report 8-9-13 - oakland bay bridge seismic retrofit

Upload: bobby-wong

Post on 04-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    1/40

    SanFranciscoOaklandBayBridgeSeismicRetrofit

    Project

    IndependentReview

    of

    Analysis

    and

    Strategy

    to

    Shim

    Bearings

    atPierE2toAchieveSeismicDesignRequirements

    ModjeskiandMasters,Inc.

    August9,2013

    IndependentReviewofAnalysisandStrategytoShimBearingsatPier

    E2oftheSFOBBtoAchieveSeismicDesignRequirements

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    2/40

    ThisPageIntentionallyLeftBlank

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    3/40

    TableofContents

    1. Authorization........................................................................................................................................... 3

    2. Scope........................................................................................................................................................ 3

    3. Background.............................................................................................................................................. 4

    3.1 SeismicForcesandAssumedBehaviorofBearingsandShearKeys.................................................. 4

    3.2 MaterialProperties(ProvidedbyEOR,anchorboltcapacityconfirmedbyMM)............................. 8

    3.3 PreviouslyStatedShearCapacitiesofBearingsandShearKeys........................................................ 8

    4. Approach.................................................................................................................................................. 9

    4.1 General............................................................................................................................................... 9

    4.2 AnalysisofLoadTransferinBearingsandShearKeys..................................................................... 10

    4.2.1 FreeBodyDiagrams.................................................................................................................. 10

    4.2.2 CoefficientsofFrictionatInterfaces......................................................................................... 16

    4.2.3CapacityofBearingsandShearKeys (individualandcombined)at100%SEEApproximate

    MechanicsAnalysis............................................................................................................................. 16

    4.2.4 CapacityofBearingsandShearKeys(individualandcombined)at100%SEERefinedFinite

    Element Analysis................................................................................................................................ 18

    4.3 CapacityofOBGsandthePierE2CrossGirdertoDeliverLoadtotheShimmedBearingsandShear

    Keys,Respectively................................................................................................................................... 24

    4.3.1 Introduction.............................................................................................................................. 24

    4.3.2 Bearings..................................................................................................................................... 24

    4.3.3 ShearKeys3and4.................................................................................................................... 25

    4.4CapacityofStrut................................................................................................................................ 26

    4.4.1Introduction............................................................................................................................... 26

    4.4.2StructuralAnalysis...................................................................................................................... 26

    4.4.3SectionalChecks......................................................................................................................... 27

    4.4.4Results........................................................................................................................................ 27

    4.5 TransferofHorizontalLoadFromBearingBasePlatetoStruttoColumn...................................... 33

    4.6 PotentialtoDamagethePermanentBearingsorOtherComponentsifShimsareInstalled.........35

    5. ConclusionsandRecommendations...................................................................................................... 35

    Appendices15

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    4/40

    ThisPageIntentionallyLeftBlank

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    5/40

    1

    ExecutiveSummaryandConclusions

    ModjeskiandMasters,Inc.(MM)wasretainedtoconductapeerreviewofthesuitabilityofthe"Shim

    Concept" to provide sufficient seismic capacity at Pier E2 of the San FranciscoOakland Bay Bridge

    (SFOBB)towithstandtheSafetyEarthquakeEvent(SEE)forcesuntiltheshearkeysarerepaired. Thezone

    oftheSFOBBconsidered isthe loadtransfermechanismatPierE2fromthesuperstructurebearingand

    shearkeysupportstothetopsofthecolumns.

    Inthecurrentcontext,apeerreviewinvolvesdeterminingiftheworkbeingreviewedmeetstheoverall

    projectsafetyrequirements. Itisnotnecessarytoagreecompletelyinaquantitativesensesolongas

    theconclusionofthereviewisadequatelysupported.

    Based on the engineering studies described herein, MM concludes that the concept of temporarily

    shimmingthebearingsatPierE2oftheSanFranciscoOaklandBayBridgeasdescribed intheJuly15th

    informationpackage entitled "Seismic Evaluationof SASat E2BentPrior toCompletionof Shear Keys

    S1land S2", and the proposed details, will provide more than sufficient capacity between the

    superstructureandthestrutatPierE2 toresistthedesignSafetyEvaluationEarthquake. Theservice

    andseismicdesign forces inPierE2arenotchangedsignificantlyby the redirectionofseismic forces

    resulting from the shimming. Therefore the response of the concrete strut and columns are not

    expectedtobedifferent.Otherthanthepossibilityofscratchingthepaintsystemeitherwhentheshims

    areinsertedorasthebridgerotatesinservice,theredoesnotappeartobeanyreasonablepossibilityof

    damaging thebridgeasa resultof installingand removing the shims. Assuming that the restof the

    structurehasbeenproperlydesigned,weconcludethatthesafetyofthetravelingpublicisimprovedby

    movingtrafficontothenewbridge.

    Theexactdistributionofforcesinthebearingsandshearkeysishighlydependentontheplannedand

    accidentaltolerances(gaps)betweenvariouscomponents. Aprecisequantificationoftheforcesis,for

    practicalpurposes,unknowable. Itis,however,possibletomakeestimatesofthereasonablerangeof

    possibilities rather than relying on a single solution; MMs assessment is based on that approach.

    Various assumptions have been used to place reliance on the set of shear keys and on the set of

    shimmedbearings,separatelyand incombination. Analysisofthe resultingdistributionof forceswas

    thebasis forconcluding that the temporaryshimmedconditionprovidessufficientresistance tomeet

    thedemandsfromtheSEE.

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    6/40

    2

    ThisPageIntentionallyLeftBlank

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    7/40

    3

    IndependentReviewofAnalysisandStrategytoShimBearingsatPier

    E2oftheSFOBBtoAchieveSeismicDesignRequirements

    1. Authorization

    EngineeringservicesrequiredtodevelopthisreportwereauthorizedbytheBayAreaTollAuthorityby

    AgreementofJuly16th,2013.

    2. Scope

    ThefollowingtechnicalScopeisexcerptedfromtheAgreementofJuly16th:

    The services to be performed by Consultant shall consist of services requested by the Project

    Manageroradesignatedrepresentativeincluding,butnotlimitedto,thefollowing:

    Task1:

    Consultant shall provide an independent review of the engineering analysis and strategy as

    related to theproposal to shim the existing bearings at Pier E2 to achieve the seismic design

    requirementsoftheneweastspanoftheSanFranciscoOaklandBayBridge.

    Consultant shall conduct a peer review of the suitability of the "Shim Concept" to provide

    sufficient seismic capacity at Pier E2 of the San FranciscoOakland Bay Bridge to withstand the

    Safety Earthquake Event (SEE)forces until the shear keys are repaired. Inperforming the work,

    Consultantshalluse:

    1.

    Load

    demands

    at

    Pier

    E2

    from

    the

    analysis

    of

    the

    SEE

    pushover

    by

    the

    engineer

    of

    record

    (EOR)assummarizedin"SeismicEvaluationofSASatE2BentPriortoCompletionofShear

    KeysSlandS2"datedJuly15,2013(July15thinformationpackage)

    2. Detailsofthebearings,shearkeysandcapbeamatPierE2andthesupportsofshearkeysandbearingsintheorthotropicboxgirdersprovidedbyEOR;and

    3. Other calculations,plan sheets, shop drawings and engineering summariesprepared orsuppliedbyrequesttotheEORasmaybeneeded.

    ThezoneoftheSFOBBtobeconsideredistheloadatPierE2fromtheboxgirderbearingandshear

    keysupports

    to

    the

    tops

    of

    the

    columns.

    Thefollowingisexpresslynotincluded:

    1. Reviewofthefailuresofthe2008anchorbolts;2. Independent seismic analysis or evaluation other thanforce transfer in the zone identified

    above;

    3. Any capacity of the box girders or the substructure other than the force transfer zone

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    8/40

    4

    identifiedabove;

    4. Anyevaluationoftherepairoftheshearkeys(SlandS2)ortheresultingsuitability;5. AnyevaluationoftheoriginaldesignofthecapbeamatPierE2otherthanasmaybeneeded

    toevaluatethechangestotheloadpathcausedbythetemporaryshimming;and

    6. Anyotherfunctionoftheshearkeysandbearingsotherthantransferringseismicdemandsinthe

    temporary

    shimmed

    condition.

    Deliverable:

    IndependentReviewReport

    3. Background

    Figure1 through Figure9, from the July 15th informationpackage,wereprovidedby the EOR, TYLin

    International.

    3.1 SeismicForcesandAssumedBehaviorofBearingsandShearKeys

    The original load path with clearances preventing the bearings from participating in resisting

    horizontalandtransverseshearisillustratedinFigure1. Thefourbearingswereintendedtocarry

    onlyvertical loads,the fourshearkeyswere intendedtocarrytransverseshear,andshearkeys1

    and2wereintendedtocarrylongitudinalshear.

    Shimming isproposed to close the gapsandprovidea contact loadpath through thebearing to

    transmitlongitudinalandtransverseshear. ThelocationoftheshimsisshowninFigure2. Dueto

    failure of many of the anchor bolts at shear keys S1 and S2, it has been decided that all shear

    capacityattheseshearkeysshouldbeignoreduntiltheyarerepaired. Withtheshimsinplace,the

    proposed loadpath isshown inFigure3. Thebearingscarryvertical loadsas in theoriginal load

    path,butarenow intended tocarry theentire longitudinalshearandaportionof the transverse

    shear. Shear keys 3 and 4 are still intended to carry some of the transverse shear, but the

    distributionofshearbetweenthebearingsandshearkeysrequiresconsideration. Withshearkeys

    S1andS2consideredineffectiveduetoanchorboltfractures,thelongitudinalshimmingisrequired

    inanyeventtoprovideaneffectiveloadpathinthatdirectionuntilthepermanentrepairofshear

    keysS1andS2incompleted.

    TheSafetyEvaluationEarthquake (SEE)demandsandthenominalshearcapacitiesofthebearings

    andshearkeysforthreescenarios(loadpaths)areshowninFigure4;loadpathAisasdesigned,

    loadpathCisbasedontheshimmingofthebearingsandtheparticipationofshearkeys3and4,

    i.e.thestartingpointforthisinvestigation.

    ThemagnitudesanddirectionsofseismicforcesgivenintheJuly15thinformationpackage,excerpts

    ofwhicharerepeatedbelow,areacceptedwithoutreviewperscope:

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    9/40

    5

    Bearing forces were extracted from a seismic (time history) analysis of the selfanchored

    suspensionbridgeincludingthebearingsandshearkeys.Thetotallongitudinal,transverse,and

    vertical loads transferred from the westbound and eastbound box girders to Pier E2 were

    extractedfromtheanalysisanddistributedto thebearingsandshearkeys inaccordancewith

    theplans.ThebearingloadsareshowninTable1.

    Normalfunctioningofthebearingcorrespondstothecase"ShearKeyEngaged".Thebearingis

    onlyrequiredtocarryverticalloads.Theseareeitherdownwards caseC orupwards caseU.

    Upwardsloadsareofgreatestconcernandareaddressedinthisreport.A"safetyfactor"of1.4

    isappliedtothecalculatedloadsfromtheseismicanalysis.

    The bearing is also intended tofunction as a secondary mechanism to resist longitudinal and

    transverse loads should the shear keys fail. The three cases of greatest interest are those

    correspondingtothepeakupliftonthebearing(caseU),thepeaktransverseload(caseT),and

    thepeak longitudinal load(caseL). Ineachcasetheorthogonal loadsoccurringsimultaneously

    with thepeak loads arealso tabulated (and analyzed). These loads areapplied witha "safety

    factor"of1.0,sincetheyarebasedontheconservativeassumptionthattheshearkeyhasfailed.

    BearingForces(SF=1.4)

    Case Case Trans. Long. Vert.

    ShearKeyEngaged

    (LoadPathA)

    C 0 310 81104

    U 0 108 13355

    BearingForces(SF=1.0)

    Case Case Trans. Long. Vert.

    ShearKeyFailed(Load Path B&C See

    Note)

    C 10799 4770 57932

    U 25287 1628

    9539

    T 30496 8186 16441

    L 1340 13232 19255

    Note:ThesameseismicdemandsareconservativelyassumedforLoadPathC.

    Table1,BearingLoads

    Asmentionedpreviously, the loadingon themodel isassignedat theCGof thebearingshaft,

    whichtransfersthefocusfromthebearingupperhousingtothebearinglowerhousing.

    Theloadismodeledaspressureloadingappliedatrelevantsurfaces,withsomesimplifications.

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    10/40

    6

    Figure1 Originalloadpaththroughshearkeysandbearings

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    11/40

    7

    Figure2 Shimmedbearing

    Figure3 Revisedloadpaththroughshearkeysandbearings

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    12/40

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    13/40

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    14/40

    10

    Thedifferencebetweentheindividualforcesprovidedinthelongitudinalandtransversedirections

    andavectorsumofthoseforceswasfoundtobesmall,ontheorderofafewpercent;theindividual

    forceswilloftenbeusedhereinforsimplicity.

    4.2 AnalysisofLoadTransferinBearingsandShearKeys

    4.2.1 FreeBodyDiagrams

    Figure5throughFigure9illustratethebasicflowofforcesthroughtheshearkeysandthebearings.

    For both types of assemblies, the shear from the seismic event is transferred from the upper

    housing toa lowerhousingatdiscretepoints,shownastheshearkeybushingortheshaft in the

    caseofthebearing. TherestoftheloadpathsinFigure5throughFigure9areglobalstaticsandwill

    beusedasastartingpointfortheinvestigationsreportedherein. Thedistributionofstresswithin

    theassembliesandtheparticipationofindividualanchorboltscanbemorecomplex.

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    15/40

    11

    Figure5 Loadpaththroughshearkey

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    16/40

    12

    Figure6 Loadpaththroughbearing longitudinalshear

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    17/40

    13

    Figure7 Loadpaththroughbearing transverseshear

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    18/40

    14

    Figure8 Loadpaththroughbearing compression

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    19/40

    15

    Figure9 Loadpaththroughbearing uplift

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    20/40

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    21/40

    17

    arelimitedto86%oftheirnominaltotalshearcapacity(42MNand30MN,respectively)toprotect

    thebearings. Thetransverseresistancewouldbeabout175MN,greaterthanthe120MNneeded

    for themaximum transverse forcecase. Alternatively, if theshearkeys reached theirnominal42

    MNcapacityandthebearingswerelimitedtotheirshearcapacitybasedonthereducedclamping

    force(25.7MN),thetotalresistancewouldbe187MN.

    Inthemaximumupliftcase,theshearcapacityofthebearingsisfurtherreducedto21.7MNor72%

    of theircapacitybasedon theunreducedclamping force fora totalcapacityof the4bearingsof

    about87MNwhichislessthanthetransverseshearassociatedwiththemaximumuplift,estimated

    by proportion to be about 100 MN . Again, some participation from the shear keys is needed.

    Followingthelogicusedabove,ifthetotalshearresistancewasbasedonallbearingsandshearkeys

    being limited to 70%of theirnominal capacity toprotect the bearings, the resistance would be

    about143MN. Thisisgreaterthanthe120MNmaximumtransverseshearandevengreaterthan

    theproportioned100MNtransverseshearfortheupliftcase. Iftheshearkeysreachedtheir full

    resistanceandthebearingsreachedtheirreducedcapacity(21.7MN),theshearresistancewould

    be171MN.

    AsshownintheSection4.2.4,inwhichthedisplacementcompatiblesystembehavioroftheshear

    keysandbearingsisdiscussed,MMsanalysisshowsthat,forarangeofassumedgaps,moreofthe

    transverse load is carriedby the shear keysand lessby thebearings than considerationof their

    nominalcapacitieswouldindicate. Theneteffectisthatthedisplacementcompatibledemandson

    thebearingsaresmallerthantheclampingreducedcapacitiespresentedinthissection.

    Furtherboundingtheanalyses,iffullreliancewereplacedequallyonthetwoshearkeyseachwould

    have tocarry60MN. This isgreater than thenominal42MNcapacitybut less than theirsliding

    capacityofabout81MN. Thisimpliesthateithersomeyieldingoftheshearkeystuborhousing,or

    participationof thebearings,wouldbenecessary tocarry the full load. This is investigatedusing

    morerefinedanalysisinthenextsection.

    Longitudinalshearinbearingsisnotaffectedbythereducedclampingforce issuediscussedabove

    because the reducedclampingwouldbeon thesideof thesplitbaseplatewhich isneglected in

    calculatingtheshearcapacity. Thusthe15MNresistanceperbearingor60MNtotalfor4bearings

    giveninFigure4 isdeemedappropriateandmorethanthe50MNreportedtoberequiredbythe

    SEE.

    The shear keys are not affected by the reduced clamping force issue because tension and

    compression,fromoverturning,arebothcarriedbythesameelementssothereisnonetchangein

    theclampingforce.

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    22/40

    18

    4.2.4 CapacityofBearingsandShearKeys(individualandcombined)at100%SEERefinedFinite

    Element Analysis

    Apotential issue thatwas identifiedearly in the review is thesharingof loadbetween theshear

    keysandthebearings. Both theshearkeysandthebearings,when fullyengaged,provideavery

    stiffloadpathfortheseismicforcesbetweentheOBGandPierE2. Asnotedearlier,thebearingsweredesignedwithsufficientclearancestopreventthemfromtransferringhorizontalload. Some,

    butnot all of these clearances will be addressed by the proposed shimming operations. In the

    transverse direction, there is a horizontal gap with an asdesigned valueof 2 mm, between the

    lower housing and the hold down assembly, which will remain after shimming. See Figure 10.

    Additionally, there isanasdesigned3mm vertical gap thatallows the lowerhousing to rotatea

    smallamount. Thesegapsallowacertainamountof freemovementof thebearingsbefore they

    becomeengagedintransferringlateralforceswhichwillaffectthedistributionofloadsbetweenthe

    shearkeysandthebearings.

    Figure10 Detailsfromthedesigndrawingsshowing2mmand3mmgaps

    Twoanalyseswereperformedtoevaluatethedistributionofloadbetweentheshearkeysandthe

    bearings. A3D FEA including theholddownassemblyand the lowerhousingwasperformed to

    determine the forcedisplacementbehavior intheasdesignedcondition. Themodel includedthe

    2mmand3mmgaps,aswellascompressiononlycontactsurfaces. Figure11showsageneralview

    of themodelandFigure12showsthedeformedshapewithstresscontours. AseparateFEAwas

    performed on the top housing and its stiffness was included to find the total bearing force

    displacementrelationship. Additionally,theforcedisplacementrelationshipwascalculatedbyhand

    usingtypicalengineeringapproximations.

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    23/40

    19

    Figure11 Finiteelementmodelofthelowerhousingandholddownassembly

    Figure12 Endonviewofthedeformedshapedunderlateralandupliftloading

    Loadcase: 1:Increment 1

    Results file: Bearing Lower Housing Restraint Refined 2.mysEntity: Stress - Solids

    Component: SE

    0.535536

    0.476032

    0.416528

    0.357024

    0.29752

    0.238016

    0.178512

    0.119008

    0.059504

    Maximum 0.5365 at node 2513

    Minimum 0.964063E-3 at node 3431

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    24/40

    20

    Figure13 Loadvs.displacementforbearingswithvaryingverticalload

    Figure13showsthelateralloadvs.displacementrelationshipfortwoconditions;withverticalload

    (uplift in the case shown) and with no vertical loads. There is a coupling between lateral

    displacementandverticalloadthroughtherotationofthelowerhousing. Becausethepresenceof

    vertical load during the times of large lateral loading cannot be guaranteed, the curve without

    verticalloadwasusedinfurtherevaluations. Theplateausinthegraphsaretheapproximateload

    levelsatwhichfrictionisovercome,andthebearingsbegintoslideonthesteeltosteelinterface.

    Finiteelementmodelswerealsodevelopedfortheshearkey;boththestubandthehousingwere

    modeledinseparateanalyses. Becauseofthepotentialforexceedingthestatedcapacityof42MN

    fortheshearkeys,nonlinearmaterialbehaviorwasincludedinthemodels. Thelateralstiffnessoftheshearkeyswasdeterminedfromtheseanalyses,aswellasfromindependenthandcalculations.

    Figure14showstheloadvs.displacementrelationshipfortheshearkey. Thecurveisquitelinearto

    loadswell inexcessof thenominalcapacity,withsofteningbecomingapparentonlyatvery large

    loadlevels(>70MN). A0.5mmgapwasassumedbetweenthestubandthesphericalring. Itwas

    indicatedthattheactualfreeplayintheshearkeysmaybelargerandthisisexploredbelow.

    0

    5000

    10000

    15000

    20000

    25000

    30000

    0 1 2 3 4 5 6 7 8 9

    BearingLateralLo

    ad

    (kN)

    Displacement(mm)

    BearingLoadvs.Displacement

    WithVerticalLoadAppliedWithoutVerticalLoad

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    25/40

    21

    Figure14

    Shear

    key

    load

    vs.

    displacement

    A total force vs. displacement curve can now be assembled from the individual curves for the

    interfacebetweentheOBGandPierE2with4bearingsand2shearkeys. ThisisshowninFigure15.

    Table2liststheforcesintheshearkeysandbearingsforseveraldisplacementsbasedonthecurves

    above. Because thebearingsdonotcarry loaduntilthevariousgapshaveclosed, theshearkeys

    carryamajorityoftheseismicload.

    Figure15 Combinedloadvs.displacementforbearingsandshearkeys

    0

    20000

    40000

    60000

    80000

    100000

    120000

    0 2 4 6 8 10 12 14 16 18 20

    Load(kN)

    Displacement(mm)

    ShearKeyLoadvs.Displacement

    020000

    40000

    60000

    80000

    100000

    120000

    140000

    160000

    180000

    200000

    0 1 2 3 4 5 6 7

    TotalShear(kN)

    RelativeDisplacement(mm)

    Loadvs.DisplacementatE2

    SingleBearing

    SingleShearKey

    Total

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    26/40

    22

    Table2 Loadsinbearingsandshearkeysatvariousdisplacements

    Displ.(mm)

    Load (kN)

    Ea.Bearing

    Ea. ShearKey

    Total

    3.69 0 30883 61767

    4.8057 9206 41589 120001

    4.8487 9566 42000 122264

    5.6799 17059 49882 168001

    6.527 22100 57803 204006

    Duetotheverylargestiffnessoftheforcetransfermechanismsatplay,verysmallvariationsinthe

    sizeofgapscanhaveasignificanteffectonthedistributionofloadbetweenthecomponents. The

    previousanalysescanberepeatedwithvariousassumedgapsinboththeshearkeysandbearings.

    Twocaseswereexamined: thegapsintheshearkeysandtheshimmedbearingsareapproximately

    equal and a relatively greater gap in the bearings such that they do not become engaged until

    approximately6mmrelativedisplacement.TheseareshowninFigure16. Table3andTable4list

    theforcesinthecomponentsatvariousdisplacementlevelsforthesetwocases.

    Figure16 Loadvs.displacementforvariablerelativegaps

    0

    20000

    40000

    60000

    80000

    100000

    120000

    140000

    160000

    180000

    200000

    0 5 10

    Load(kN)

    Displacement(mm)

    EqualGaps

    Ea.Bearing

    Ea.ShearKey

    Total

    0

    20000

    40000

    60000

    80000

    100000

    120000

    140000

    160000

    180000

    200000

    0 5 10

    Load(kN)

    Displacement(mm)

    LargeBearingGaps

    Ea.Bearing

    Ea.ShearKey

    Total

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    27/40

    23

    Table3 Loadsincomponentswithequalgapsinbearingsandshearkeys

    Displ.(mm)

    Load (kN)

    Ea.

    Bearing

    Ea. Shear

    Key Total3.69 0 0 0

    4 1998 0 7990

    6.4194 18279 23443 120001

    6.939 22100 28464 145326

    8.1182 22100 39800 168000

    Table4 Loadsincomponentswith6mmrelativegapbetweenshearkeyandbearings

    Displ.(mm)

    Load (MN)

    Ea.Bearing

    Ea. ShearKey

    Total

    4.3481 0 42000 84000

    5.9301 1547 56906 120000

    7.0206 8579 66835 168000

    Based on the above investigations, the best approach to evaluating the distribution of loads

    betweentheshearkeysandthebearingsistoboundthesolution. Inadditiontotheuncertaintyin

    themagnitudeof the freeplaybetweenbearings and shear keys, it is likely that variationsexist

    betweenthetwoshearkeysandamong the fourbearings. Thiswould increase the loadanyone

    component may experience beyond that found assuming equal distribution among the same

    components. Another factor is theeffectofdynamic impact. Duringaseismicevent,thegaps in

    these components will close at some nonzero velocity, and this will result in localized impact

    loading. Simple2DOFstudiesweremade todetermine theorderofmagnitudeof these impact

    forces;theywerefoundtobeverysensitivetoassumeddampinglevels. Regardless,impactvalues

    of10%ormoredonotseem impractically large. Therefore, the rangeof loading toevaluate the

    shearkeysshouldbefrom23.4MNto56.9MN,andfortheshimmedbearingsfrom1.5MNto18.3

    MN. Basedontheevaluationof thecapacitiesofthebearings,thereremainsapproximately18%

    reservecapacitybeforesliding. Fortheshearkeys,althoughyieldingwasfoundtooccurataloadin

    the vicinity of 50 MN, significant capacity exists above that load. Based on the nonlinear finite

    elementanalysisdiscussedinAppendix2,amaximumcapacityof65MNappearstobereasonable.

    This load level limits the amount of inelastic behavior while still taking advantage of the large

    reserve capacity of the shear keys. Based on this, the reserve capacity of the shear keys is

    approximately 15% over the SEE demand. Thus, both the bearings and the shear keys have

    adequate reserve to coveruncertainties in themagnitudesof the loads, including someunequal

    loadsharingwithinsetoflikeunits.

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    28/40

    24

    Aquestionmightbe asked as towhy shim thebearings if shear keys S3 and S4appear tohave

    adequate capacity to carry the full SEE demand by themselves. As discussed above, there are

    multiple sources of uncertainty regarding the magnitude of the loads and the behavior and

    robustnessofthesystemisimprovedbytheadditionofthetransverseshimming.

    4.3 CapacityofOBGsandthePierE2CrossGirdertoDeliverLoadtotheShimmedBearingsand

    ShearKeys,Respectively

    4.3.1 Introduction

    Thesteelorthotropicboxgirder(OBG)andsteelcrossgirder (CG)wereevaluatedatPierE2forthe

    seismicforcesappliedthroughthebearingsandtheS3andS4shearkeyspriortothecompletionof

    theS1andS2shearkeys. Thebearingandshearkey locationswereexamined independently to

    determinecapacities. Insomecases, inconsistentconservativeassumptionsweremaderegarding

    loads or load paths. For example, the tension in anchor bolts might be maximized to analyze

    bearingplatesand stiffeners,and thenminimized todetermine friction from clamping. Another

    examplewouldbe that alternative loadpathswouldbe ignoredwhendeterminingdemand in a

    givencomponent. Thedemandstodeterminedemandtocapacityratios(D/C)wereassumedtobe

    as listed in Table 5. Note that in keepingwith the approach toboundpossibilities, it hasbeen

    assumedthateithertheshearkeysorthebearingscarryallofthetransverseforcefromthedesign

    SEE. For thepurposeofevaluating theOBGsand theCGatPierE2, these loadsare local to the

    individualelementandarenotadditive, i.e. in the temporaryshimmed condition theOBGsneed

    onlybeevaluatedforthe loadsfromthebearingsandthecrossgirderneedonlybeevaluatedfor

    theloadsfromtheshearkeys.

    Table5 Seismicdemands(MN)

    B1 S1 B2 S3 S4 B3 S2 B4

    Longitudinal 15 0 15 0 0 15 0 15

    Transverse 30 0 30 60 60 30 0 30

    4.3.2 Bearings

    Thereare4bearingsatPierE2,twoundereachboxgirder,as illustrated inFigure4. TheOBG is

    attachedtothe

    bearings

    using

    56

    2diameter

    A354

    Grade

    BD

    rods

    anchored

    into

    stiffened

    anchor

    seatswithintheOBG. Theseanchorrodsarepretensionedtoclampthebearingontothethickened

    bottomflange(keyplate)oftheOBG. Theresultingfrictioncarriesthelongitudinalandhorizontal

    forcesbetweentheOBGandthebearings. Thevariouselementsincludinglongitudinalshearplates,

    transversewebs,andvariousstiffenersanddiaphragmsoftheOBGatthebearingattachmentare

    illustratedinthedesigndrawingsinAppendix3C.

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    29/40

    25

    Thestiffenedanchorseatswereanalyzedfortheinitialtensioningforce,aswellastheentirelocal

    OBGassemblagebeinganalyzed for the transferof the seismic forcesbetween theOBGand the

    bearing. Theplatesareallstiffenedcompactelementsthatareassumedtobeabletoreachtheir

    yield point of 345 MPa (50 ksi). Table 6 lists the demand to capacity ratios (D/C) for various

    elements. The calculations for these values are contained in Appendix 3A. Similar calculations

    performedbytheEORwithcomparableresultsarecontainedinAppendix3B.

    Table6 Demand/CapacityratiosOBG

    Component Force Demand/CapacityD/C(%)

    1. Keyplate Longitudinal 15%

    Transverse 26%

    2. Longitudinalshearplate Longitudinal 72%

    3. Floorbeamwebs Transverse 49%

    4. Anchorboltbearingplate Bending 66%

    5. Centerbrgstiffenerplate Axial 84%

    Shear 48%6. Sidebrgstiffenerplate Axial 35%

    Shear 21%

    7. Floorbeamweb Anchorassemblytearout 53%

    8. 50mmx700mmplates Shear 95%

    9. Bearingsurface Friction 95%

    10. LocalverticalOBGelements Normalstresses 72%

    ItshouldbenotedthatthebearingsurfaceslidingfrictionD/Cratioisnotforthemaximumseismic

    forcesoccurringsimultaneouslyinallthreeorthogonaldirections,but isforthemaximumupliftof

    9.5MNalongwith the concurrent transverseandhorizontal forces (see calculations inAppendix3A).

    The D/C ratios in Table 6 indicate that OBGs have more than sufficient capacity to resist the

    demands of the design SEE at pier E2. This conclusion is further supported by the analyses in

    Sections4.2.3and4.2.4whichindicatethatthebearingswillnotbesubjectedtothenominal30MN

    underthedesignSEE.

    4.3.3 ShearKeys3and4

    Shearkeys3and4arelocated2900mmeithersideofmidspanofthesteelcrossgirderatPierE2

    (seeFigure4andDesignDrawingsinAppendix3C). TheCGisattachedtotheshearkeysusing483diameterA354GradeBDrodsanchoredintostiffenedanchorseatsand323diameteranchor

    rodsboltingthetopplateoftheshearkeydirectlytothebottomflangeoftheCG. Theseanchor

    rodsarepretensionedtoclamptheshearkeyontothethickenedbottomflange(keyplate)ofthe

    CG. TheresultingfrictioncarriesthetransverseseismicforcesfromtheCGintotheshearkey. The

    variouselementsoftheCGattheshearkeyattachmentincludingfloorbeamwebs,diaphragms,and

    stiffenersareillustratedintheDesignDrawingsinAppendix3C.

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    30/40

    26

    Thestiffenedanchorseatswereanalyzedfortheinitialtensioningforce,aswellastheentirelocal

    CGassemblagebeinganalyzedforthetransferoftheseismicforcesbetweentheCGandtheshear

    key. Theplatesareallstiffenedcompactelementsthatareassumedtobeabletoreachtheiryield

    pointof345MPa (50ksi). Table7 liststhedemandtocapacityratios (D/C) forvariouselements.

    ThecalculationsforthesevaluesarecontainedinAppendix3A.

    Table7 Demand/Capacityratiossteelcrossgirder

    Component Force Demand/CapacityD/C(%)

    1. Keyplate Transverse 38%

    2. Floorbeamwebs Transverse 74%

    3. Anchorboltbearingplates Interfaceshear 80%

    Bending 65%

    4. Centerbrgstiffenerplate Axial 81%

    Shear 92%

    5. Sidebrgstiffenerplate Axial 42%

    Shear

    37%

    6. Diaphragms Anchorassemblytearout 76%

    7. Floorbeamweb Anchorassemblytearout 94%

    8. Bearingsurface Friction 60%

    9. LocalverticalCGelements Normalstresses 41%

    10. Bending+axialglobalest. Normalstresses 50%

    TheD/CratiosinTable7indicatethattheCGatPierE2hasmorethansufficientcapacitytoresist

    thedemandsof thedesignSEE. This conclusion is further supportedby theanalyses inSections

    4.2.3and4.2.4which indicate that thebearingswillnotbe subjected to the60MNused in this

    evaluationunderthedesignSEE.

    4.4CapacityofStrut

    4.4.1Introduction

    TheeffectsoftheforcescorrespondingtoloadpathConthestrutatPierE2wereinitiallyanalyzed

    using the conventional method of strength of materials. A simple static frame analysis was

    performed todetermine the internal forcesof thestrut. Critical strut sectionswith forces larger

    than those reported for loadpathBwerecheckedaccording to theAASHTO LRFDSpecifications.

    Thisassumes(perthescopeforthisreview)thatthecomponentswereadequatelydesignedbythe

    EOR for this load path. In addition, a lower bound load path wherein all the seismic force isassumedtobetransferredthroughshearkeysS3andS4wasalsoevaluated.

    4.4.2StructuralAnalysis

    TheLusasframemodelshowninFigure17wassubjectedtotheloadingeffectsindicatedbyTable8

    forloadpathC. Theeccentricitybetweenthecenterofrotationofthebearingsandshearkeysand

    thestrutcenterlinewasconsideredinthedefinitionofthemodelinputloads. Table9presentsthe

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    31/40

    27

    envelopeofthesectionalforcesatthecriticalbearingandshearkeylocationsincludingthegravity

    andaxialposttensioningeffectsofthestrut. TheredvaluesindicatedinTable9correspondtothe

    demand forces thatweremorecritical than theircounterpartsof loadpathB. Figure18 through

    Figure20showthedifferentforceeffectdiagramsofthestrutforloadpathCandthelowerbound

    path.

    4.4.3SectionalChecks

    ThecriticalforcesfromTable8andtheirconcurrenteffectswerecomparedtothesectioncapacities

    determinedaccordingtotheAASHTOLRFDSpecifications.

    Asummaryof theprincipalcheck findings ispresented inTable9. The rednumbers indicate the

    critical force effect taken from the envelope and the blue shaded numbers mean that the

    correspondingD/Cchecksaresatisfactory.ThecompletecalculationscanbefoundinAppendix4.

    4.4.4Results

    The results showed that themaximumbiaxial flexure interaction equation valueswere 0.91and

    0.94 atbearingB2and shear key S2, respectively,while thedemandtocapacity ratios for shear

    were0.82atbearingB3,and0.58atshearkeyS2(seeFigure17for locationofbearingandshear

    key sections) indicatingmore thanadequate capacity to resist theSEE forces. The forceson the

    cantileverportionsof thestrut resulted in insignificantdemandswhencompared to theavailable

    capacityofthosecomponents. Infact,thestressesinthecantileveredsectionofthestrutbasedon

    thissectionalanalysiswere found tobebelow themodulusof rupturewhen theposttensioning

    effectswereincluded,meaningtheconcretewouldlikelynotevencrackduringanearthquake.

    Forthelowerboundloadpath,althoughtheminimumaxialforceinthestrutwascontrolledbythis

    loading case, thebiaxial flexure interaction checks showed that thiswasnot a critical condition.

    Betweenthecolumns,thedemandsaredrivenbytheglobalframeactionmomentsandshearssuch

    thatthechange inforcescausedbytransferringtheseismicloadsthroughthebearingshadavery

    minoreffectonallbuttheaxialloads,ascanbeseeninthecomparisonoftheforceeffectdiagrams

    betweenloadpathCandthelowerboundpathinFigure18throughFigure20.

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    32/40

    28

    a.

    b.Figure17 OverviewofPierE2Framemodel;a.3Dview.b.IdentificationofStrutCrossSections

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    33/40

    29

    LoadPathC LowerBoundPath

    AxialLoad,Pu(MN)

    InplaneMoment,Mux(MNm)

    Figure18ForceDiagramsforLoadPathCandLowerBoundPath(Note:axialposttensioningeffects

    arenotincludedinthediagrams)

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    34/40

    30

    LoadPathC LowerBoundPath

    InplaneShear,Vuy(MN)

    Torsion,Tu(MNm)

    Figure19 ForceDiagramsforLoadPathCandLowerBoundPath

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    35/40

    31

    LoadPathC LowerBoundPath

    OutofplaneMoment,Muy(MNm)

    OutofplaneShear,Vux(MN)

    Figure20 ForceDiagramsforLoadPathCandLowerBoundPath

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    36/40

    32

    Table8 SuperstructureloadsonStrutatPierE2

    Bearings

    B1,B2,B3,B4

    ShearKeys

    S3,S4

    Transverse Long. Vertical Transverse

    KN KN KN KN

    Load

    pathB

    Transverse 30496 8186 16441 0Long. 1340 13232 19255 0

    Vertical 10799 4770 57932 0

    Uplift 25287 1628 9539 0

    Load

    pathC

    Transverse 20331 8186 16441 20331

    Long. 893 13232 19255 893

    Vertical 7199 4770 57932 7199

    Uplift 16858 1628 9539 16858

    Lower

    bound

    pathTransverse 0 8186 16441 60992

    Long. 0 13232 19255 2680

    Vertical 0 4770 57932 21598

    Uplift 0 1628 9539 50574

    Table9 Envelopeofsectionalforcesatbearingsandshearkeys

    Pu Vuy Vux Tu Muy Mux

    AxialInplane

    Shear

    Outof

    planeshearTorsion

    Outofplane

    moment

    Inplane

    moment

    MN MN MN MNm MNm MNm

    Load

    pathB

    Bearings

    B1,B2,B3,B4

    max 114 86 13 57 3 855

    min 180 61 13 53 2 797

    ShearKeys

    S1,S2

    max 118 89 13 57 6 844

    min 180 52 13 49 58 1136

    Load

    pathC

    Bearings

    B1,B2,B3,B4

    max 104 89 13 53 3 941

    min 185 61 13 53 2 912

    ShearKeys

    S1,S2

    max 104 92 13 53 5 1232

    min 185 64 13 53 58 968

    Lower

    bound

    path

    Bearings

    B1,B2,B3,B4

    max 84 89 13 53 3 799

    min 206 61 13 53 2 770

    ShearKeys

    S1,S2

    max 84 92 13 53 5 1177

    min 206 64 13 53 58 913

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    37/40

    33

    Table10 CriticalSectionalForcesandCapacityChecks

    Units: Force: MN Moments: MNm Stress: MPa

    Element: Bearings ShearKeys

    Controllingforce: Muxmax Muxmin Vuymax Pumin Muxmax Vuymax Pumin

    Section: B3 B2 B3 B3 S2 S2 S2

    1. Sectionalloadingeffects:Axial(if0 Topfiberintension) Mux= 941 912 304 799 1232 688 1177

    Outofplanebendingmoment Muy= 3 3 2 3 32 18 32

    Torsion Tu= 0 0 19 0 33 19 33

    Inplaneshear Vuy= 70 50 89 71 89 92 90

    Outofplaneshear Vux= 0 0 5 0 8 5 8

    2. Normalstressesassumingelasticbehavior:

    (if>0compressivestress) fc1= 42 29 17 38 44 26 43

    %f'c= 75% 53% 32% 68% 80% 47% 78%

    fc2= 29 39 6 22 33 17 30

    %f'c= 53% 70% 10% 40% 59% 30% 55%

    3. Axialandflexuralforceeffects:

    Pnx= 172 174 209 248 195 177 227

    Mnx= 1239 1274 1291 1341 1528 1497 1577

    eyratio= 1.00 1.00 1.00 1.00 1.00 1.00 1.00Pny= 1063 1209 1065 1082 997 845 1112

    Mny= 31 27 26 11 712 873 535

    exratio= 1.00 1.00 1.00 1.00 1.00 1.00 1.00

    IE= 0.86 0.91 0.27 0.72 0.94 0.53 0.89

    4. Shearandtorsionalforceeffects:

    Torsionaleffects: Tn= 82 82 94 88 46 52 47

    Tu/Tn= 0.00 0.00 0.20 0.00 0.71 0.37 0.69

    Inplaneshear: Vn= 88 87 109 97 135 158 139

    Vu/Vn= 0.79 0.58 0.82 0.73 0.66 0.58 0.65

    Outofplaneshear: Vc= 51 51 51 51 63 63 63

    Vu/Vc= 0.00 0.00 0.08 0.00 0.12 0.07 0.12

    4.5Transfer

    of

    Horizontal

    Load

    From

    Bearing

    Base

    Plate

    to

    Strut

    to

    Column

    Due to thesizeand localized loadingconditionsof the concretepierstrut,strutandtiemodelswere

    developed for the two regions shown in Figure 21 as an additional check beyond the sectional

    interaction values of Section 4.4. Since the controlling loading case corresponds to the transverse

    forces,onlytwodimensionalmodelssubjectedtotheseforceswereconsideredinthisstudy.

    Todetermineanappropriatestrutandtiemodelthataccuratelyrepresentstheflowofforcesinthese

    disturbed regions,anelasticanalysisofaplane stressmodelof the strutwasperformed in Lusas to

    obtaintheprincipalstressesintheuncrackedregions. Strutandtieconfigurationswerethendeveloped

    basedon the flowof forces in thesemodels (see Figure 22). Inorder tobound thepotential loads

    appliedat thebearingsandshearkeys, thebearingswereevaluated for the forces from loadpathB,

    whileshearkeys3and4wereloadedwiththelowerboundforces,assumingalltransverseseismicforce

    istransmittedthroughthesetwoshearkeys. Resultsoftheframeanalysiswereusedtodeterminethe

    boundary loads applied to the strut and tie models. Results of the analysis indicate that there is

    sufficientcapacitytoaccommodatethechanges in loadpathcausedbytheshimmingofthebearings.

    Oneanomalousresultwasencounteredregardingthetiecapacityinthetensionsideofthepiercolumn.

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    38/40

    34

    Since this isoutsideof thescopeof this review, itwasnotpursuedbutwas reported to theEOR for

    furtherreview.

    ThecompletecalculationscorrespondingtothestrutandtiemodelsarepresentedinAppendix5.

    Figure21 Strutregionsanalyzedwithstrutandtiemodels

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    39/40

    35

    Figure22 Principalstresstrajectoriesandstrutandtiemodels(blue:compression,red:tension)

    4.6 PotentialtoDamagethePermanentBearingsorOtherComponentsifShimsareInstalled

    TheanalysisofPierE2inSection4.4showsthattheserviceandseismicdesignforcesinthepierarenot

    changedsignificantlyby the redirectionofseismic forces resulting from theshimming. Therefore the

    responseoftheconcretestrutandcolumnsarenotexpectedtobedifferentwithorwithouttheshims.

    Basedonthissubjectiveassessmentoftheglobaleffects,combinedwiththequantitativeassessmentof

    the local elements in the load transfer zone, it is concluded that there does not appear to be any

    reasonable possibility of damaging the bridge as a result of installing the shims, other than the

    possibilityofdamagingthepaintsystemeitherwhentheshimsareinsertedorasthebridgerotatesin

    service

    5. ConclusionsandRecommendations

    Theexactdistributionofforcesinthebearingsandshearkeys,andhencethedemandsonotherpartsof

    the load transferzoneatPierE2which is thescopeof this investigation, ishighlydependenton the

  • 8/13/2019 Report 8-9-13 - Oakland Bay Bridge Seismic Retrofit

    40/40