smith, P.G. 1944. Embryo culture of a tomato species hybrid. Proc. Am. Soc. Hort. Sci. 44 : 413-416.

Yaghoobi, J., Kaloshian, I., Wen, Y., Williamson, V.M. 1995. Mapping a new nematode resistance locus in Lycopsersicon peruvianum. Theor. Appl. Genet. 91 : 457-464.

22

Page 23: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

Table 1 : Screening for Meloidogyne spp. resistance in the interspecific F1 hybrid (Momor sp X VWP2x4). Nematode strains L.

esculentum Saint Pierre

L. esculentum

Piersol (Mi1)

Interspecific F1 (Momor sp x

VWP2x4)

L. peruvianumVWP2x4

M. incognita Antibes (avira.) 43b (6)c 0 (6) 0 (13)* Adiopodoumé (avir.)

46.2 (12) 0 (12) 0 (29)

Adiopodoumé (vir.) 47.2 (12) 45.6 (12) 0.2 (26) N'Gorom (vir.) 30.6 (6) 19.3 (6) 0 (10) Valbonne (vir.) 46.2 (6) 46.3 (6) 0.2 (14)* 0.4 (27) M. arenaria Marmande (avir.) 40.2 (6) 0 (6) 0.1 (13)* Saint Vincent (vir.) 46 (12) 45.8 (10) 6.6 (25) Grau du Roi (vir.) 29.8 (6) 13.5 (6) 7.4 (13)* Chateau-Belair (vir.)

31.3 (6) 28.4 (6) 9.5 (10)

M. javanica Avignon (avir.) 37 (6) 0 (6) 0 (13)* Canaries (vir.) 31.8 (6) 37.8 (6) 2.5 (13)* 15.8 (26) Turquie (vir.) 46 (6) 39.2 (6) 3.1 (10) M. hapla La Môle 14.7 (6) 30.2 (6) 15.3 (10) * indicates that resistance was assessed during two independent tests. a Avir. indicates Meloidogyne isolates that are avirulent on tomato plants with Mi-1 ; vir. indicates Meloidogyne isolates that are virulent on tomato plants with Mi-1. b Average number of egg masses 8 weeks after inoculation with 50 J2. c number of evaluated cuttings.

23

Page 24: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

Differences in susceptibility of pruning wounds and leaves to infection by Botrytis cinerea among wild tomato accessions 1 Nicot, P. C., 2 Moretti A., 1 Romiti, C., 1 Bardin, M., 2 Caranta C., 1 Ferrière H. INRA, 1 Plant Pathology Unit, and 2 Genetics and Breeding of Fruits and Vegetable, Domaine. St Maurice, BP 94, 84143 Montfavet cedex, France. E-mail : [email protected]

Control of gray mold caused by Botrytis cinerea, a key problem in greenhouse production of tomato, has mostly been focused on cultural methods and the use of fungicides and biological control agents (Nicot and Baille, 1996). Recent reports on possible sources of partial resistance in Lycopersicon esculentum and related species (Chetelat and Stamova, 1999, Egashira et al., 2000, Nicot et al., 2000) have prompted interest in the possibility of breeding tomatoes less susceptible to B. cinerea. The purpose of the present study was to explore the potential of different tomato accessions as possible sources of resistance in a germplasm collection maintained at the plant breeding unit of INRA-Avignon. Work was focused on wild tomatoes in the genus Lycopersicon.

Plants were grown in a greenhouse in individual pots containing a type P3 horticultural mix (De Baat, Coevorden, The Netherlands) and watered daily with a nutrient solution. The plants were staked and axillary shoots were removed regularly to maintain a plant architecture (single stem) similar to that in commercial production. After 8 weeks of growth, the plants had 10-12 leaves for most accessions. Some species such as L. hirsutum and L. pimpinellifolium tended to have more (12-14) while others such as L. pennellii tended to have fewer (9) leaves per plant.

To mimic leaf pruning, a common agricultural practice in greenhouse production, three leaves were removed from the lower part of each of five plants per accession, leaving 5-10 mm petiole stubs on the stems. Each pruning wound was inoculated with 10µl of a spore suspension containing 107 conidia of B. cinerea per ml from a 10-day old colony on Potato Dextrose Agar. To minimize genetic variability among spores of the pathogen, a mono-ascospore isolate was used (isolate SAR 11092, kindly provided by M. Boccara, University of Paris-6). After complete absorption of the inoculum into the wounds (10-15 minutes), the plants were transferred to a growth chamber and incubated in conditions conducive to disease development. The wounds were examined for infection and the length of each developing stem lesion was recorded 4, 7, and 14 days after inoculation. Sporulation occurred rapidly on lesions and the manipulation of plants for disease rating contributed to the dispersion of abundant secondary inoculum throughout the air of the growth chamber. The resulting leaf infections were recorded at 14 days after inoculation on a scale from 0 (no lesion) to 5 (up to 50% of necrotic leaf area). On many accessions, intumescences developed on stems and/or leaves, presumably in relation with the confined environment in the growth chamber (Moreau et al., 1997). They were rated as described by Moreau et al. (1997), on a scale from 0 (no intumescence) to 4 (up to 30% of leaf or stem surface covered). Three independent trials were conducted.

24

Page 25: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

Wound infection was recorded on all accessions. In all cases the pathogen was able to colonize the petiole stub, but significant quantitative differences were observed among accessions for the subsequent development of stem lesions (Table 1). Stem colonization was most severe on the fixed line Mospomorist of L. esculentum, used as a susceptible control, and it was least severe among accessions of L. hirsutum and L. peruvianum. For these less susceptible accessions, the size of the stem lesions rarely increased beyond the diameter of the petiole.

Partial resistance was also observed on leaves. Compared to L. esculentum, symptoms were significantly reduced on several accessions such as L. chmielewskii 731089 and L. chilense LA1969 (Table 1). There was little correlation between susceptibility of stem and leaf tissue (r² < 0.04), and the accessions with significantly smaller stem lesions were equally or more susceptible to leaf infection than L. esculentum. However, the development of Botrytis lesions on the leaves appeared to be partially related to that of intumescences (Table 1).

Stem lesions represent the most frequent and the most damaging of Botrytis symptoms in heated glasshouses where excess humidity is usually avoided. In this context, the high level of partial resistance to stem colonization found within the species L. hirsutum appears promising for breeding less susceptible tomatoes. Further work has been focused on the genetics, mechanisms and durability of partial resistance.

Literature cited : Chetelat, R.T., Stamova, L. 1999. Tolerance to Botrytis cinerea. Acta Horticulturae

487:313-316. Egashira, H., Kuwashima, A., Ishiguro, H., Fukushima, K., Kaya, T., Imanishi, S. 2000.

Screening of wild accessions resistant to gray mold (Botrytis cinerea Pers.) in Lycopersicon. Acta Physiologiae plantarum 22:324-326.

Moreau, P., Thoquet, P., Laterrot, H., Moretti, A., Olivier, J., Grimsley, N.H. 1997. A locus, ltm, controlling the development of intumescences, is present on chromosome 7. TGC Report 47:15-16.

Nicot P.C., Baille A. 1996. Integrated control of Botrytis cinerea on greenhouse tomatoes. In: C.E. Morris, P.C. Nicot and C. Nguyen Thé (eds.). Aerial Plant Surface Microbiology. Plenum Publisher New York, ISBN 0-306-45382-7. pp 169-189.

Nicot P.C., Pellier A.L., Moretti A., Caranta C., Rousselle P. 2000. Resistance of tomato to Botrytis cinerea. 12th. International Botrytis Symposium, Reims, 2000/07/03-08. University of Reims Champagne-Ardenne, Reims, France. Abstract .P77.

Acknowledgements: This work was supported in part by private breeders: Gautier Graines, Rijk-Zwaan France SARL, Seminis Vegetable Seeds France S.A., Syngenta Seeds S.A.S., Takii Recherche France S.A., Tézier S.A., Vilmorin.

25

Page 26: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

Table 1 : Susceptibility of Lycopersicon accessions to Botrytis cinerea and to development of intumescences.

stem lesions1 leaf lesions2 intumescences3 L. hirsutum LA1777 2,0 a 2,7 cde 2,5 defg L. hirsutum PI247087 4,2 ab 3,5 def 3,4 ghi L. hirsutum H2 4,2 ab 2,3 bc 1,7 bcdef L. hirsutum G11560 4,7 ab 2,9 cde 2,9 fghi L. hirsutum PI134417 5,1 ab 3,5 def 2,6 efgh L. peruvianum CMV - Sel INRA

5,3 ab 2,7 cde 2,1 bcdef

L. peruvianum PI 128660 5,4 ab 2,4 bcd 2,2 cdefg L. hirsutum B 6,0 ab 3,6 ef 3,8 hi L. pimpinellifolium L3708 6,5 ab 3,0 cde 1,7 bcdef L. chilense LA1969 7,4 ab 0,1 a 0,4 ab L. peruvianum D4xD5 7,6 ab 3,0 cde 2,2 cdefg L. hirsutum PI134498 8,0 ab 1,0 ab 0,0 a L. pennellii Clayberg 8,5 ab 1,5 b 0,0 a L. chmielewskii 731089 8,6 ab 0,3 a 0,1 a L. pimpinellifolium WVA700 11,6 abc 2,7 cde 1,5 abcdeL. hirsutum PI390660 13,4 bc 1,1 ab 1,0 abc L. pimpinellifolium WVA106 14,4 bc 3,0 cde 1,3 abcd L. pimpinellifolium hirsute 19,7 c 4,6 f 3,9 i L. pennellii LA716 19,9 c 1,9 bc 0,1 a L. esculentum Mospomorist 20,4 c 2,2 bc 0,0 a

1 lesion size (mm) 14 days after inoculation (average for 3 replicated independent tests); numbers followed by different letters were statistically different (p<0.05) according to Tukey's HSD test

2 average disease index 14 days after inoculation (average for 2 replicated independent tests); numbers followed by different letters were statistically different (p<0.05) according to Tukey's HSD test

3 average index of intumescence on leaves 7 days after inoculation (average for 2 replicated independent tests); numbers followed by different letters were statistically different (p<0.05) according to Tukey's HSD test

26

Page 27: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

A rise of productivity of transgenic tomato (Lycopersicon esculentum Mill.) by transfer of the gene iaglu from corn

1Rekoslavskaya N. I., 1Salyaev R. K., 2Mapelli S., 1Truchin A. A., 1Gamanetz L. V. 1Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of RAS, PO Box 1243, Irkutsk, Russia, e-mail: [email protected] 2Istituto Biologia Biotecnologia Agraria, C.N.R., via Bassini 15, Milan, Italy, e-mail [email protected]

The creation of transgenic plants with the aim to increase productivity and to gain resistance to unfavorable natural and abiotic factors as a result of transgenesis is currently a promising task. The transfer and integration of the maize iaglu gene into Solanum plants was shown earlier to improve an auxin status expressed in an elevated content of free and bound indoleacetic acid (IAA) and accelerated growth and root formation in transgenic plants (Zhukova et al. 1997; Gamanetz et al. 1998).

Tomato seeds, of Ventura and Verlioka varieties, obtained from in vitro transformed plant were utilized to confirm gene insertion and evaluate the effect on plant morphology and productivity. Tomato seedlings cv. Bumerang were infected with transconjugant in planta without step of cultivation in vitro. The efficiency of plant transformation was assessed by the activity of the markers and target enzymes, β-glucuronidase (GUS) (Table 1), neomycinphosphotransferase (Table 2) and UDPG-transferase, respectively in leaves of adult plants.

Table 1. The activity of β-glucuronidase in leaves of tomato L. esculentum cv.

Ventura

Fluorescence Impulses (10 4/mg protein/hr)

Control 6.2

Transgenic 428.6 The data from Sephadex G-25 column eluates of tomato leaves enzyme extracted in K/Na phosphate buffer. In crude extracts from leaves of transgenic tomato cv. Verlioka, the activity of GUS

was 284.1±59.1 x 10 4 fluorescence impulses/gram of dry matter, comparing to the activity of 62.5±4.2 x 10 4 fluorescence impulses/gram of dry matter measured in the controls.

The transgenesis of tomato hybrid plants Bumerang was confirmed by expression of GUS-activity with color substrate 5-bromo-4-chloro-3-indolyl- β-glucuronide due to the appearance of blue zones in trichoblasts on stems of transgenic plants after incubation of small cuttings.

27

Page 28: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

Table 2. Content of chlorophyll in leaves of tomato cv. Ventura exposed to

kanamycin.

Kanamycin (mg/l)

0 50 100 200 300

Control 34.0±0.4 33.8±0.0 22.2±0.2 13.5±0.6 10.1±0.1

Transgenic 51.1±0.3 42.0±0.4 34.6±0.6 29.8±0.3 28.0±0.1 To check the presence of the nptII expression, the developed leaves of both types

of plants were placed in kanamycin solution for seven day and differences between them were evaluated thereafter as a diminishing of chlorophyll content (Table 2). The integration of target iaglu gene in the tomato varieties was confirmed with PCR where the amplification products of corresponding size were found in electrophoresis agarose gels.

The growth and productivity can be supported by strengthening of the auxin status expressed in enhanced IAA biosynthesis, IAA binding activity and IAA bounded hydrolysis (Table 3). The content of free endogenous IAA in leaves of the transgenic tomato was actually two-fold higher calculated by both fresh and dry weights.

The activity of UDPG-transferase, the enzyme coded by iaglu gene, was higher in the cytosol from transgenic tomato plants. The activity of amidohydrolase in transgenic tomato leaves as compared to the control was 14 times higher in Sephadex G-25 purified enzyme fractions. The substrate of this enzyme is the product of iaglu UDPG-transferase.

It is likely that the balance between synthesis, conjugation, transport and hydrolysis results in higher content and action of endogenous IAA in the transgenic tomato.

Table 3. The auxin status of control and transgenic tomato plants cv. Ventura

IAA (nmol per g fr wt)

UDPG-transferase (nmol/mg protein/hr)

Amidohydrolase (nmol/mg protein/hr)

Control 64±4 139.9 278±0.2

Transgenic 112±29 286.3 3875±22 Varieties of transgenic tomato plants obtained by transformation grew faster than

the control ones, formed wider leaf blades, and had larger mass of shoots and stems and more developed root system (Table 4). The transgenic plants were distinguished by formation of a greater number of root primordia (more than 100) along the stem. They started blooming earlier and formed greater amount of trusses and fruits, as well the red fruits yield of the transgenic Ventura, Verlioka and Bumerang varieties were heavier (Table 5) and harvest time occurred 7-10 days earlier.

28

Page 29: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

Table 4. A morphometric analysis of control and transgenic tomatoes growing in soil

Height (cm)

Leaves number

Mean leaf area

(mm 2)

Upper part (g)

Root (g)

Ventura cv.

Control 70.6±4.7 9.1±0.7 281.3±8.3 310.0±35.7 37.8±6.5

Transgenic 88.8±6.5 10.7±0.8 351.7±19.5 423.3±60.0 64.5±8.0

Verlioka cv.

Control 49.0±5.6 9.5±0.7 375.0±1.7 333.3±89.8 28.2±1.2

Transgenic 118.2±21.6 30.0±5.0 1250.0±5.4 1133.3±189.0 38.1±3.1 The determination was performed in the stage of fruit ripening. Fruit weight

excluded. Table 5. Characteristics of tomato fruits

Yield per plant (g)

Weight of red fruit per plant (g)

Number red fruits per plant

Ventura cv.

Control 6021 4613 224

Transgenic 8006 7023 301

Verlioka cv.

Control 3159 1640 99

Transgenic 3974 2313 111

Bumerang hybrid

Control 4649 3290 133

Transgenic 6316 4802 179 Therefore, transgenesis and expression of the iaglu gene enhanced the auxin status

of the transgenic plants that appeared to be a stimulating factor providing faster plant growth, floral development as well as the improvement of productivity in genetically modified tomato plant.

29

Page 30: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

Literature Cited: − Rekoslavskaya, N. I., Gamanetz, L. V., Bryksina, I. V., Mapelli, S. and Salyaev, R. K.

(1998). Obtaining of transgenic tomato (Lycopersicon esculentum Mill.) and potato (Solanum tuberosum L.) by transfer of the ugt gene from corn. Rep. Tom. Genet. Coop., 48: 40-42.

− Zhukova, V. M., Rekoslavskaya, N. I., Salyaev, R. K. and Yurieva, O. V. (1997). Transformation of plants via shoot regeneration from infected with agrobacteria axillary buds of Solanum illustrated with the gene iaglu. Biotechnology (Russian), 5: 15-21.

30

Page 31: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

A new allele at the potato leaf locus derived from L. chilense accession LA 1932 is discovered in a geminivirus resistance project. Scott, J.W. University of Florida, IFAS, Gulf Coast Research & Education Center, Bradenton, FL 34203 The potato leaf (c) locus has been mapped to chromosome 6 near the sp and B loci Tanksley et al., 1992; Weide et al., 1993). In 1990 we discovered resistance to the geminivirus, tomato mottle virus (ToMoV), in several accessions of L. chilense (Scott and Schuster, 1991). Resistance was introgressed into tomato by crossing entirely with cut leaf recurrent parents. Nevertheless, we began to find potato leaf segregants in determinate plants derived from LA 1932 (and LA1961). The potato leaf trait seemed to be associated with ToMoV resistance and potato leaf was used along with sp to anchor RAPD markers linked to resistance loci (Griffiths, 1998; Griffiths and Scott, 2001). In that research it was observed that the potato leaf type observed was not as easily identified as with c genotypes. To determine if the LA 1932 derived potato leaf was in fact an allele at the c locus, an inbred with the trait, 745-Y1, was crossed with c leaf accessions LA 2510 and LA 2513 and Fla. 7781 (c+). Subsequently, F2 seed was obtained for each cross. Parents, F1 and F2 generations were grown in Todd planter flats in a greenhouse in spring, 2002. Plants were rated as wild type (cut leaf), potato leaf (c), or LA 1932 potato leaf (Fig. 1) when seedlings were at the 2-3 leaf stage. The LA 1932 derived potato leaf is not as distinctive as c, the leaf generally has a lower length to width ratio, is more rounded than pointed, and has a small serration in the leaf margin (Fig. 1). As can be seen in Fig. 1d, the axillary leaflets often connect to the terminal leaflet unlike c where they are generally separate. The LA 1932

31

Page 32: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

potato leaf margin sometimes has a few rather wide and deep serrations (Fig 1e), but it can be accurately identified with practice. The new phenotype was a monogenic recessive to wild type based on the F1 and F2 results (Table 1). The new phenotype was a monogenic dominant to c. The data suggest the new phenotype is allelic to c although there were 2 plants that appeared to be wild type in the 745-Y1 x LA 2510 F2. These may have been misclassified (although they were grown out and checked later) or due to some type of error in the experiment. A closely linked gene to c can not be ruled out, but it is felt that another allele at the c locus provides the best fit to the data. The symbol c2 is thus proposed for the potato leaf allele derived from LA 1932. It is surprising that this allele emerged from a cross of two non-potato leaf parents. Possibly LA 1932 (sp+) is heterozygous for c2, although I do not remember seeing indeterminate potato leaf plants in any of our work. Apparently LA 1932 has a gene linked on the opposite side of the sp locus (or very close to it) that is epistatic to c2 expression. The tomato yellow leaf curl virus (TYLCV) resistant variety ‘Tyking’ also has a potato leaf type. Furthermore, we tested Henri Laterrot’s CHILTYLIC94-3 population in 1995 and found a few plants showed ToMoV resistance. A few generations of resistance selection followed and derived homozygous resistant lines all had potato leaves. Since ‘Tyking’ is in the pedigree of the CHILTYLC94-3 population, this could have been the source of the potato leaf. No allelism work has been done with c2 and these other genotypes or with cint which has some similarity to c2 but a different length /width ratio (see images in the TGRC website). It does seem probable that these genotypes have a geminivirus resistance gene in the c region of chromosome 6. Lines derived from LA 1932 with ToMoV and TYLCV resistance without c2 have recently been developed, indicating the linkage between c2 and the resistance gene has been broken. Literature Cited Griffiths, P.D. 1998. Inheritance and linkage of geminivirus resistance genes derived from Lycopersicon chilense Dunal in tomato (Lycopersicon esculentum Mill.). PhD diss., Univ. of Florida, Gainesville. Griffiths, P.D. and J.W. Scott. 2001. Inheritance and linkage of tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA 1932. J. Amer. Soc. Hort. Sci. 126(4):462-467. Scott, J.W. and D.J. Schuster. 1991. Screening of accessions for resistance to the Florida tomato geminivirus. TGC Rpt. 41:48-50. Tanksley, S. et al. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141-1160. Weide, R. et al. 1993. Integration of the classical and molecular linkage maps of tomato chromosome 6. Genetics 135:1175-1186.

32

Page 33: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

RESEARCH REPORTS TGC REPORT 52, 2002 ______________________________________________________________________

33

Table 1. Segregation of leaf type for two types of potato leaf parents, a wild type parent, derived F1 and F2 generations, and chi square analyses for goodness of fit to single dominant gene models. Leaf Morphology Genotype

Generation

Cut (c+)

New Potato

StandardPotato(c)

Expected Ratio

χ2

p

LA 2510 (c)

P1A

0

0

24

0:0:1

-

-

LA 2513 (c) P1B 0 0 24 0:0:1 - - 745-Y1 (from LA1932)

P2 0 24 0 0:1:0 - -

Fla. 7781 (7781)(c+) P3 23 0 0 1:0:0 - - (745-Y1 x 7781) F1 15 1 0 1:0:0 - - (745-Y1 x LA 2510) F1 0 23 0 0:1:0 - - (745-Y1 x LA 2513) F1 0 24 0 0:1:0 - - (745-Y1 x 7781)Bk F2 250 85 0 3:1:0 0.016 .9 (745-Y1 x LA 2510)Bk

F2 0 219 74 0:3:1 0.012 .9-.975

(745-Y1 x LA 2513)Bk

F2 2z 226 84 0:3:1 0.727 .5-.1

zNot included in chi-square calculations.

Page 34: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

THIS PAGE IS BLANK IN THE ORIGINAL DOCUMENT

Page 35: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

VARIETAL PEDIGREES TGC REPORT 52, 2002 ____________________________________________________________________________________

Alvarez, M.; Moya, C.; Dominí, M.E. and Arzuaga, J.; 2002. Instituto Nacional de Ciencias Agrícolas (INCA), La Habana, Cuba. Released 1997. Amalia, Mariela Pedigree:

Mariela

Amalia

Campbell-28

INCA 3A

Caraibe

Línea C-3 HC-2580

Línea 35 Campbell-28

INCA-3 Characteristics: Amalia Fruit: Red, slightly flattened globe, joint, tolerant to cracking and rots, high soluble solids, average weight 125 g. Plant: Determinate (sp), small, resistant to Fusarium (I) and Stemphylium (Sm), good fruit set. Utility and Maturity: Fresh market cultivar widely adapted to tropical environments, early maturity. Mariela Fruit: Red, flattened globe with slightly green - shouldered, joint, average weight 150g. Plant: Determinate (sp), good fruit protection, resistant to Fusarium (I) and Stemphylium (Sm). Utility and Maturity: Good for fresh market.

35

Page 36: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

VARIETAL PEDIGREES TGC REPORT 52, 2002 ____________________________________________________________________________________

Ohio OX150 Hybrid Processing Tomato David M. Francis, Stan Z. Berry, Troy Aldrich, Ken Scaife, and Winston Bash Horticulture and Crop Science The Ohio State University, OARDC 1680 Madison Ave. Wooster, OH 44691 Introduction: Ohio OX150 is an early to early-mid season processing tomato (Lycopersicon esculentum Mill.) hybrid adapted to high population transplant culture, machine harvest, and bulk handling under humid growing environments. It is suited for the production of peeled, whole-canned, and diced tomato products. Origin: Ohio OX150 is the F1 hybrid resulting from the cross of the inbred line O88119 described by Berry et al. (1995) and Ohio 9242. ‘Ohio 9242’ is an F8 selection derived by single seed decent from the F6 selection A1816. The selection A1816 is derived from a cross between ‘Ohio 832’ (Berry et al., 1986) variant ‘O9149’ (Montagno et al., 1988) and ‘Ohio 8556’ (Berry et. al., 1993). ______ | O88119 | | ‘Ohio OX150’ ____ | | _____ | | Ohio 832 (variant O9149) | | |______Ohio 9242 _______ | | |_____ Ohio 8556 Fig. 1. Pedigree of ‘Ohio OX150’ Description: Ohio OX150 vines are medium in size, semi-prostrate, and determinate (sp). Foliage cover is excellent for ensuring good fruit quality and at maturity the vines cover the row area uniformly. The average maturity from transplant to harvest of ‘Ohio OX150’ is 97.1 days over four years of field testing, comparable to the early season standard, ‘Ohio 7983’ (Berry et al., 1992). The average machine harvest yield of Ohio OX150 was 32.8 T/A over four years of testing, outperforming the major early season varieties open pollinated variety Ohio 7983 and comparing favorably to OX 52 (Francis et al., 2000) (though differences were not always significant). Yields of ‘Ohio OX150’ were comparable to the main-season open pollinated variety Ohio 8245 and the main-season hybrid Heinz 9423. Yields were somewhat less than the major main-season variety Peto 696 (Table 1).

36

Page 37: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

VARIETAL PEDIGREES TGC REPORT 52, 2002 ____________________________________________________________________________________

Fruit of ‘Ohio OX150’ average 2.1 oz with two to three locules. The shape is ovate. Fruit have a small stem scar and core, are uniform ripening (u), are attached by a jointless pedicel (j2), and are heterozygous for the crimson (ogc/+) locus. The color of fruit from ‘Ohio OX150’ is excellent. Table 1. Summary statistics for maturity, mechanical harvest yield, and fruit quality for OX 150 over four years.

Days to Yield color Force to Variety Harvest T/A L Chroma Hue puncture (Kg) Brix O 7983 96.2 27.6 41.6 35.9 44.0 5.5 5.32 OX 52 97.1 36.1 41.9 36.1 45.1 5.0 4.72 OX 150 97.1 32.8 40.0 35.0 43.0 5.3 4.65 TR 12 98.2 33.1 40.1 36.2 42.6 5.6 5.11 H 9423 101.5 30.1 43.3 40.6 41.2 7.2 5.00 PS 696 101.8 36.8 42.6 37.3 44.8 5.6 5.02 O 9242 102.7 26.7 38.8 35.4 38.8 4.9 5.31 O 8245 103.7 29.7 42.8 37.3 44.6 5.8 5.16 mean 99.8 31.6 41.4 36.7 43.0 5.6 5.04 LSD (0.05)

NS NS 2.5 1.7 NS 0.6 0.31

LSD (0.30)

4.2 5.1 1.2 0.8 2.5 0.3 0.16

References: Berry, S.Z. and W.A. Gould. 1986. ‘Ohio 832’ Tomato. HortScience 21:334. Berry, S.Z. K.L. Weise, and W.A. Gould. 1992. “Ohio 7983” Processing Tomato. Hortscience 27: 939. Berry, S.Z., K.L. Wiese, and T.S. Aldrich. 1993. “Ohio 8556” Processing Tomato. HortScience 28:751. Berry, S. Z., T.S. Aldrich, K.L. Wiese, and W.D. Bash. 1995. ‘Ohio OX38” Hybrid Processing Tomato. Hortscience 30:159. Francis, D. M., S. Berry, T. Aldrich, K. Scaife, W. Bash. 2000. ‘Ohio OX 52’ Processing Tomato. Report of the Tomato Genetics Cooperative Vol 50 Montagno, T. J., R.D. Lineberger, and S.Z. Berry. 1989. Somaclonal and radiation induced variation in Lycopersicon esculentum. Environmental and Experimental Botany. 29:401-408.

37

Page 38: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

VARIETAL PEDIGREES TGC REPORT 52, 2002 ____________________________________________________________________________________

Scott, J.W. 2000. Fla. 7771, a medium-large, heat-tolerant, jointless-pedicel tomato. HortScience 35(5):968-969. FLORIDA 7771

Fla. 1B

648648

Cl 123

C-28 C-28

Burgis

Pedigree:

7060

Horizon

F4

F4

F6

Suncoast

Suncoast

F5F1

F6

F7

F5

F3

F7

7340F5

7340

7095F5

648

E03

6120

Hayslip

Fla. 1C

Horizon7182

F5

7319F5

7546BF5

F7

Fla. 7771F7

Characteristics: Fruit: flat-round shape, light green shoulder, slightly pale interior color, medium-large fruit,

medium firmness, n-2 Plant: sp, I, I-2, Sm, medium vine with erect leaves in top Utility and maturity: Early-midseason fresh market breeding line combining jointless pedicel,

medium large fruit size and heat-tolerance (33-22 C, high relative humidity) with minimal fruit defects for breeding of same

38

Page 39: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

VARIETAL PEDIGREES TGC REPORT 52, 2002 ____________________________________________________________________________________

Scott, J.W., B.K. Harbaugh, and E.A. Baldwin. 2000. ‘Micro-Tina’ and ‘Micro-Gemma’ miniature dwarf tomatoes. HortScience 35(4):774-775. MICRO-TINA MICRO-GEMMA Pedigree:

Micro-TinaF10

Micro-GemmaF10

P 270248 (‘Sugar’)I

P 270248 (‘Sugar’)I

Micro-Tom

Fla. 7565 (related to ‘Micro-Gold’)

Characteristics: Fruit: Very small (7g), tri-locular, flat-round shape, u, Micro-Gemma has gold color (r,Y),

sweeter flavor than Micro-Tom or Micro-Gold (plus 1 Brix) Plant: sp, d, I, Sm, diminutive size of plant organs similar to ‘Micro-Tom’ Utility and maturity: Micro-Tina is 1 week earlier than Micro-Gemma and Micro-Tom, for

small pots or hanging baskets and patio gardens

39

Page 40: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

VARIETAL PEDIGREES TGC REPORT 52, 2002 ____________________________________________________________________________________

40

Scott, J.W. and John Paul Jones. 2000. Fla. 7775 and Fla. 7781: Tomato breeding lines resistant to fusarium crown and root rot. HortScience 35(6):1183-1184. FLORIDA 7775 FLORIDA 7781

Ohio 89-1

SuncoastSuncoast

F4

F4

7181

F4

7228F8

F5

F5

7464F6

Suncoast

Suncoast

Suncoast

NC 8276

NC 8276

F3

F3

F3

Horizon7198F4

7197F3

E01

HayslipHorizon

7182

7440F5

7340F5

7340F5

7182F9

7182F9

7647BF8

7647BF8

F5

F6

Fla. 7781F13

Fla. 7775F9

Pedigree:

Characteristics: Fruit: flat-round shape, light-green shoulder, ogc, Fla. 7775 has medium size, jointless (j- 2)

pedicels and is very firm, Fla. 7781 is medium-large, has jointed pedicels, and is firm Plant: sp, I, I-2, Ve, Sm, Frl, Fla. 7775 also has Tm-2 (OPB 12 SCAR marker) and a

open vine, Fla. 7781 has a larger vine

Utility and maturity: Midseason fresh market breeding lines for fusarium crown and root rot resistance breeding

Page 41: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

41

Revised List of Monogenic Stocks

Chetelat, R. T. C.M. Rick Tomato Genetics Resource Center, Dept. of Vegetable Crops, Univ. of California, Davis, CA 95616 The following list of 994 monogenic stocks (at 614 loci) is a revision of the list issued in TGC 49. For other types of accessions, see TGRC stock lists published in TGC vols. 51 (Wild Species Stocks), and 50 (Miscellaneous Stocks). Certain obsolete or unavailable items have been deleted, newly acquired stocks have been added, inaccuracies corrected, and gene symbols revised to reflect allele tests or other information. Recently acquired morphological mutants include a stock of Xa-2 that forms twin spots due to chromosome breakage (provided by M. Koornneef), and a source of yvms, an unstable allele characterized by yellow/green sectoring (M. Ramanna). New alleles and NIL stocks of hp and hp-2 (A. van Tuinen) and the corolla intensifier Bco (R. Chetelat) were also added. Introgressed disease resistance genes include I-3 for Fusarium wilt (J. Scott) and Cmr for CMV (B. Stamova). Other genes introgressed from wild relatives include sucr for sucrose accumulation (R. Chetelat) and Rg-1 for enhanced shoot regeneration from tissue culture (M. Koornneef). Instances of demonstrated allelism between mutants are incorporated into this list. These include the old gold (og) and crimson (ogc) mutations, which are null alleles at the Beta (B) locus, recessive to both the dominant (B) and wild type (B+) alleles (PNAS 97:11102), for which we propose the symbols Bog and Bc, respectively. Other new allele designations include comin (TGC 46:15) and PtoPto-2 (TGC 41:27). Conversely, the hairless mutation in accession 3-417, which is not allelic to hl (TGC 37:43), is listed herein as hl-2. Finally, the symbol for the gene encoding resistance to Fusarium oxysporum f. sp. radicis-lycopersici (FORL) has been corrected from Fr-1 to Frl. This stock list includes only accessions we consider to be the primary sources for individual mutations: usually the original source (often isogenic in a known background), and any nearly isogenic lines into which the mutation has been bred. Most stocks are homozygous and true-breeding. However, male-steriles, other inherited sterilities, homozygous-inviable mutants, and other stocks that are too difficult to maintain as homozygotes, are propagated via heterozygotes (seed usually provided as F2’s). Additional information on these stocks, including phenotypes, references, images, chromosomal locations, etc., can be obtained through our website (http://tgrc.ucdavis.edu). TGC members are encouraged to submit stocks of verified monogenic mutants not listed here to the TGRC for maintenance and distribution. Table 1. List of monogenic stocks, including gene and allele symbols, locus name, synonyms, phenotypic classes, source of mutation, background genotype, isogenicity, and accession number. The original mutant allele at a locus is designated by ‘--‘, and provisional alleles by ‘prov#’; under SYNONYMS, superscripted alleles are indicated by ‘^’. Abbreviations used for phenotypic categories (CLASS) and background genotypes (BACK) are defined in Tables 2 and 3 respectively. Sources of mutations are spontaneous (SPON), or induced by chemical agents (CHEM) or irradiation (RAD). Isogenicity (ISO) indicates whether a mutation is isogenic (IL), nearly isogenic (NIL), or nonisogenic (NON) in a particular accession. GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# a -- anthocyaninless a1 A* SPON X NON LA0291a -- anthocyaninless a1 A* SPON AC NIL LA3263a prov2 anthocyaninless a A* CHEM VF36 IL 3-414

Page 42: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

42

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# a prov3 anthocyaninless a A* CHEM VF36 IL 3-415 aa -- anthocyanin absent A* SPON MD IL LA1194aa -- anthocyanin absent A* SPON AC NIL LA3617Abg -- Aubergine P* SPON X NON LA3668abi -- aborted inflorescence M* CHEM CSM NON 3-803 Aco-1 1 Aconitase-1 V* SPON pen NON LA2901Aco-1 2 Aconitase-1 V* SPON pim NON LA2902Aco-1 3 Aconitase-1 V* SPON pim NON LA2903Aco-2 1 Aconitase-2 V* SPON pim NON LA2904Aco-2 2 Aconitase-2 V* SPON chm NON LA2905acr -- acroxantha acr1 D*JK RAD CR IL LA0933ad -- Alternaria alternata resistance Q* SPON X NON LA1783Adh-1 1 Alcohol dehydrogenase-1 V* SPON VCH NON LA2416Adh-1 2 Alcohol dehydrogenase-1 V* SPON par NON LA2417Adh-1 n Alcohol dehydrogenase-1 V* CHEM MM IL LA3150Adh-2 1 Alcohol dehydrogenase-2 V* SPON hir NON LA2985adp -- adpressa K*J RAD AC NIL LA3763adp -- adpressa K*J RAD CR IL LA0661adu -- adusta adu1 H*K RAD CR IL LA0934ae -- entirely anthocyaninless a332 A* RAD CG NIL LA3018ae -- entirely anthocyaninless a332 A* RAD AC NIL LA3612ae -- entirely anthocyaninless a332 A* RAD KK IL LA1048ae 2 entirely anthocyaninless A* CHEM UC82B IL 3-706 ae afr entirely anthocyaninless afr, ap A* RAD CT IL LA2442ae prov3 entirely anthocyaninless ae A* CHEM VCH IL 3-620 aeg -- aegrota H* RAD CR IL LA0537aer -- aerial roots R* SPON X NON LA3205aer-2 -- aerial roots-2 R* SPON X NON LA2464Aaf -- anthocyanin free a325 A*I RAD RCH IL LA1049af -- anthocyanin free a325 A*I RAD AC NIL LA3610Af -- Anthocyanin fruit P* SPON X NON LA1996afe -- afertilis afe1 N*CJK RAD RR IL LA0935afl -- albifolium af B*G SPON XLP IL 2-367 afl -- albifolium af B*G SPON AC NIL LA3572ag -- anthocyanin gainer A* SPON GS5 NON LA0177ag -- anthocyanin gainer A* SPON AC NIL LA3163ag 2 anthocyanin gainer A* SPON che NON LA0422ag 2 anthocyanin gainer A* SPON AC NIL LA3164ag-2 -- anthocyanin gainer-2 A* SPON AC NIL LA3711ah -- Hoffman’s anthocyaninless ao, a337 A* SPON OGA IL LA0260ah prov2 Hoffman’s anthocyaninless ah A* CHEM MM IL 3-302 ah prov3 Hoffman’s anthocyaninless ah A* CHEM VCH IL 3-607 ah prov4 Hoffman’s anthocyaninless ah A* CHEM VCH IL 3-628 ah prov5 Hoffman’s anthocyaninless ah A* CHEM VCH IL 3-629 ah prov6 Hoffman’s anthocyaninless ah A* SPON PSN IL LA0352ah prov7 Hoffman’s anthocyaninless ah A* CHEM MM IL 3-343 ai -- incomplete anthocyanin a342 A* RAD KK IL LA1484ai -- incomplete anthocyanin a342 A* RAD AC NIL LA3611ai 2 incomplete anthocyanin am, a340 A* RAD KK IL LA1485al -- anthocyanin loser a2 A* SPON AC NIL LA3576alb -- albescent G*C SPON AC NIL LA3729alb prov2 albescent alb G*C CHEM VCH IL 3-625 alc -- alcobaca P* SPON X NON LA2529

Page 43: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

43

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# alc -- alcobaca P* SPON RU NIL LA3134alu -- alutacea alu1 C*K RAD CR IL LA0838an -- anantha an^1, an^2, ca L*N RAD CR IL LA0536ap -- apetalous L*N SPON ESC IL 2-009 ap -- apetalous L*N SPON AC NIL LA3673apl -- applanata J*K RAD LU IL LA0662apn -- albo-punctata G*BJK CHEM VF36 IL 3-105 Aps-1 1 Acid phosphatase-1 V* SPON VCH NIL LA1811Aps-1 2 Acid phosphatase-1 V* SPON chm NON LA1812Aps-1 n Acid phosphatase-1 V* SPON pim NON LA1810Aps-2 1 Acid phosphatase-2 V* SPON SM NON LA1814Aps-2 2 Acid phosphatase-2 V* SPON che NON LA1815Aps-2 3 Acid phosphatase-2 V* SPON par NON LA1816Aps-2 n Acid phosphatase-2 V* SPON che NON LA1813are -- anthocyanin reduced A* CHEM VF36 NON 3-073 Asc -- Alternaria stem canker resistance Q* SPON X NON LA2992at -- apricot P* SPON AC NIL LA3535at -- apricot P* SPON X NON LA0215at -- apricot P* SPON RU NIL LA2998atn -- attenuata at E*AJK RAD AC NIL LA3829atn -- attenuata at E*AJK RAD RR IL LA0587atv -- atroviolacium A* SPON AC NIL LA3736au -- aurea C*B RAD AC NIL LA3280au (1s) aurea au^2, au, brac C*B RAD CR IL LA0538au 6 aurea yg^6, yg-6,

au^yg-6, yo C*B SPON RCH IL LA1486

au 6 aurea yg^6, yg-6, au^yg-6, yo

C*B SPON AC NIL LA2929

au tl aurea C*B SPON VF145 IL 2-655A au w aurea w616 C*B CHEM MM IL LA2837aus -- austera J*KT RAD LU IL LA2023aut -- aureata C*F SPON X NON LA1067aut -- aureata C*F SPON AC NIL LA3166auv -- aureate virescent F*C CHEM VF36 IL 3-075 avi -- albovirens avi1 C*BGN RAD CR IL LA0936aw -- without anthocyanin aba, ab, a179 A* SPON AC NIL LA3281aw -- without anthocyanin aba, ab, a179 A* SPON per NON LA0271aw prov3 without anthocyanin aw A* CHEM VF36 IL 3-121 aw prov4 without anthocyanin aw A* CHEM VCH NON 3-603 aw prov5 without anthocyanin aw A* CHEM VCH NON 3-627 B -- Beta-carotene P* SPON X NON LA2374B -- Beta-carotene P* SPON RU NIL LA3000B -- Beta-carotene P* SPON E6203 NIL LA3898B -- Beta-carotene P* SPON O8245 NON LA3899B og Beta-carotene og L*P SPON chi NON LA0294B og Beta-carotene og L*P SPON PSN NIL LA0348B og Beta-carotene og L*P SPON unk NON LA0500B c Beta-carotene og^c, Crn, Cr,

crn-2, cr-2 P*L SPON AC NIL LA3179

B c Beta-carotene og^c, Crn, Cr, crn-2, cr-2

P*L SPON X NON LA4025

B c Beta-carotene og^c, Crn, Cr, crn-2, cr-2

P*L SPON PCV NON LA0806

B c Beta-carotene og^c, Crn, Cr, P*L SPON X NON LA4026

Page 44: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

44

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# crn-2, cr-2

bc -- bicolor bi U*JKT RAD CR IL LA0588Bco -- Brilliant corolla L* SPON M82 NON LA4067bi -- bifurcate inflorescence M* SPON X NON LA1786bip -- bipinnata J* RAD LU IL LA0663bip -- bipinnata J* RAD AC NIL LA3765bip prov2 bipinnata bip J* CHEM VCH IL 3-602 bk -- beaked O* SPON X NON LA0330Bk-2 -- Beaked-2 O* SPON X NON LA1787bl -- blind K* SPON X NON LA0059bl -- blind K* SPON AC NIL LA3745bl 2 blind to^2 K* SPON LU IL LA0980bl to blind to K*JLO RAD CR IL LA0709bls -- baby lea syndrome alm A*K SPON X NON LA1004bls -- baby lea syndrome alm A*K SPON AC NIL LA3167bls prov2 baby lea syndrome bls A*K CHEM VCH IL 3-610 Bnag-1 1 Beta-N-acetyl-D-glucosaminidase-1 V* SPON pen NON LA2986br -- brachytic K* SPON X NON LA2069brt -- bushy root R* SPON X NON LA2816brt-2 -- bushy root-2 R* SPON X NON LA3206bs -- brown seed S* CHEM AC NIL LA2935bs-2 -- brown seed-2 S* SPON PLB IL LA1788bs-4 -- brown seed-4 S* RAD MM IL LA1998btl -- brittle stem J*Y SPON X NON LA1999bu -- bushy fru K*JM SPON AC NIL LA2918bu -- bushy fru K*JM SPON X NON LA0897bu ab bushy fru^ab K*JM RAD RR IL LA0549bu cin bushy cin K*JM SPON HSD IL LA1437bu cin-2 bushy cin-2 K*JM SPON HSD IL LA2450bu hem bushy fru^hem K*JM RAD CR IL LA0604bul -- bullata C*JK RAD CR IL LA0589buo -- bullosa buo1 J*O RAD pim IL LA2000c -- potato leaf J* SPON AC NIL LA3168c int potato leaf int J* RAD CR IL LA0611c int potato leaf int J* RAD AC NIL LA3728Ac prov2 potato leaf c J* CHEM MM IL 3-345 c prov3 potato leaf c J* CHEM VCH IL 3-604 c prov4 potato leaf c J* CHEM VCH IL 3-609 c prov5 potato leaf c J* CHEM VCH IL 3-626 c prov6 potato leaf c J* CHEM VCH IL 3-631 car -- carinata J*DLO RAD CR IL LA0539car-2 -- carinata-2 car2 J*K RAD pim IL LA2001cb -- cabbage J*K AC NIL LA3819cb-2 -- cabbage leaf-2 J*K RAD X NON LA2002cb-2 -- cabbage leaf-2 J*K RAD AC NIL LA3169ccf -- cactiflora N*LO CHEM CSM IL 3-805 Cf-1 -- Cladosporium fulvum resistance-1 Cf, Cf1, Cfsc Q* SPON X NON LA2443Cf-1 3 Cladosporium fulvum resistance-1 Cf-5, Cf5 Q* SPON X NON LA2447Cf-1 3 Cladosporium fulvum resistance-1 Cf-5, Cf5 Q* SPON MM NIL LA3046Cf-2 -- Cladosporium fulvum resistance-2 Cf2, Cfp1 Q* SPON X NON LA2444Cf-2 -- Cladosporium fulvum resistance-2 Cf2, Cfp1 Q* SPON MM NIL LA3043Cf-3 -- Cladosporium fulvum resistance-3 Cf3, Cfp2 Q* SPON X NON LA2445Cf-3 -- Cladosporium fulvum resistance-3 Cf3, Cfp2 Q* SPON MM NIL LA3044

Page 45: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

45

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# Cf-4 -- Cladosporium fulvum resistance-4 Cf-1^2, Cf4 Q* SPON MM NIL LA3045Cf-4 -- Cladosporium fulvum resistance-4 Cf-1^2, Cf4 Q* SPON X NON LA2446Cf-4 -- Cladosporium fulvum resistance-4 Cf-1^2, Cf4 Q* SPON AC NIL LA3267Cf-6 -- Cladosporium fulvum resistance-6 Q* SPON X NON LA2448Cf-7 -- Cladosporium fulvum resistance-7 Q* SPON X NON LA2449Cf-9 -- Cladosporium fulvum resistance-9 Q* SPON MM NIL LA3047cg -- congesta cg1 K*J RAD RR IL LA0831ch -- chartreuse L* SPON PSN IL 2-253 ch -- chartreuse L* SPON AC NIL LA3720ci -- cincta ci1 K* RAD CR IL LA0938cit -- citriformis O*JK RAD RR IL LA2024cjf -- confunctiflora L*N SPON PTN IL LA1056ck -- corky fruit O* SPON X NON LA2003cl-2 -- cleistogamous-2 cl2 L*N SPON SM IL 2-185 cla -- clara C*A RAD LU IL LA0540clau -- clausa ff, vc J*LO RAD LU IL LA0591clau -- clausa ff, vc J*LO RAD X NON LA0719clau -- clausa ff, vc J*LO RAD AC NIL LA3583clau ff clausa J*LO SPON VFSM IL 2-505 clau ics clausa ics J* SPON PTN IL LA1054clau ics clausa ics J* SPON AC NIL LA3713clau prov2 clausa clau J*LO SPON X IL LA0509clau vc clausa J*LO SPON X NON LA0896cls -- clarescens C*K RAD RR IL LA2025clt -- coalita J* RAD LU IL LA2026cm -- curly mottled G*JNO SPON PCV NON LA0272cm -- curly mottled G*JNO SPON AC NIL LA2919cma -- commutata K*DHJ RAD RR IL LA2027Cmr -- Cucumber mosaic resistance Q* SPON X NON LA3912cn -- cana ca D*K RAD RR IL LA0590co -- cochlearis J*D RAD CR IL LA0592coa -- corrotundata coa1 J*KLT RAD CR IL LA0940com -- complicata K*J RAD CR IL LA0664com in complicata in K*DJ RAD CR IL LA0610com in complicata in K*DJ RAD AC NIL LA3715con -- convalescens E*FK RAD CR IL LA0541con -- convalescens E*FK RAD AC NIL LA3671cor -- coriacea K*J RAD CR IL LA0666cor -- coriacea K*J RAD AC NIL LA3743cpa -- composita cpa1 M*K RAD RR IL LA0833cpt -- compact K*EJ SPON XLP IL 2-377 cpt -- compact K*EJ SPON AC NIL LA3723Cri -- Crispa H*JU RAD CR IL LA0667Crk -- Crinkled J*T SPON X NON LA1050crt -- cottony-root R* SPON RCH NON LA2802cta -- contaminata cta1 K*HJN RAD RR IL LA0939ctt -- contracta K*J RAD LU IL LA2028Cu -- Curl J*KT SPON STD IL LA0325Cu -- Curl J*KT SPON AC NIL LA3740cu-2 -- curl-2 cu2 J* RAD CT IL LA2004cu-3 -- curl-3 J*KT SPON pim NON LA2398cul -- culcitula K*U RAD RR IL LA2029cur -- curvifolia J*EK RAD RR IL LA0668

Page 46: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

46

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# cv -- curvata cu K*JT RAD LU IL LA0593cv 2 curvata acu K*JT RAD CR IL LA0660cva -- conversa K*D RAD CR IL LA0665cvl -- convoluta cvl1 K*J RAD RR IL LA0830Cvx -- Convexa J* SPON X NON LA1151d -- dwarf rob^imm K*JT SPON GRD NIL LA3031d -- dwarf rob^imm K*JT SPON STN NIL LA0313d -- dwarf rob^imm K*JT SPON FB NIL LA3022d b dwarf K*JTL SPON RR IL LA3865d cr dwarf rob^crisp K*JT RAD CR IL LA0570d im dwarf K*JT RAD CR IL LA0571d prov2 dwarf d K*JT CHEM VCH IL 3-623 d provcr-2 dwarf d^cr K*JT CHEM VF36 IL 3-420 d provcr-3 dwarf d^cr K*JT CHEM VF36 IL 3-422 d x dwarf K*JT SPON PCV NON LA1052d x dwarf K*JT SPON AC NIL LA3615d x dwarf K*JT SPON VAN NIL LA3902d x dwarf K*JT SPON SPZ IL LA0160d-2 -- dwarf-2 rob2, rob II, d2 K*N RAD RR IL LA0625dc -- decomposita dc1 J* RAD RR IL LA0819dd -- double dwarf d^xx K*J SPON X NON LA0810de -- declinata K*JU RAD RR IL LA0594de -- declinata K*JU RAD AC NIL LA3742deb -- debilis H*BCJ RAD CR IL LA0542deb -- debilis H*BCJ RAD AC NIL LA3727dec -- decumbens K*R RAD LU IL LA0669def -- deformis J*LN RAD RR IL LA0543def -- deformis J*LN RAD AC NIL LA3749def 2 deformis vit J* RAD CR IL LA0634def-2 -- deformis J*LN RAD AC NIL LA2920Del -- Delta P* SPON RU NIL LA2996ADel -- Delta P* SPON M82 NON LA4099Del -- Delta P* SPON AC NIL LA2921deli -- deliquescens K*CJ RAD RR IL LA0595dep -- deprimata T*J RAD CR IL LA0544depa -- depauperata K*CJ RAD RR IL LA0596depa -- depauperata K*CJ RAD AC NIL LA3725det -- detrimentosa C*KF RAD RR IL LA0670det 2 detrimentosa C*KF RAD RR IL LA0820Df -- Defoliator Y*H SPON par NON LA0247dg -- dark green T* SPON MP IL LA2451dgt -- diageotropica lz-3 K*R SPON VFN8 IL LA1093Dia-2 1 Diaphorase-2 V* SPON pen NON LA2987Dia-3 1 Diaphorase-3 V* SPON X NON LA3345dil -- diluta D*JK RAD CR IL LA0545dil -- diluta D*JK RAD AC NIL LA3728dim -- diminuta A*DK RAD LU IL LA0597dim-2 -- diminuta-2 dim2 A*K RAD AC NIL LA3170dis -- discolor D*F RAD CR IL LA0598div -- divaricata C*AJK RAD CR NON LA0671div -- divaricata C*AJK RAD AC NIL LA3818dl -- dialytic I*LN SPON SM IL 2-069 dl -- dialytic I*LN SPON AC NIL LA3724

Page 47: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

47

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# dl S dialytic L*N SPON VF36 NIL LA3906dlb -- dilabens dlb1 C*JK RAD CR IL LA0829dm -- dwarf modifier d2 K* SPON X NON LA0014dmd -- dimidiata K*JU RAD LU IL LA2033dmt -- diminutiva K* CHEM VF36 IL 3-007 dp -- drooping leaf J*KT RAD CT IL LA2526dps -- diospyros P* SPON X NON LA1016dpy -- dumpy K*J SPON X NON LA0811dpy -- dumpy K*J SPON AC NIL LA3171dpy prov2 dumpy dpy K*J CHEM VCH IL 3-630 dpy prov3 dumpy dpy K*J SPON ANU IL LA1053drt -- dwarf root R* CHEM X NON LA3207ds -- dwarf sterile N*K SPON EPK IL 2-247 ds -- dwarf sterile N*K SPON AC NIL LA3767dt -- dilatata dt1 C*JK RAD CR IL LA0828dtt -- detorta J*K RAD LU IL LA2030du -- dupla J*KU RAD LU IL LA2034dv -- dwarf virescent F*D SPON X NON LA0155e -- entire b J* SPON AC NIL LA2922e prov3 entire e J* CHEM VCH IL 3-616 eca -- echinata K* RAD RR IL LA2035el -- elongated e O* SPON AC NIL LA3738ele -- elegans E*JK RAD CR IL LA0546ele -- elegans E*JK RAD AC NIL LA3825ele 2 elegans ang E*JK RAD CR IL LA0586elu -- eluta E*K RAD LU IL LA0547em -- emortua em1 H*K RAD AC NIL LA3817em -- emortua em1 H*K RAD RR IL LA0827en -- ensiform J* SPON X NON LA1787ep -- easy peeling O* RAD MM IL LA1158ep -- easy peeling O* RAD AC NIL LA3616Epi -- Epinastic J*K SPON VFN8 IL LA2089er -- erecta K*JT RAD CR IL LA0600era -- eramosa era1 B*JK RAD CR IL LA0850Est-1 1 Esterase-1 V* SPON pim NON LA1818Est-1 1 Esterase-1 V* SPON cer IL LA2415Est-1 2 Esterase-1 V* SPON pim NON LA1819Est-1 3 Esterase-1 V* SPON pim NON LA1820Est-1 4 Esterase-1 V* SPON par NON LA1821Est-1 5 Esterase-1 V* SPON pen NON LA2419Est-1 n Esterase-1 V* SPON pim NON LA1817Est-2 1 Esterase-2 V* SPON pen NON LA2420Est-3 1 Esterase-3 V* SPON par NON LA2421Est-4 1 Esterase-4 V* SPON par NON LA2422Est-4 2 Esterase-4 V* SPON pim NON LA2423Est-4 4 Esterase-4 V* SPON PCV NON LA2425Est-4 5 Esterase-4 V* SPON pim NON LA2426Est-4 6 Esterase-4 V* SPON pim NON LA2427Est-4 7 Esterase-4 V* SPON cer NON LA2428Est-4 8 Esterase-4 V* SPON pim NON LA2429Est-5 1 Esterase-5 V* SPON pen NON LA2430Est-6 1 Esterase-6 V* SPON pen NON LA2431Est-7 1 Esterase-7 V* SPON par NON LA2432

Page 48: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

48

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# Est-7 2 Esterase-7 V* SPON pen NON LA2433Est-8 1 Esterase-8 V* SPON pen NON LA2988ete -- extenuata ete1 K*JN RAD CR IL LA0942ex -- exserted stigma L*N SPON SM IL 2-191 exl -- exilis ex D*JK RAD CR IL LA0601exs -- excedens exs1 K*J RAD CR IL LA0852f -- fasciated fruit O*L SPON ESC NON LA0517f D fasciated fruit O*L SPON PCV NON LA0767fa -- falsiflora fa1 M*N RAD RR IL LA0854fcf -- fucatifolia fcf1 D*CK RAD CR IL LA0945fd -- flecked dwarf G*DK RAD BK NON LA0873fd -- flecked dwarf G*DK RAD AC NIL LA3750Fdh-1 1 Formate dehydrogenase-1 V* SPON pen IL LA2989fe -- fertilis J*LO RAD LU IL LA0672fer -- fe inefficient B* X NON LA2994fgv -- fimbriate gold virescent F*CJ SPON VF36 IL LA1143fir -- firma K*JM RAD CR IL LA0602fl -- fleshy calyx O* SPON X NON LA2372fla -- flavescens D*JK RAD LU IL LA0548fla -- flavescens D*JK RAD AC NIL LA3565flav -- flavida C* RAD LU IL LA0603flc -- flacca K*HW RAD RR IL LA0673flc -- flacca K*HW RAD AC NIL LA3613fld -- flaccida fld1 K*HJT RAD RR IL LA0943fle -- flexifolia fle1 A*J RAD AC NIL LA3764fn -- finely-netted D* RAD X NON LA2481fn -- finely-netted D* RAD PSP IL LA2005fr -- frugalis K*JT RAD CR IL LA0674frg -- fragilis frg1 D*CJK RAD CR IL LA0864fri 1 far red light insensitive AY* CHEM MM IL LA3809Frl -- FORL resistance Fr1, Fr-1 Q* SPON AC NIL LA3273Frl -- FORL resistance Fr1, Fr-1 Q* SPON VGB NON LA3841Frs -- Frosty spot Nec H* SPON X NON LA2070frt -- fracta K*JT RAD LU IL LA2038fsc -- fuscatinervis dkv E* SPON VF145 IL LA0872ft -- fruiting temperature O* SPON X NON LA2006fu -- fusiformis C*JK RAD CR IL LA0605fu -- fusiformis C*JK RAD AC NIL LA3070fua -- fucata fua1 E*K RAD CR IL LA0944fug -- fulgida fug1 E*BK RAD RR IL LA0946ful -- fulgens E* RAD CR IL LA0550ful 2 fulgens ful1^2 E* RAD RR IL LA0843ful-3 -- fulgens-3 E* SPON VF36 IL LA1495fus -- fulgescens E* RAD LU IL LA2039Fw -- Furrowed J*KN SPON AC NIL LA3300Fw -- Furrowed J*KN SPON PSN IL LA0192fx -- flexa K* RAD LU IL LA2037fy -- field yellow E* SPON AC NIL LA3295ga -- galbina ga1 D*BE RAD CR IL LA0836ga -- galbina ga1 D*BE RAD AC NIL LA3828gas -- gamosepala gas1 D*JL RAD RR IL LA0947gbl -- globula K*JU RAD LU IL LA2032Ge c Gamete eliminator N* SPON CR NON LA0533

Page 49: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

49

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# Ge p Gamete eliminator N* SPON PSN NON LA0012gf -- green flesh P* SPON PCV NON LA2071gf -- green flesh P* SPON RU NIL LA2999gf -- green flesh P* SPON AC NIL LA3534gfl -- globular flower L* SPON X NON LA2984gh -- ghost ab B*G SPON SM IL LA0295gh-2 -- ghost-2 C*G CHEM SX IL LA2007gi -- gibberosa J*K RAD RR IL LA2040gib-1 -- gibberellin deficient-1 K*Y CHEM MM IL LA2893gib-2 -- gibberellin deficient-2 K*Y CHEM MM IL LA2894gib-3 -- gibberellin-deficient-3 K*Y CHEM MM IL LA2895gib-3 x gibberellin-deficient-3 K*Y CHEM X NON LA2993gl -- glauca J*F RAD CR IL LA0675glau -- glaucescens E*JK RAD CR IL LA0606glb -- globularis K*CJ RAD RR IL LA0677glc -- glaucophylla D*JK RAD RR IL LA0676glf -- globiformis glf1 K*M RAD CR IL LA0948glg -- galapagos light green D* SPON X NON LA1059glm -- glomerata K* RAD LU IL LA2031glo -- globosa K* RAD CR IL LA0551glo 2 globosa inx, intro K* RAD LU IL LA0612glo 2 globosa inx, intro K* RAD AC NIL LA3618glu -- glutinosa glu1 O*P RAD RR IL LA0842gm -- gamosepalous L* RAD SX IL LA2008Got-1 1 Glutamate oxaloacetate transaminase-1 V* SPON pim NON LA1822Got-1 2 Glutamate oxaloacetate transaminase-1 V* SPON pim NON LA1823Got-2 1 Glutamate oxaloacetate transaminase-2 V* SPON pim NON LA1825Got-2 2 Glutamate oxaloacetate transaminase-2 V* SPON che NON LA1826Got-2 3 Glutamate oxaloacetate transaminase-2 V* SPON par NON LA1827Got-2 4 Glutamate oxaloacetate transaminase-2 V* SPON pim NON LA1828Got-2 n Glutamate oxaloacetate transaminase-2 V* SPON pim NON LA1824Got-3 2 Glutamate oxaloacetate transaminase-3 V* SPON pim NON LA1831Got-3 3 Glutamate oxaloacetate transaminase-3 V* SPON par NON LA1832Got-3 n Glutamate oxaloacetate transaminase-3 V* SPON che NON LA1829Got-4 1 Glutamate oxaloacetate transaminase-4 V* SPON par NON LA1834Got-4 2 Glutamate oxaloacetate transaminase-4 V* SPON pim NON LA1835Got-4 n Glutamate oxaloacetate transaminase-4 V* SPON cer NON LA1833gq -- grotesque L*O SPON X NON LA0137Gr -- Green ripe gr P* SPON X NON LA2453gra -- gracilis K*J RAD CR IL LA0607grc -- gracillama grc1 E*JK RAD RR IL LA0950grf -- grandifructa grf1 K*O RAD LU IL LA0951grl -- gracilenta grl1 E*JK RAD RR IL LA0949grn -- granulosa I* CHEM CSM IL 3-804 gro -- grossa J*DK RAD LU IL LA2041gs -- green stripe P* SPON AC NIL LA3530gs -- green stripe P* SPON GSM IL LA0212h -- hairs absent H I* SPON X NON LA0154h -- hairs absent H I* SPON AC NIL LA3172he -- heteroidea D*JK RAD CR IL LA0679Hero -- Heterodera rostochiensis resistance Q* SPON pim NON LA1792hg -- heterogemma hg1 K*M RAD CR IL LA0837hi -- hilara K*DJT RAD CR IL LA0952

Page 50: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

50

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# hl -- hairless I*X SPON AC NIL LA3556hl 2 hairless cal, cal1 I*X RAD CR IL LA0937hl prov3 hairless hl I*X CHEM VCH IL 3-095 hl prov4 hairless hl I*X CHEM VCH IL 3-126 hl prov5 hairless hl I*X CHEM VCH IL 3-605 hl-2 -- hairless-2 hl^prov6 I*OX CHEM VF36 IL 3-417 hp-1 -- high pigment-1 hp, hp1, hp2,

bs, dr P*T SPON AC NIL LA3538

hp-1 -- high pigment-1 hp, hp1, hp2, bs, dr

P*T SPON X NON LA0279

hp-1 -- high pigment-1 hp, hp1, hp2, bs, dr

P*T SPON RU NIL LA3004

hp-1 w high pigment-1 P*T CHEM GT IL LA4012hp-2 -- high pigment-2 hp P*T CHEM SM NIL LA3006hp-2 -- high pigment-2 hp P*T CHEM MM NON LA4013hp-2 j high pigment-2 hp P*T SOMA MM NON LA4014Hr -- Hirsute I* SPON CT IL LA0895Hrt -- Hirtum I* SPON X NON LA0501ht -- hastate J*L SPON SM IL 2-295 hy -- homogeneous yellow E* SPON cer NON LA1142hy -- homogeneous yellow E* SPON AC NIL LA3308I -- Immunity to Fusarium wilt race 0 Q* SPON GRD NIL LA3042I -- Immunity to Fusarium wilt race 0 Q* SPON VD NIL LA3025I-2 -- Immunity to Fusarium wilt race 2 Q* SPON MM NIL LA2821I-3 -- Immunity to Fusarium wilt race 3 Q* SPON X NON LA4025I-3 -- Immunity to Fusarium wilt race 3 Q* SPON X NON LA4026ic -- inclinata J*CK RAD RR IL LA0682ica -- icana B*JK RAD RR IL LA2042icn -- incana B*F SPON X NON LA1009icn -- incana B*F SPON AC NIL LA3173id -- indehiscens L*JO RAD RR IL LA0684ida -- inordinata K*JT RAD RR IL LA2043Idh-1 1 Isocitrate dehydrogenase-1 V* SPON hir NON LA2906ig -- ignava D*K RAD CR IL LA0608ig -- ignava D*K RAD AC NIL LA3752im -- impatiens im1 K*UW RAD RR IL LA0863imb -- imbecilla E*DK SPON CR IL LA0552imb -- imbecilla E*DK SPON AC NIL LA3566imp dia impedita E*K SPON CR IL LA0680imp eg impedita E*K SPON CR IL LA0681ina -- inflexa ina1 K* RAD LU IL LA0840ina -- inflexa ina1 K* RAD AC NIL LA3732inc -- incurva K*J RAD CR IL LA0609inc -- incurva K*J RAD AC NIL LA3730inf -- informa J*K RAD CR IL LA0553inf -- informa J*K RAD AC NIL LA3726ini -- inquieta ini1 I*DJK RAD RR IL LA0953ino -- involuta ino1 K* RAD CR IL LA0954ins -- inconstans ins1 K* RAD RR IL LA0841inv -- invalida F*EJK RAD CR IL LA0554inv -- invalida F*EJK RAD AC NIL LA3439Ip -- Intense pigment P* SPON VF145 NIL LA1563irr -- irregularis J*CT RAD CR IL LA0613

Page 51: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

51

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# irr -- irregularis J*CT RAD AC NIL LA3747ita -- inquinata ita1 H*G RAD RR IL LA0839j -- jointless lf M* SPON GRD NIL LA3033j -- jointless lf M* SPON FB NIL LA3023j-2 -- jointless-2 j2 M* SPON PSN NON LA0315j-2 -- jointless-2 j2 M* SPON O8245 NON LA3899j-2 in jointless-2 j2^in M* SPON X NON LA0756Jau -- Jaundiced E* SPON AC NIL LA3174jug -- jugata K*LO RAD CR IL LA0555jug 2 jugata jug1^2 K*LO RAD LU IL LA0834l -- lutescent g C* SPON AC NIL LA3717l 2 lutescent rub C* RAD LU IL LA0572l prov3 lutescent l C* SPON ROMA IL 2-491 l prov4 lutescent l C* SPON EPK NIL LA3009l-2 -- lutescent-2 l-3, l2 C*Y SPON LRD IL LA0643l-2 -- lutescent-2 l-3, l2 C*Y SPON AC NIL LA3581La -- Lanceolate J* SPON PCV NON LA0335lae -- laesa H*JK RAD RR IL LA0685lan -- languida D*F RAD RR IL LA2044lap -- lamprochlora lap1 J*K RAD RR IL LA0955lat -- lata K* RAD CR IL LA0556le -- lembiformis le1 K*ACJR RAD RR IL LA0956lep -- leprosa lep1 H*K RAD RR IL LA0957lg -- light-green lme D* SPON AC NIL LA3175lg-5 -- light green-5 lg5, lm, fy, yt D* SPON AC NIL LA3176lg-5 -- light green-5 lg5, lm, fy, yt D* SPON X NON LA0757li -- limbrata J* RAD LU IL LA2045Ln -- Lanata I* CHEM VF36 IL 3-071 Ln G Lanata I* CHEM FLD IL LA3127lop -- longipes lop1 J*DK RAD CR IL LA0958Lpg -- Lapageria J*LNT SPON VF36 IL 2-561 Lpg -- Lapageria J*LNT SPON AC NIL LA3739ls -- lateral suppresser K*LN SPON X NON LA2892ls -- lateral suppresser K*LN SPON AC NIL LA3761ls -- lateral suppresser K*LN SPON AMB NON LA0329ls 2 lateral suppresser K*LN PRI NIL LA3901lt -- laeta lt1 E*DK RAD CR IL LA0835ltf -- latifolia J* CHEM VF36 IL 3-035A lu -- luteola L* RAD LU IL LA0686luc -- lucida C*F RAD CR IL LA0557lur -- lurida lur1 E*D RAD RR IL LA0959lut -- lutea E*F RAD CR IL LA0558lut -- lutea E*F RAD AC NIL LA3714Lv -- Leveillula taurica resistance Q* SPON X NON LA3118Lv -- Leveillula taurica resistance Q* SPON X NON LA3119Lx -- Lax J* SPON LK NON LA0505Lx -- Lax J* SPON AC NIL LA3177lyr -- lyrate J*NO SPON AC NIL LA2923lyr -- lyrate J*NO SPON PCV NON LA0763lz -- lazy K* RAD AC NIL LA3762lz-2 -- lazy-2 K* CHEM SM NIL LA2924lz-2 -- lazy-2 K* CHEM AC NIL LA3710m -- mottled K* RAD AC NIL LA3568

Page 52: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

52

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# m-2 -- mottled-2 m2, mo, md F*D RAD AC NIL LA3574ma -- macrocarpa J*O RAD LU IL LA0687mac -- maculata mac1 H*K RAD CR IL LA0960mad -- marcida mad1 T*K RAD CR IL LA0961mar -- marcescens T*K RAD LU NON LA0688marm -- marmorata G*D RAD CR IL LA0559marm 2 marmorata marm1^2 G*D RAD CR IL LA0844mc -- macrocalyx L*M SPON X NON LA0159mcn -- maculonecrotic G*H*CF CHEM VF36 IL 3-045 mcr -- multicolor B*CH RAD LU IL LA2047mcs -- macrosepala L*J RAD LU IL LA2046Mdh-1 2 Malate dehydrogenase-1 V* SPON lyc NON LA3344Mdh-4 1 Malate dehydrogenase-4 V* SPON pen NON LA2990Me -- Mouse ears J*K SPON RU IL LA0324Me -- Mouse ears J*K SPON AC NIL LA3552med -- mediocris med1 K* RAD CR IL LA0962mel -- melongenoida mel1 O*K RAD LU IL LA0963mgn -- marginal necrotic H*C CHEM VF36 IL 3-025 Mi -- Meloidogyne incognita resistance Q* SPON VFN8 NON LA1022Mi -- Meloidogyne incognita resistance Q* SPON MM NIL LA2819Mi-3 -- Meloidogyne incognita resistance-3 Q* SPON per NON LA3858mic -- microcarpa mic1 D*GLO RAD CR IL LA0845mn -- minuta mi K*CJ RAD CR IL LA0614mn -- minuta mi K*CJ RAD AC NIL LA3082mon -- monstrosa K*J RAD CR IL LA0615mon -- monstrosa K*J RAD AC NIL LA3826mor -- morata mor1 E*K RAD RR IL LA0848ms-2 -- male-sterile-2 ms2 N* SPON PSN IL 2-031 ms-3 -- male-sterile-3 ms3 N* SPON SM IL 2-032 ms-5 -- male-sterile-5 ms5 N* SPON SM IL 2-039 ms-6 -- male-sterile-6 ms6 N* SPON SM IL 2-044 ms-7 -- male-sterile-7 ms7 N* SPON SM IL 2-089 ms-9 -- male-sterile-9 ms9 N* SPON SM IL 2-121 ms-10 -- male-sterile-10 ms10 N* SPON SM IL 2-132 ms-10 35 male-sterile-10 ms-35, ms35 N* SPON VF11 IL 2-517 ms-10 36 male-sterile-10 ms-36 N* SPON VF36 IL 2-635 ms-11 -- male-sterile-11 ms11 N* SPON SM IL 2-152 ms-12 -- male-sterile-12 ms12 N* SPON SM IL 2-161 ms-13 -- male-sterile-13 ms13 N* SPON SM IL 2-165 ms-14 -- male-sterile-14 ms14 N* SPON ERL IL 2-175 ms-15 -- male-sterile-15 ms15 N* SPON SM IL 2-193 ms-15 26 male-sterile-15 ms26, ms-26 N* SPON VE IL 2-327 ms-15 47 male-sterile-15 ms-47 N* SPON UC82B NIL 2-837 ms-16 -- male-sterile-16 ms16 N* SPON PRT IL LA0062ms-17 -- male-sterile-17 ms17 N* SPON ACE IL 2-225 ms-18 -- male-sterile-18 ms18 N* SPON C255 IL 2-233 ms-23 -- male-sterile-23 ms23 N* SPON EPK IL 2-273 ms-24 -- male-sterile-24 ms24 N* SPON EPK IL 2-277 ms-25 -- male-sterile-25 ms25 N* SPON RTVF IL 2-313 ms-27 -- male-sterile-27 ms27 N* SPON VE IL 2-331 ms-28 -- male-sterile-28 ms28 N* SPON XLP IL 2-355 ms-29 -- male-sterile-29 ms29 N* SPON CPC2 IL 2-423 ms-30 -- male-sterile-30 ms30 N* SPON SM IL 2-455

Page 53: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

53

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# ms-31 -- male-sterile-31 ms31 N* SPON VF6 IL 2-461 ms-32 -- male-sterile-32 ms32 N* SPON M167 NIL LA2713ms-32 -- male-sterile-32 ms32 N* SPON M168 NIL LA2714ms-32 -- male-sterile-32 ms32 N* SPON MNB NIL LA2712ms-32 -- male-sterile-32 ms32 N* SPON cer NON LA0359ms-32 -- male-sterile-32 ms32 N* SPON POR NIL LA2715ms-33 -- male-sterile-33 ms33 N* SPON VF11 IL 2-511 ms-34 -- male-sterile-34 ms34 N* SPON VF11 IL 2-513 ms-38 -- male-sterile-38 ms38 N* SPON VF36 IL 2-539 ms-38 40 male-sterile-38 ms-40 N* SPON VF36 IL 2-553 ms-39 -- male-sterile-39 N* SPON VF36 IL 2-549 ms-44 -- male-sterile-44 N* CHEM SM IL LA2090ms-45 -- male-sterile-45 N* SPON VFN8 IL 2-659 ms-46 -- male-sterile-46 N* SPON VFN8 IL 2-681 Ms-48 -- Male-sterile-48 N* CHEM VCH NIL LA3199Ms-48 -- Male-sterile-48 N* CHEM VF36 NIL LA3191Ms-48 -- Male-sterile-48 N* CHEM CSM IL 2-839 Ms-48 -- Male-sterile-48 N* CHEM T5 NIL LA3198ms-49 -- male-sterile-49 N* SPON per NON LA1161mt -- midget K*N SPON NRT IL LA0282mta -- mutata mta1 K*EFJ RAD RR IL LA0965mts -- mortalis mts1 K*JM RAD RR IL LA0849mu -- multinervis D*J RAD CR IL LA0690mu -- multinervis D*J RAD AC NIL LA3573mu 3 multinervis rv-3 D*J CHEM VF36 IL 3-033 mua -- multifurcata mua1 K*M RAD CR IL LA0851muf -- multifolia J*DK RAD RR IL LA0689mult -- multiflora M* RAD CR IL LA0560mup -- multiplicata mup1 M*L RAD RR IL LA0846mut -- mutabilia mut1 K*DT RAD RR IL LA0866muv-2 -- multivalens-2 mus1 C*FJK RAD CR IL LA0964muv-2 -- multivalens-2 mus1 C*FJK RAD AC NIL LA3758mux -- multiplex mux1 L*KM RAD CR IL LA0847n -- nipple-tip nt O* SPON X NON LA2353n -- nipple-tip nt O* SPON X NON LA2370na -- nana K*J RAD CR IL LA0561nc -- narrow cotyledons J* SPON AC NIL LA3178nd -- netted m-4 F* RAD AC NIL LA3584ndw -- necrotic dwarf H*JK SPON M82 NIL LA4061ndw -- necrotic dwarf H*JK SPON X NON LA3142ne -- necrotic H* SPON X NON LA2350ne -- necrotic H* SPON AC NIL LA3084neg -- neglecta H*DK RAD CR IL LA0562neg -- neglecta H*DK RAD AC NIL LA3746neg ne-2 neglecta ne-2, ne2 H*DK RAD AC NIL LA3621neg ne-2 neglecta ne-2, ne2 H*DK RAD X NON LA2489neg ne-2 neglecta ne-2, ne2 H*DK RAD CT IL LA2454Nir-1 1 Nitrate reductase-1 V* SPON pen IL LA2908nor -- non-ripening P* SPON X NON LA1793nor -- non-ripening P* SPON RU NIL LA3013nor -- non-ripening P* SPON AC NIL LA3770not -- notabilis W*EHJY RAD LU IL LA0617not -- notabilis W*EHJY RAD AC NIL LA3614

Page 54: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

54

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# Nr -- Never ripe P* SPON PSN IL LA0162Nr -- Never ripe P* SPON RU NIL LA3001Nr -- Never ripe P* SPON AC NIL LA3537Nr-2 -- Never ripe-2 P* SPON X NON LA2455nv -- netted virescent E*F SPON X NON LA0786o -- ovate O* SPON AC NIL LA3543O 1 Oval ol O* SPON X NON LA0271ob -- obscura T*K RAD RR IL LA0691obl -- oblate fruit O* RAD MM NIL LA1159oc -- ochroleuca G*BK RAD RR IL LA0692Od -- Odorless K* SPON PCV NON LA0292oli -- olivacea -- RAD AC NIL LA3722op -- opaca D*CF RAD CR IL LA0618op -- opaca D*CF RAD AC NIL LA3567opa -- opacata opa1 E*K RAD CR IL LA0966or -- ordinata D*F RAD RR IL LA2048Ora -- Orobanche aegyptica resistance Q* SPON X NON LA2530os -- oligosperma os1 K*JT RAD CR IL LA0868ovi -- oviformis ovi1 J*O RAD LU IL LA0967p -- peach O*I SPON X NON LA2357pa-2 -- parva-2 pa1, pa2 K*J RAD CR IL LA0970pal -- pallida D*L RAD CR IL LA0563pap -- paupercula J*W RAD RR IL LA2050pas -- pallescens pas1 D*K RAD CR IL LA0968pat -- parthenocarpic fruit S* CHEM ROMA IL LA2013pat-2 -- parthenocarpic fruit-2 S* SPON X NON LA2413pau -- pauper K* RAD CR NON LA0877pct -- polycot J*KLMS SPON MM NON LA2896pcv -- polychrome variegated G*BDJ SPON X NON LA1199pdc -- pudica K*JT CHEM VF36 IL 3-047 pds -- phosphorus deficiency syndrome Ph-oid A*CY SPON X NON LA0813pdw -- pale dwarf V* SPON X NON LA2457pdw -- pale dwarf V* SPON X NON LA2490pe -- sticky peel O* SPON X NON LA0759pen -- pendens J*C RAD CR IL LA0694pen -- pendens J*C RAD AC NIL LA3293per -- perviridis A*KT RAD RR IL LA0564pet -- penetrabile pet-2, pet2 K*J RAD CR IL LA0971Pgdh-2 1 6-Phosphogluconate dehydrogenase-2 V* SPON pen NON LA2991Pgdh-3 1 6-Phosphogluconate dehydrogenase-3 V* SPON pen NON LA2434Pgi-1 1 Phosphoglucoisomerase-1 V* SPON pen NON LA2435Pgi-1 2 Phosphoglucoisomerase-1 V* SPON par NON LA2436Pgm-1 1 Phosphoglucomutase-1 V* SPON hir NON LA2437Pgm-2 1 Phosphoglucomutase-2 V* SPON pen NON LA2438Ph -- Phytophthora infestans resistance PiT, TR1 Q* SPON X NON LA2009Ph-2 -- Phytophthora infestans resistance Q* SPON UC82 NIL LA3151Ph-2 -- Phytophthora infestans resistance Q* SPON MNB NIL LA3152pi -- pistillate L*N SPON SM IL 2-137 pi-2 -- pistillate-2 N*LM CHEM CSM IL 3-802 pic -- picta H*C RAD CR IL LA0620pl -- perlucida pl1 D*CJ RAD AC NIL LA3296pl -- perlucida pl1 D*CJ RAD CR IL LA0867pla -- plana D*CK RAD CR IL LA0695

Page 55: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

55

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# pli -- plicata K*ABJ RAD LU IL LA0696pli -- plicata K*ABJ RAD AC NIL LA3672pm -- praematura pm1 Z*CJK RAD RR IL LA0855Pn -- Punctate A*I SPON X NON LA0812Pn -- Punctate A*I SPON AC NIL LA3089pol -- polylopha K*JO RAD LU IL LA0697Pox -- Poxed fruit P* SPON X NON LA2366pp -- polyphylla pp1 J*D RAD RR IL LA0860ppa -- purpurea A* RAD LU IL LA2054pr -- propeller J* RAD X NON LA0326pr -- propeller J* RAD AC NIL LA2925prc -- procumbens K*CJ RAD CR IL LA0698pre -- pressa K*J RAD RR IL LA2053pro -- procera J*Z RAD CR IL LA0565pro -- procera J*Z RAD AC NIL LA3283prt -- protea prt1 C*JK RAD CR IL LA0972prun -- prunoidea O*J RAD LU IL LA0566Prx-1 1 Peroxidase-1 V* SPON pim NON LA1837Prx-1 2 Peroxidase-1 V* SPON pim NON LA1838Prx-1 3 Peroxidase-1 V* SPON pim NON LA1839Prx-1 4 Peroxidase-1 V* SPON chm NON LA1840Prx-1 5 Peroxidase-1 V* SPON pim NON LA1841Prx-1 n Peroxidase-1 V* SPON pim NON LA1836Prx-2 1 Peroxidase-2 V* SPON cer NON LA1843Prx-2 3 Peroxidase-2 V* SPON pim NON LA1845Prx-2 n Peroxidase-2 V* SPON pim NON LA1842Prx-3 1 Peroxidase-3 V* SPON pim NON LA1847Prx-3 2 Peroxidase-3 V* SPON pim NON LA1848Prx-3 a1 Peroxidase-3 V* SPON chm NON LA1849Prx-3 n Peroxidase-3 V* SPON pim NON LA1846Prx-4 1 Peroxidase-4 V* SPON pim NON LA1850Prx-4 2 Peroxidase-4 V* SPON pim NON LA1851Prx-4 3 Peroxidase-4 V* SPON pim NON LA1852Prx-4 4 Peroxidase-4 V* SPON chm NON LA1853Prx-4 5 Peroxidase-4 V* SPON chm NON LA1854Prx-4 6 Peroxidase-4 V* SPON par NON LA1855Prx-4 7 Peroxidase-4 V* SPON STN NON LA1856Prx-4 8 Peroxidase-4 V* SPON pim NON LA1857Prx-4 9 Peroxidase-4 V* SPON pim NON LA1858Prx-4 10 Peroxidase-4 V* SPON cer NON LA1859Prx-4 11 Peroxidase-4 V* SPON pim NON LA1860Prx-4 12 Peroxidase-4 V* SPON pim NON LA1861Prx-4 13 Peroxidase-4 V* SPON pim NON LA1862Prx-4 14 Peroxidase-4 V* SPON pim NON LA1863Prx-4 15 Peroxidase-4 V* SPON pim NON LA1864Prx-4 17 Peroxidase-4 V* SPON pim NON LA1866Prx-4 18 Peroxidase-4 V* SPON pim NON LA1867Prx-4 19 Peroxidase-4 V* SPON pim NON LA1868Prx-4 20 Peroxidase-4 V* SPON cer NON LA1869Prx-4 21 Peroxidase-4 V* SPON pim NON LA1870Prx-4 22 Peroxidase-4 V* SPON pim NON LA1871Prx-4 23 Peroxidase-4 V* SPON pim NON LA1872Prx-7 1 Peroxidase-7 V* SPON pim NON LA1873

Page 56: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

56

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# Prx-7 2 Peroxidase-7 V* SPON pim NON LA1874Prx-7 n Peroxidase-7 V* SPON pim NON LA1875ps -- positional sterile va L*N SPON JBR IL LA0063ps prov2 positional sterile ps L*N SPON PSN IL 2-303 ps-2 -- positional sterile-2 L*N SPON STR24 IL LA3632ps-2 -- positional sterile-2 L*N SPON X NON LA2010ps-2 -- positional sterile-2 L*N SPON VRB IL LA3631psa -- perspicua D*J RAD LU IL LA2051pst -- persistent style O* SPON ESC IL 2-005 pt -- petite D* RAD AC NIL LA3768pta -- partiaria J* RAD RR IL LA2049ptb -- protuberant O* SPON X NON LA1017ptb -- protuberant O* SPON X NON LA1018Pto -- Pseudomonas syringae pv tomato resis. Q* SPON X NON LA2396Pto -- Pseudomonas syringae pv tomato resis. Q* SPON RG NIL LA3342Pto -- Pseudomonas syringae pv tomato resis. Q* SPON MM NIL LA3472Pto 2 Pseudomonas syringae pv tomato resis. Q* SPON RH13 NON LA3129Pto Pto-2 Pseudomonas syringae pv tomato resis. Pto-2 Q* SPON pim NON LA2934Pts -- Petroselinum leaf J* SPON VF36 NIL LA2532pu -- pulvinata pul K*J RAD RR IL LA0621pu 2 pulvinata pu2 K*J RAD CR IL LA0973pum -- pumila K* RAD CR IL LA0567pum -- pumila K* RAD AC NIL LA3741pun -- punctata pun1 J*DGKT RAD RR IL LA0974pur -- purilla K*C RAD CR NON LA0568px -- praecox px1 K*JOZ RAD LU IL LA0856py -- pyramidalis K*CJT RAD RR IL LA2055pyl -- Pyrenochaeta lycopersici resistance py, py-1 Q* SPON X NON LA2531Ar -- yellow flesh P* SPON C37 NIL LA3003r -- yellow flesh P* SPON AC NIL LA3532r -- yellow flesh P* SPON RU NIL LA2997r (2s) yellow flesh r^3, r-2, r2 P* RAD RR IL LA2056r prov4 yellow flesh r P* SPON PSN IL 2-141 r prov5 yellow flesh r P* SPON EPK IL LA0353ra -- rava D*CIJK RAD CR IL LA0569ra 2 rava gri D*CIJK RAD RR IL LA0678rd -- reduced K* SPON X NON LA2459Bre -- reptans K* RAD RR IL LA0624rela -- relaxata K*D RAD AC NIL LA3757rela -- relaxata K*D RAD CR IL LA0622rep -- repens K*J RAD CR IL LA0623rep-2 -- repens-2 K*J RAD LU IL LA2057res -- restricta res1 C*ADJK RAD RR IL LA1085res -- restricta res1 C*ADJK RAD AC NIL LA3756Rg-1 -- Regeneration-1 SPON GT NON LA4136ri -- ridged rl J*R RAD X NON LA1794ri -- ridged rl J*R RAD AC NIL LA3180ria -- rigidula ria1 C*JKT RAD CR IL LA0825ria 2 rigidula ria1^2 C*JKT RAD LU IL LA0975rig -- rigida C*K RAD CR IL LA0699rig 2 rigida pca, pca1 C*K RAD LU IL LA0822rig-2 -- rigida-2 C*K RAD AC NIL LA3716rin -- ripening inhibitor P* SPON X NON LA1795

Page 57: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

57

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# rin -- ripening inhibitor P* SPON AC NIL LA3754rin -- ripening inhibitor P* SPON RU NIL LA3012rl -- radial cracking resistance ra O* SPON AC NIL LA3092ro -- rosette K* RAD X NON LA0270roa -- rotundata roa1 J*DK RAD CR IL LA0976rot -- rotundifolia J*K RAD RR IL LA0700rot -- rotundifolia J*K RAD AC NIL LA3751Rs -- Root suppressed R* RAD X NON LA1796rt -- potato virus Y resistance Q* SPON SCZ IL LA1995rtd -- retarded dwarf J*K SPON X NON LA1058ru -- ruptilis J*D RAD CR IL LA0626ru -- ruptilis J*D RAD AC NIL LA3440ru prov2 ruptilis ru J*D CHEM VF36 IL 3-081 rust -- rustica K*J RAD LU IL LA0573rust -- rustica K*J RAD AC NIL LA3766rv-2 -- reticulate virescent-2 D*C CHEM SX IL LA2011rvt -- red vascular tissue X* SPON X NON LA1799s -- compound inflorescence M* SPON X NON LA0330s -- compound inflorescence M* SPON AC NIL LA3181sa -- sphacelata sa1 H*CK RAD CR IL LA0865sar -- squarrulosa sar1 K* RAD CR IL LA0978scf -- scurfy J* SPON PCV NON LA0767scl -- seasonal chlorotic lethal C* SPON X NON LA1007sd -- sundwarf K* SPON X NON LA0015sd -- sundwarf K* SPON AC NIL LA3182Se -- Septoria lycopersici resistance Q* SPON X NON LA1800sem -- semiglobosa K*JT RAD CR IL LA0701ses -- semisterilis ses1 C*DKN RAD LU IL LA0826sf -- solanifolia J*LO SPON PSN IL 2-311 sf -- solanifolia J*LO SPON AC NIL LA3674sf wl solanifolia wl, wr J*LO CHEM ROMA IL LA2012sfa -- sufflaminata sfa1 C*AEK RAD RR IL LA0862sfa 2 sufflaminata par C*AEK RAD CR IL LA0969sft -- single flower truss M* SPON PTN IL LA2460sh -- sherry P* RAD CX IL LA2644sha -- short anthers L*N CHEM ROMA IL LA2013si -- sinuata E*JK RAD RR IL LA0993si -- sinuata E*JK RAD AC NIL LA3728Bsig-1 -- signal transduction-1 JL1 Y* CHEM CSM IL LA3318sig-2 -- signal transduction-2 JL5 Y* CHEM CSM IL LA3319sit -- sitiens W*HJKY RAD RR IL LA0574Skdh-1 1 Shikimic acid dehydrogenase-1 V* SPON pen NON LA2439sl -- stamenless L*N SPON X NON LA0269sl -- stamenless L*N SPON AC NIL LA3816sl cs stamenless cs, sl^5, sl5 L*N SPON ONT IL LA1789sl-2 -- stamenless-2 sl2 L*N SPON X NON LA1801slx -- serrate lax leaf J* SPON PCV NON LA0503Sm -- Stemphyllium resistance Q* SPON MM IL LA2821Sm -- Stemphyllium resistance Q* SPON X NON LA1802sn -- singed I* SPON CX IL LA2015so -- soluta J* RAD LU IL LA2058Sod-1 1 Superoxide dismutase-1 V* SPON pen NON LA2909Sod-2 1 Superoxide dismutase-2 V* SPON pen NON LA2910

Page 58: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

58

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# sp -- self-pruning K* SPON X NON LA0490sp -- self-pruning K* SPON GRD NIL LA3133sp -- self-pruning K* SPON X NON LA0154sp prov2 self-pruning K* RAD spVCH IL LA2705spa -- sparsa E*BK RAD CR IL LA0703spe -- splendida spe1 C*K RAD RR IL LA0977sph -- sphaerica K*T RAD CR IL LA0704sph -- sphaerica K*T RAD AC NIL LA3744Spi 2 Sympodial index K* SPON pen NON LA0716spl -- splendens spl1 C*DJ RAD LU IL LA0821spl -- splendens spl1 C*DJ RAD AC NIL LA3282squa -- squarrosa D*KU RAD LU IL LA0627sr -- slender stem sm J*KU RAD CT IL LA1803ss -- spongy seed S* RAD AC NIL LA3619sta -- stabilis K* RAD RR IL LA2060ste -- sterilis J*DKN RAD CR IL LA0705stri -- stricta J*K RAD LU IL LA0575stu -- stunted J* SPON X NON LA2461su -- suffulta C*JM RAD LU IL LA0628su 2 suffulta exa C*JM RAD RR IL LA0853su 3 suffulta di C*J RAD CR IL LA0599su ni suffulta di^ni, ni C*J RAD CR IL LA0616sua -- suffusa D*CK RAD RR IL LA0707sub -- subtilis J*K RAD LU IL LA0576suc -- succedanea C*JK RAD CR IL LA0706sucr -- sucrose accumulator TIV1 P* SPON chm NIL LA4104suf -- sufflava D* RAD AC NIL LA3569suf -- sufflava D* RAD CR IL LA0577sup -- superba K*JT RAD RR IL LA2061Sw-5 -- Spotted wilt resistance-5 Q* SPON X NON LA3667sy -- sunny ye F*CE RAD AC NIL LA3553syv -- spotted yellow virescent F*CG SPON PCV NON LA1096t -- tangerine P*L SPON X NON LA0030t -- tangerine P*L SPON AC NIL LA3183t v tangerine P*L RAD CX IL LA0351t v tangerine P*L RAD RU NIL LA3002ta -- tarda D*JK RAD CR IL LA0708tab -- tabescens E*HJK RAD RR IL LA0629tab -- tabescens E*HJK RAD AC NIL LA3734tc -- turbinate corolla L*K CHEM SM IL LA2017te -- terminata te1 K*LMO RAD LU IL LA0861tem -- tempestiva tem1 K*DJ RAD CR IL LA0979ten -- tenuis Y*DK RAD CR IL LA0578ten -- tenuis Y*DK RAD AC NIL LA3748tf -- trifoliate ct, tri J*KN SPON X NON LA0512tf 2 trifoliate tri J*KN RAD CR IL LA0579ti -- tiny plant K* SPON X NON LA1806tl -- thiaminless Y*C SPON AC NIL LA3712Tm -- Tobacco mosaic virus resistance Q* SPON X NON LA2369Tm-2 -- Tobacco mosaic virus resistance-2 Tm2 Q* SPON VD NIL LA3027Tm-2 a Tobacco mosaic virus resistance-2 Tm-2^2 Q* SPON MM NIL LA3310Tm-2 a Tobacco mosaic virus resistance-2 Tm-2^2 Q* SPON AC NIL LA3769Tm-2 a Tobacco mosaic virus resistance-2 Tm-2^2 Q* SPON VD NIL LA3028

Page 59: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

59

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# tmf -- terminating flower K*M SPON X NON LA2462tn -- tenera K*U RAD LU IL LA2062tp -- tripinnate leaf J*K RAD AC NIL LA3184tp -- tripinnate leaf J*K RAD CT IL LA0895Tpi-2 1 Triosephosphate isomerase-2 V* SPON pen NON LA2440tr -- truncata tr1 D*CJK RAD CR IL LA0710tri 1 temporarily red light insensitive AKY* CHEM GT IL LA3808trs -- tristis J* CHEM NON 3-057 Ty-1 -- TYLCV resistance Q* SPON X NIL LA3473u -- uniform ripening u1 P* SPON AC NIL LA3247u -- uniform ripening u1 P* SPON LRD IL LA0643u -- uniform ripening u1 P* SPON GRD NIL LA3035u G uniform ripening P* SPON X NON LA1018ub -- umbraculiformis J*K RAD LU IL LA2063uf -- uniflora M* SPON PTN IL LA1200uf -- uniflora M* SPON AC NIL LA2936ug -- uniform gray-green u2 P* SPON OGA IL LA0021ug -- uniform gray-green u2 P* SPON AC NIL LA3539ul -- upright leaf K* SPON X NON LA2463um -- umbrosa K*JRT RAD CR IL LA0630um -- umbrosa K*JRT RAD AC NIL LA3733uni -- unicaulis K* RAD CR IL LA0580up -- upright pedicel L* SPON FLD IL LA2397upg -- upright growth K* SPON X NON LA2464Av-2 -- virescent-2 v2 F*D SPON X NON LA2465v-2 -- virescent-2 v2 F*D SPON AC NIL LA3185v-3 -- virescent-3 V3 F*B SPON PSN IL LA2707va dec varia F*E RAD CR IL LA0581va dec varia F*E RAD AC NIL LA3669va virg varia F*E RAD CR IL LA0582var -- variabilis D*EK RAD CR IL LA0583Ve -- Verticillium resistance Q* SPON MM NIL LA2818Ve -- Verticillium resistance Q* SPON GRD NIL LA3038Ve -- Verticillium resistance Q* SPON AC NIL LA3277ven -- venosa J*BDK RAD AC NIL LA3564ven -- venosa J*BDK RAD LU IL LA0888ver -- versicolor yv-4, ver1 G*C RAD CR IL LA0632ves-2 -- versiformis-2 vf C*JK RAD LU IL LA1078vg -- vegetative L*N SPON AC NIL LA2916vga -- virgulta vga1 D*EFK RAD RR IL LA0858vi -- villous I* SPON X NON LA0759vio -- violacea D*A RAD LU IL LA0633vio -- violacea D*A RAD AC NIL LA3734Avir -- viridis T*J RAD CR IL LA0585vlg -- virescent light green F*D CHEM VF36 IL 3-128 vms -- variable male-sterile N*L SPON SM IL 2-219 vo -- virescent orange F*CP SPON ROVF IL LA1435vo -- virescent orange F*CP SPON RU NIL LA2995vra -- viridula vra1 D*JK RAD CR IL LA0857vt -- vieta J*CFK RAD LU IL LA2064w -- wiry J*LN RAD CX NON LA0274w-3 -- wiry-3 w3, w2 J*LN RAD FEY NON LA1498w-4 -- wiry-4 w4 J*LN SPON PSN IL 2-237

Page 60: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

60

GENE ALLELE LOCUS NAME SYNONYMS CLASS SOURCE BACK ISO ACC# w-6 -- wiry-6 J* RAD RR IL LA2065Wa -- White anthers L* SPON VF36 NIL LA3906wd -- wilty dwarf R*K SPON SM IL 2-110 wf -- white flower L* RAD AC NIL LA3575Wlt -- Wilty W* SPON LGPL NON LA3203Wo -- Wooly I* SPON X IL LA0053Wo -- Wooly I* SPON AC NIL LA3186Wo m Wooly I* SPON AC NIL LA3718Wo m Wooly I* SPON RU IL LA0258Wo mz Wooly I* SPON VF145 IL LA1908Wo v Wooly I* SPON RU IL LA1531Wo v Wooly I* SPON AC NIL LA3560wt -- wilty J*W SPON X NON LA0030wv -- white virescent F*B SPON X NON LA0659wv -- white virescent F*B SPON AC NIL LA3187wv-2 -- white virescent-2 F*B SPON X NON LA1150wv-3 -- white virescent-3 F*B SPON X NON LA1432x -- gametophytic factor N* SPON X NON LA2348Xa -- Xanthophyllic C* SPON X NON LA2470Xa -- Xanthophyllic C* SPON AC NIL LA3579Xa-2 -- Xanthophyllic-2 Xa2, A C* RAD AC NIL LA3188Xa-2 -- Xanthophyllic-2 Xa2, A C* RAD X NON LA2471Xa-2 -- Xanthophyllic-2 Xa2, A C* RAD X NON LA4134Xa-3 -- Xanthophyllic-3 Xa3 C* RAD AC NIL LA3430Xa-3 -- Xanthophyllic-3 Xa3 C* RAD CR IL LA2472xan-2 -- xantha-2 xan2 C* RAD AC NIL LA3759xan-4 -- xantha-4 xan4 C* RAD AC NIL LA3760y -- colorless fruit epidermis P* SPON AC NIL LA3189yg-2 -- yellow-green-2 yc, yg282, yg2 E* RAD AC NIL LA3551yg-2 -- yellow-green-2 yc, yg282, yg2 E* RAD KK IL LA2469Ayg-2 aud yellow-green-2 yg-2^r, aud E* SPON AC NIL LA3165yg-2 aud yellow-green-2 yg-2^r, aud E* SPON X NON LA1008yg-3 -- yellow-green-3 yg3, yg330, ye E* RAD KK NIL LA2926yg-4 -- yellow-green-4 yg4, yl, yg333 E*J RAD KK NIL LA2927yg-4 -- yellow-green-4 yg4, yl, yg333 E*J RAD AC NIL LA3731yg-5 -- yellow-green-5 yw, yg388,

yg5 E* RAD AC LA2928B

yg-5 -- yellow-green-5 yw, yg388, yg5

E* RAD RCH NIL LA2928

yg-5 -- yellow-green-5 yw, yg388, yg5

E* RAD AC NIL LA2928A

yg-9 -- yellow-green-9 E* SPON C28 IL LA2708yv -- yellow virescent E* SPON AC NIL LA3554yv -- yellow virescent E* SPON SM IL LA0055yv 2 yellow virescent vel^2, vel1^2 E* RAD CR IL LA0981yv 3 yellow virescent vel E* RAD CR IL LA0631yv ms yellow virescent E*N X LA3907yv-2 -- yellow virescent-2 E* SPON AC NIL LA3190yv-4 -- yellow virescent-4 E* SPON AC NIL LA3570

Page 61: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

61

Table 2. Definition of phenotypic classes of mutants. The primary phenotypic category of each allele is indicated by a ‘*’ in Table 1. CLASS DESCRIPTION

A Anthocyanin modifications: intensification, reduction, elimination B Chlorophyll deficiency: white or whitish C Chlorophyll deficiency: yellow or yellowish D Chlorophyll deficiency: light, grey, or dull green E Chlorophyll deficiency: yellow-green F Virescent: chlorophyll deficiency localized at growing point G Variegation, flecking or striping H Leaf necrosis I Hair modifications: augmentation, reduction, distortion, elimination J Leaf form and size K Plant habit and size L Flower form and color M Inflorescence (exclusive of L) N Sterility: any condition leading to partial or complete unfruitfulness O Fruit form and surface texture P Fruit color and flavor, ripening modification Q Disease resistance R Root modification S Seed T Foliage color: dark U Foliage color, miscellaneous: olive, brown, blue-green V Allozyme variant W Overwilting stomatal defect X Vascular modification Y Nutritional or hormonal disorder Z Precocious development

Page 62: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

STOCK LISTS TGC REPORT 52, 2002 _____________________________________________________________________________________________

62

Table 3. Definition of abbreviations used for background genotypes in Table 1, and corresponding accession numbers. na=not available. BACK GENOTYPE ACC# A-1 A-1 LA0818 AC Ailsa Craig LA2838 ACE Ace LA0516 ALA Alabama na AMB Antimold-B LA3244 ANU Anahu LA3143 BK Budai Korai na BOD Break O'Day LA1499 C255 Cal 255 LA0198 C28 Campbell 28 LA3317 cer L. esc. var. cerasiforme many CG Chico Grande LA3121 che L. cheesmanii many chi L. chilense many chm L. chmielewskii many CR Condine Red LA0533 CRGL Craigella LA3247 CSM Castlemart LA2400 CT Chatham na CX Canary Export LA3228 E6203 E-6203 LA4024 EPK Earlipak LA0266 ERL Earliana LA3238 ESC Early Santa Clara LA517 FB Fireball LA3024 FEY First Early na FLD Flora-Dade LA3242 GRD Gardener LA3030 GSM Gulf State Market LA3231 H100 Hunt 100 LA3144 hir L. hirsutum many HSD Homestead 24 LA3237 JBR John Baer LA1089 KK Kokomo LA3240 LGPL Large Plum LA3203 LK Laketa LA0505 LRD Long Red LA3232 LU Lukullus LA0534 lyc S. lycopersicoides many M167 Montfavet 167 LA2713 M168 Montfavet 168 LA2714 MD Marmande LA1504 MGB Marglobe LA0502 MM Moneymaker LA2706 MNB Monalbo LA2818 MP Manapal LA2451 MR20 UC-MR20 LA2937 N28 UC-N28 LA2938 NRT Norton na O8245 Ohio 8245 na OGA Ohio Globe A LA1088 ONT Ontario na par L. parviflorum many PCV primitive cultivar na pen L. pennellii many

BACK GENOTYPE ACC# per L. peruvianum many pim L. pimpinellifolium many PLB Pieralbo na POR Porphyre LA2715 PRI Primabel LA3903 PRN Prairiana LA3236 PRT Pritchard LA3233 PSN Pearson LA0012 PSP Prospero LA3229 PTN Platense LA3243 RCH Red Cherry LA0337 RG Rio Grande LA3343 RH13 Rehovot 13 LA3129 RNH Rouge Naine Hative na ROMA Roma na ROVF Roma VF na RR Rheinlands Ruhm LA0535 RSWT Roumanian Sweet LA0503 RTVF Red Top VF LA0276 RU Rutgers LA1090 SCZ Santa Cruz LA1021 SM San Marzano LA0180 spVC VFNT Cherry (sp) LA2705 SPZ San Pancrazio na STD Stokesdale LA1091 STN Stone LA1506 STR2 Start 24 LA3632 SX Sioux LA3234 T338 UC-T338 LA2939 T-5 T-5 LA2399 TGR Targinnie Red LA3230 TR44 UC-TR44 LA2940 TR51 UC-TR51 LA2941 TVD Vendor (Tm-2a) LA2968 UC82 UC-82B LA3772 VCH VFNT Cherry LA1221 VD Vendor LA3122 VE Van's Early na VF11 VF-11 LA0744 VF145 VF-145 78-79 LA1222 VF36 VF-36 LA0490 VF6 VF-6 LA0743 VFN8 VFN-8 LA1022 VFSM VF San Marzano na VGB Vagabond LA3246 VRB Vrbikanske nizke LA3630 VTG Vantage LA3905 WA Walter LA3465 X unknown or hybrid na XLP XL Pearson na

Page 63: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

MEMBERSHIP LIST TGC REPORT 52, 2002 ___________________________________________________________________________________

63

Membership list Aarden, Harriette, Western Seed Semillas S.A., Apdo Correos 22, 35240 - Carrizal - Ingenio,

Las Palmas de Gran Canaria, Spain, [email protected] Adams, Dawn, Campbell R&D, 28065 County Road 104, Davis, CA, 95616,

[email protected] Alvarez, Marta, Instituto Nacional de Ciencias Agricolas (INCA), Gaveta Postal 1, 32700 San

Jose de las Lajas, La Habana, CUBA, [email protected] Anand, N., Namdhari Seeds, #119 9th Main Road Arasappa Complex, Ideal Homes Township Rajarajeswarinagar, Bangalore 560 098, INDIA, [email protected] Angell, Frederick, Pearl Seed Company, 7281 Miller Avenue, Gilroy, CA, 95020,

[email protected] Augustine, Jim, BHN Research, 16750 Bonita Beach Rd., Bonita Springs, FL, 34135,

[email protected] Ayuso, Ma Cruz, Petoseed Iberica, Carretera de Malaga 34, 04710 Santa Maria del Aguila,

Almeria, SPAIN Baas, Jeroen, Hortigenetics research (SE Asia Ltd.), 33 Moo 4, Tambon Nongbor, Amphur

Songphinong, 72190 Suphanburi, THAILAND, [email protected] Baker, Barbara, USDA-ARS-PGEC, 800 Buchanan St., Albany, CA, 94710 Bar, Moshe, Zeraim Gedera Ltd, Seed Company, POB 103, Gedera 70750, ISRAEL,

[email protected] Barker, Susan, The University of Western Australia, School of Plant Biology, 35 Stirling

Highway, Crawley 6009, Western Australia Beck Bunn, Teresa, Seminis Vegetable Seeds, 37437 State Highway 16, Woodland, CA,

95695, [email protected] Bergamini, Leopoldo, ESASEM SPA., Via San Biagio 25, 37052 CASALEONE VR, ITALY,

[email protected] Bessey, Paul, 2602 E. Arroyo Chico, Tucson, AZ, 85716, [email protected] Bistra, Atanassova, Inst. Gen. & Plant Breeding, Sofia 1113, BULGARIA,

[email protected] Bowler, Chris, Stazione Zooligica, Molecular Plant Biology, Villa Communale, I 80121 Napoli,

ITALY, [email protected] Briggs, Carroll, Shamrock Seed, P.O. Box 1318, San Juan Bautista, CA, 95045-1318,

[email protected] Burdick, Allan, 3000 Woodkirk Drive, Columbia, MO, 65203 Carrijo, Iedo Valentim, Seminis Vegetable Seeds, Caixa Postal 28, 32.920-000 Sao Joaquim

de Bicas, MG, BRAZIL, [email protected] Castagnoli, Franca, S.A.I.S. seed, Via Ravennate 214,Postbox 154, 47023, Cesena, ITALY,

[email protected] Causse, Mathilde, Station d'Amelioration des, Plantes Maraicheres, BP94, 84143 Montfavet,

Cedex, FRANCE Chaisson, Leo P., 36 Greenwold Dr, Antigonish NS, N.S. B2G 2H8, CANADA Chetelat, Roger, University of California, Dept. Veg. Crops, One Shields Avenue, Davis, CA

95616, [email protected] Cirulli, Matteo, Universita degli Studi di Bari, Dipartimento di Biol. E Patologia Veget., Via

Amendola 165-A, 70126 Bari, ITALY, [email protected]

Page 64: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

MEMBERSHIP LIST TGC REPORT 52, 2002 ___________________________________________________________________________________

64

Cuartero, Jesus, C.S.I.C., Estacion Exp. "La Mayora", 29750 Algarrobo-Costa (Malaga), SPAIN

Della Vecchia, Paulo, Agroflora, Caixa Postal 427, Braganca Paulista - SP, 12.900-000, BRAZIL

Dhaliwal, M.S., Department of Vegetable Crops, P.A.U. Ludhiana 141004, PANJAB, INDIA Dick, Jim, 23264 Mull Rd, RR 4, Chatham, ONT N7M 5J4, CANADA, [email protected] Egashira, Hiroaki, Yamagata University 1-23, Faculty of Agriculture, Wakaba-machi, Tsuruoka

City 997-8799, JAPAN Eyberg, Dorothy, Seminis Vegetable Seeds, 4110 Enterprise Avenue, Suite #200, Naples, FL,

34104, [email protected] Falconer, Rick, American Takii, Inc., 301 Natividad Road, Salinas, CA, 93906,

[email protected] Fernandez-Munoz, Rafael, CSIC Estacion Exp. "La Mayora", 29750 Algarrabo, Costa (Malaga,

Spain, [email protected] Foolad, Majid, Penn State University, Department of Horticulture, 102 Tyson Building,

University Park, PA 16802, [email protected] Fowler, C. W., Seminis Vegetable Seeds, 4110 Enterprise Avenue, Suite #200, Naples, FL, 34104, [email protected] Frampton, Anna, Seminis Vegetable Seeds, 37437 State Highway 16, Woodland, CA, 95695,

[email protected] Francis, David, Ohio State University, Horticulture and Crop Science, 1680 Madison Ave,

Wooster, OH, 44691 Fulton, Theresa, Director of Outreach, Institute for Genomic Diversity, 135 Biotechnology

Bldg., Cornell University, Ithaca, NY 14853, [email protected] Gabor, Brad, Seminis Vegetable Seeds, Research Center, 37437 State Highway 16,

Woodland, CA, 95695, [email protected] Ganal, Martin, TraitGenetics GmbH, Am Schwabeplan 1b, D-06466 Gatersleben, GERMANY,

[email protected] Garvey, T.Casey, Hunt Foods Company, 1111 E. Covell Blvd., Davis, CA, 95616-1209,

[email protected] George, B. F., H.J. Heinz Co., Manager, Agricultural Research, P. O. Box 57, Stockton, CA,

95201, [email protected] Gidoni, David, The Volcani Center, Dept. of Plant Genetics, PO Box 6, Bet-Dagan 50250,

ISRAEL Hagan, William, 17493 Oak Canyon Place, Castro Valley, CA, 94546, [email protected] Hanson, Peter, AVRDC, PO Box 42, Shanhua, Tainan, Taiwan 741, Republic of China,

[email protected] Hassan, Ahmed Abdel-Moneim, Cairo University, Dept. of Horticulture, Giza, EGYPT Herlaar, Frits, Enza Zaden, De Enkuizer Zaadhandel B.V., Postbus 7, 1600 AA Enkhuizen, THE NETHERLANDS Himmel, Phyllis, Seminis Vegetable Seeds, 37437 State Highway 16, Woodland, CA, 95695 Hoa, Vu Dinh, Hanoi Agricultural University, Dept.Plant Breeding and Genetics, Gialam, Hanoi,

VIETNAM Hoogstraten, Jaap, S.V.S Holland B.V., Postbus 97, 6700 AB Wageningen, THE

NETHERLANDS Ignatova, Svetlana, Moscow E-215, Box 15, 105215, RUSSIA, [email protected]

Page 65: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

MEMBERSHIP LIST TGC REPORT 52, 2002 ___________________________________________________________________________________

65

Imanishi, Shigeru, Yamagata University, Bioresource Engineering, 1-23,Wakaba- cho,Tsuruoka, Yamagata, JAPAN

Izk, Nadejda Ganeva, "Maritza"-Biblioteka, U1 "Brezovsko Shosse" 32, K1 3 Pk 20, 4003 PLOVID, BULGARIA

Jacoby, Daniel, 5655 Gulf of Mexico Drive (C104), Longboat Key, FL, 34228-1911 Johannessen, George, 333 Hartford RD, Danville, CA, 94526 Kedar, N., Hebrew Univ of Jerusalem, Faculty of Agriculture, P. O. Box 12, Rehovot 76-100,

ISRAEL, [email protected] Kim, Ji-kwang, Buyo Tomato Expt. Station, 325-48 Nohwari, Gyuammyeon, Buyo 323-810,

KOREA, [email protected] Kimiko, Takizawa, Nihon Horticultural Production Inst., 207 Kamishiki, Matsudo-shi, Chiba-ken

270-2221, JAPAN, [email protected] Kuehn, Michael, Harris Moran Seed Co., 9241 Mace Blvd., Davis, CA, 95616,

[email protected] Linde, David, BHN Research, 16750 Bonita Beach Rd., Bonita Springs, FL, 34135,

[email protected] Lindhout, Pim, Wageningen Agricultural University, Postbus 386, 6700 AJ, Wageningen, THE

NETHERLANDS Lineberger, Dan, Texas A&M Univ., Dept. Horticultural Sciences, College Station, TX, 77843-

2133 Lundin, Marianne, Svalof Weibull AB, Cereal Breeding Dept., S-268 81 Svalov, SWEDEN Mapelli, Sergio, Consiglio Nazionale delle Ricerche, Istituto Biologia Biotecnologia Agraria, Via

Bassini 15, 20133 Milano, ITALY, [email protected] Marciano, David, Seeds Technologi DM LTD, Kefar Ruth, 73196, ISRAEL,

[email protected] Martin, Gregory, Cornell University, Plant Pathology, 323 Boyce Thompson, Ithaca, NY,

14853, [email protected] McCarthy, William, Seminis Vegetable Seeds, PO Box 249, Felda, FL, 33930,

[email protected] McGlasson, W. B., Univ of Western Sydney, Hawkesbury Campus, Horticulture, Locked Bag

1797, Penrith South DC NSW1797, AUSTRALIA, [email protected] McGrath, D. J., Horticulture Research Station, P. O. Box 538, Bowen, Queensland 4805,

AUSTRALIA Meshi, Tetsuo, Kyoto University, Dept of Botany, Sakyo-ku, Kyoto 606-8502, JAPAN,

[email protected] Min, Chai, PO Box 2443, Beijing 100089, PEOPLES REPUBLIC of CHINA Mochizuki, Tatsuya, National Agricultural Research Center, for Kyushu Okinawa Region, Suya,

Nishigoshi, Kumamoto 861-1192, JAPAN, [email protected] Murao, Kazunori, Sakata Seed Co., Kimitsu Station, 358 Uchikoshi, Sodegaura,Chiba, 299-

0217, JAPAN Myers, James, Oregon State University, Dept of Horticulture, Dept of Horticulture,4017 ALS,

Corvallis, OR, 97331-7304, [email protected] Nakata, Kengo, Kagome Co. Ltd., 17 Nishitomiyama, Nishinasuno-machi, Nasu-gun, Tochigi

Pref.329-2762, JAPAN, [email protected] Niemirowicz-Szczyt, Katarzyna, Agricultural Univ of Warsaw, Dept Plant Breeding & Genetics,

Ul. Nowoursynowska 166, 02-766 Warsaw, POLAND

Page 66: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

MEMBERSHIP LIST TGC REPORT 52, 2002 ___________________________________________________________________________________

66

Ozminkowski, Richard, Heinz North America, Sr.Plant Breeder, P.O.Box 57, Stockton, CA, 95201, [email protected]

Palomares, Gloria, Universidad Politecnica de Valencia, Departmento de Biotecnologia, Camino de Vera, s/n, E-46022 Valencia, SPAIN, [email protected]

Paredes, Maria Ines, EE La Consulta-INTA, Biblioteca, Casilla de Correo 8, (5567)La Consulta-Mendoza, ARGENTINA, [email protected]

Peters, Susan, Sunseeds, 7087 E. Peltier Rd., Acampo, CA, 95220, [email protected]

Pilowsky, Meir, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, ISRAEL

Postma, E, Deruiterzonen CV, Director Research and Development, Postbus 1050 2660 BB Bergschenhoek, THE NETHERLANDS

Poysa, Vaino, Agriculture Canada, Research Station, Harrow, Ontario N0R 1G0, CANADA Provvidenti, Rosario, Cornell University, New York State Agr. Expt. Sta., Geneva, NY, 14456,

[email protected] Rekoslavskaya, Natalya I., Siberian Institute of Plant Physiology and Biochemistry, Siberian

Branch of RAS, PO Box 1243, Irkutsk, RUSSIA Reynaerts, Arlette, Plant Genetic Systems, J Plateaustraat 22, 9000 Gent, BELGIUM Rivara, Charles, CA Tomato Research Inst., 18650 East Lone Tree Rd., Escalon, CA, 95320-

9759, [email protected] Rotem, Yaniv, Hazera Genetics Ltd., R&D Division, Mivhor M.P. Lakhish Darom, 79354,

ISRAEL, [email protected] Sasaki, Seiko, Plant Breeding Station of Kaneko Seeds, 50-12, Furuichi-machi 1-chome,

Maebashi City, Gunma 371-0844, JAPAN, [email protected] Sayama, Haruki, Nippon Del Monte Corp., Research and Development, 3748 Shimizu-Cho,

Numata,Gumma 378-0016, JAPAN, [email protected] Schroeder, Steve, Sunseeds, 7087 E. Peltier Rd., Acampo, CA, 95220,

[email protected] Scott, J.W., University of Florida, Food and Agricultural Science, 5007 60th Street East,

Bradenton, FL, 34203, [email protected] Shimizu, Yoshitomi, Nagano Tomato Co. Ltd., 223 Yoshikawa Murai-Machi, Matsumoto,

Nagano, JAPAN Shintaku, Yurie, 2-10-2, Shimizu, Suginami-ku, Tokyo 167-0033, JAPAN Sjerps, Jacobus, Vilmorin, Calle Galera, 9, Calabardina 30880 AGUILAS, SPAIN Smith, Dale, H. J. Heinz Co. of Canada, Erie Street South, Leamington, Ontario N8H 3W8,

CANADA, [email protected] Stack, Stephen, Colorado State University, Department of Biology, Fort Collins, CO, 80523-

1878, [email protected] Stein, Ira, Campbell Research & Development, 28605 County Rd 104, Davis, CA, 95616,

[email protected] Stevens, Mikel, Brigham Young Univ., 275 Widtsoe Bldg, PO. Box 25183, Provo, UT, 84602,

[email protected] Stoeva-Popova, Pravda, Winthrop University, Dept. of Biology, 202 Life Science Building,

Rock Hill, SC, 29733, [email protected] Stommel, John, USDA-ARS Vegetable Lab, Beltsville Ag. Res. Ctr., 10300 Baltimore Avenue,

Beltsville, MD, 20705, [email protected]

Page 67: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

MEMBERSHIP LIST TGC REPORT 52, 2002 ___________________________________________________________________________________

67

Summers, William, Iowa State University, Department of Horticulture, Horticulture Building, Ames, IA, 50011-1100

Suzuki, Tohru, NIVOT, Natl.Res.Inst.Veg,Orn Plant&Tea, Ano, Mie 5142392, JAPAN, [email protected]

Tal, Moshe, Ben-Gurion University, Department of Life Sciences, P. O. Box 653, Beer Sheva 84 105, ISRAEL

Tanksley, Steven, Plant Breeding Department, 248 Emerson Hall, Cornell University, Ithaca, NY 14853, [email protected]

Tarry, Jerry, Orsetti Seed Co.Inc, 2125 Wylie Drive, Suite 10, Modesto, CA, 95355, [email protected]

Thomas, Paul, 4 Juniper Court, Woodland, CA, 95695 Thome, Catherine, Enza Zaden North America, 525 Lucy Brown Lane PO BOX 866, San Juan

Bautista, CA, 95045, [email protected] Tong, Nankui, Heinz USA, Agricultural Research, PO Box 57, Stockton, CA, 95201 Vardi, Eyal, Hazera Ltd., Research Dept, Mivhor M.P. Lakhish Darom, 79354, ISRAEL,

[email protected] Vecchio, Franco, Sementi Nunhems s.r.l., Via Ghiarone,2, 40019 S.Agata Bolognese, ITALY,

[email protected] Verhoef, Ir. Ruud, Rijk Zwaan Breeding B.V., Burgemeester Crezeelaan 40, PO Box 40, 2678

ZG De Lier, THE NETHERLANDS, [email protected] Verschave, Philippe, Vilmorin, 30210 LEDENON, FRANCE Volin, Ray, 15165 Dulzura Court, Rancho Murieta, CA, 95683-9120,

[email protected] von Wettstein-Knowles, Penny, Copenhagen University, Molecular Biology Institute, Oester

Farimagsgade 2A, DK-1353 Copenhagen K, DENMARK, [email protected] Zischke, Jeff, Sakata Seed America, 105 Boronda Rd, Salinas, CA, 93907,

[email protected] Libraries, Institutions, etc. Academic Book Center, Inc., 5600 N.E. Hassalo Street, Portland OR, 97213-3640 Albert R. Mann Library, Cornell University, Serials unit/Acq Div, Ithaca, NY, 14853-4301 AVRDC Librarian, Chen, Fang Chin, Information and Documentation, PO Box 42, Shanhua,

Tainan, Taiwan 741, Republic of China, [email protected] Biblioteca Centr Fac Agraria Goidanich, Order 11883734 Swets Blackwell Inc., 440 Creamery

Way Suite A, Exton, PA, 19341 Blackwell's Book Services, New Title Department, 100 University Court, Blackwood, NJ, 08012 Calgene Inc., Information Center, 1920 Fifth St, Davis, CA, 95616 Centre de Recherche Tezier, Documentation, Domaine du Manimet, Route de Beaumont, F

26000 Valence, FRANCE CIDA, Agroalimentario, Bibloteca, Apartado Oficial, 30150 La Alberca, Murcia, SPAIN Colorado State University, Serial Department, The Libraries, Fort Collins, CO 80523-1019,

[email protected] Cons. Embrapa, c/o Martinus Nijhoff Int., PO Box 1853, 2700 CZ Zoetermeer, THE

NETHERLANDS

Page 68: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

MEMBERSHIP LIST TGC REPORT 52, 2002 ___________________________________________________________________________________

68

CSIRO, The Librarian, Black Mountain, Library, G.P.O. Box 109.,Canberra A.C.T. 2601, AUSTRALIA

Dipartimento di Sciencze e Technologie Agroambientali, Via Filippo R-8, 40126, Bologna, ITALY

Frank A. Lee Library, New York State Agr. Expt. Sta., Cornell University, 630 W. North Street, Geneva, NY, 14456-0462, [email protected]

Genetique & Amelioration Des, Fruits and Legumes (I-836EBS), (I-863EBS), BIBLIOTHE.- Domaine St. Maurice, ALLEE DES CHENES B.P. 94, 84140 Montfavet, FRANCE

Gift Section, Exchange and Gift Division, Library of Congress, Washington, D. C., 20540 Graines Gautier SA, 13630 Eyragues, FRANCE, [email protected] Horticulture Research International, Library Manager-Claire Singleton, Wellesbourne, Warwick, CV35 9EF, UK, [email protected] Indian Institute of Hort.Research, c/o.Schenker/Informatics, IIHR-20001210, PO Box

306,Folcroft Indu Area, Folcroft, PA, 19032 INRA Antilles Guyane, Order #A845618/001, Unite du President de centre, Domaine Duclos-

Prise d'Eau, 97170 Petit-Bourg, GUADELOUPE FWI, [email protected] Inst of Veg and Flowers, Chinese Academy of Agricultural Sciences, Attn: Li Junming, 12

Zhongguancun Nandajie, Beijing 100081, CHINA J.S. Gericke Library, P.O. Box 830661, Birmingham, AL, 35283-0661 Kmetijski Institut Slovenije, Knjiznica, HACQUETOVA 17, 1000 Ljubljana, SLOVENIA Library Serials Unit, University of New Hampshire, 18 Library Way, Durham, NH, 03824-3592 Medizin, Natur, ULB Bonn-Abteilungsbibliothek, wissenschaft und Landbau, Order 37535579, Nussallee 15 a, 53115 Bonn, GERMANY Memorial Library-SCI-CTS, University of Wisconsin, 728 State St., Madison, WI 53706-1494 North Carolina State University, Acquisitions Dept C, DH Hill Library, D. H. Hill Library, P. O.

Box 7111, Raleigh, NC, 27695-7111 Nunhems Zaden BV, Attn: Leon Broers, PO Box 4005, 6080 AA Haelen, NETHERLANDS Semillas Fito, Selva de Mar, 111, 08019 Barcelona, SPAIN Serials Acquisitions, Purdue University Libraries, 1535 Stewart Center, West Lafayette, IN,

47907-1535 Takii Plant Breeding and Expt Sta., Kosei, Kohka, Shiga, 520-3231, JAPAN,

[email protected] U.S.D.A. Nat'l Agric. Library, Proc. Sec./Current Ser. Rec., Beltsville, MD, 20705 University of California, Science Library, Attn: Gail Moore, Serials Department-P.O. Box 5900,

Riverside, CA, 92517-5900, [email protected] University of Minnesota, Magrath Library Serials Dept., 1984 Buford Avenue, St. Paul, MN,

55108-1012 W.S.U. Library, SEA Serials Rec Holland Library, Order#15698095, 100 Dairy Road, Pullman,

WA, 99164-5610 Young Library Serials-Ag, Univ. of Kentucky, 500 S. Limestone, Lexington, KY, 40506-0001

Page 69: Report of the Tomato Genetics Cooperativetgc.ifas.ufl.edu/vol52/Volume52.pdfReport of the Tomato Genetics Cooperative Number 52 – September 2002 University of Florida Gulf Coast

AUTHOR INDEX TGC REPORT 52, 2002 ___________________________________________________________________________________

69

AUTHOR INDEX Aldrich, T., 36 Alvarez, M., 35 Ambrico, A., 11 Arzuaga, J., 35 Bagirova, S.F., 14 Baldwin, E.A., 39 Bardin, M., 24 Bash, W., 36 Berry, S.Z., 36 Bongiovanni, M., 21 Caranta, C., 21, 24 Castagnone-Sereno, P., 21 Chetelat, R., 41 Ciccarese, F., 11 Domini, M.E., 35 Ferriére, H., 24 Francis, D.M., 36 Gamanetz, L.V., 27 Gorshkova, N.S., 14 Harbaugh, B.K., 39 Ignatova, S.I., 14 Jones, J.P., 40 Kopytina, T.V., 18 Longo, O., 11 Mapelli, S., 18, 27 Moretti, A., 21, 24 Moya, C., 35 Nicot, P.C., 24 Ostanina, Y.V., 18 Rekoslavskaya, N.I., 18, 27 Romiti, C., 24 Salyaev, R.K., 18, 27 Scaife, K., 36 Schiavone, D, 11 Scott, J.W., 31, 38, 39, 40 Tereshonkova, T.A., 14 Truchin, A.A., 27